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The hop-constrained survivable network design problem
consists of finding a minimum cost subgraph containing
K edge-disjoint paths with length at most H joining each
pair of vertices in a given demand set. When all demands
have a common vertex, the instance is said to be rooted.
We propose a new extended formulation for the rooted
case, called hop-level multicommodity flow (MCF), that
can be significantly stronger than the previously known
formulations, at the expense of having a larger number
of variables and constraints, growing linearly with the
number of edges and demands and quadratically with
H . However, for the particular case where H = 2, it can
be specialized into a very compact and efficient formula-
tion. Even when H = 3, hop-level-MCF can still be quite
efficient and it has solved several instances from the
literature for the first time. © 2012 Wiley Periodicals, Inc.
NETWORKS, Vol. 61(2), 171–179 2013
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1. INTRODUCTION

Let G = (V , E) be an undirected graph with n+1 vertices,
numbered from 0 to n, and m edges with positive costs ce,
e ∈ E; let D ⊆ V ×V be a set of demands; and let K ≥ 1 and
H ≥ 2 be natural numbers. The hop-constrained survivable
network design problem (HSNDP) consists of finding a sub-
graph of G with minimum cost containing, for each demand
(u, v) ∈ D, K edge-disjoint (u, v)-paths with at most H edges.
If all demands have a common vertex, w.l.o.g. the vertex 0,
we say that the instance is rooted, otherwise it is unrooted. In
this article, we only consider rooted instances. Therefore, to
simplify the notation, a demand (0, d) will be identified by
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its destination vertex d, so the set D is assumed to be a set of
destinations. A vertex that does not belong to any demand is
a Steiner vertex. Instances without Steiner vertices are said to
be spanning. Figure 1 depicts an optimal solution of a rooted
spanning instance with K = 3 and H = 3. For example,
in that solution, we can find edge-disjoint paths 0-18-14-15,
0-14-16-15, and 0-13-15 joining vertices 0 and 15.

The HSNDP is a quite general network design problem;
the parameter H models quality of service requirements,
whereas parameter K models the desired level of network
survivability (see [14]). An even more general version of the
HSNDP can consider potentially distinct values K(d) and
H(d) for each d ∈ D to model demand importance. Any-
way, some particular cases of the HSNDP are well-known
NP-hard problems:

• When |D| = 1 (single-demand HSNDP), the problem is
polynomial for H ∈ {2, 3} and NP-hard for H ≥ 4 [13].

• When the instance is rooted and K = 1, the HSNDP is
equivalent to the Steiner Tree with hop constraints prob-
lem. When the instance is also spanning, the HSNDP is
equivalent to the spanning tree with hop constraints prob-
lem. This latter problem is NP-hard even when H = 2
(see [9]).

This work proposes a new extended formulation for the
rooted HSNDP, called hop-level-multicommdity flow (HL-
MCF), inspired by a previous extended formulation known
as Hop-MCF [3]. Hop-MCF is already large, having O(|D| ·
H · m) variables and O(|D| · H · n) constraints. The new
formulation increases both dimensions by a factor of H. The
lower bounds given by the linear relaxation (LR) of HL-MCF
can be significantly stronger than those given by Hop-MCF.
However, when solving an instance to optimality by branch-
and-bound, the time to solve each node can be much larger.
Overall, HL-MCF is still usually better when H ≤ 3, solving
several open instances from the literature with up to 40 ver-
tices and 30 demands. The computational results of HL-MCF
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FIG. 1. Optimal solution of a rooted spanning instance with K = 3 and
H = 3; n = 20, complete graph, Euclidean costs.

for that case are also better than those obtained by branch-
and-cut algorithms that separate inequalities over the natural
edge variables. Moreover, when H = 2, HL-MCF can be
specialized into a formulation having less than 3m variables
and 4m + 2|D| constraints. This represents a breakthrough
in the practical solution of that case, as quite large instances
can be quickly solved to optimality.

