
Computers & Industrial Engineering 56 (2009) 1708–1712
Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie
Short Communication

Fully polynomial time approximation scheme for the weighted flow-time
minimization on a single machine with a fixed non-availability interval

Imed Kacem a,*, A. Ridha Mahjoub b

a Université de Technologie de Troyes, ICD, LOSI, CNRS 2848, France
b Université Paris-Dauphine, LAMSADE, CNRS 7024, France
a r t i c l e i n f o

Article history:
Received 13 February 2008
Received in revised form 27 September
2008
Accepted 29 September 2008
Available online 7 October 2008

Keywords:
Scheduling
Non-availability constraint
Approximation
Weighted flow-time
FPTAS
0360-8352/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.cie.2008.09.042

* Corresponding author.
E-mail addresses: imed.kacem@utt.fr (I. Kacem),

Mahjoub).
a b s t r a c t

In a recent paper [Theoretical Computer Science 363, 257–265], He, Zhong and Gu considered the non-
resumable case of the scheduling problem with a fixed non-availability interval under the non-resumable
scenario. They proposed a polynomial time approximation scheme (PTAS) to minimize the total comple-
tion time.

In this paper, we propose a fully polynomial-time approximation scheme to minimize the total
weighted completion time. The FPTAS has Oðn2=e2Þ time complexity, where n is the number of jobs
and e is the required error bound. The proposed FPTAS outperforms all the previous approximation algo-
rithms designed for this problem and its running time is strongly polynomial.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

This paper focuses on scheduling a set of jobs on a single ma-
chine on which a maintenance task has to be performed under
the non-resumable scenario. The objective is to minimize the total
weighted completion time. The machine is unavailable during a
fixed interval. This type of problems has been studied in the liter-
ature under various criteria (Gharbi & Haouari, 2005; Lee & Chen,
2000). Given the aim of our study, we present a brief overview of
previous works related to this subject.

The simplest model, that is minimizing total completion time
with a single period of unavailability (denoted 1;h1k

P
Ci), was

proved to be NP-Hard by Adiri, Bruno, Frostig, and Rinnooy Kan
(1989) and Lee and Liman (1992). Several references studied the
worst-case performance of heuristic methods (a sample of these
papers includes Adiri et al., 1989, Lee & Liman, 1992, Sadfi, Penz,
Rapine, Bla _zewicz, & Formanowicz, 2005 & Breit, 2007). Recently,
He, Zhong, and Gu (2006) proposed a polynomial time approxima-
tion scheme (PTAS).

Numerous references considered the problem of simulta-
neously scheduling jobs and maintenance tasks on a single ma-
chine (see for example Qi, 2007 and Qi, Chen, & Tu, 1999 who
considered the minimization of the sum of completion times, or
Chen (2006) who proposed a branch-and-bound algorithm for
ll rights reserved.

mahjoub@dauphine.fr (A.R.
solving a similar problem). Others numerous references addressed
the shop scheduling problems (parallel-machine, flow shop and job
shop problems) and they proposed exact and heuristic methods
(Aggoune, 2004; Aggoune & Portmann, 2006; Allaoui & Artiba,
2006; Allaoui, Artiba, Elmaghraby, & Riane, 2006; Kubzin & Struse-
vich, 2006; Lee, 1996; Lee, 2004, chap. 22; Lee & Chen, 2000;
Schmidt, 2000).

The resumable version of the studied problem was studied by
Wang, Sun, and Chu (2005). They also studied the case with arbi-
trary number of unavailability periods. Recently, Kacem and Chu
(2008) studied the 1;h1k

P
wiCi problem under the non-resumable

scenario and showed that both WSPT1 and MWSPT2 rules have a
tight worst-case performance ratio of 3 under some conditions. They
also proposed exact methods to solve this problem (Kacem & Chu,
2008; Kacem, Chu, & Souissi, 2008). Kellerer and Strusevich
proposed a 4-approximation by converting the resumable solution
of Wang et al. (2005) into a feasible solution for the non-resumable
scenario. Kacem proposed a 2-approximation algorithm which can
be implemented in Oðn2Þ time (Kacem, 2008). Kellerer and Struse-
vich proposed an FPTAS (fully polynomial time approximation
scheme) for the weighted case with Oðn4=e2Þ time complexity
(Kellerer & Strusevich, in preparation). For these reasons, this paper
is a successful attempt to develop faster FPTAS for the 1; h1k

