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Abstract 

In Euler and Mahjoub (1991) it is proved that the triangle-free subgraph polytope of a graph 
noncontractible to K,\e is completely described by the trivial inequalities and the so-called 
triangle and odd wheel inequalities. In this paper we show that the system defined by those 
inequalities is TDI for a subclass of that class of graphs. As a consequence we obtain the 
following min-max relation: If G is a graph noncontractible to K,\e, then the minimum 
number of edges covering all the triangles of G equals the maximum profit of a partition of the 
edge set of G into edges, triangles and odd wheels. Here the profit of an edge is 0, the profit of 
a triangle is 1 and the profit of a 2k + l-wheel (k E FV) is equal to k + 1. 

Keywords: Graphs noncontractible to K,\e; K,-covers; Total dual integrality; Polytopes 

1. Introduction 

We consider graphs which are finite, undirected, loopless and without multiple 

edges. We denote a graph by G = (V, E), where V is the node set and E is the edge set 

of G. A graph G is said to be contractible to a graph H, if H may be obtained from G by 

a sequence of elementary removals and contractions of edges. A contraction consists 

of identifying a pair of adjacent nodes and of preserving all other adjacencies between 

nodes (multiple edges arising from the identification are replaced by single edges and 

loops are deleted). 

A K+over of a graph G = (V, E) is an edge subset of E which intersects all the 

triangles of G. Given a graph G = (V, E) and a weight function w : E + R, the KS-cover 

problem in G consists of finding a K,-cover in G whose total weight is minimum. This 

problem is NP-complete in general [9]. It has been shown to be polynomial in chordal 
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graphs whose maximum clique size is fixed, by Conforti et al. [3] and in graphs 
noncontractible to K5\e (the complete graph on 5 nodes minus one edge, see Fig. 1) 
by Euler and Mahjoub [S]. 

A graph is called an n-wheel (denoted IV,) if it consists of a cycle of n nodes and 
a node (so-called universal) which is adjacent to every node of the cycle. 

Given a graph G = (V,E), we associate with every edge (resp. triangle, 2k + l- 
wheel) a profit equal to 0 (resp. 1, k + 1). Define a A-partition of G to be a partition of 
the edge set E into edges, triangles and odd wheels. And let the profit of a A-partition 
of G be the sum of the profits of its elements. In this paper we are going to show, using 
a polyhedral approach, that, for a graph G noncontractible to Ks\e, the minimum 
cardinality of a KS-cover equals the maximum profit of a A-partition of G. 

Given a graph G = (V, E) and an edge subset F s E, the O-l vector xF E Rz, where 
xr(e) = 1 if e E F and 0 if not, is called the incidence vector of F. The convex hull 
P(A(G)) of the incidence vectors of all the edge sets of triangle-free subgraphs of G is 
called the triangle-free subgraph polytope of G i.e. 

P(A(G)) = {x” E [WE 1 F E E, (V, F) is triangle-free}. 

Thus the KS-cover problem in G is equivalent to the following linear program: 

max WTX, 

subject to x E P(A(G)). 

The polytope P(A(G)) is full dimensional. This implies that (up to multiplication by 
a positive constant) there is a unique nonredundant inequality system Ax < b such 
that P(A(G)) = {x E RE 1 Ax < b}. 

Let G = (V, E) be a graph. Clearly, any incidence vector xF of a triangle-free edge 
set F of G satisfies the constraints: 

x(C) < 2 for all triangles C in G, (1) 



A.R. Mahjoub / Discrete Applied Mathematics 62 (1995) 209-219 211 

x(W,) < 3k + 1 for all n-wheels, it = 2k + 1 and k E N, (2) 

0 < x(e) < 1 for all edges e of G. (3) 

Inequalities (l)-(3) are called respectively triangle, odd wheel and trivial inequalities. 
Here b(F), where b:E + [w and F c E, denotes CesFb(e). 

Conforti et al. [2] showed that the inequalities (l)-(3), for W, with n 3 4 and odd, 
define facets for P(d(G)). For P(d( W,)), inequality (2) is redundant, this inequality 
can be obtained by summing the four inequalities associated with the triangles of W3. 