2. BACKGROUND

First, we define the polyhedra P(H, K , d) associated with
the single-demand HSNDP. Let F(H, K , d) be the collection
of all edge subsets F ⊆ E such that (V , F) contains K edge-
disjoint (0, d)-paths with at most H edges. For every F ⊆ E,
the 0-1 vector χF ∈ Rm such that χF(e) = 1 iff e ∈ F is the
incidence vector of F. Then,

P(H , K , d) = Conv{χF : F ∈ F(H, K , d)}.
Dahl initiated the investigation of these polyhedra by charac-
terizing them in the case where K = 1 and H ∈ {2, 3} [4]. For
the case where K = 2 and H ∈ {2, 3}, a complete descrip-
tion of P(H , K , d) in the natural space of edge variables was
provided by Huygens et al. [12]. Dahl et al. [5] found the
description for the case where H = 2, for any K . All those
results were generalized by Bendali et al. [1] who proved
that st-cut and L-path-cut inequalities suffice for describing
P(H, K , d) when H ∈ {2, 3}, for any K .

There is little hope of finding a full description of
P(H, K , d) when H ≥ 4, as the associated single-demand
HSNDP is NP-hard. Huygens and Mahjoub [11] give an inte-
ger programming formulation (i.e, a polyhedron that relaxes
P(H , K , d) by including additional fractional points) for the
case H = 4 and K = 2. No formulation in the natural space
of the edge variables is known for any H and any K . Botton

et al. [2] provided such a general extended formulation over
a hop-indexed network (called HopE) for the single-demand
HSNDP. In fact, hop-indexed networks have been used to for-
mulate network design problems with hop-constraints since
[8]. When H ∈ {2, 3}, it was proved that HopE is integral.
The reported experiments suggest that the LR of that for-
mulation is very strong even when 4 ≤ H ≤ 6, obtaining
integral optimal solutions in 27,994 out of the 28,000 tested
instances. This means that the projection of that extended
formulation is, for most algorithmic purposes, almost equiv-
alent to a description of P(H, K , d), at least when H is in that
range.

The polyhedron P(H, K , D) associated with the multi-
demand HSNDP is defined next. Let F(H, K , D) be the
collection of all edge subsets F ⊆ E such that (V , F) contains
K edge-disjoint (0, d)-paths with at most H edges for every
d ∈ D. Then,

P(H, K , D) = Conv{χF : F ∈ F(H, K , D)}.

It can be seen that P̄(H, K , D) = ∪d∈DP(H, K , d) is a for-
mulation for P(H, K , D) (in fact, the intersection of any
formulation for each individual demand would still be a valid
formulation for the multidemand HSNDP). However, practi-
cal experiments showed that P̄(H, K , D) is usually not a good
approximation of P(H, K , D), even when H ∈ {2, 3}.

To strengthen P̄(H, K , D), it is necessary to look for addi-
tional joint inequalities, that is, inequalities that cannot be
derived by only considering each isolated demand. If possi-
ble, one would like to find joint inequalities that may define
facets of P(H, K , D). Huygens et al. [10] investigated the
case where K = 2 and H ∈ {2, 3}, identifying facet-defining
inequalities and constructing a branch-and-cut algorithm.
Similar work was done by Diarrassouba et al. [6, 7] for the
case where K = 3 and H ∈ {2, 3}. In both works, experimen-
tation showed that the separation of joint inequalities can
improve significantly the lower bounds; however, the inte-
grality gaps are still too large for solving many instances
with more than 20 demands to optimality. There are some
potential drawbacks in continuing that approach:

• The currently known families of joint inequalities are com-
plex enough to require complicated heuristic separation
algorithms to be used. New families of strong joint inequal-
ities are likely to be even more complex (finding them
may be difficult research work) and require even more
complicated algorithms.

• The HSNDP is a very generic problem. Yet the known
families of strong joint inequalities are effective (or even
valid) only for quite particular cases. The simple fact that
there is no known HSNDP formulation in the space of the
edge variables for H ≥ 5 attests to the difficulties of finding
generic inequalities.

