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Abstract. In this paper, we study the Steiner 2-edge connected sub-
graph polytope. We introduce a large class of valid inequalities for
this polytope called the generalized Steiner F -partition inequalities,
that generalizes the so-called Steiner F -partition inequalities. We show
that these inequalities together with the trivial and the Steiner cut in-
equalities completely describe the polytope on a class of graphs that
generalizes the wheels. We also describe necessary conditions for these
inequalities to be facet defining, and as a consequence, we obtain that
the separation problem over the Steiner 2-edge connected subgraph
polytope for that class of graphs can be solved in polynomial time.
Moreover, we discuss that polytope in the graphs that decompose by
3-edge cutsets. And we show that the generalized Steiner F -partition
inequalities together with the trivial and the Steiner cut inequalities
suffice to describe the polytope in a class of graphs that generalizes
the class of Halin graphs when the terminals have a particular disposi-
tion. This generalizes a result of Barahona and Mahjoub [4] for Halin
graphs. This also yields a polynomial time cutting plane algorithm for
the Steiner 2-edge connected subgraph problem in that class of graphs.
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1. Introduction

The design of cost-efficient survivable telecommunication networks is a major
challenge with great economic impact. Survivable networks must satisfy certain
connectivity requirements. A typical survivable condition is that between every
pair of nodes of the network there are at least two edge-disjoint (node-disjoint)
paths. In practice, there may exist distinguished nodes for which the survivable
condition must be satisfied. In this paper we discuss this problem from a polyhe-
dral point of view. The problem of designing general survivable telecommunication
networks has been studied by Grötschel and Monma [18] and Grötschel et al. [19–
21]. Related works and applications can also be found in Bienstock et al. [5],
Christofides and Whitlock [8], Erikson et al. [14], Monma et al. [30], Steiglitz
et al. [32], Voss [33] and Winter [34,35].

A graph G = (V, E) is said to be k-edge (resp. k-node) connected (1 ≤ k ≤
|V | − 1) if for every pair of nodes i, j ∈ V there are at least k edge-disjoint (resp.
k node-disjoint) paths from i to j. Let G = (V, E) be a graph and ω ∈ IRE a
weight vector associated with the edges of G. Given a subset of distinguished
nodes S ⊆ V , called terminals, the Steiner 2-edge connected subgraph problem
(STECSP) is the problem of finding a minimum weight subgraph of G spanning
S such that between every two nodes i, j ∈ S, there are at least two edge-disjoint
paths between i and j.

Polyhedral combinatorics has been succesfully applied to obtain efficient cut-
ting plane algorithms for combinatorial optimization problems. In this paper we
discuss the polytope associated with the solutions to the STECSP. We introduce
a large class of valid inequalities that generalizes the so-called Steiner F -partition
inequalities. We show that these inequalities together with the trivial and the
Steiner cut inequalities completely describe the polytope in a class of graphs that
generalizes the wheels. We also describe necessary conditions for these inequalities
to be facet defining, and as a consequence, we obtain that the separation prob-
lem over the Steiner 2-edge connected subgraph polytope for that class of graphs
can be solved in polynomial time. Moreover, we discuss that polytope in the
graphs that decompose by 3-edge cutsets. And we show that generalized Steiner
F -partition inequalities together with the trivial and the Steiner cut inequalities
suffice to describe the polytope in a class of graphs that generalizes the class of
Halin graphs when the terminals have a particular disposition. This generalizes a
result of Barahona and Mahjoub [4] for Halin graphs. This also yields a polynomial
time cutting plane algorithm for the Steiner 2-edge connected subgraph problem
in that class of graphs.

The STECSP is NP-hard in general. Winter devised a linear time algorithm to
solve the STECSP in series-parallel graphs [34] and in Halin graphs [35]. Grötschel
and Monma [18] and Grötschel, Monma and Stoer [19–21] study the STECSP
within the framework of a more general model. In particular, Grötschel and
Monma [18] describe various classes of facets of the polytope associated with that
model and Grötschel et al. [19–21] study further facets and devise cutting plane
algorithms. A complete survey of that model can be found in [22,25].
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Given a graph G = (V, E) and a node subset W ⊆ V of G, the set of edges
having one endnode in W and the other in V \ W is called a cut and denoted by
δ(W ). If W = {v} for some v ∈ V , then we write δ(v) for δ(W ).

Let G = (V, E) be a graph. Let x(e) be a variable associated with each edge
e. For an edge subset F ⊆ E, the 0 − 1 vector xF ∈ IRE with xF (e) = 1 if e ∈ F
and xF (e) = 0 if not, is called the incidence vector of F . For any subset of edges
T ⊆ E, we define x(T ) =

∑
e∈T x(e).

The STECSP can be formulated as the following integer linear program.

Minimize ωx
Subject to

x(δ(W )) ≥ 2, ∀W ⊆ V, ∅ �= W ∩ S �= S, (1.1)

x(e) ∈ {0, 1}, ∀ e ∈ E. (1.2)

Inequalities (1.1) are called Steiner cut inequalities. The linear relaxation of the
above formulation is obtained by replacing integrity constraints (1.2) by the trivial
inequalities

0 ≤ x(e) ≤ 1, ∀ e ∈ E. (1.3)

Let
STECSP(G, S) = conv {x ∈ IRE |x satifies (1.1) and (1.2)}

be the polytope associated with the STECSP. The polytope STECSP(G, S) has
been extensively investigated for S = V . In [28], Mahjoub gives a complete descrip-
tion of the STECSP(G, V ) in series-parallel graphs. In [6], Boyd and Hao study a
family of comb inequalities for the STECSP(G, V ). In [4], Barahona and Mahjoub
describe the STECSP(G, V ) in Halin graphs. Fonlupt and Mahjoub [15,16] study
the linear relaxation P (G) of the STECSP(G, V ), that is the polytope given by
inequalities (1.3) and (1.1). They introduce the notion of critical extreme points
of P (G). Roughly speaking, an extreme point of P (G) is critical if it is fractional
and the set of edges corresponding to its fractional values does not strictly contain
the set of edges corresponding to the fractional values of another extreme point.
They give a characterization of the critical extreme points, and, as a consequence,
they obtain a characterization of the so-called perfectly 2-edge connected graphs,
the graphs for which the polytope P (G) is integer.

Bäıou and Mahjoub [3] discuss the STECSP(G, S) and show that when the
graph is series-parallel, STECSP(G, S) is given by the trivial and the Steiner cut
inequalities. Didi Biha and Mahjoub [12] extend this to the Steiner k-edge con-
nected subgraph polytope when k is even (STECSP corresponds to the case where
k = 2). Recently, Kerivin and Mahjoub [27] extend this to the more general
survivable network model when, with each node v of the graph, it is associated
a connectivity type r(v). Actually, the problem, here, is to construct a mini-
mum cost network such that between every pair of nodes u, v, there are at least
min(r(u), r(v)) edge-disjoint paths. Kerivin and Mahjoub [27] show that the triv-
ial and the corresponding cut inequalities suffice to describe the polytope when
the graph is series-parallel and the node types are all even.



262 A.R. MAHJOUB AND P. PESNEAU

Related work can be found in [7,9–12,17]. In [9], Cornuéjols, Fonlupt and
Naddef study the dominant of STECSP(G, S), and show that when S = V and
G is series-parallel, the dominant is given by the nonnegativity inequalities and
the cut inequalities. Fonlupt and Naddef [17] characterize the class of graphs for
which the system given by these inequalities defines the convex hull of the incidence
vectors of the tours of G (a tour is a cycle going at least once through each node).
In [7], Chopra considers the Steiner k-edge connected subgraph problem when
multiple copies of an edge could be used. He gives a complete description of the
associated polyhedron when G is outerplanar and k is odd. (A graph is outerplanar
if it is planar and it can be embedded on the plane so that all nodes lie on the
outermost face.) Didi Biha and Mahjoub [12] extend this to the more general
class of series-parallel graphs. In [13] Didi Biha and Mahjoub study extensions of
the concept of critical extreme points to the k-edge connected sybgraph polytope.
Coullard et al. [10,11] discuss the Steiner 2-node connected subgraph polytope. In
[10], they describe the polytope for series-parallel graphs, and in [11] they describe
the dominant of that polytope for the W4-free graphs (W4 is the wheel on five
nodes).

