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a b s t r a c t

Given a bipartite graph G = (U ∪ V , E) such that | U |=| V | and every edge is labelled
true or false or both, the perfect matching free subgraph problem is to determine whether
or not there exists a subgraph of G containing, for each node u of U , either all the edges
labelled true or all the edges labelled false incident to u, and which does not contain a
perfect matching. This problem arises in the structural analysis of differential-algebraic
systems. The purpose of this paper is to show that this problem is NP-complete. We show
that the problem is equivalent to the stable set problem in a restricted case of tripartite
graphs. Then we show that the latter remains NP-complete in that case. We also prove the
NP-completeness of the relatedminimumblocker problem in bipartite graphswith perfect
matching.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Given a graph G = (V , E), a matching of G is a subset of edges such that no two edges share a common node. Matchings
have shown to be useful for modelling various discrete structures [4]. A graph is called bipartite (tripartite) if its nodes can
be partitioned into two (three) disjoint sets such that every edge connects one node in a set to a node in a different set. A
bipartite graph is called complete if there exists an edge between every pair of nodes of different sets. A complete bipartite
graph is also called a biclique. A matching M in graph G is called perfect if every node of G is incident to some edge of M .
Given a bipartite graph G = (U ∪ V , E) such that |U| = |V | = n, a matching M of G is then perfect if and only if |M| = n.

Given a graph G = (V , E), a matching in G of maximum cardinality is called amaximummatching. Its size corresponds to
thematching number of Gwhich is denoted by ν(G). A stable set of a graph is a subset of nodes S such that no two nodes in S
are adjacent. Given a graph G = (V , E), the stable set problem in G consists in finding a stable set of maximum cardinality.

Theorem 1. Given a bipartite graph, if M is a maximum cardinality matching and S is a maximum stable set, then |M| + |S| =

|U ∪ V |. �

For more details on matching theory, the reader is referred to [4].
Let G = (U ∪ V , E) be a bipartite graph such that |U| = |V | = n. Let U = {u1, . . . , un} and V = {v1, . . . , vn}. Suppose

that every edge of E is labelled true or false, where an edge may have both true and false labels. For a node ui ∈ U , let Et
i

and E f
i denote the sets of edges incident to ui labelled true and false, respectively. The perfect matching free subgraph problem
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(PMFSP) in G is to determine whether or not there exists a subgraph containing for each node ui ∈ U either Et
i or E

f
i (but not

both), and which is perfect matching free. This problem arises in the structural analysis of differential-algebraic systems.
The purpose of this paper is to show that PMFSP is NP-complete. For this we first show that PMFSP is equivalent to the

stable set problem in a restricted case of tripartite graphs. Then we show that the latter remains NP-compete in that case.
Differential-algebraic systems (DASs) are used for modelling complex physical systems as electrical networks and

dynamic movements. Such a system can be given as f (ẋ, x, t) = 0 where t is time, x is the variable vector and ẋ the
derivative vector of x with respect to time. Establishing that a DAS definitely is not solvable can be helpful. A necessary
(but not sufficient) condition for solving a DAS is that the number of variables and equations must agree, and there must
exist a mapping between the equations and the variables in such a way that each equation is related to only one variable
and each variable is related to only one equation. If this is satisfied, then we say that the system is well-constrained [6]. The
structural analysis problem for a DAS consists of verifying if the system is well-constrained.

In many practical situations, physical systems yield differential-algebraic systems with conditional equations. A
conditional equation is an equation whose form depends on the (true or false) value of a condition. A conditional equation
can generate several equations. A conditional differential-algebraic systemmay then have different forms depending on the
set of conditions that hold. Here we consider conditional DAS’s such that any conditional equation may take two possible
values, depending on whether the associated condition is true or false and may generate only one equation. Moreover, we
suppose that the conditions are independent. Consider for example the following DAS:

eq1 : if a > 0, then 0 = 4x21 + 2
.
x1 +4x2 + 2, else 0 =

.
x2 +4,

eq2 : if b > 0, then 0 = 6
.
x2 +2, else 0 = x1+

.
x2 +1

(1)

If a > 0, b > 0, then system (1) is nothing but the system.

eq1 : 0 = 4x21 + 2
.
x1 +4x2 + 2,

eq2 : 0 = 6
.
x2 +2.

(2)

The structural analysis problem has been considered in the literature for non-conditional DAS’s. In [6], Murota introduces
a formulation of the problem in terms of bipartite graphs and shows that a system of equations is well constrained if and
only if there exists a perfect matching in the corresponding bipartite graph. Given a DAS, one can associate a bipartite graph
G = (U ∪ V , E), called incidence graph, where U corresponds to the equations, V to the variables and there is an edge
uivj ∈ E between a node ui ∈ U and a node vj ∈ V if and only if the variable corresponding to vi appears in the equation
corresponding to ui.