A system Ax < b is called totally dual integral (TDI) [4,6] if the dual of the linear 
program 

max wx, 
subject to Ax < b 

has an integer optimal solution for every integer vector w such that the maximum 
exists. In the following section we are going to show that the system (l)-(3) is TDI for 
a subclass of the class of graphs noncontractible to K=,\e. Using this together with 
a nonminimal description of the polytope P(d( W,)) (given by the system (l)-(3)), we 
show in Section 3 that for a graph G noncontractible to K=,\e the minimum cardinal- 
ity of a KS-cover of G equals the maximum profit of a d-partition of G. 

2. Graphs ooncontractible to K,\e and TDI’ness 

A graph G = (V, E) is called k-sum (1 $ k E N) of two graphs G1 = (I/‘, , E,) and 
Gz = ( VZ, E2) if G is obtained from Gi and Gz by identifying a complete graph on 
k nodes, that is, V = V1uVZ, IT/,nV21 = k and for every nodes i,je V1nV2, the 
edge ij belongs to E. Clearly, the graphs shown in Fig. 2 are noncontractible to K5\e. 

Wagner [8] gave the following constructive characterization for graphs noncon- 
tractible to K5\e. 

Theorem 1. Each maximal (with respect to its edge set) graph G = (I/, E) noncontractible 
to K,\e can be obtained by means of l- and 2-sums startingfiom the graphs of Fig. 2. 

Let r be the class of graphs noncontractible to K5\e that do not contain W3 as an 
induced subgraph. In other words, by Wagner’s theorem, the class r is just the class of 
graphs that is obtained by means of l- and 2-sums from K 1, Kz, KS, KS, 3, the prism 
and W,,, n B 4. 

Euler and Mahjoub [S] studied, within the framework of a general composition of 
independence systems, the polytope P(d(G)) in graphs which are decomposable by 
means of l- and 2-sums. They showed that if a graph G decomposes into two graphs 
Gi and Gz, then one can derive a linear system of inequalities which defines the 
polytope P(d (G)) from the linear systems defining P(d (G,)) and P(d (G,)). Using this, 
they proved that for a graph G which is noncontractible to Ks\e, the polytope 
P(d(G)) is completely described by the inequalities (l)-(3). They also showed that if 
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the two systems defining P(d(G,)) and P(d(G,)) are TDI then the system defining 
P(d (G)) is as well (see also Cl]). In what follows we are going to use this together with 
Wagner’s theorem to show that the system (l)-(3) is TDI for the class r. For this we 
just need to show that the system is TDI for the basic graphs of r. This is, in fact, easily 
seen to hold for the graphs K1 , K2, KS, K3, 3, the prism and the even wheels. For these 
graphs, the polytope P(d(G)) is just defined by the trivial and triangle inequalities. 
The matrix of the system given by these inequalities, for each of these graphs, is totally 
unimodular. In what follows we show that the system (l)-(3) is TDI for the odd wheels 
W Zk+l, k 2 2. 

To this end, let us denote by P, the linear programming problem 

max WTX, 

subject to (l), (2), (3). 

By associating a dual variable yc, 6,, ye, with a constraint of type (l), (2), x(e) < 1, 
respectively, the dual of P,, D, can be written as follows: 

min C~YC + CPk + l)& + CY~> 

subject to CCseyc + C W,ae~n + ye > w(e), for all e E E, 

y 2 0, 6 2 0, y 2 0. 

Theorem 2. The system (l)-(3) is TDI for every 2k + l-wheel, 2 < k E N. 
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Proof. LetFbetheedgesetofa2k+ l-wheel,k~2.Lete1,...,e2k+l,fi,...,f2k+l 
be the edges of F such that ei and ei+ 1 are incident to a common node and {ei,fi,fi+ r} 

forms a triangle, for i = 1,2, . . . , 2k + 1 (see Fig. 3, where the indices are taken modulo 

2k + 1). 
Let A(w) denote the optimal value of the objective function of P,,, (O,,,). Since the 

system (1)<3) is integral and, consequently, the problem P, has always an integer 
optimal solution, it follows that A(w) is integer whenever w is integer valued. Now, to 
show the theorem, we shall use ideas similar to those of Barahona et al. [1] for acyclic 
spanning subgraphs. 