The paper is organized as follows. In the next section we introduce the class
of generalized Steiner F -partition inequalities. In Section 3 we give a complete
description of the polytope STECSP(G, S) on a class of graphs that generalizes
the wheels and discuss facet conditions. In Section 4, we study the polytope
STECSP(G, S) in the graphs that decompose by 3-edge cutsets, and discuss some
applications. In Section 5 we address the algorithmic aspect. And in Section 6 we
give some concluding remarks.

The remainder of this section is devoted to more definitions and notations. If
G = (V, E) is a graph and e is an edge between two nodes u and v, then we write
e = uv. If W1, . . . , Wq are pairwise disjoint subsets of V , we let δ(W1, . . . , Wq)
denote the set of edges between the sets W1, . . . , Wq. Note that if W ⊂ V , then
δ(W ) = δ(W, V \W ). If v1, v2 ∈ V , then we write δ(v1, v2) instead of δ({v1}, {v2}).
If W ⊆ V , then we let E(W ) denote the set of edges having both endnodes in W .
If T ⊆ E, then V (T ) will denote the set of the nodes of the edges of T .

Given an edge e = uv ∈ E, contracting e consists of identifying u and v and
of preserving all other vertices and of preserving all other adjacencies between
vertices. Contracting a set of edges T ⊆ E consists of contracting all the edges of
T . We assume familiarity with basic definitions in polyhedral theory. Undefined
polyhedral terminology and notation are consistent with that of Pulleyblank [31].

2. Generalized Steiner F -partition inequalities

In this section, we introduce a new class of valid inequalities for the STECSP
(G, V ). As it will turn out, these inequalities generalize the so-called Steiner F -
partition inequalities, and may have coefficients other than 0 and 1.

Let G = (V, E) be a graph and S ⊆ V a set of terminals. In [28] a family
of valid inequalities for the STECSP(G, S) where S = V has been introduced as
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follows. Consider a partition of V into V0, V1, . . . , Vp and let F ⊆ δ(V0) with |F |
odd. If we add the inequalities

x(δ(Vi)) ≥ 2 1 ≤ i ≤ p,
−x(e) ≥ −1 ∀ e ∈ F,
x(e) ≥ 0 ∀ e ∈ δ(V0) \ F,

we obtain

2x(Δ) ≥ 2p − |F |,

where Δ = δ(V0, . . . , Vp) \F . Dividing by 2 and rounding up the right-hand side,
we obtain

x(Δ) ≥ p −
⌊ |F |

2

⌋
· (2.1)

Inequalities of type (2.1) are called F -partition inequalities. Note that inequal-
ity (2.1) is also valid for STECSP(G, V ) if |F | is even. However, in this case, it is
redundant. When S �= V , if Vi ∩ S �= ∅ for i = 1, . . . , p, then it is straightforward
to verify that (2.1) is valid for STECSP(G, S). In that case, inequalities (2.1) are
called Steiner F -partition inequalities.

In [2] Bäıou, Barahona and Mahjoub show that the separation problem for F -
partition inequalities can be solved in polynomial time when F is fixed. Fonlupt
and Mahjoub [15,16] show that the so-called critical extreme points of the 2-
edge connected subgraph polytope can be separated in polynomial time, using
F -partition inequalities. Moreover, F -partition inequalities have been shown to
be very efficient in the framework of a cutting plane algorithm for solving both
the 2-edge connected subgraph problem and the travelling salesman problem [26].

A Halin graph G = (V, T ∪C) consists of a tree T that has no degree-two node,
together with a simple cycle C whose nodes are the pendant nodes of T . The
graph should be embeddeble in the plane with C as the exterior face. These are
examples of minimaly 3-connected graphs given by Halin [23]. Wheels are those
Halin graphs with T being a star. A wheel with n+1 nodes will be denoted by Wn.

Barahona and Mahjoub [4] prove that the trivial, cut and F -partition inequal-
ities describe STECSP(G, S) when G is a Halin graph and S = V . A natural
question that arises is whether or not, the trivial, Steiner cut and Steiner F -
partition inequalities suffice to completely describe the STECSP(G, S) when G is
a Halin graph and S �= V . The answer to this question is, unfortunately, in the
negative as shown by the following example.

Consider the wheel W4 = (V, E) shown in Figure 1. Let S = {u1, u2, u3}
and let x ∈ IRE be given by x(e1) = x(e2) = x(e3) = x(e4) = x(f4) = 1/2 and
x(f1) = x(f2) = x(f3) = 1. It is not hard to see that x satifies the trivial, Steiner
cut and Steiner F -partition inequalities. Moreover, x is an extreme point of the
polytope described by these inequalities. This implies that further inequalities are
needed to describe the polytope STECSP(G, S) on a wheel. In fact, it is easy to
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see that x does not satisfy the constraint

2x(e1) + 2x(e2) + x(e3) + x(e4) + x(f4) ≥ 4, (2.2)

that is valid for STECSP(G, S). In what follows, we show that this inequality is
a special case of a more general class of valid inequalities for the STECSP (G, S).

2.1. Generalized Steiner F -partition inequalities

Let G = (V, E) be a graph and S ⊆ V a set of terminals. Let V0, V1, . . . , Vp

be a partition of V such that for i = 1, . . . , p, if Vi ∩S = ∅ then Vi−1 ∩ S �= ∅ and
Vi+1 ∩S �= ∅ (the indices are taken modulo p). Let F ⊆ δ(V0). Let I ⊂ {1, . . . , p}
be the set of indices i such that Vi ∩ S = ∅. For i ∈ I, let

Ei =
⋃

j∈I∪{0,i−1,i+1}
δ(Vi, Vj).

Let
Δ1 =

⋃
i∈I Ei,

Δ2 = δ(V0, V1, . . . , Vp) \ Δ1.

Let q = p − |I|. Consider the following inequality.

x(Δ1 \ F ) + 2x(Δ2 \ F ) ≥ 2q −
⌊ |F |

2

⌋
−

⌊ |F ∩ Δ2|
2

⌋
· (2.3)

We have the following.

Theorem 2.1. Inequality (2.3) is valid for STECSP(G, S).

Proof. See [29]. �

In [29] it is shown that if |F ∩ Δ2| is even, then inequality (2.3) is redundant
w.r.t. the trivial, Steiner cut and Steiner F -partition inequalities. Inequalities
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of type (2.3) generalize the Steiner F -partition inequalities. Actually, the latter
inequalities correspond to the case where Vi ∩ S �= ∅ for all i ∈ 1, . . . , p.

Inequalities of type (2.3) will be called generalized Steiner F -partition inequali-
ties. Note that these inequalities may have coefficients different from 0 and 1. To
the best of our knowledge, these are the first non-rank inequalities so far known
for the STECSP(G, S), that is inequalities with coefficients different from 0 and 1.

Let Γ be the class of graphs G = (V, E) such that G is a wheel where the edges
adjacent to the central node may be multiple edges. In the next section we shall
show that the trivial and the Steiner cut inequalities together with the generalized
Steiner F -partition inequalities completely describe the polytope STECSP(G, S)
when G is a graph of Γ. To this end, let us first describe the generalized Steiner
F -partition inequalities on Γ and give some notations specific to this class.

2.2. Steiner F -partition and generalized Steiner F -partition

inequalities on Γ

Given a graph G = (V, E) of Γ on n+1 nodes, we let V = {w, u1, . . . , un} where
w is the central node and u1, . . . , un the nodes of the exterior cycle. We let ei

denote the edge between ui and ui+1 and C = {e1, . . . , en}. Let Ai = δ(ui, w), for
i = 1, . . . , n. If i, j ∈ {1, . . . , n}, we denote by C(i, j) the edge set {ei, . . . , ej−1}
(where the indices are taken modulo n) (see Fig. 2). Note that if |Ai| = 1 for
i = 1, . . . , n, then G is a wheel. We let s = |S∩V (C)|, and denote by ui1 , . . . , uis

the terminal nodes of C such that i1 < i2 < · · · < is.
Let G = (V, E) be a graph of Γ. Consider the generalized Steiner F -partition

inequalities induced by partitions V0, . . . , Vp of V and F ⊂ δ(V0), satisfying the
following conditions:

C1: V0 = {w},
C2: the sets Vi, i = 1, . . . , p are formed by consecutive nodes of the cycle C,
C3: the order of the Vi on the cycle C corresponds to clockwise order,
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C4: F ⊂ ⋃
Vi∩S �=∅ δ(V0, Vi) and |F ∩ δ(V0, Vi)| = 1 for all Vi ∩ S �= ∅.