Given a conditional DAS, the associated structural analysis problem consists of verifyingwhether or not the system iswell
constrained for all the possible values. The SAP for a conditional DAS thus reduces to verifying whether or not the incidence
bipartite graph, related to any configuration of the system, contains a perfect matching. In [2], the equivalence between the
SAP for conditional DAS and the PMFSP has been shown. Also in [2], an integer programming formulation is proposed.

2. PMFSP and stable sets

The aim of this section is to show that PMFSP is equivalent to the stable set problem in a special case of tripartite graph.
Let H = (V 1

∪ V 2
∪ V 3, F) be a tripartite graph where |V 1

| = |V 2
| = |V 3

| = n, V j
= {v

j
1, . . . , v

j
n} for j = 1, 2, 3 and V 1 and

V 2 are connected by the perfect matchingM = {v1
1v

2
1, v

1
2v

2
2, . . . , v

1
nv

2
n}. We will consider the following problem: does there

exist a stable set in H of size n+1?Wewill call this problem the tripartite stable set with perfect matching problem (TSSPMP).
In what follows we shall show that both problems TSSPMP and PMFSP are equivalent.
Theorem 2. TSSPMP and PMFSP are polynomially equivalent.
Proof. Some parts of this proof are shortened. For the detailed proof see [3]. Let G = (U ∪ V , E) and H = (V 1

∪ V 2
∪ V 3, F)

be the graphs on which the problems PMFSP and TSSPMS are considered, respectively. We will first show that an instance
of TSSPMP can be transformed into an instance of PMFSP. For an edge v1

i v
2
i of the perfect matching where v1

i ∈ V 1 and
v2
i ∈ V 2, we consider a node ui in U . And for a node v3

i of V 3 we consider a node vi in V . Moreover, if v1
i v

3
k (resp. v2

i v
3
k ) is in

F for some i, k ∈ {1, . . . , n}, then we add an edge uivk in E with label true (resp. false). Fig. 1 illustrates this transformation.
Observe that graph H = (V 1

∪ V 2
∪ V 3, F) can be obtained from graph G = (U ∪ V , E) by doing the reverse operations. Let

Et
i (resp. E

f
i ) be the set of edges incident to ui labelled true (resp. false), for i = 1, . . . , n.

In what follows, we will show that there exists a stable set in H of size n + 1 if and only if there exists a subgraph
G′

= (U ∪ V , E ′) of G such that for each node ui ∈ U , either Et
i ⊂ E ′ or E f

i ⊂ E ′, and G′ is perfect matching free. In
fact, suppose first that there exists a subgraph G′ of G that satisfies the required properties. Since G′ is perfect matching free,
this implies that a maximum cardinality matching in G′ contains fewer than n edges. As |U ∪ V | = 2n by Theorem 1 there
exists a stable set in G′, say S ′, of size |S ′

| ≥ n + 1. Now from S ′, we are going to construct a stable set in H with the same
cardinality. Let S be the node subset of H obtained as follows. For every node vj ∈ V ∩ S ′, add node v3

j in S. And for every
node ui ∈ U ∩ S ′, add node v1

i in S if Et
i ⊆ E ′ and node v2

i if E f
i ⊆ E ′. As |S ′

| ≥ n + 1, we have |S| ≥ n + 1. Now it is not hard
to see that S is a stable set. Moreover from a stable set in H of size greater or equal to n + 1 one can obtain along the same
line a stable set in G with the same cardinality. �



M. Lacroix et al. / Theoretical Computer Science 423 (2012) 25–29 27

Fig. 1. Two equivalent TSSPMP and PMFSP instances.

3. The NP-completeness of PMFSP

In this sectionwe show theNP-completeness of PMFSP. For thiswe shall show that TSSPMP isNP-complete. By Theorem2,
the result follows. In [7] it is shown that the stable set problem is NP-complete in tripartite graphs. (Recall that the problem
is known to be polynomially solvable in bipartite graphs.) What we are going to show in the following is that the more
restricted variant TSSPMP is also NP-complete. In other words, the stable set problem in tripartite graphs remains NP-
complete even when the sets of the partition of the graph have the same size and that the set of edges between two of
the three sets of the partition correspond exactly to a perfect matching. In order to show the NP-completeness of TSSPMP,
we shall use the one-in-three 3SAT problem. An instance of one-in-three 3SAT (1-in-3 3SAT) consists of n literals l1, . . . , ln
andm clauses C1, . . . , Cm. Each clause Cj = (x1j , x

2
j , x

3
j ) is the disjunction of three variables, where a variable is either a literal

or its negation. Furthermore, for every j ∈ {1, . . . ,m} and k ∈ {1, 2, 3}, xkj corresponds to the negation of xkj , that is, if x
k
j = li

(resp. xkj = li) for some i ∈ {1, . . . , n}, then xkj = li (resp. xkj = li). The question is whether or not there exists an assignment
of truth values (‘‘true" or ‘‘false") to the literals such that each clause has exactly one true variable. This problem has been
shown to be NP-complete [1].