We shall proceed by induction on w. Obviously, for w < 0, D, has the trivial zero 
optimal solution. Now assume that D, has an integer optimal solution for every 
integer vector w, w < z, w # z, and let us show that D, has an integer optimal solution 
for w = z. For this we may assume that w > 0 (if w(e) < 0 for some edge e E F, then the 
system (l), (2) is easily seen to be TDI for the graph obtained from W 2k + 1 by removing 
the edge e). 

Now consider the set of inequalities among (l)-(3), that are satisfied with equality 
by every optimal solution of P,. Let us denote this set by T,. 

Case 1: x(eo) < 1 is in T, for some edge eo. 
Let w’ be the vector given by 

w’(e) = 
i 

w(e) if e E F\(e), 

w(e) - 1 if e = eo. 

We claim that A(w’) = A(w) - 1. Indeed, it is clear that A(w’) < A(w). If A(w’) = A(w), 
then e. cannot be in any optimal solution of P,,,,, otherwise A(w) would not be 
maximum. Since every optimal solution for P,,,, is at the same time optimal for P,, this 
contradicts the fact that x(eo) < 1 is in T, and our claim is proved. Now by the 
induction hypothesis, there is an integer optimal solution to D,,. Consider the 
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solution obtained from that solution by increasing by one the value of the 
dual variable associated with x(eo) < 1. This solution is integer and optimal 
for D,. 

Case 2: x(C) < 2 is in T, for some triangle C. 
Let w’ be the vector given by 

w’(e) = 
i 

w(e) if e E F\C, 

w(e) - 1 if e E C. 

We claim that A(w’) = A(w) - 2. Clearly, A(w) - 2 d A(w’) < A(w). 
(i) If A(w’) = A(w), then C cannot intersect any optimal solution to P,,. But 

since, in this case, every optimal solution for P,,,, is also optimal for P,, we have 
a contradiction. 

(ii) If A(w’) = A(w) - 1, then we claim that every optimal solution for P,, 
contains exactly one edge of C. In fact, it is clear that such a solution cannot contain 
more than one edge of C. Now if, for instance, there is an optimal solution for P,,,,, say 
F1, which does not intersect C, then there must exist an edge, say f; such that 
Fz = F1 u{ f> is still triangle-free. In fact, it is easy to see that any maximal triangle- 
free edge subset of F intersects all the triangles of F. But then Fz defines an optimal 
solution for P, whose incidence vector does not satisfy x(C) < 2 with equality, 
a contradiction. Consequently, we obtain that A.(w’) = A(w) - 2 and our claim is 
proved. 

Now consider the solution obtained from an integer optimal solution of D,, by 
increasing by one the value of the dual variable associated with x(C) < 2. We have 
that this solution is integer and optimal for D,. 

Case 3: x(F) < 3k + 1 is in T,. 

W may assume that no constraints of type (1) or type (2) are satisfied with 
equality by all the optimal solutions of P,, otherwise we are either in Case 1 or in 
Case 2. 

Claim. w(e) = w(f)fir all e, f~ F. 

Proof of the claim. First remark that, since w > 0, any optimal solution for P, is 
a maximal triangle-free subset of F and, by the remark above, intersects every triangle 

{ei,.h,f;:+,>, i = l,..., 2k + 1. Moreover, if ei does not belong to an optimal solution 
of P,,,, then it follows that f;:,fi+i both belong to that solution. Thus from the 
assumption it follows that for every two edges fi,fi+ 1, i = 1,2, . . . ,2k + 1, there must 
exist an optimal solution for P,,,, say Fip which contains neitherA norfi, i . We claim 

that Fi=F\(fi,fi+l,fi+s,...,f;+Zk-l >. For this it suffices to show that Fi cannot 
contain two consecutive edges fi+P,f;.+P+ i with p E (2, . . . ,2k - l}. Indeed, assume 
that this were not the case and, without loss of generality, that p is odd. Thus ei+p#Fi. 
Moreover, the edge set F \Fi intersects each of the edge disjoint triangles 
{ei+f,fi+f,J+t+r} fort = 2,4 ,..., p - 1,p + 1,p + 3 ,..., 2k. Moreover, we have that 
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these triangles all do not contain h + 1. Thus we obtain that 1 F \Fi 1 > k + 2, a contra- 
diction. 