In consequence, we have

Δ1 =
⋃
i∈I

δ(Vi), F ⊂ Δ2 and |F | = q.

Since inequality (2.3) is redundant when |Δ2∩F | (= |F |) is even, we may suppose
that |F | is odd and hence q is odd. Therefore inequality (2.3), in this case, can be
rewritten as

x(Δ1) + 2x(Δ2 \ F ) ≥ q + 1. (2.4)
In order to illustrate inequality (2.4), consider the graph of Γ given on the left side
of Figure 3. Here the terminal nodes correspond to the black nodes. We consider
on that graph a partition (V0, V1, . . . , V9). We have q = 5. The edges of F are
indicated by dashed lines. The other edges are repesented by different types of
lines in order to specify their coefficients in (2.4). The edges given in bold are
those of Δ2 \ F with coefficient 2. The edges given by solid lines are those of Δ1

with coefficient 1, and the edges given by dashed and dotted lines are those with
coefficient 0, that is the edges that do not appear in the inequality. On the right
side is shown a solution of the problem for which inequality (2.4) is tight.

(Also observe that inequality (2.2), corresponding to the graph of Fig. 1, is the
inequality of type (2.4) induced by the partition V0, . . . , V4 and the set F where
V0 = {w}, Vi = {ui} for i = 1, . . . , 4 and F = {f1, f2, f3}.)

Moreover, in case w ∈ S, consider the Steiner F -partition inequalities induced
by partitions V0, . . . , Vp of V and edge set F satisfying conditions:

C′
1: V1 = {w},

C′
2: the sets Vi, i ∈ {0, . . . , p} \ {1} are formed by consecutive nodes of the
cycle C,

C′
3: |Vi ∩ S| ≥ 1 for i = 2, . . . , p,

C′
4: F ⊂ δ(V0) and |F | = 3.
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Observe that Vi ∩ S �= ∅ for i = 1, . . . , p. By (2.1), these inequalities can be
written as

x(Δ) ≥ p − 1. (2.5)

Figure 4 illustrates inequality (2.1) for a graph of Γ. On the left side of the figure,
we consider a partition of the graph into seven sets, hence p = 6. Here all the
edges between the elements of the partition have coefficient 1 except those of F
(indicated by dashed lines) which have coefficient 0. On the right side we show a
solution for which inequality (2.1) is tight.

3. The polytope STECSP(G, S) on Γ

Throughout this section, given a graph G = (V, E) of Γ and a node subset
S ⊆ V of terminals, we let

T (G, S) = {T ⊆ E | (V, T ) is a Steiner 2-edge connected subgraph of G}.

Moreover, if ax ≥ α is a facet defining inequality of STECSP(G, S), we let

ta = {T ∈ T (G, S) | axT = α}.

Our main result in this section is the following.

Theorem 3.1. Let G = (V, E) be a graph of Γ, and S ⊆ V a set of terminals.
Then STECSP(G, S) is defined by the trivial and Steiner cut inequalities together
with inequalities (2.4) and (2.5).

The proof of this theorem will be given in Section 3.3. In what follows, we give
a procedure that permits to construct a facet of STECSP(G, S) from a known one
by the contraction of an edge.
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3.1. Contraction operations

Consider a graph G = (V, E) and a node set S of terminals. If e = uv is an
edge, we denote by Ge = (Ve, Ee) the graph obtained from G by contracting e. If
v′ is the new node that arises from the contraction, then we denote by Se the set
of terminal nodes of Ge such that Se = (S \{u, v})∪v′ if {u, v}∩S �= ∅ and Se = S
if not. Let ax ≥ α be a facet defining inequality of STECSP(G, S) different from
a trival inequality.

We have the following lemmas.

Lemma 3.1. Let f = uv ∈ E be such that a(f) = 0. Suppose that ax ≥ α
is valid for the polytope STECSP(Gf , Sf ). Then ax ≥ α defines a facet for
STECSP(Gf , Sf ).

Proof. W.l.o.g., we may suppose that STECSP(G, S) is full dimensional. Thus
STECSP(Gf , Sf ) so is. As ax ≥ α is facet defining for STECSP(G, S), there are
|E| edge sets T1, . . . , T|E| that induce Steiner 2-edge connected subgraphs of G

such that axTi = α, for i = 1, . . . , |E| and xT1 , . . . , xT|E| are affinely independent.
Let

T ′
i =

{
Ti \ {f} if f ∈ Ti,
Ti if not,

for i = 1, . . . , |E|. Clearly, the sets T ′
i , i = 1, . . . , |E|, induce Steiner 2-edge

connected subgraphs of Gf . Moreover we have axT ′
i = α for i = 1, . . . , |E|.

Since xT1 , . . . , xT|E| are affinely independent, there must exist |E| − 1 sets among
T1, . . . , T|E|, whose incidence vectors are affinely independent. Since ax ≥ α is
valid for STECSP(Gf , Sf ), it is then facet defining. �
Lemma 3.2. Let ei ∈ C with a(ei) = 0. If a′ is the restriction of a on Eei , then
a′x ≥ α is valid for STECSP(Gei , Sei) if one of the following statements holds.

(1) ui, ui+1 �∈ S.
(2) ui ∈ S, ui+1 �∈ S and for every edge e of Ai+1, there is an edge f of Ai

such that a(e) ≥ a(f).
(3) ui, ui+1 ∈ S and min{a(e), e ∈ Ai} = min{a(e), e ∈ Ai+1}.

Proof. We will show (1) and (2). The proof of (3) is similar.
Let E∗ ⊆ Eei such that (V, E∗) is a Steiner 2-edge connected subgraph of Gei .

(1) Let E∗
1 = E∗ ∪ {ei}. Since ui, ui+1 �∈ S, E∗

1 ∈ T (G, S). Thus a′xE∗
=

axE∗
1 ≥ α, and hence a′x ≥ α is valid for STECSP(Gei , Sei).

(2) We distinguish three cases:
Case 1. E∗ ∩ δ(ui+1) = ∅. Since ui+1 �∈ S, E∗ ∈ T (G, S), and thus a′xE∗

=
axE∗ ≥ α.
Case 2. E∗ ∩ δ(ui) �= ∅ and E∗ ∩ δ(ui+1) �= ∅. Thus E∗

2 = E∗ ∪ {ei} ∈ T (G, S)
and therefore a′xE∗

= axE∗
2 ≥ α.

Case 3. E∗ ∩ δ(ui) = ∅ and E∗ ∩ δ(ui+1) �= ∅. Let f∗
2 ∈ E∗ ∩ Ai+1, and

f∗
1 ∈ Ai such that a(f∗

1 ) ≤ a(f∗
2 ), such an edge exists by hypothesis. Let E∗

3 =
(E∗ \{f∗

2})∪{ei, f∗
1 }. It is easy to see that E∗

3 ∈ T (G, S). Moreover, as a(ei) = 0,
we have that a′xE∗ ≥ axE∗

3 ≥ α.
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In all cases, we have that a′xE∗ ≥ α, which implies that a′x ≥ α is valid for
STECSP(Gei , Sei). �

3.2. Structural properties

In this subsection, we shall describe some structural properties of the facet
defining inequalities different from the trivial and the Steiner cut inequalities.
These properties will be useful to show Theorem 3.1.

For this and the next subsections, we consider a graph G = (V, E) of Γ on
n + 1 nodes. Thus STECSP(G, S) is full dimensional [29]. Suppose that w ∈ S
and s ≥ 2. We also consider a facet defining inequality ax ≥ α of STECSP(G, S)
that is different from the trivial and the Steiner cut inequalities. Thus, if for an
inequality bx ≥ β, bxT = β for all T ∈ ta, then bx ≥ β is a positive multiple of
ax ≥ α.

For i = 1, . . . , n, we let fi be a fixed edge of Ai such that a(fi) = min{a(f) | f ∈
Ai} for i = 1, . . . , n and E0 the set of edges e such that a(e) = 0.

We have the following lemmas given without proof. For the proof, see [29]. The
first one is a direct consequence of the fact that ax ≥ α is different from the trivial
and Steiner cut inequalities.