Theorem 3. TSSPMP is NP-complete.

Proof. It is clear that TSSPMP is in NP. To prove the theorem, we shall use a reduction from 1-in-3 3SAT. The proof uses
ideas from [7]. So suppose we are given an instance of 1-in-3 3SAT with a set of n literals L = {l1, . . . , ln} and a set
of m clauses C = {C1, . . . , Cm}. We shall construct an instance of TSSPMP on a graph H = (V 1

∪ V 2
∪ V 3, F) where

|V 1
| = |V 2

| = |V 3
| = p = 3n + m − 1 and the set of edges between V 1 and V 2 correspond exactly to a perfect matching.

We will show that H has a stable set of size p+ 1 if and only if 1-in-3 3SAT admits a truth assignment. The construction will
be done in 4 steps. First, with each literal li ∈ L, we associate the nodes v1

i , v
1
i ∈ V 1, v2

i , v
2
i ∈ V 2 and v3

i , v
3
i ∈ V 3, along with

the edges v1
i v

2
i , v

2
i v

3
i , v

3
i v

1
i , v

1
i v

2
i , v

2
i v

3
i , v

3
i v

1
i in F . These nodes will be called literal nodes and the edges literal edges. Note that

these edges form a cycle of length 6, which will be denoted by Γi for i = 1, . . . , n. Therefore a stable set of H cannot have
more than three nodes from a cycle Γi. Moreover, if the stable set contains three nodes, these must be either {v1

i , v
2
i , v

3
i } or

{v1
i , v

2
i , v

3
i }. For every j ∈ {1, . . . ,m} and k ∈ {1, 2, 3}, we associate with xkj the node set {v1

i , v
2
i , v

3
i } (resp. {v

1
i , v

2
i , v

3
i }) if

xkj = li (resp. xkj = li) for some i ∈ {1, . . . ,m}. As a consequence we have that {v1
i , v

2
i , v

3
i } (resp. {v

1
i , v

2
i , v

3
i }) is associated

with xkj if x
k
j = li (resp. xkj = li) for some i ∈ {1, . . . ,m}.

Next, we add for each clause Cj, j = 1, . . . ,m the nodes w1
j ∈ V 1, w2

j ∈ V 2, w3
j ∈ V 3 along with the edges w1

j w
2
j , w

2
j w

3
j ,

w3
j w1

j . These nodes will be called clause nodes, the edges clause edges. Note that these edges form a triangle, which will be
denoted by Tj, for j = 1, . . . ,m.

In the next step, for each Cj = (x1j , x2j , x3j ), we add edges between w1
j (resp. w2

j ) and all the nodes associated with x1j , x
2
j

and x3j (resp. x
1
j , x

2
j and x3j ) which belong to V 3. Moreover, we add edges betweenw3

j and all the nodes associated with x1j , x
2
j

and x3j which belong to V 1 and V 2. All these edges will be called satisfiability edges.
Finally, we add the nodes z1q ∈ V 1, z2q ∈ V 2, z3q ∈ V 3 for q = 1, . . . , n − 1. These nodes will be called fictitious nodes. For

each fictitious node in V 1
∪ V 2, we add edges to connect this node to the all nodes in V 3. And for each fictitious node in V 3,

we add edges to connect this node to the all non fictitious nodes in V 1
∪V 2. We also add the edges z1q z

2
q for q = 1, . . . , n−1.

Observe that |V 1
| = |V 2

| = |V 3
| = p. Moreover, the edges between V 1 and V 2 form a perfect matching given by the edges

v1
i v

2
i , v

1
i v

2
i , i = 1, . . . , n, w1

j w
2
j , j = 1, . . . ,m, and z1q z

2
q , q = 1, . . . , n − 1.