P
wiCi

problem under the non-resumable scenario. In Table 1, we
1 WSPT: weighted shortest processing time.
2 MWSPT: modified weighted shortest processing time.

mailto:imed.kacem@utt.fr
mailto:mahjoub@dauphine.fr
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie

Table 1
Approximation algorithms for the studied problem.

Studied case Reference WCR TC

Unweighted case (wi ¼ 1 8i) Lee and Liman (1992) Acta Informatica 9/7 n log n
Unweighted case (wi ¼ 1 8i) Sadfi et al. (2005) Eur. J. Oper. Res. 20/17 n log n
Unweighted case (wi ¼ 1 8i) Breit (2007) Eur. J. Oper. Res. 1.072 n log n
Unweighted case (wi ¼ 1 8i) He et al. (2006) Theor. Comput. Sci. 1þ 2=ð5þ 2ð2kþ 8Þ1=2Þ n2kþ1

Unweighted case (wi ¼ 1 8i) Kellerer and Strusevich (2008) Algorithmica 1+e n3=e2

Weighted case (arbitrary wi) Kacem and Chu (2008) Eur. J. Oper. Res. 3 n log n
Weighted case (arbitrary wi) Kellerer and Strusevich (2008) Algorithmica 1+e n4=e2

Weighted case (arbitrary wi) Kacem (2008) Comp. Ind. Eng. 2 n2

Weighted case (arbitrary wi) This paper 1+e n2=e2

I. Kacem, A.R. Mahjoub / Computers & Industrial Engineering 56 (2009) 1708–1712 1709
summarize the best known approximation algorithms designed for
the studied problem under different assumptions. For every case,
we recall the worst-case performance ratio (WCR) and the time com-
plexity (TC) of the above algorithm. The table shows the obvious
effectiveness of the algorithm proposed in this paper.

The paper is organized as follows. In Section 2, we describe the
problem and we presents an existing exact algorithm. The im-
proved FPTAS is discussed in Section 3. Finally, Section 4 concludes
the paper.

2. Problem formulation and exact algorithm

The problem is to schedule a set J of n jobs on a single machine,
with the aim of minimizing the total weighted completion time.
Every job i has a processing time pi and a weight wi. The machine
is unavailable between T1 and T2 and it can process at most one job
at a time. With no loss of generality, we consider that all data are
integers and that jobs are indexed according to the WSPT rule (i.e.,
ðp1=w1Þ 6 ðp2=w2Þ 6 � � � 6 ðpn=wnÞ). Due to the dominance of the
WSPT order, an optimal schedule is composed of two sequences
of jobs scheduled in nondecreasing order of their indexes.

If all the jobs can be inserted before T1, the studied problem (P)
has obviously a trivial optimal solution obtained by the WSPT rule
(Smith, 1956). We therefore consider only the problems in which
all the jobs cannot be scheduled before T1.

In the remainder of this paper, u�ðQÞ denotes the minimal
weighted sum of the completion times for problem Q and uSðQÞ
is the weighted sum of the completion times of schedule S for
problem Q.