Lemma 3.3.
(1) For every edge e ∈ E, there is an edge set T ∈ ta (T ′ ∈ ta) such that e ∈ T

(e �∈ T ′).
(2) For every node v ∈ S, there is an edge set T ∈ ta such that |δ(v)∩ T | ≥ 3.
(3) a(e) ≥ 0 for all e ∈ E.

Lemma 3.4. Let T ∈ ta and i ∈ {1, . . . , n} such that ui ∈ S, |δ(ui)∩ T | ≥ 3 and
for all f ∈ Ai, a(f) > 0. Then the edges ei, ei−1 and fi may be supposed to be in
T if one of the following statements holds:

(1) ui−1, ui+1 ∈ S.
(2) If ui−1 �∈ S (resp. ui+1 �∈ S) then either a(ei−1) > 0 (resp. a(ei) > 0), or

a(ei−1) = 0 and a(fi−1) = 0 (resp. a(ei) = 0 and a(fi+1) = 0).

Lemma 3.5. Let T ∈ ta and i ∈ {1, . . . , n} such that ui ∈ S and ei, ei+1, f ∈ T
for some f ∈ Ai where a(f) > 0. Then C ⊂ T , if one of the following statements
holds:

(1) ui−1, ui+1 ∈ S.
(2) a(ei−1) > 0 if ui−1 �∈ S (resp. a(ei) > 0 if ui+1 �∈ S).

Lemma 3.6. Let j ∈ {1, . . . , s} such that |Aij ∩ E0| = 1. Let T ∈ ta such that
fij �∈ T . Then Aij ∩ T = ∅. Moreover, if a(eij−1) > 0 (resp. a(eij ) > 0) then
C(ij−1, ij) ⊂ T (resp. C(ij , ij+1) ⊂ T ).

Lemma 3.7. Suppose that C∩E0 = ∅. Then |Aij ∩E0| = 1 for all j ∈ {1, . . . , s}.
Lemma 3.8. Suppose that C ∩ E0 = ∅ and s ≥ 3. Then there is β > 0 such that

(1) a(C(ij , ij+1)) = β for every j ∈ {1, . . . , s},
(2) if j ∈ {1, . . . , s} and |Aij | ≥ 2, then a(f) = β for all f ∈ Aij \ {fij}.
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Lemma 3.9. Suppose C ∩E0 = ∅ and s ≥ 3. Let i ∈ {1, . . . , n} such that ui �∈ S.
Then

(1) a(f) = β/2 for all f ∈ Ai,
(2) ui+1 ∈ S,
(3) a(ei−1) = a(ei) = β/2,

where β is the scalar introduced in Lemma 3.8.

3.3. Proof of Theorem 3.1

The proof is by induction on the number of nodes. The theorem is true for a
graph of Γ on three nodes. In fact, in this case, the graph is series-parallel and, as
shown by Bäıou and Mahjoub [3], the STECSP(G, S) is then completely described
by the trivial and the Steiner cut inequalities. Suppose the theorem is true for any
graph of Γ with no more than n nodes and suppose G has exactly n + 1 nodes.

Let ax ≥ α be a facet defining inequality of STECSP(G, S) different from the
trivial and the Steiner cut inequalities. We will show that ax ≥ α is necessarily
of type either (2.4) or (2.5). To this end, let us first note that, if there is an edge
f ∈ E with a(f) = 0 that satisfies the conditions of Lemma 3.1, then ax ≥ α
defines a facet of the polytope associated with the graph obtained by contracting
f . By the induction hypothesis, it follows that ax ≥ α is of type (2.4). Thus,
for the remainder of the proof, we suppose that no edge e of E with a(e) = 0
satisfies the conditions of Lemma 3.1. As a consequence, by Lemma 3.2 we have
the following.

Claim 3.1.
(1) If ui, ui+1 �∈ S for i ∈ {1, . . . , n}, then a(ei) > 0.
(2) If ui ∈ S, ui+1 �∈ S and a(ei) = 0 for i ∈ {1, . . . , n}, then a(fi+1) < a(fi).
(3) If ui, ui+1 ∈ S for i ∈ {1, . . . , n}, then a(fi) �= a(fi+1).

We shall suppose w ∈ S, the proof when w �∈ S is similar. If either s = 0 or
s = 1, then it is not hard to see that, in this case, a(e) = 0 for all e ∈ E, which is
impossible. In the rest of the proof we suppose s ≥ 2.

We distinguish two cases.

Case 1. a(e) > 0 for all e ∈ C.

Suppose first that s = 2 and hence V (C) ∩ S = {ui1 , ui2}. As C ∩ E0 = ∅,
by Lemma 3.7 we have Ai1 ∩ E0 = {fi1} and Ai2 ∩ E0 = {fi2}. Now by Lemma
3.3 (1), there must exist a set T ∈ ta such that fi1 �∈ T . From Lemma 3.6, it
follows that C ⊆ T . Let T1 = (T \C(i1, i2))∪{fi1 , fi2}. Obviously, T1 ∈ T (G, S).
This implies that a(e) = 0 for all e ∈ C(i1, i2), a contradiction. In consequence,
if |V (C) ∩ S| = 2, then STECSP(G, S) is given by the trivial and the Steiner cut
constraints.

Now suppose that |V (C) ∩ S| ≥ 3. Since C ∩ E0 = ∅, by Lemma 3.7, it
follows that a(fij ) = 0 for j = 1, . . . , s. Moreover, as s ≥ 3, from Lemma 3.8 (2)
there is β > 0 such that a(f) = β for all f ∈ Aij \ {fij} and j = 1, . . . , s. In
addition, by Lemma 3.9 (2) if a node ui is not a terminal, then ui−1 and ui+1 are
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terminals. Hence by Lemma 3.9 (3) a(uv) = β/2 for every edge uv ∈ C such that
|{u, v} ∩ S| = 1. Also by Lemma 3.9 (1), a(e) = β/2 for all e ∈ Ai. Finally, if uv
is an edge of C such that u and v are terminals, then by Lemma 3.8 (1), we have
that a(uv) = β. Altogether, we then obtain

a(e) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β if e = uv ∈ C and u, v ∈ S,
β/2 if e = uv ∈ C and |{u, v} ∩ S| = 1,
β/2 if e ∈ Ai and ui �∈ S,
β if e ∈ Aij \ {fij} and j ∈ {1, . . . , s},
0 if e ∈ {fi1 , . . . , fis}.

This implies that ax ≥ α is an inequality of type (2.4) where the elements of the
partition are given by the nodes of the graph and F = {fi1 , . . . , fis}.
Case 2. a(ei) = 0 for some i ∈ {1, . . . , n}.

By Claim 3.1 (1) it follows that {ui, ui+1}∩S �= ∅. In what follows, we consider
the case where |{ui, ui+1} ∩ S| = 1. The case where ui, ui+1 ∈ S can be treated
along the same line.

Suppose that ui ∈ S, ui+1 �∈ S. (The case ui �∈ S, ui+1 ∈ S is similar.) We will
suppose ui = ui1 . Also we let T ∗ = (C \ {ei1}) ∪ {fi1 , fi1+1}.
Claim 3.2.

(1) a(f) > 0 for all f ∈ Ai1 .
(2) T ∗ ∈ ta.

Proof. (1) If there is an edge f ∈ Ai1 with a(f) = 0, then a(g) ≥ a(f) for all
g ∈ Ai1+1, which contradicts Claim 3.1 (2).

(2) By Lemma 3.3 (1), there is a set T ∈ ta such that ei1 �∈ T . As ui1 ∈ S and
consequently, |T ∩ δ(ui1)| ≥ 2, we may suppose that fi1 ∈ T . If Ai1+1 ∩ T = ∅,
then (T \ {fi1})∪{ei1 , f} ∈ T (G, S) and therefore a(f) ≥ a(fi1) for all f ∈ Ai1+1.
But this contradicts again Claim 3.1 (2). In consequence, Ai1+1 ∩ T �= ∅. And
thus we may suppose that fi1+1 ∈ T . Now we claim that C \ {ei1} ⊂ T . Indeed,
if this is not the case, then there must exist k ∈ {1, . . . , n} \ {i1 + 1} such that
ek−1 �∈ T and C(k, i1) ⊂ T . Using the same arguments as above, we can show
that Ak ∩T �= ∅. (Note that k may be equal to i1, however, in this case we should
have |Ai1 ∩ T | ≥ 2). Thus (T \ {fi1}) ∪ {ei1} ∈ T (G, S) and hence a(fi1) = 0,
contradicting (1). Thus C \ {ei1} ⊂ T and hence T ∗ ∈ ta. �

Claim 3.3.
(1) a(f) > 0 for all edge f in δ(w) different from fi1+1.
(2) a(fi1+1) = 0.