Now let /I = w(F) - n(w). By considering the edge sets F \ Fi for i = 1, . . . ,2k + 1, 
we find that the vector (w(fr), . . . , w(fZk+ l))T satisfies the system 

Ax = b, 

where A is the (2k + 1,2k + 1)-matrix whose rows are respectively the incidence 
vectors of the sets F \F 1, . . . , F\F,,+,,withrespecttotheedgesetF\{ei,...,e,,+,} 
andb=(p,..., /?)T. It is not hard to see that the matrix A is nonsingular, implying that 
the system above has the unique solution given by 

w(fi)=/?/2k+l fori=1,...,2k+l. (4) 

On the other hand, since there is no constraint of type x(e) < 1 satisfied with 
equality by every optimal solution of P,, it follows that for every edge ei where 
i = l,... ,2k + 1, there is an optimal solution for P,, say F’, which does not contain ei. 
Thush,h+r E F’. As before, we can show that F’ cannot contain two consecutive 

edgesfi+p,fi+p+l with PE {l,..., 2k}, implying that F’ = F\{ei,f;+z,J+b ,..., f;+zk). 
Since w(F’) = w(Fi), it follows from (4) that 

w(ei) = /?/2k + 1 for i = 1, . . . ,2k + 1, 

which finishes the proof of the claim. 

Now define w’ as w’(e) = w(e) - 1 for all e E F. From the claim it follows that 
n(w’) = n(w) - (3k + 1). Consider the dual solution obtained from an integer optimal 
solution of D,, by increasing by one the value of the dual variable associated with 
x(F) < 3k + 1. This solution is integer and optimal for D,, which completes the proof 
of our theorem. 0 

Thus we can state our main result. 

Theorem 3. The system (l)-(3) is TDI for r. 

In what follows we shall use Theorem 3 to derive a min-max relation for the 
K,-covers in graphs noncontractible to K,\e. 

3. A mio-max relation 

Let G = (V,E) be a graph noncontractible to K5\e and w be an integer weight 
vector associated with the edges of G. The KS-cover problem in G is also equivalent to 
the following linear program 

min T 

subject to G)‘:‘(2)‘, (3)‘, 
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where (l)‘, (2)‘, (3)’ are obtained respectively from (l), (2), (3) by replacing x by 1 - x 

(1 is the vector whose entries all equal 1). 
The dual of PL, Dl, is 

max CYC + C(k + 1)6” - IYe, 

subject to xCseyc + c w,+~& - ye 9 w(e), for all e E E, (5) 

y 2 0, 6 2 0, y 2 0. 

Lemma 4. If w > 0 and 0: has an integer optimal solution then such a solution can be 

chosen so that ye = 0 for all e E E. 

Proof. Let ( y", do, y”) be an integer optimal solution for D’,. Suppose that for some 
edgefe E, yy > 0. We shall show that there exists a dual optimal solution to o’,, say 
( y*, 6*, y*), such that y? = 0 and ye* = 0 for all e E E such that 7: = 0. Since yy > 0, it 
follows that the dual constraint (5) associated with the edgefis satisfied with equality 
by (y’, do, y’), otherwise one can decrease the value of ye by a positive amount and 
then get a solution whose value is greater than that of ( y”, do, y’), contradicting the 
optimality of the latter one. 

Moreover, we may assume that yg = 0 for every triangle C containingf: Indeed, if, 
for instance y$ > 0 for some triangle Co such thatfe Co and, say, y,$ < yy (which can 
be assumed without loss of generality), then one can consider the solution (y”, do’, y”) 
such that 6’ = 8” and 

‘~’ = 
{ 

yg if C # Co, 

i 

0 
Ye 

‘,“’ = ye _ yap 

if e#f, 
0 if C = CO, if e=f, 

which is integer and optimal for D’,. 

Consequently, we can suppose that 

c 48 = Yf + w(f). 
W”3f 

Since w 2 0, Cw,,r 6, > y,-. Now, let nl, . . . , np, p E N, be odd integers, such that 
ni = 2k’ + 1, k’ E N, andfE W,i, for i = 1, . . . ,p, and 

1 & < yf and c 6,i 2 Yf. 
i=l,...,p-1 i=l,...,p-1 

Let 

E’yf- 1 6”Z. 
i=l,...,p-1 
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Observe that every wheel W,i contains k’ edge disjoint triangles, say Ci, C:, . . . , Cit. 