The problem can be optimally solved by applying the following
exact algorithm A, which is a weak version of the one proposed by
Kacem et al. (2008). This algorithm generates iteratively some sets
of states. At every iteration k, a set Vk composed of states is gen-
erated (1 6 k 6 n). Each state ½t; f ;wþ� in Vk can be associated to
a feasible schedule for the first k jobs. Variable t denotes the com-
pletion time of the last job scheduled before T1 and f is the total
weighted flow-time of the corresponding schedule. Also, it uses
artificially an additional variable wþ for every state, which denotes
the sum of weights of jobs scheduled after T2 for the corresponding
state. Note that this variable can be ignored in Algorithm A, but it
will be necessary to explain the FPTAS described in the next sec-
tion. This algorithm can be described as follows:

Algorithm A

(i) Set V1 ¼ f½0;w1ðT2 þ p1Þ;w1�; ½p1;w1p1;0�g.
(ii) For k 2 f2;3; . . . ;ng,
For every state ½t; f ;wþ� in Vk�1:
(1) Put ½t; f þwkðT2 þ

Pk
i¼1pi � tÞ;wþ þwk� in Vk

(2) Put ½t þ pk; f þwkðt þ pkÞ;wþ� in Vk if t þ pk 6 T1
Remove Vk�1

(iii) u�ðPÞ ¼min½t;f �2Vnffg.
Let UB be an upper bound on the optimal weighted flow-time
for problem ðPÞ. If we add the restriction that for every state ½t; f �
the relation f 6 UB must hold, then the running time of A can be
bounded by nT1UB. Indeed, t and f are integers and at each step
k, we have to create at most T1UB states to construct Vk. Moreover,
the complexity of A is proportional to

Pn
k¼1jVkj.

However, this complexity can be reduced to OðnT1Þ as it was
done by Kacem et al. (2008), by choosing at each iteration k and
for every t the state ½t; f � with the smallest value of f .

In the remainder of the paper, we consider the weak version of
Algorithm A, that is to say the dynamic programming based algo-
rithm when UB ¼ uHðPÞ, where H is the heuristic described later
in Section 3.

3. FPTAS

Our FPTAS is based on two steps. First, we use the 2-approxima-
tion algorithm by Kacem (2008). Then, we apply a modified dy-
namic programming algorithm. In the remainder of this section,
we describe our algorithm, then, we present the proof that it is
an FPTAS.

3.1. Algorithm description

Our algorithm starts by computing the upper bound yielded by
Kacem’s algorithm (denoted H), which extends the one proposed
by Wang et al. (2005) for the resumable version of the problem.
For self-consistency, we recall the main steps of this algorithm.
At each iteration l, we identify a critical job (the first one scheduled
after T2) and we update Gl (the subset of critical jobs). It can be
summarized as follows:

Algorithm H

(i) Let l ¼ 0 and Gl ¼ ;.
(ii) Let pði; lÞ be the ith job in J � Gl according to the WSPT order.

Construct a schedule rl ¼ hpð1; lÞ;pð2; lÞ; . . . ;pðgðlÞ; lÞ;Gl;

pðgðlÞ þ 1; lÞ; . . . ;pðn� jGlj; lÞi such that
P

i2Gl
pi þ

PgðlÞ
i¼1

ppði;lÞ 6 T1 and
P

i2Gl
pi þ

PgðlÞþ1
i¼1 ppði;lÞ > T1 where jobs in Gl

are sequenced according to the WSPT order.
(iii) If

P
i2Gl

pi þ ppðgðlÞþ1;lÞ 6 T1, then: Glþ1 ¼ fpðgðlÞ þ 1; lÞg [Gl;
l ¼ lþ 1; go to step (ii). Otherwise, go to step (iv).

(iv) uHðPÞ ¼ min06h6lfurh
ðPÞg.

Note that this algorithm has a worst-case performance ratio of 2
and it can be implemented in Oðn2Þ time (Kacem, 2008).

In the second step of our FPTAS, we modify the execution of
algorithm A in order to reduce the running time. The main idea
is to remove a special part of the states generated by the algorithm.
Therefore, the modified algorithm A0 becomes faster and yields an
approximate solution instead of the optimal schedule. Hence, we
have to take care when removing such states so that the approxi-
mation will be of a good quality.