Proof. (1) Suppose a(f̄) = 0 for some f̄ ∈ δ(w) \ {fi1+1}. From Claim 3.2 (2),
it follows that (T ∗ \ {fi1}) ∪ {ei1 , fi1+1} belongs to T (G, S). Hence a(fi1) = 0,
contradicting Claim 3.2 (1).

(2) As w ∈ S, by Lemma 3.3 (2) there must exist a set T ∈ ta such that
|δ(w) ∩ T | ≥ 3.
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We first show that Ai1+1∩T �= ∅. Suppose, on the contrary, that Ai1+1∩T = ∅.
If |T ∩ δ(w)| = 3, then it is easy to see that there is an edge f ∈ δ(w) ∩ T
(f �∈ Ai1+1) such that T \ {f} ∈ T (G, S). But this implies that a(f) = 0, which
contradicts (1). Thus |δ(w) ∩ T | ≥ 4. Let k1, k2, k3 ∈ {1, . . . , n} \ {i1 + 1} such
that k1 ≤ k2 ≤ k3, Akj ∩ T �= ∅, for j = 1, . . . , 3 and |T ∩ (Ak1 ∪ Ak2 ∪ Ak3)| ≥ 3.
If k1 = k2 = k3, then the set T \ {fk1} still induces a feasible solution for the
STECSP. But this implies that a(fk1) = 0, contradicting (1). Suppose now that
k1 < k2 and hence fk1 , fk2 ∈ T . The case where k1 = k2 and k2 < k3 can be
treated along the same line. We may also suppose, w.l.o.g., that Ai ∩ T = ∅ for
i ∈ {k1+1, . . . , k3−1}\{k2}. If C(k1, k3) ⊂ T , then T \{fk2} ∈ T (G, S) and hence
a(fk2) = 0, contradicting (1). Thus we may suppose that C(k1, k2) �⊂ T . The case
when C(k2, k3) �⊂ T is similar. Therefore, ui �∈ S for all i ∈ {k1+1, . . . , k2−1}. Let
T ′ = (T \{fk1, fk2})∪C(k1, k2). As |δ(w)∩T | ≥ 4, we have T ′ ∈ T (G, S). In fact,
it is clear that all Steiner cut inequalities different from the one induced by {w}
are satisfied by xT ′

. Now, since |δ(w) ∩ T | ≥ 4, the Steiner cut inequality induced
by {w} is also satisfied. In consequence, we get a(fk1) + a(fk2) ≤ a(C(k1, k2)).

On the other hand, from Claim 3.2 (2) we have that (T ∗\C(k1, k2))∪{fk1 , fk2}
belongs to T (G, S). Thus a(C(k1, k2)) ≤ a(fk1) + a(fk2), and hence

a(C(k1, k2)) = a(fk1) + a(fk2). (3.1)

Furthermore note that (T ∗ \ (C(k1, k2)∪{fi1 , fi1+1}))∪{ei1 , fk1 , fk2} belongs to
T (G, S). Since a(ei1) = 0, by (3.1), it follows that a(fi1) = 0, a contradiction.

Thus Ai1+1 ∩ T �= ∅ and, in consequence, we may suppose that fi1+1 ∈ T .
Moreover, since a(ei1) = 0, we may also suppose that ei1 ∈ T . If there is a further
edge of Ai1+1, say f̄ , that belongs to T , then as ui1 ∈ S, we have T \{f̄} ∈ T (G, S).
Hence a(f̄) = 0, which is again impossible by (1). Thus Ai1+1 ∩ T = {fi1+1}.
Let k ∈ {1, . . . , n} \ {i1 + 1} such that Ak ∩ T �= ∅ and Al ∩ T = ∅ for all
l ∈ {i1 + 2, . . . , k − 1}. Note that, as |δ(w) ∩ T | ≥ 3, k exists. Also note that k
cannot coincide with i1. Indeed, if k = i1, as |T ∩ δ(w)| ≥ 3, there are at least two
edges, say g1, g2 in Ai1 ∩T . But, this implies that T \{gi} ∈ T (G, S), for i = 1, 2,
and hence a(g1) = a(g2) = 0, contradicting (1). Moreover, since |T ∩δ(w)| ≥ 3 and
ui1 ∈ S, there must exist k′ ∈ {k, . . . , i1} such that Ak′ ∩T �= ∅ and C(k′, i1) ⊂ T .
So, we may suppose that fk′ ∈ T . Note that k′ can be equal to i1. We have
k �= k′. In fact, if k = k′, then T \ {fk} ∈ T (G, S) and hence a(fk) = 0, which
contradicts (1).

Now, we will show that a(fi1+1) = 0. Consider first the case where C(i1+1, k) ⊂
T . Then clearly, T \ {fi1+1} ∈ T (G, S) and hence a(fi1+1) = 0. Suppose now that
C(i1 + 1, k) �⊂ T . As Al ∩ T = ∅ for all l ∈ {i1 + 2, . . . , k − 1}, we have that
ul �∈ S for all l ∈ {i1 + 1, . . . , k − 1}. Moreover, we have that C(k, k′) �⊂ T . For
otherwise, T \ {fk′} would be in T (G, S) and hence a(fk′ ) = 0, contradicting (1).
As by (1) a(fk) > 0, there must exist k′′ ∈ {k, . . . , k′ − 1} and an edge gk′′ such
that gk′′ ∈ Ak′′ ∩ T and C(k, k′′) ⊂ T . If not, then the set T \ {fk} would be in
T (G, S), and therefore a(fk) = 0, a contradiction. Now, it is not hard to see that
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the set (T \ {fi1+1, fk}) ∪ C(i1 + 1, k) belongs to T (G, S), and in consequence

a(fi1+1) + a(fk) ≤ a(C(i1 + 1, k)). (3.2)

Since ul �∈ S for all l ∈ {i1 + 1, . . . , k − 1}, (T ∗ \ (C(i1 + 1, k) ∪ {fi1+1})) ∪ {fk}
induces a solution of STECSP. This yields

a(fi1+1) + a(C(i1 + 1, k)) ≤ a(fk). (3.3)

By (3.2) and (3.3), it follows that a(fi1+1) = 0 which completes the proof of our
claim. �
Claim 3.4.

(1) If uj ∈ S \ {ui1}, then a(ej) > 0.
(2) If uj ∈ S \ {ui2}, then a(ej−1) > 0.
(3) i2 = i1 + 2 and a(ei2−1) = 0.

Proof. We only show (1) and (3). The proof for (2) is similar to that of (1).
(1) Suppose a(ej) = 0. If uj+1 �∈ S, then by Claim 3.3 (2), we have that

a(fj+1) = 0, contradicting Claim 3.3 (1).
So suppose that uj+1 ∈ S. By Lemma 3.3 (1), there is a set T ∈ ta that does

not contain ej. Thus we can suppose, w.l.o.g., that fj and fj+1 belong to T . If
C \ {ej} �⊂ T , then we have |(δ(w) \ {fij , fij+1}) ∩ T | ≥ 2 and, in consequence,
(T \ {fij , fij+1}) ∪ {ej} ∈ T (G, S). But this implies a(fij ) = a(fij+1) = 0,
contradicting Claim 3.3 (1). Thus C \ {ej} ⊂ T , and therefore (T \ {fij}) ∪
{ej, fi1+1} ∈ T (G, S). Hence a(fij ) ≤ a(ej) + a(fi1+1) = 0, which contradicts
again Claim 3.3 (1).

(3) Suppose, on the contrary, that i2 = i1 + l with l ≥ 3. Then a(ei) > 0 for
i = i1 + 1, . . . , i1 + l − 1. In fact, this is clear for ei1+1, . . . , ei1+l−2 by Claim 3.1
(1). Now, if a(ei1+l−1) = 0, then by Claim 3.3 (2), it follows that a(fi1+l−1) = 0,
contradicting Claim 3.3 (1).