In this work, we try to find lower bounds significantly better
than those provided by P̄(H, K , D) in an alternative way, by
exploring extended formulations. See [15] for a recent dis-
cussion on the pros and cons of the “extended formulation
approach” when compared to the “facet-finding approach”.
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3. HOP-MCF FORMULATION

An extended formulation was recently proposed for the
general HSNDP [3]. It basically consists of combining the
extended formulations given in [2] for each single demand
into a single formulation. That article proposes handling the
large size of the resulting extended formulation by means of a
Benders decomposition. Let V ′ = V −{0} and E′ = E\δ(0),
where δ(i) represents the set of edges adjacent to a vertex
i. For each demand d ∈ D, define the hop layered directed
graph Gd

H = (Vd
H , Ad

H), where Vd
H = {(0, 0)} ∪ {(i, h) : i ∈

V ′; 1 ≤ h ≤ H−1}∪{(d, H)}. Assuming that G is a complete
graph, Ad

H =

{[0, j, 1] = [(0, 0), (j, 1)] : j ∈ V ′}
∪ {[i, j, h] = [(i, h − 1), (j, h)] : i, j ∈ V ′,

i �= d, i �= j; 2 ≤ h ≤ H − 1}
∪ {[i, d, h] = [(i, h − 1), (d, h)] : i ∈ V ′ − {d}; 2 ≤ h ≤ H}.

Each arc in Ad
H is identified by a triple [i, j, h], giving its origin,

destination, and hop. When G is not complete, if (i, j) /∈ E,
arcs of form [i, j, h] and [j, i, h] are omitted from Ad

H . Figure 2
depicts an example of such an auxiliary network. For each d ∈
D, and for each arc [i, j, h] in Ad

H , define binary flow variables
f dh
ij . For each edge (i, j) in E, define design binary variables

xij. Let δ−(i, h, d) and δ+(i, h, d) denote, respectively, the set
of arcs in Ad

H entering and leaving vertex (i, h). The Hop-MCF
formulation follows:

min
∑

(i,j)∈E

cijxij (1)

s.t.
∑

a∈δ−(i,h,d)

fa −
∑

a∈δ+(i,h,d)

fa = 0,

∀d ∈ D; (i, h) ∈ Vd
H , i /∈ {0, d} (2)

H∑

h=1

∑

a∈δ−(d,h,d)

fa = K , ∀d ∈ D (3)

f d1
0j ≤ x0j, ∀d ∈ D; (0, j) ∈ δ(0) (4)

FIG. 2. Example of auxiliary graph Gd
H : G complete, n = 4, d = 4, and

H = 3.

FIG. 3. Instance inst4: optimal solution and fractional solution of Hop-
MCF.

H−1∑

h=2

(
f dh
ji + f dh

ij

) ≤ xij, ∀d ∈ D; (i, j) ∈ E′\δ(d) (5)

H∑

h=2

f dh
jd ≤ xjd , ∀d ∈ D; (j, d) ∈ δ(d)\δ(0) (6)

0 ≤ x, f ≤ 1. (7)

In the single-demand case, when H ∈ {2, 3}, the projec-
tion of Hop-MCF onto the x space is exactly P(H, K , d).
Therefore, Hop-MCF projects onto P̄(H, K , D) in the multi-
demand case, when H ∈ {2, 3}. The typical integrality gaps
of Hop-MCF over Euclidean instances, as reported in [3], are
between 5% and 25%.

To illustrate the potential weakness of the Hop-MCF
formulation when several demands are present, we define
a rooted spanning instance with n = 4, K = 2, and
H = 3, called inst4. The graph is complete and the costs
correspond to Euclidean distances. Vertex coordinates are
((0, 1), (0, 0), (0, 1), (0, 2), (2, 1)). Figure 3 depicts on its left
the optimal integral solution x∗ of inst4 with cost 6.83. On the
right, the LR of Hop-MCF x̄ with cost 6.41 is shown; dashed
lines represent variables with value 1/2. As Hop-MCF is
integral for a single demand when H = 3, for each demand
d ∈ D, there must be fractional 0 − d paths with length up to
3 over x̄ summing 2. For example, for demand 1 there is path
0-1 with value 1, path 0-2-1 with value 1/2, and path 0-4-3-1
with value 1/2. When H ∈ {2, 3}, it is not possible to cut a
fractional solution of Hop-MCF with inequalities that only
consider individual demands.