1710 I. Kacem, A.R. Mahjoub / Computers & Industrial Engineering 56 (2009) 1708–1712
The approach of modifying the execution of an exact algorithm to
design FPTAS, was initially proposed by Ibarra and Kim for solving
the knapsack problem (Ibarra & Kim, 1975). It is noteworthy that
during the last decades numerous combinatorial problems have
been addressed by applying such an approach (a sample of these
papers includes Gens & Levner, 1981, Sahni, 1976, Kovalyov & Ku-
biak, 1999, Kacem, 2007, Kellerer & Strusevich, in preparation and
Woeginger, 2000, 2005).

Given an arbitrary e > 0, we define

LB ¼ uHðPÞ
2

; ð1Þ

q1 ¼
4n
e

� �
; ð2Þ

q2 ¼
2
e

� �
; ð3Þ

d1 ¼
uHðPÞ

q1
ð4Þ

and

d2 ¼
T1

q2
: ð5Þ

We split the interval ½0;uHðPÞ� into q1 equal subintervals
I1
r ¼ ½ðr � 1Þd1; rd1�16r6q1

of length d1. We also split the interval
½0; T1� into q2 equal subintervals I2

s ¼ ½ðs� 1Þd2; sd2�16s6q2
of length

d2. Our algorithm A0e generates reduced sets V#
k instead of sets

Vk. It can be described as follows:

Algorithm A0e

(i) Set V#
1 ¼ f½0;w1ðT2 þ p1Þ;w1�; ½p1;w1p1;0�g.

(ii) For k 2 f2;3; . . . ;ng,

For every state ½t; f ;wþ� in V#

k�1:
(1) Put ½t; f þwkðT2 þ

Pk
i¼1pi � tÞ;wþ þwk� in V#

k

(2) Put ½t þ pk; f þwkðt þ pkÞ;wþ� in V#
k if t þ pk 6 T1
Remove V#
k�1

Let ½t; f ;wþ�r;s be the state in V#
k such that f 2 I1

r and t 2 I2
s

with the smallest possible t (ties are broken by choosing
UUB

 0 t

f

Fig. 1. Illustration of the reduc
the state of the smallest f). Set V#
k ¼ f½t; f ;wþ�r;sj1 6 r 6

q1;1 6 s 6 q2g.
(iii) uA0e

ðPÞ ¼min½t;f ;wþ�2V#
n
ffg.

As an illustration of the Algorithm A0, Fig. 1 shows the set of
states obtained after the reduction step compared to the set gener-
ated by Algorithm A (for a given iteration k). We can see that the
subset of states in each box I1

r � I2
s is replaced by a single state (cor-

responding to the smallest t).

3.2. Worst-case analysis and complexity

The worst-case analysis of our FPTAS is based on the compari-
son of the execution of algorithms A and A0e. In particular, we focus
on the comparison of the states generated by each of the two algo-
rithms. We can remark that the main action of algorithm A0e con-
sists in reducing the cardinal of the state subsets by splitting
½0;uHðPÞ� � ½0; T1� into q1q2 boxes I1

r � I2
s and by replacing all the

vectors of Vk belonging to I1
r � I2

s by a single ‘‘approximate” state
with the smallest t.

Lemma 1. For every state ½t; f ;wþ� in Vk there exists a state
½t#; f #;wþ#� in V#

k such that

t#
6 t ð6Þ

and

f #
6 f þ kd1 þwþd2 ð7Þ

Proof. By induction on k.

First, for k ¼ 1 we have V#
1 ¼V1. Therefore, the statement is

trivial.
Now, assume that the statement holds true up to level k� 1.

Consider an arbitrary state ½t; f ;wþ� 2Vk. Algorithm A introduces
this state into Vk when job k is added to some feasible state for the
first k� 1 jobs. Let ½t0; f 0;w0� be the above feasible state. Two cases
can be distinguished: either ½t; f ;wþ� ¼ ½t0 þ pk; f

0 þwkðt0 þ pkÞ;w0�
or ½t; f ;wþ� ¼ ½t0; f 0 þwkðT2 þ

Pk
i¼1pi � t0Þ;w0 þwk� must hold. We

will prove the statement for level k in the two cases.
B

 0 t

tion step of Algorithm A0 .