As ui2 ∈ S, by Lemma 3.3 (2) there is an edge set T̃ ∈ ta such that |δ(ui2)∩T̃ | ≥
3. As by (1) a(ei2) > 0, from Lemmas 3.4 and 3.5, it follows that C ∪ {fi2} ⊂ T̃ .
Now, since ui1+1, . . . , ui2−1 �∈ S, we have that (T̃ \ C(i1 + 1, i2)) ∪ {fi1+1} ∈
T (G, S). As by Claim 3.3 (2) a(fi1+1) = 0, this implies that a(ei1+1) = · · · =
a(ei2−1) = 0, a contradiction and thus i2 = i1 + 2.

Now, we are going to show that a(ei2−1) = 0. On the contrary, if a(ei2−1) > 0,
by using the same arguments as above, we obtain that C ∪ {fi2} ⊂ T̃ . Since
(T̃ \ {ei2−1}) ∪ {fi1+1} ∈ T (G, S), we get a(ei2−1) = 0, a contradiction. �
Claim 3.5. There is exactly one node ui not in S, namely ui1+1.

Proof. Assume the contrary. Since i2 = i1 + 2, there must exist l ∈ {2, . . . , s}
such that V (C(i2, il)) ⊂ S and uil+1 �∈ S. Note that l may be equal to 2. As
uil

∈ S, by Lemma 3.3 (2), there is an edge set T1 ∈ ta such that |T1 ∩ δ(uil
)| ≥

3. As by Claim 3.4 (1) a(eil
) > 0, it follows from Lemmas 3.4 and 3.5, that

C ∪ {fil
} ⊂ T1. Now, by considering uil+1 instead of uil

, we can show similarly
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that a(eil+1−1) > 0 and there is a set T2 ∈ ta such that C ∪ {fil+1} ⊂ T2. As by
Claim 3.3 (2), a(fi1+1) = 0, we may suppose that fi1+1 ∈ T1 ∩ T2. Consequently,
we have T1 = C ∪ {fi1+1, fil

} and T2 = C ∪ {fi1+1, fil+1}. Since by Claim 3.2
(2), T ∗ = (C \ {ei1}) ∪ {fi1 , fi1+1} belongs to ta and a(ei1) = 0, it follows that
a(fil

) = a(fil+1) = a(fi1). Moreover as (T1 \ {fil
})∪{f} ∈ T (G, S) for all f ∈ Ak,

k ∈ {il + 1, . . . , il+1 − 1}, we get

a(f) ≥ a(fil
) for all f ∈ Ak, k = il + 1, . . . , il+1 − 1. (3.4)

On the other hand, there must exist an edge set T3 ∈ ta such that
|T3 ∩ {eil

, eil+1−1}| = 1. For otherwise, for every set T of ta, xT would verify
the equation x(eil

) − x(eil+1−1) = 0. However, since a ≥ 0, this equation cannot
be a positive multiple of ax = α, a contradiction.

W.l.o.g., we may suppose that eil
∈ T3 and eil+1−1 �∈ T3. Hence Ail+1 ∩ T3 �= ∅

and thus we may suppose that fil+1 ∈ T3. As a(eil
) > 0, there must exist j ∈

{il + 1, . . . , il+1 − 1} such that C(il, j) ⊂ T3 and Aj ∩ T3 �= ∅. If not, T3 \ {eil
}

would be in T (G, S), and hence a(eil
) = 0, a contradiction. Thus we may suppose

fj ∈ T3.
Now, if C(il+1, j) �⊂ T3, then δ(w) ∩ T3 must contain two further edges, and in

consequence, the set (T3 \ {fil+1 , fj}) ∪ C(j, il+1) induces a solution of STECSP,
yielding

a(fil+1) + a(fj) ≤ a(C(j, il+1)). (3.5)

Also, as by Lemma 3.2 (2) the set (T ∗\C(j, il+1))∪{fil+1 , fj} belongs to T (G, S),
it follows that

a(C(j, il+1)) + a(fi1) ≤ a(fil+1) + a(fj) + a(ei1). (3.6)

By combining (3.6) with (3.5), we get a(fi1) ≤ a(ei1). But, as a(ei1) = 0, it follows
that a(fi1) = 0, a contradiction.

Thus C(il+1, j) ⊂ T3 and consequently, T3 = C(il+1, j) ∪ {fil+1 , fj}. Now,
we can see that (T3 \ (C(il, j) ∪ {fj})) ∪ {fil

} induces a solution of the problem.
Therefore, a(fil

) ≥ a(C(il, j)) + a(fj). Since by (3.4), a(fij ) ≥ a(fil
), it follows

that a(C(il, j)) = 0 and hence a(eil
) = 0, a contradiction. �

Claim 3.6.

(1) a(ei) = a(fi) for all i different from i1 and i1 + 1.
(2) a(ei−1) = a(fi) for all i different from i1 + 1 and i1 + 2.

Proof. We will prove (1), the proof of (2) is similar.
By Lemma 3.3 (1), there exists an edge set T ∈ ta such that ei �∈ T . As by

Claim 3.5 ui, ui+1 ∈ S, we have Ai ∩ T �= ∅ and Ai+1 ∩ T �= ∅. Thus, we may
suppose, w.l.o.g., that fi, fi+1 ∈ T . We claim that a(ei) ≥ a(fi). Indeed, if
|δ(w)∩T | ≥ 3, then the set (T \ {fi})∪{e1} is still a solution of T (G, S) and then
a(ei) ≥ a(fi). If not, C(i + 1, i) ⊂ T and the set (T \ {fi}) ∪ {ei, fi1+1, ei1} ∈
T (G, S), also gives a(ei) ≥ a(fi).
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Furthermore, by Lemma 3.3 (2), there exists an edge set T ′ ∈ ta such that
|δ(ui+1)∩T ′| ≥ 3. By Lemmas 3.4 and 3.5, it follows that C ∪{fi+1} ⊂ T ′. Thus,
we may assume that T ′ = C ∪ {fi+1, fi1+1}. As (T ′ \ {ei}) ∪ {fi} ∈ T (G, S), we
have a(fi) ≥ a(ei) and then a(fi) = a(ei). �

Claim 3.7. For all edge f of Ai such that i ∈ {1, . . . , n} \ {i1 + 1}, we have
a(f) = βi for some βi ∈ IR+.

Proof. The proof is straightforward if |Ai| = 1. So, suppose |Ai| ≥ 2. Let us
assume, on the contrary, that there is f ′ ∈ Ai, i ∈ {1, . . . , n} \ {i1 + 1} such
that a(fi) < a(f ′). By Lemma 3.3 (1), there is an edge set T ∈ ta such that
f ′ ∈ T . Hence fi ∈ T , for otherwise T ′ = (T \ {f ′}) ∪ {fi} would be in T (G, S)
and axT ′

< α, a contradiction.
We claim that ei−1, ei �∈ T . Indeed, if |{ei−1, ei}∩T | = 1, then there must exist

in T a further edge of δ(w), different from fi and f ′. In this case, it is easy to see
that T \{fi} and T \{f ′} belong to ta and thus a(fi) = a(f ′) = 0, a contradiction.
Now, assume that ei−1, ei ∈ T . If C �⊂ T , then there must exist two further edges
of δ(w) \ {fi, f ′} that belong to T . But this implies that T \ {fi, f ′} ∈ T (G, S),
and thus a(fi) = a(f ′) = 0, a contradiction. If this is not the case, that is C ⊂ T ,
then (T \ {fi}) ∪ {fi1+1} ∈ T (G, S) and hence a(fi) = 0 which yields again a
contradiction.

Thus, ei, ei−1 �∈ T . As a consequence, (T \ {f ′}) ∪ {ei, fi1+1} is a set of
T (G, S). As a(fi1+1) = 0, we obtain that a(ei) ≥ a(f ′), and thus a(ei) > a(fi),
contradicting Claim 3.6 (1). �

Combining Claims 3.6 and 3.7, we obtain that

a(e) = β, for all e ∈ E \ ({ei1 , ei1+1} ∪ Ai1+1) for some β ∈ IR+.

Claim 3.8. If Ai1+1 contains at least two edges, then a(f) = β for all edge f of
Ai1+1 different from fi1+1.

Proof. First of all, note that by Claim 3.2 (2) (T ∗ \ {fi1}) ∪ {ei1 , f} belongs to
T (G, S) for all f ∈ Ai1+1 \ {fi1+1}. This implies that a(f) ≥ a(fi1) = β.