4. HOP-LEVEL MCF FORMULATION

It is well known that directed formulations of network
design problems, when available, are much stronger that their
undirected counterparts. The relative weakness of known
HSNDP formulations, including Hop-MCF, is related to the
impossibility of directing the solutions, as both orientations
of an edge can be used in the paths for different demands. The
proposed formulation tries to remedy this difficulty by intro-
ducing the concept of solution level. Given a solution T , we
can partition V into L + 2 levels, according to their distances
to 0 in T . In the basic HL-MCF presented in this article, L is
set as equal to H (in its generalizations mentioned in Section
7, L can be greater than H). The set of Steiner vertices is
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defined as S = V ′\D. Level 0 only contains vertex 0; level l,
1 ≤ l ≤ L, contains vertices at distance l from 0; and level
L + 1 contains the vertices in S that are not connected to 0 in
T . Besides the design variables x, HL-MCF also has:

• Binary variables wl
i , i ∈ D, 1 ≤ l ≤ L and i ∈ S, 1 ≤

l ≤ L + 1, indicating that vertex i is in level l. As optimal
solutions never have Steiner vertices in level L, variables
wL

i , i ∈ S, can be fixed to 0. Variable w0
0 is fixed to 1.

• Binary variables yl1l2
ij indicating that edge (i, j) belongs to

T , i is in level l1 and j in level l2. For each (0, j) ∈ δ(0), there
is a single variable y01

0j . Each e = (i, j) ∈ E′ is associated

with a set of 3(L − 1) variables {yll
ij : 1 ≤ l ≤ L − 1} ∪

{yl(l+1)
ij , yl(l+1)

ji : 1 ≤ l ≤ L − 1}. Variables yLL
ij are not

necessary because an edge between vertices in level L can
not belong to a path from 0 with length at most H.

• Binary flow variables gdhl1l2
ij associated with |D| auxiliary

hop-level networks to be defined.

The x and (w, y) variables are linked by the following
constraints:

w0
0 = 1, (8)

L∑

l=1

wl
i = 1, ∀i ∈ D (9)

L+1∑

l=1

wl
i = 1, ∀i ∈ S (10)

wL
i = 0, ∀i ∈ S (11)

w1
j = y01

0j = x0j, ∀(0, j) ∈ δ(0) (12)

L−1∑

l=1

yll
ij +

L−1∑

l=1

(
yl(l+1)

ij + yl(l+1)
ji

) = xij, ∀(i, j) ∈ E′ (13)

y11
ij + y12

ij ≤ w1
i ,

y11
ij + y12

ji ≤ w1
j ,

∀(i, j) ∈ E′ (14)

yll
ij + yl(l+1)

ij + y(l−1)l
ji ≤ wl

i ,

yll
ij + yl(l+1)

ji + y(l−1)l
ij ≤ wl

j ,

∀(i, j) ∈ E′; l = 2, . . . , L − 1 (15)

y(L−1)L
ji ≤ wL

i ,

y(L−1)L
ij ≤ wL

j ,
∀(i, j) ∈ E′ (16)

wl
i ≤

∑

(j,i)∈E′
y(l−1)l

ji ,

∀i ∈ V ′; l = 2, . . . , L − 1 (17)

K · wL
i =

∑

(j,i)∈E′
y(L−1)L

ji , ∀i ∈ D (18)

0 ≤ x, w, y ≤ 1. (19)

FIG. 4. Instance inst4: level-expanded representation of the fractional
solution of Hop-MCF that is not feasible in HL-MCF.

Constraints (8)–(11) state that each vertex should be in
exactly one of the possible levels. Constraints (12) and (13)
make the connection between the new (w, y) variables and
the original edge variables x. Constraints (14)–(16) assure
that a variable yl1l2

ij can only be 1 if both w11
i and w12

j are one.
Constraints (17) state that a vertex can only be in level l if it
is reached by at least one edge from level l − 1. Constraints
(18) are based on the fact that a demand vertex in level L
must be reached by exactly K vertices from level L − 1 in
any optimal solution. It can be checked that for any fixed
binary solution x, there is a single binary solution (w, y) that
satisfies (8)–(19). That unique solution indeed sorts the ver-
tices according to their distances from 0 in the solution x.
For example, the integral solution of inst4 shown in Figure 3
would force vertices 1 and 2 to be in level 1 and 3 and 4 to
be in level 2.