I. Kacem, A.R. Mahjoub / Computers & Industrial Engineering 56 (2009) 1708–1712 1711
1st Case: ½t; f ;wþ� ¼ ½t0 þ pk; f
0 þwkðt0 þ pkÞ;w0�

Since ½t0; f 0;w0� 2Vk�1, there exists ½t0#; f 0#;w0#� 2V#
k�1 such

that t0# 6 t0 and f 0# 6 f 0 þ ðk� 1Þd1 þw0d2. Consequently, the state
½t0# þ pk; f

0# þwkðt0# þ pkÞ;w0#� is generated by algorithm A0e at
iteration k. However, it may be removed when reducing the state
subset. Let ½k;l; m� be the state in V#

k that is in the same box as
½t0# þ pk; f

0# þwkðt0# þ pkÞ;w0#�. Hence, we have

k 6 t0# þ pk 6 t0 þ pk ¼ t ð8Þ

and

l 6 f 0# þwk t0# þ pk

� �
þ d1

6 f 0 þ k� 1ð Þd1 þw0d2 þwk t0# þ pk

� �
þ d1

6 f 0 þ kd1 þw0d2 þwk t0 þ pkð Þ ¼ f þ kd1 þwþd2: ð9Þ

Consequently, the statement holds for level k in this case.

2nd Case: ½t; f ;wþ� ¼ ½t0; f 0 þwkðT2 þ
Pk

i¼1pi � t0Þ;w0 þwk�
Since ½t0; f 0;w0� 2Vk�1, there exists ½t0#; f 0#;w0#� 2V#

k�1 such
that t0# 6 t0 and f 0# 6 f 0 þ ðk� 1Þd1 þw0d2. Consequently, the state
½t0#; f 0# þwkðT2 þ

Pk
i¼1pi � t0#Þ;w0# þwk� is generated by algo-

rithm A0e at iteration k. However it may be removed when reducing
the state subset. Let ½k0;l0; m0� be the state in V#

k that is in the same
box as ½t0#; f 0# þwkðT2 þ

Pk
i¼1pi � t0#Þ;w0# þwk�. Hence, we have

k0 6 t0# 6 t0 ¼ t ð10Þ

and

l0 6 f 0# þwk T2 þ
Xk

i¼1

pi � t0#
 !

þ d1

6 f 0 þ k� 1ð Þd1 þw0d2 þwk T2 þ
Xk

i¼1

pi � t0#
 !

þ d1: ð11Þ

Note that t0# P t0 � d2. Hence,

l0 6 f 0 þ kd1 þw0d2 þwk T2 þ
Xk

i¼1

pi � t0 � d2ð Þ
 !

¼ f 0 þ kd1 þ w0 þwkð Þd2 þwk T2 þ
Xk

i¼1

pi � t0
 !

¼ f þ kd1 þwþd2 ð12Þ

In conclusion, the statement holds also for level k in the second
case, and this completes our inductive proof. h

Theorem 1. Given an arbitrary e > 0, algorithm A0e yields an output
uA0e
ðPÞ such that

uA0e
ðPÞ �u�ðPÞ 6 eu�ðPÞ: ð13Þ

Proof. By definition, the optimal solution can be associated to a
state ½t�; f �;wþ�� in Vn. From Lemma 1, there exists a state
½t#; f #;wþ#� in V#

n such that

t#
6 t� ð14Þ

and

f #
6 f � þ nd1 þwþ�d2 ¼ f � þ n

uHðPÞ
q1

þwþ�
T1

q2

¼ f � þ n
uHðPÞ

4n
e

� � þwþ�
T1

2
e

� � 6 f � þ n
uHðPÞ

4n
e
þwþ�

T1
2
e

¼ u�ðPÞ þ e
LB
2
þwþ�e

T1

2
: ð15Þ
Clearly, we have u�ðPÞP LB. Since every job scheduled after T2 in
the optimal schedule has a completion time greater than T2, it is
obvious that

u�ðPÞ > wþ�T1: ð16Þ

Therefore, we deduce that

f # < u�ðPÞ þ e
u�ðPÞ

2
þ e

u�ðPÞ
2
¼ ð1þ eÞu�ðPÞ: ð17Þ

Since uA0e
ðPÞ 6 f #, we conclude that Eq. (13) holds. h

Lemma 2. Given an arbitrary e > 0, algorithm A0e can be implemented
in Oðn2=e2Þ time.