On the other hand, for every f ∈ Ai1+1 \ {fi1+1}, by Lemma 3.3 (1) there
exists an edge set Tf of ta that contains f . Clearly, fi1+1 ∈ Tf . Now, since
(Tf \ {f})∪ {ei1 , fi1} ∈ T (G, S), we have a(f) ≤ a(fi1) = β, and hence the claim
follows. �

Now altogether, we have

a(e) = 0 for all e ∈ {ei1 , ei1+1, fi1+1},
a(e) = β for all e ∈ E \ {ei1 , ei1+1, fi1+1}.

This implies that ax ≥ α is an inequality of type (2.5) associated to the partition
given by the nodes of the graph with V0 = {ui1+1}, and F = {ei1 , ei1+1, fi1+1}.



276 A.R. MAHJOUB AND P. PESNEAU

3.4. Facets

Now we describe necessary conditions for constraints (2.4) and (2.5) to define
facets for STECSP(G, S) on Γ.

Theorem 3.2.
(1) The constraints of type (2.4) that may define facets of STECSP(G, S) are

such that
(a) Vi contains exactly one terminal for all i ∈ {1, . . . , p} \ I,
(b) F ⊂ ⋃

ui∈S δ(V0, ui).
(Recall that I is the set of indices i such that Vi does not contain terminal
nodes.)

(2) The constraints of type (2.5) that may define facets of STECSP(G, S) are
such that |Vi ∩ S| = 1 for i = 2, . . . , p.

Proof. (1)(a) First note that by (2.3), inequality (2.4) can also be written as

x(T1) + 2x(T2 \ F ) ≥ 2q − 2
⌊ |F |

2

⌋
· (3.7)

Now suppose that for some i ∈ {1, . . . , p} \ I, Vi contains two terminals. By Con-
dition C2 of the generalized Steiner F -partition inequality (2.4), these terminals
may be supposed consecutive, say ui1 and ui2 . Let V 1

i = {uj ∈ Vi | j ≤ i1} and
V 2

i = Vi \ V 1
i . Let V ′

0 , . . . , V ′
p+1 be the partition such that

V ′
j = Vj , for j = 0, . . . , i − 1,

V ′
i = V 1

i ,

V ′
i+1 = V 2

i ,

V ′
j = Vj−1, for j = i + 2, . . . , p + 1.

Note that this new partition does not satisfy Condition C4. Also note that
δ(V 1

i , V 2
i ) = {ei1}. Hence the generalized Steiner F -partition inequality induced

by this partition and F can be written as

x(T1) + 2x((T2 ∪ {ei1}) \ F ) ≥ 2(q + 1) − 2
⌊ |F |

2

⌋
· (3.8)

It is easy to see that inequality (3.7) can be obtained from (3.8) and the inequality
x(ei1) ≤ 1. This implies that (3.7) cannot define a facet for STECSP(G, S).

(1)(b) Suppose that there is an edge f = wui of F with ui �∈ S for some
i ∈ {1, . . . , n}. By (1)(a) every set Vi, i ∈ {1, . . . , p} \ I contains exactly one
terminal. Hence q = s. Let Vjk

be the set of the partition that contains terminal
uik

for k = 1, . . . , s. By Condition C4, |F ∩ δ(V0, Vjk
)| = 1 for k = 1, . . . , s, and

hence |F | = s.
W.l.o.g., we may suppose that ui ∈ Vj1 . Also we may suppose that i1 < i, that

is node ui1 is met before node ui on the cycle C.
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Now let us denote (2.4) by ax ≥ α and suppose that this inequality defines a
non-trivial facet of STECSP(G, S). Then there must exist an edge set T ⊂ E not
containing ei1 and whose incidence vector satisfies (2.4) with equality.

As |F | is odd, we have that s, and hence q, is odd. Recall that the partition
V0, . . . , Vp inducing constraint (2.4), is defined in such a way that between every
two consecutive sets containing a terminal, there is at most one set that does not
intersect S. Let

Δk = δ(Vjk
) ∪

⎛
⎜⎜⎝

⋃
l∈{jk−1,jk+1}

Vl∩S=∅

δ(Vl)

⎞
⎟⎟⎠ ,

for k = 2, 4, . . . , q − 1.

Claim. a(Δk ∩ T ) ≥ 2 for k = 2, 4, . . . , q − 1.

Proof of the claim. If T contains an edge of δ(w, Vjk
) \ F , as this edge belongs to

T2, the claim follows. So suppose that T ∩ (δ(w, Vjk
) \F ) = ∅. As Vjk

∩S �= ∅ and
therefore T contains at least two edges of δ(Vjk

), T must contain at least one edge
of δ(Vjk

)∩C. Let e be one of these edges. Suppose, w.l.o.g., that e ∈ δ(Vjk
, Vjk+1).

If Vjk+1 ∩ S �= ∅, then e ∈ T2 and hence the claim follows.
If Vjk+1 ∩ S = ∅, then e ∈ T1 and hence a(e) = 1. If e is the only edge

of T in δ(Vjk+1), then T \ {e} still induces a Steiner 2-edge connected subgraph
of G. But this implies that a(e) = 0, a contradiction. In consequence, there
must exist a further edge, say e′, of T in δ(Vjk+1). As e′ ∈ T1 we have that
a(Δk ∩ T ) ≥ a(e) + a(e′) = 2 which ends the proof of the claim. �

Now let U = {uj ∈ Vj1 | j ≤ j1}, that is the set of nodes of Vj met before ui1+1 on
the cycle C. Note that f �∈ δ(U). As U∩S �= ∅ and ei1 �∈ T , |T∩(δ(U)\{ei1})| ≥ 2.
Let f1 and f2 be two edges of T ∩ (δ(U)\ {ei1}). Since f �∈ δ(U) and by Condition
C4 |F ∩ δ(Vj1)| = 1, f1, f2 ∈ T1 ∪ (T2 \ F ). Moreover, as |(δ(U) \ {ei1}) ∩ C| = 1,
at least one of these edges belongs to T2 \ F . In consequence,

a(f1) + a(f2) ≥ 3. (3.9)

In addition, since the sets Δk, k = 2, 4, . . . , q−1 are pairwise disjoint and {f1, f2}
does not intersect any of these sets, by the Claim and (3.9), it follows that

a(T ) ≥ 3 + 2
(

q − 1
2

)
= q + 2,

wich is impossible.

(2) Suppose that there is some i ∈ {2, . . . , p} such that Vi contains two termi-
nals. By Condition C′

2 these terminals can be supposed consecutive, say uij and
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uij+1 . Consider the partition V ′
0 , . . . , V ′

p+1 given by

V ′
k = Vk for k = 0, . . . , i − 1,

V ′
i = {uk ∈ Vi | k ≤ ij},

V ′
i+1 = {uk ∈ Vi | k ≥ ij + 1},
V ′

k = Vk−1 for k = i + 2, . . . , p + 1.

Note that δ(V ′
i , V ′

i+1) = {eij}. Hence the Steiner F -partition inequality induced
by this partition and F can be written as

x(Δ ∪ {eij}) ≥ p. (3.10)

It is easy to see that inequality (2.5) can be obtained from (3.10) and the trivial
inequality x(eij ) ≤ 1. This implies that (2.5) cannot define a facet of
STECSP(G, S). �

We can easily see that there is a polynomial number of inequalities of type (2.4)
and (2.5) that satisfy the conditions of Theorem 3.2, and thus define facets of
STECSP(G, S), when G is in Γ. Thus we have the following.

Corollary 3.1. The separation problem for inequalities (2.4) and (2.5) that define
facets of STECSP(G, S), when G is a graph of Γ, can be solved in polynomial time.

4. Composition of graphs

In this section, we shall discuss some applications of the previous results to a
class of graphs containing Halin graphs.

A 3-edge cutset is a cut with 3 edges. If G is a graph having a 3-edge cutset
δ(W ), then G decomposes into G1 and G2 where G1 (G2) is obtained by shrinking
W (V \ W ) to a single node. In the sequel, we will denote by Ω the set of graphs
that decomposes by 3-edge cutsets into graphs of Γ and series-parallel graphs. We
can note that a Halin graph decomposes into wheels by 3-edge cutsets. Thus Ω
contains the class of Halin graphs.