However, fixing a fractional x̄ into the right-hand side of
(12) and (13) usually forces (w, y) solutions of the linear
system (8)–(19) that split vertices and edges into different
levels. Note that those levels are the same for every demand.
For example, consider the fractional solution x̄ of inst4 shown
in Figure 3. Constraints (12) imply that w1

1 = 1, w1
2 = 1/2,

w1
3 = 0, and w1

4 = 1/2. By taking the other constraints into
account, it can be shown (computationally or by a long ad hoc
argument) that there is a single solution (w̄, ȳ) that is compati-
ble with x̄ (this is not a general property, there are other cases
where there are several solutions compatible with a given
x̄). The solution is depicted in the level-expanded graph in
Figure 4; the horizontal positioning of the vertices and edges
indicates the values of (w̄, ȳ). For instance, y12

43 = y22
34 = 1/2.

Consider the demand (0,1). In the level-expanded graph given
by (w̄, ȳ), there is path 0-1 with value 1 and path 0-4-3-1 with
value 1/2. But the remaining path 0-2-4-3-2-1 is not valid
because its length is greater than 3. What happened is that
the splitting of vertex 2 removed the path 0-2-1 that existed
in the original fractional solution. Now, it is possible to cut
the fractional (w̄, ȳ) solution by only considering demand 1,
which indirectly also cuts the fractional x̄ solution.

We need to define auxiliary networks to enforce the exis-
tence of the required paths in the level-expanded graph. For
each d ∈ D, we define hop-level directed graphs Gd

HL =
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FIG. 5. Example of auxiliary graph Gd
HL : G complete, n = 4, d = 4, and H = L = 3.

(Vd
HL, Ad

HL), where Vd
HL = {(0, 0, 0)} ∪ {(i, h, l) : i ∈ V ′; 1 ≤

h ≤ H − 1; 1 ≤ l ≤ h} ∪ {(d, H, l) : 1 ≤ l ≤ L}, and Ad
HL =

{[0, j, 1, 0, 1] = [(0, 0, 0), (j, 1, 1)] : j ∈ V ′}
∪ {[i, j, h + 1, l, l′] = [(i, h, l), (j, h + 1, l′)] :

i, j ∈ V ′, i �= j, i �= d; 1 ≤ h ≤ H − 2;

1 ≤ l ≤ h; max(l − 1, 1) ≤ l′ ≤ l + 1}
∪ {[i, d, H , l, l′] = [(i, H − 1, l), (d, H, l′)] : i ∈ V ′, i �= d;

1 ≤ l ≤ L − 1; max(l − 1, 1) ≤ l′ ≤ l + 1}

Again, if G is not complete, the arcs corresponding to miss-
ing edges are removed. Each arc in Ad

HL is identified by a
tuple [i, j, h, l1, l2], giving its origin, destination, hop, origin
level, and destination level. For each such arc, we define a
binary flow variable gdhl1l2

ij . Let δ−(i, h, l, d) and δ+(i, h, l, d)

denote, respectively, the set of arcs in Ad
H entering and leav-

ing vertex (i, h, l). Figure 5 depicts an example of such an
auxiliary network. The new formulation HL-MCF is defined
by the objective function (1), subjected to (8)–(19) and to the
following constraints:

∑

a∈δ−(i,h,l,d)

ga −
∑

a∈δ+(i,h,l,d)

ga = 0,

d ∈ D; (i, h, l) ∈ Vd
HL, i /∈ {0, d} (20)

H∑

h=1

∑

a∈δ−(d,h,l,d)

ga = K · wl
d , d ∈ D; 1 ≤ l ≤ L (21)

gd101
0j ≤ y01

0j , d ∈ D; (0, j) ∈ δ(0), j �= d (22)

gd101
0d = y01

0d , d ∈ D; (0, d) ∈ δ(0) (23)

H−1∑

h=l+1

(
gdhll

ji + gdhll
ij

) ≤ yll
ij ,

d ∈ D; (i, j) ∈ E′\δ(d); 1 ≤ l ≤ L − 2 (24)

H−1∑

h=l+2

gdh(l+1)l
ji +

H−1∑

h=l+1

gdhl(l+1)
ij ≤ yl(l+1)

ij ,

d ∈ D; (i, j) ∈ E′\δ(d); 1 ≤ l ≤ L − 2 (25)

H∑

h=l+2

gdh(l+1)l
jd ≤ yl(l+1)

dj ,

d ∈ D; (j, d) ∈ δ(d)\δ(0); 1 ≤ l ≤ L − 2 (26)