Thus, from an instance of the 1-in-3 3SAT with n literals and m clauses, we obtain a tripartite graph with 9n + 3m − 3
nodes and 10n2

+ 4nm − 5n + 14m + 1 edges. Fig. 2 shows an example of graph H when L = {l1, l2, l3} and C =

{(l1, l2, l3), (l1, l2, l3)}. For the sake of clarity, only the satisfiability edges are displayed. We have given the following
claim without proof. For the proof see [3].

Claim 4. Any stable set in H cannot contain more than 3n + m nodes. Moreover, if a stable set contains 3n + m nodes, then it
does not contain any fictitious node. �
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Fig. 2. A TSSPMP instance resulting from a 1-in-3 3SAT instance.

In what follows we show that there exists in H a stable set of size 3n + m if and only if 1-in-3 3SAT admits a solution.
(⇒) Let S be a stable set in H of size 3n + m. By Claim 4, S does not contain any fictitious node. Thus, as |S| = 3n + m,
S intersects each cycle Γi in exactly three nodes and each triangle Tj in exactly one node. Moreover, we have either
S ∩ Γi = {v1

i , v2
i , v3

i } or S ∩ Γi = {v1
i , v2

i , v3
i }, for i = 1, . . . , n. Consider the solution I for 1-in-3 3SAT defined as

follows. If vk
i ∈ S (resp. vk

i ∈ S), k = 1, 2, 3, then associate the true (resp. false) value to the literal li, for i = 1, . . . , n. In
what follows we will show that for each clause Cj = (x1j , x2j , x3j ), we have exactly one variable with true value. For this it
suffices to show that a clause node of Tj is in S if and only if the corresponding variable is of true value. Indeed, suppose that
w1

j ∈ S. We may suppose that x1j = li, the case where x1j = li is similar. By construction of H , as the satisfiability edge w1
j v

3
i

belongs to F , it follows that v3
i /∈ S. By the remark above, this implies that v1

i , v2
i , v3

i belong to S. Therefore literal li has a
true value in solution I . Thus x1j has a true value. It is similar for w2

j and w3
j . Conversely, if x

1
j = li, then by definition of I , v1

i ,
v2
i , v

3
i ∈ S. Moreover, the satisfiability edges w2

j v
3
i , w3

j v
2
i belong to F . As |S ∩ Tj| = 1, it follows that w1

j ∈ S.
As a consequence, as S contains exactly one clause node from each Ti, it follows that each clause has exactly one true

variable.
(⇐) Suppose that there exists a solution I of 1-in-3 3SAT. Let S be the node set obtained as follows. If li has true value in I ,
then add v1

i , v
2
i , v

3
i to S, otherwise add v1

i , v
2
i , v

3
i to S. For each clause Cj = (x1j , x

2
j , x

3
j ), j = 1, . . . ,m, add nodewk

j to S if xkj has
true value, for k ∈ {1, 2, 3}. We have that |S| = 3n + m. We now show that S is a stable set. For this, it suffices to show that
no clause node in S is adjacent to a literal node. Consider j ∈ {1, . . . ,m} and suppose that x1j has a true value in Cj. (The case
where xkj , k ∈ {2, 3}, has a true value is similar.) Node w1

j associated with x1j , which is in S, is adjacent to exactly three literal
nodes, namely the ones associated with x1j , x

2
j and x3j , in V3. As I is a solution of the 1-in-3 3SAT, and in consequence, these

variables have all false values, by construction, the nodes corresponding to these variables do not belong to S. Therefore w1
j

cannot be adjacent to one of these nodes, and hence the proof is complete. �

From Theorems 2 and 3, we deduce the following corollary.

Corollary 5. PMFSP is NP-complete. �

4. The minimum blocker perfect matching problem

In this section, we consider a variant of the PMFSP when there are no labels on the edges. This problem can be stated as
follows. Given a graph G = (U ∪ V , E) with a perfect matching and |U| = |V |, find a perfect matching free subgraph with a
maximum number of edges and covering the vertices of U . As it will turn out, this problem is nothing but a special case of
the so-called minimum blocker problem [8].

Let G = (U ∪ V , E) be a bipartite graph with matching number ν(G). In [8], Zenklusen et al. define a blocker as a subset
of edges B ⊂ E such that G′

= (U ∪ V , E \ B) has a matching number smaller than ν(G). They define the minimum
blocker problem (MBP) as follows. Given a bipartite graph G = (U ∪ V , E) and a positive integer k, does there exist an
edge subset B of E with |B| ≤ k such that B is a blocker? They prove that MBP is NP-complete. Here, we are interested in a
special case of theMBP, hereafter called theminimum blocker perfect matching problem (MBPMP), where G contains a perfect
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matching. In what follows, we show that MBPMP is NP-complete. We also prove that it remains NP-complete in the case
where G′

= (U ∪ V , E \ B) must cover U , which corresponds to the PMFSP with no edge labels.