In [4], Barahona and Mahjoub show that if G decomposes into G1 and G2 by a
3-edge cutset δ(W ), then a system that defines STECSP(G, V ) is obtained from
the union of the systems that define STECSP(G1, V ) and STECSP(G2, V ) and
by identifying the variables associated with the edges in δ(W ). As a consequence,
they obtain that STECSP (G, S) is completely given by the trivial, Steiner cut
and Steiner F -partition inequalities when S = V and G is a Halin graph.

Such a composition cannot, unfortunately, be applied for the STECSP(G, S)
when S �= V . However, in this case we have the following analogous result. The
proof is similar to that given in [4] when S = V .

Theorem 4.1. Let G = (V, E) be a graph that has a 3-edge cutset δ(W ) =
{ui1uj1 , ui2uj2 , ui3uj3} and S ⊂ V a set of terminals. Suppose that ui1 , ui2 ,
ui3 , uj1 , uj2 , uj3 ⊆ S. Let G1 = (V1, E1) and G2 = (V2, E2) be obtained from G
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e

f

g

Figure 5.

by shrinking W and V \W , respectively. Then a system of linear inequalities suffi-
cient to define STECSP(G, S) is obtained from the union of the systems that define
STECSP(G1, S1) and STECSP(G2, S2), and by identifying the variables associated
with the edges in δ(W ). Here S1 = S \ W ∪ {w1} and S2 = S \ (V \ W ) ∪ {w2}
where w1 (w2) is the node that arises from the contraction of W (V \ W ).

In [3], Bäıou and Mahjoub show that the polytope STECSP(G, S) is given by
the trivial and Steiner cut inequalities when G is series-parallel. As a consequence
of this result and Theorems 3.1 and 4.1, we have the following.

Corollary 4.1. Let G = (V, E) be a graph of Ω. Suppose that the endnodes of the
edges of the 3-edge cutsets involved in the decomposition of G are all terminals.
Then STECSP(G, S) is given by the trivial, Steiner cut and generalized Steiner
F -partition inequalities.

Corollary 4.1 generalizes the result of Barahona and Mahjoub [4] when S = V .
To illustrate Corollary 4.1, consider the graph G = (V, E) shown in Figure 5 where
the terminals are filled nodes and Steiner nodes are the others.

Graph G can be decomposed, by the 3-edge cutset formed by the edges e, f
and g, in the wheel W and the serie-parallel graph SP of Figure 6.

It follows, by Corollary 4.1, that STECSP(G, S) is given by the trivial and
Steiner cut inequalities describing the polytope STECSP(SP, S) and the trivial,
Steiner cut and generalized Steiner F -partition inequalities defining the polytope
of the wheel W .

As mentioned above, the composition used in Theorem 4.1 cannot be applied
when the endnodes of the edges of the 3-edge cutset are not all in S. As it will
turn out, the generalized F -partition inequalities, the basic trivial and the Steiner
cut inequalities do not suffice to completely describe the polytope STECSP(G, S)
in this case. In fact, consider for instance the graph G = (V, E) shown in Figure 7
where S = {u1, u3, u4, u6}.

Let x be the solution given by x(e1) = x(e3) = x(e8) = x(e9) = 1 and x(e2) =
x(e4) = x(e5) = x(e6) = x(e7) = 1/2. It is not hard to see that this solution
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Figure 6.
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satisfies all the trivial, Steiner cut and generalized Steiner F -partition inequalities.
Moreover, x is an extreme point of the polytope given by these inequalities.

5. Algorithmic aspects

The decomposition given in the previous section has a practical interest for the
problem of finding a minimum cost Steiner 2-edge connected subgraph of a graph
of Ω. Indeed, let G be a graph of Ω. If this graph is neither a graph of Γ nor
a serie-parallel graph, it then decomposes by a 3-edge cutset {e, f, g} into two
graphs G1 and G2 of Ω. If the endnodes of the edges e, f and g are all terminals,
then, we can obtain an optimal solution of the STECSP on G using the following
procedure. This uses ideas similar to those used by Barahona and Mahjoub in [4].

Let us denote by λ(F1, F2, G2) the value of an optimal solution of STECSP on
the graph G2 containing the edges of F1 and not the ones of F2 where the weights
on the edges of G2 are taken to be the same as for G. The problem is solved in
G1 where the edge weights are the same as for G except for e, f and g for which
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the weights are taken to be the solution of the following linear system

w′
e + w′

f = λ({e, f}, {g}, G2) − κ

w′
f + w′

g = λ({f, g}, {e}, G2) − κ

w′
e + w′

g = λ({e, g}, {f}, G2) − κ

w′
e + w′

f + w′
g = λ({e, f, g}, ∅, G2) − κ

where w′
e, w′

f and w′
g are the new weights and κ is a variable guaranteeing the

solvability of the system. Such a solution contains necessarily either 2 or 3 edges
of {e, f, g}. An optimal solution of STECSP on G can be obtained by recomposing
the optimal solution obtained on G1 and an optimal solution of G2 that contains
exactly the same edges of {e, f, g} that are contained in the solution on G1. The
value of the opimal solution thus obtained is λ(G1) + κ where λ(G1) is the value
of the optimal solution of STECSP obtained on G1.

It follows that solving the STECSP on a graph of Ω can be reduced in solving
the problem on graphs of Γ or on series-parallel graphs. If G is a serie-parallel
graph, then STECSP(G, S) is completly described by the trivial and Steiner cut
inequalities. As these inequalities can be separated in polynomial time, one can
solve the problem on G using a cutting plane algorithm.

Suppose now that G is a graph of Γ. By Theorem 3.1 the polytope
STECSP(G, S) is given by the trivial and Steiner cut inequalities together with
inequalities (2.4) and (2.5). By Corollary 3.1, it follows that the problem STECSP
can be solved in polynomial time on G using a cutting plane algorithm.

Given a graph of Ω, one can compute in polynomial time (using 3-edge cutsets)
the pieces of G. In consequence, problem STECSP can be solved in polynomial
time by cutting planes on the class of Ω when the endnodes of the edges of the
3-edge cutsets are all terminals. To the best of our knowledge, this is the first
polynomial time algorithm for STECSP on a class that generalizes the class of
Halin graphs.

6. Concluding remarks

In this paper we have discussed the Steiner 2-edge connected subgraph polytope.
We have introduced a new class of valid inequalities for this polytope that gen-
eralizes the so-called Steiner F -partition inequalities. We have shown that these
inequalities together with the trivial and the Steiner cut inequalities completely
describe the Steiner 2-edge connected subgraph polytope on a class of graphs
that generalizes the wheels. We have also discussed some necessary conditions for
these inequalities to be facet defining. As a consequence, we have obtained that
the facet defining inequalities of this type can be separated in polynomial time on
that class of graphs. Furthermore, we have discussed the polytope STECSP(G, S)
in the graphs that decompose by 3-edge cutsets. We have shown that the general-
ized Steiner F -partition inequalities together with the trivial and the Steiner cut
inequalities suffice to describe the polytope STECSP(G, S) on a class of graphs
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containing Halin graphs, when the nodes of all the 3-edge cutsets of G are ter-
minals. This generalizes the result of Barahona and Mahjoub [4] when all the
nodes of the graph are terminals. This is, to the best of our knowledge, the first
complete description of STECSP(G, S) given for a nontrivial class of graphs that
includes inequalities other than the basic trivial and Steiner cut inequalities. In
contrast to the case where S = V , the additional inequalities may be non-rank
inequalities. Moreover, we have addressed the algorithmic aspect and shown that
the STECSP can be solved in polynomial time on that class of graphs using cut-
ting plane algorithm, when the endnodes of the edges in the 3-edge cutsets are all
terminals.

The fact that the generalized Steiner F -partition inequalities suffice, with the
trivial and the Steiner cut inequalities, to characterize the polytope STECSP(G, S)
in a nontrivial class of graphs, shows, as is the case for the F -partition inequalities
[1,24], that these inequalities may be of great interest in solving the STECSP
within the framework of a cutting plane algorithm. For this, it would be interesting
to characterize the generalized Steiner F -partition inequalities that define facets.
It would also be interesting to investigate extensions of the results of the paper to
the Steiner k-edge connected subgraph problem.

Acknowledgements. We would like to thank the anonymous referee for his/her constructive
comments.
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