H∑

h=l+1

gdhll
jd ≤ yll

jd ,

d ∈ D; (j, d) ∈ δ(d)\δ(0); 1 ≤ l ≤ L − 1 (27)

H∑

h=l+1

gdhl(l+1)
jd ≤ yl(l+1)

jd ,

d ∈ D; (j, d) ∈ δ(d)\δ(0); 1 ≤ l ≤ L − 1. (28)

Constraints (20) and (21) define a flow of K units from
(0, 0, 0) to vertices (d, h, l), vertices in level l receive K · wl

d
units. Constraints (22)–(28) link the flow to the y variables.
The complete HL-MCF formulation has O(|D|·H ·L ·m) vari-
ables and O(|D| ·H ·L ·n) constraints, an increase by a factor
of L = H (in both dimensions) with respect to Hop-MCF.

Theorem 1. HL-MCF is at least as strong as Hop-MCF in
terms of the bounds provided by their LRs.

Proof 1. A fractional solution (x̄, w̄, ȳ, ḡ) of HL-MCF can
be converted into a fractional solution (x̄, f̄ ) of Hop-MCF by
defining f̄ dh

ij = ∑
l1,l2

ḡdhl1l2
ij , where the summation is defined

over the appropriate indices. It can be checked that if ḡ
satisfies (20) and (21) then f̄ satisfies (2) and (3). More-
over, if (x̄, w̄, ȳ, ḡ) satisfies (8)–(17) and (22)–(28), then (x̄, f̄ )
satisfies the coupling constraints (4)–(6).

However, HL-MCF can be significantly stronger than
Hop-MCF. For example, in inst4, the fractional solution of
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FIG. 6. Instance inst4: Level-expanded representation of the fractional
solution of HL-MCF.

HL-MCF has value 6.71 and is depicted as a level-expanded
graph in Figure 6. We remark that this new fractional solution
avoids splitting vertices.

5. HL2: SPECIALIZING THE HL-MCF WHEN H = 2

In the particular case when H = 2, the HL-MCF can be
rewritten in a much more compact way, without the need
of having an auxiliary network flow for each demand. The
crucial observation is that each variable g is associated with
a single y variable in constraints (22)–(28) in that case. This
allows replacing all those networks by constraints over the y
variables. The following constraints are valid when H = 2:

∑

(i,j)∈δ(d)\δ(0)

y11
ij ≥ (K − 1) · y01

0d d ∈ D. (29)

Theorem 2. When H = 2, the formulation (1), subjected
to (8)–(19) and (29), that will be called HL2, is equivalent to
HL-MCF in terms of the bounds provided by their LRs.

Proof 2. Given a solution (x̄, w̄, ȳ) of (8)–(19) and (29),
Algorithm 1 gives a solution (x̄, w̄, ȳ, ḡ) also satisfying (20)–
(28). To better understand how the algorithm constructs a ḡ
flow for a given demand d ∈ D, let us consider what happens
in the extreme cases where ȳ01

0d is binary. If that variable
has value zero, this means that vertex d is in level 2. The
loop in lines 3-6 will then construct the appropriate ḡ flow
and the remaining lines will have no effect. Conversely, if
ȳ01

0d = 1, this means that d is in level 1. Then lines 3-6 will
have no effect and the code in lines 7-17 will then construct
the ḡ flow. Of course, a fractional ȳ01

0d will yield a ḡ flow that
is a combination of the extreme cases. Now, we check that
(x̄, w̄, ȳ, ḡ) indeed has the desired properties:

1. By construction, flow conservation constraints (20) are
satisfied by ḡ.

2. Constraints (18) imply that constraints (21) for l = 2
are satisfied.

3. Constraints (29) imply the satisfaction of (21) for l = 1.
As (29) is an inequality, Algorithm 1 has a break condi-
tion to make sure that the ḡ variables in those constraints
are only increased until (21) for l = 1 is satisfied as an
equality.

4. By construction, ḡd101
0j ≤ ȳ11

jd + ȳ12
jd . Then, constraints

(14) imply that the corresponding inequalities (22) are
satisfied.

5. Constraints (23) are satisfied by construction.
6. Constraints (24)–(26) do not apply when H = 2.
7. Constraints (27)–(28) are satisfied by construction.

Conversely, constraints (21) for l = 1 and constraints (23),
(27) already imply constraints (29).