Proof. The first step consists in applying heuristic H, which can be
implemented in Oðn2Þ time. In the second step, algorithm A0e gener-
ates the state sets V#

k (k 2 f1;2; . . . ;ng). Since V#
k

�� �� 6 q1q2, we
deduce that

Xn

k¼1

V#
k

�� �� 6 nq1q2 ¼ n
4n
e

� �
2
e

� �
6 n

4n
e
þ 1

	

2
e
þ 1

	

: ð18Þ

Note that algorithm A0e generates V#
k by associating every new cre-

ated state to its corresponding box if and only if such a state has a
smaller value of t (in this case, the last state associated to this box
will be removed). Otherwise, the new created state will be immedi-
ately removed. This allows us to generate V#

k in Oðq1q2Þ time.
Hence, our method can be implemented in Oðn2 þ n2=e2Þ time and
this completes the proof. h

From Lemma 2 and Theorem 1, the main result is proved and
the following corollary holds.

Corollary 1. Algorithm A0e is an FPTAS for the non-resumable version
of problem 1;h1k

P
wiCi.

Remark 1. The approach of Woeginger, 2005 can also be applied
to obtain FPTAS for this problem. However, this needs an imple-
mentation in OðjIj3n3=e3Þ, where jIj is the input size.
4. Conclusion

In this paper, we considered the non-resumable version of the
scheduling problem on a single machine with one availability con-
straint. We studied the criterion of the weighted sum of the com-
pletion times. We proposed an FPTAS to solve the problem. The
proposed FPTAS has a strongly polynomial running time and out-
performs all the previous algorithms for this problem. In our future
works, we hope to extend these results to other variants of this
problem. The development of better approximation algorithms is
also a challenging subject.

References

Adiri, I., Bruno, J., Frostig, E., & Rinnooy Kan, A. H. G. (1989). Single machine flow-
time scheduling with a single breakdown. Acta Informatica, 26, 679–696.

Aggoune, R. (2004). Minimizing the makespan for the flow shop scheduling problem
with availability constraints. European Journal of Operational Research, 153,
534–543.

Aggoune, R., & Portmann, M.-C. (2006). Flow shop scheduling problem with limited
machine availability: a heuristic approach. International Journal of Production
Economics, 99, 4–15.

Allaoui, A., & Artiba, A. (2006). Scheduling two-stage hybrid flow shop with
availability constraints. Computers & Operations Research, 33, 1399–1419.

Allaoui, A., Artiba, A., Elmaghraby, S. E., & Riane, F. (2006). Scheduling of a two-
machine flowshop with availability constraints on the first machine.
International Journal of Production Economics, 99, 16–27.

Breit, J. (2007). Improved approximation for non-preemptive single machine flow-
time scheduling with an availability constraint. European Journal of Operational
Research, 183, 516–524.

1712 I. Kacem, A.R. Mahjoub / Computers & Industrial Engineering 56 (2009) 1708–1712
Chen, W. J. (2006). Minimizing total flow time in the single-machine scheduling
problem with periodic maintenance. Journal of the Operational Research Society,
57, 410–415.

Gens, G. V., & Levner, E. V. (1981). Fast approximation algorithms for job sequencing
with deadlines. Discrete Applied Mathematics, 3, 313–318.

Gharbi, A., & Haouari, M. (2005). Optimal parallel machines scheduling with
availability constraints. Discrete Applied Mathematics, 148, 63–87.

He, Y., Zhong, W., & Gu, H. (2006). Improved algorithms for two single machine
scheduling problems. Theoretical Computer Science, 363, 257–265.

Ibarra, O., & Kim, C. E. (1975). Fast approximation algorithms for the knapsack and
sum of subset problems. Journal of the ACM, 22, 463–468.