Theorem 6. MBPMP is NP-complete.

Proof. It is shown in [8] that MBP is NP-complete even in the case where ν(G) = |U| (see the proof of Theorem 3.3
in [8]). We consider this subproblem. Moreover, we suppose that |U| < |V | (otherwise MBP would be MBPMP). Let
deg(U) = minui∈U {deg(ui)}. We suppose that k < deg(U) (in the case where k ≥ deg(U), the deg(U) edges incident to
the vertex with minimum degree in U clearly form a blocker).

Let G̃ = (Ũ ∪ Ṽ , Ẽ) be the graph obtained from G where Ũ = U ∪ Ū and Ṽ = V ∪ V̄ where Ū and V̄ are new vertex
subsets such that |Ū| = max{|V | − |U|, k+ 1}, |V̄ | = max{k+ 1− |V | + |U|, 0} and Ẽ = E ∪ {ūv : ū ∈ Ū, v ∈ Ṽ }. Note that
Ū contains at least k + 1 nodes, |Ũ| = |Ṽ | and (Ū ∪ Ṽ , Ẽ \ E) is a complete bipartite graph. Also note that, as ν(G) = |U|, G̃
contains a perfect matching.

In what follows we will show that G contains a blocker of cardinality less or equal than k if and only if G̃ so does. For this
we first give the following claim.

Claim 7. Let H = (W1 ∪ W2, F) be a complete bipartite graph such that |W1| = |W2| ≥ k + 1 for some k ≥ 0. Then H does not
contain a blocker of size ≤ k.

Proof. Suppose that there is a blocker B of size |B| ≤ k. Then the subgraph H ′
= (W1 ∪ W2, F \ B) has no perfect matching.

From Hall’s theorem (see [4]) there exists i ∈ {1, 2} andW ⊂ Wi such that |W | > |Γ (W )| in H ′ where Γ (W ) stands for the
neighbour set ofW . Since H is a complete bipartite graph, we have |B| ≥ |W |× (|Wi|− |Γ (W )|). Now, since for each triplet
of nonnegative integers x, y, z with x ≥ y > z we have y(x− z) ≥ x, by considering x = |Wi|, y = |W | and z = |Γ (W )|, we
conclude that |B| ≥ |W | × (|Wi| − |Γ (W )|) ≥ |Wi| ≥ k + 1, a contradiction. �

Now consider a blocker B of Gwith |B| ≤ k, and suppose that B is not a blocker of G̃. Thus there exists a perfect matching
of G̃, sayM , which does not intersect B. Since |M ∩ E| = |U| = ν(G) and B is a blocker of G, we have a contradiction. Thus B
is also a blocker of G̃.

Conversely, suppose that G has no blocker Bwith |B| ≤ k. If G̃ contains a blocker, say B̃with |B̃| ≤ k, then let B̃1 = B̃ ∩ E.
Obviously, |B̃1| ≤ k. We claim that B̃1 is a blocker of G. In fact, if this is not the case, then there must exist a matching M ′ in
the graph (U ∪ V , E \ B̃1) with |M ′

| = |U| = ν(G). Let V ′ be the subset of nodes of V covered by M ′. Let H = (W1 ∪ W2, F)

be the biclique with W1 = Ū = Ũ \ U and W2 = Ṽ ′ where Ṽ ′ = Ṽ \ V ′. Clearly, |W1| = |W2| ≥ k + 1. Let B̃2 = B̃ ∩ F . As
|B̃2| ≤ k, by the claim above, the subgraph (W1 ∪ W2, F \ B̃2) contains a perfect matching say M ′′. As M ′

∪ M ′′ is a perfect
matching of (Ũ ∪ Ṽ , Ẽ \ B̃), this contradicts the fact that B̃ is a blocker of G̃, and the proof is complete. �

In the proof of Theorem 6, graph G̃ is constructed in such a way that deg(u) ≥ k + 1 for all u ∈ Ũ . Therefore, any graph
obtained from G̃ by removing the edges of any blocker B with |B| ≤ k covers the vertices of Ũ . This implies that the variant
of the PMFSP without labels on the edges, considered in this section, is also NP-complete.

5. Concluding remarks

In this note we have shown that PMFSP is NP-complete. This is in connection with the SAP. For this, we have supposed
that the conditions related to a DAS are independent. As the problem is NP-complete in this case, it remains NP-complete in
the more general case, when several conditions may be involved in an equation of the system, and some dependences exist
between the conditions. This general version of the problem has been addressed in [2,5].
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