Thus we may consider the solution (y*,6*, y*) given by 

1 

YE + &I if C = Cf, i = 1, . . . . p - 1; t = 1, . . . ,ki, 

y; = yg + E if C = Cp, t = 1, . . . , kP, 

0 otherwise, 

: 

0 if n = nl,...,np-l, 

S,* = 6, -E if n = np, 

&I otherwise, 

Y: = 
i 

0 ife=J 

ye ife#$ 

It is easily seen that the solution (y*,6*, y*) is feasible and optimal to 0:. 0 

Since, by Theorem 3, the system (l)-(3) is TDI for r, it follows that the system given 

by the inequalities (l)‘, (2)‘, (3) ’ is also TDI for r. Consequently, the dual 0; has an 

integer optimal solution for every integer weight system w and every graph in r. Now 

to establish our relation between the minimum cardinality of a KS-cover of a graph 

G noncontractible to K5\e and the maximum profit of a d-partition of G it remains to 

examine the graph W3. The system (l)-(3) is not, unfortunately, TDI for that graph. In 

fact consider a W, and let { el, e2, es, fi, f2, f3 > be its edge set (we suppose that W3 has 

the form which is shown in Fig. 3). Now let us associate with the edges of W3 the 

weight system w = (1, LO, 0, l,O). Let C’, C*, C3 be respectively the cycles {el, e2, es>, 

{el,fi,f2), {e2,_f2,h). It IS easy to see that in this case, the problems P,,, and D, have 

unique optimal solutions which are given by x(ei) = x(e2) = x(f2) = 1, 

x(eJ = x(fi) = x(f3) = 0 and ycl = yc2 = yc3 = i, yc = 0 otherwise, 6 = 0, y = 0, 

respectively. However it is not hard to see that for W3, the dual problem 0; has an 

integer optimal solution. Moreover, if we compose W3 by means of l- or 2-sum with 

a graph for which the system (l)-(3) is TDI, the dual problem 0; has for the resulting 

graph an integer optimal solution (see [S]). Consequently we have the following 

lemma. 

Lemma 5. The problem 0; has an integer optimal solution for every graph noncontract- 

ible to KS/e. 

Now by combining Theorem 3 and Lemmas 4,5 we obtain the following min-max 

relation. 

Theorem 6. Zf G is a graph noncontractible to K,\e, then the minimum cardinality of 

a K,-cover of G equals the maximum projit of a A-partition of G. 
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Let G = (V,E) be a graph. A K,-packing of G is a collection of pairwise edge 
disjoint triangles of G. If Y is a collection of triangles of G, the KS-cover number c%(F) 
(resp. K3-packing numberp,(F) of Y is the smallest number of edges (K,‘s) that cover 
all the triangles of Y (resp. the largest number of triangles of Y which are pairwise 
edge disjoint). A graph G is called K,-perfect [3] if Q(Y) = p3(Y) for any collection 
Y of triangles of G. (Conforti et al. [3] introduced a more general concept: The 
Ki-perfect graphs, where i is a fixed positive integer. They called a graph Ki-perfect if 
for any collection X of K~s, ci(X) = pi(X) w h ere ci(X) and pi(X) are defined 
analogously. They gave a characterization for Ki-perfect graphs which is similar to the 
strong perfect graph conjecture and studied the relationship between Ki-perfect 
graphs and perfect graphs and perfect and balanced matrices.) 

Now let us introduce the class 52 of graphs G such that G is obtained by means of l- 
and 2-sums from the graphs K1, K2,K3, K3,3, the prism and the even wheels (i.e. G is 
a graph noncontractible to K5\e which does not contain an odd wheel). From 
Theorem 6 we have that for every graph G of 0, the minimum number of edges that 
cover all the triangles of G equals the maximum number of pairwise edge disjoint 
triangles. Moreover we have the following corollary. 

Corollary 7. Every graph in Sz is KS-perfect. 

A matrix A is called perfect [7] if the associated set packing polytope {x 1 Ax < 1, 

x 2 0} has all its extreme points in O-l. Given a graph G, let T(G) denote the 
transpose of the triangles incidence matrix of G. Conforti et al. [3] showed that 
a graph is K3-perfect if and only if the matrix T(G) is perfect. From this and Corollary 
7 we obtain the following corollary. 

Corollary 8. For a graph G of 0, the matrix T(G) is perfect. 
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