Kacem, I. (2007). Approximation algorithms for the makespan minimization with
positive tails on a single machine with a fixed nonavailability interval. Journal of
Combinatorial Optimization (in press). doi:10.1007/s10878-007-9102-4.

Kacem, I. (2008). Approximation algorithm for the weighted flowtime minimization
on a single machine with a fixed non-availability interval. Computers &
Industrial Engineering, 54, 401–410.

Kacem, I., & Chu, C. (2008). Worst-case analysis of the WSPT and MWSPT rules for
single machine scheduling with one planned setup period. European Journal of
Operational Research, 187, 1080–1089.

Kacem, I., & Chu, C. (2008). Efficient branch-and-bound algorithm for minimizing
the weighted sum of completion times on a single machine with one availability
constraint. International Journal of Production Economics, 112, 138–150.

Kacem, I., Chu, C., & Souissi, A. (2008). Single-machine scheduling with an
availability constraint to minimize the weighted sum of the completion
times. Computers & Operations Research, 35, 827–844.

Kellerer, H., & Strusevich, V. A. (in preparation). Fully polynomial approximation
schemes for a symmetric quadratic knapsack problem and its scheduling
applications. Algorithmica.

Kovalyov, M. Y., & Kubiak, W. (1999). A fully polynomial approximation scheme for
weighted earliness-tardiness problem. Operations Research, 47, 757–761.

Kubzin, M. A., & Strusevich, V. A. (2006). Planning machine maintenance in two
machine shop scheduling. Operations Research, 54, 789–800.
Lee, C. Y. (1996). Machine scheduling with an availability constraints. Journal of
Global Optimization, 9, 363–384.

Lee, C. Y. (2004). Machine scheduling with an availability constraint. In J. Y. T. Leung
(Ed.), Handbook of scheduling: Algorithms, models, and performance analysis, Boca
Raton, FL, USA.

Lee, C. Y., & Chen, Z. L. (2000). Scheduling of jobs and maintenance activities on
parallel machines. Naval Research Logistics, 47, 145–165.

Lee, C. Y., & Liman, S. D. (1992). Single machine flow-time scheduling with
scheduled maintenance. Acta Informatica, 29, 375–382.

Qi, X. (2007). A note on worst-case performance of heuristics for maintenance
scheduling problems. Discrete Applied Mathematics, 155, 416–422.

Qi, X., Chen, T., & Tu, F. (1999). Scheduling the maintenance on a single machine.
Journal of the Operational Research Society, 50, 1071–1078.

Sadfi, C., Penz, B., Rapine, C., Bla _zewicz, J., & Formanowicz, P. (2005). An improved
approximation algorithm for the single machine total completion time
scheduling problem with availability constraints. European Journal of
Operational Research, 161, 3–10.

Sahni, S. (1976). Algorithms for scheduling independent tasks. Journal of the ACM,
23, 116–127.

Schmidt, G. (2000). Scheduling with limited machine availability. European Journal
of Operational Research, 121, 1–15.

Smith, W. E. (1956). Various optimizers for single stage production. Naval Research
Logistics Quarterly, 3, 59–66.

Wang, G., Sun, H., & Chu, C. (2005). Preemptive scheduling with availability
constraints to minimize total weighted completion times. Annals of Operations
Research, 133, 183–192.

Woeginger, G. J. (2000). When does a dynamic programming formulation guarantee
the existence of a fully polynomial time approximation scheme (FPTAS)?
INFORMS Journal on Computing, 12, 57–75.

Woeginger, G. J. (2005). A comment on scheduling two machines with capacity
constraints. Discrete Optimization, 2, 269–272.

http://dx.doi.org/10.1007/s10878-007-9102-4

	Fully polynomial time approximation scheme for the weighted flow-time minimization on a single machine with a fixed non-availability interval
	Introduction
	Problem formulation and exact algorithm
	FPTAS
	Algorithm description
	Worst-case analysis and complexity

	Conclusion
	References