Algorithm 1. Converting a solution of HL2 to a solution
of Hop-MCF

Input: (x̄, w̄, ȳ) satisfying (8)–(19) and (29)
Output: (x̄, w̄, ȳ, ḡ) satisfying (20)–(28)
ḡ = 0;1

foreach d ∈ D do2

foreach (j, d) ∈ δ(d)\δ(0) do3

ḡd212
jd = ȳ12

jd ;4

ḡd101
0j = ȳ12

jd ;5

end6

ḡd101
0d = ȳ01

0d ;7

L1F = (K − 1) · ȳ01
0d ;8

foreach (j, d) ∈ δ(d)\δ(0) do9

z = min{ȳ11
jd , L1F};10

ḡd211
jd = z;11

ḡd101
0j + = z;12

L1F− = z;13

if L1F = 0 then14

break;15

end16

end17

end18

Formulation HL2 can be further simplified. Noting that
w2

d = 1 − y01
0d when d ∈ D, variables w can be eliminated

without increasing the number of non-zeros. By defining the
objective function in terms of the y variables, the x variables
can be eliminated too. Eliminating the constraints in (8)–(19)
that do not apply or are now redundant, HL2 can be written as:

min
∑

(0,j)∈δ(0)

c0jy
01
0j +

∑

(i,j)∈E′
cij

(
y11

ij + y12
ij + y12

ji

)
(30)

s.t.

y11
ij + y12

ij ≤ y01
0i ,

y11
ij + y12

ji ≤ y01
0j ,

∀(i, j) ∈ E′ (31)

y12
ij + y01

0j ≤ 1,

y12
ji + y01

0i ≤ 1,
∀(i, j) ∈ E′ (32)

∑

(j,d)∈E′
y12

jd + K · y01
0d = K , ∀d ∈ D (33)
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∑

(i,j)∈δ(d)\δ(0)

y11
ij ≥ (K − 1) · y01

0d , ∀d ∈ D (34)

y ≥ 0. (35)

6. COMPUTATIONAL EXPERIMENTS

The experiments were performed on an Intel Core
Duo P7350@2.00 GHz machine, with CPLEX 12.1 Mixed-
Integer Program (MIP) solver. The first set of tests were
conducted on the medium-sized rooted instances used in [3],
complete graphs with 21 vertices associated with random
points in a square, Euclidean distances. The root vertex is in
the center on instances TC20-5 and TC20-10, and on a cor-
ner on instances TE20-5 and TE20-10. The numbers 5 and
10 refer to the number of demands. To cover an important
case, we also added spanning instances TC20-20 and TE20-
20. We used the LRs of Hop-MCF and HL-MCF on all those
instances, for each H ∈ {2, 3, 4, 5} and each K ∈ {1, 2, 3}.
Each row in Table 1 presents averages over a group of six
instances, except the last row that presents averages over all
the 72 instances. Columns (Gap) are the average percent-
age gaps of the LRs with respect to the optimal solutions (or
the best known solutions, in some of the instances with 20
demands) and columns (TLR) give the time in seconds to
solve the LR. Note that, when H = 2, the times correspond
to solving HL-MCF, not HL2. Column (Gap red(%)) is the
percentage of the gap of the Hop-MCF that was “cut” by
HL-MCF; a figure of 100 indicates that HL-MCF reduced
the gap to zero, a figure of 0 would indicate that both formu-
lations gave the same lower bound. Column (T factor) gives
the factor of increase in time.

The results in Table 1 indicate that the gap reduction
obtained by HL-MCF decreases with increasing H and K .
Formulation HL-MCF is stronger than Hop-MCF because the
concept of solution level forces vertices to be split in typical
fractional solutions. This splitting can break many fractional
0−d paths of small length, turning them into paths with larger
length (as in the example of Fig. 4). However, as H increases,
the resulting paths are more likely to be still feasible. A pos-
sible explanation for the effect of K on the gap reduction is
the following. Instances with larger K have denser fractional
solutions, therefore most of the vertices are likely to have at
least one short path linking it to the root. The concentration
of vertices in levels 1 and 2 leads to fewer splittings. We
provide additional statistics about the effect of the number
of demands on the integrality gaps. The respective average
gaps achieved by Hop-MCF and HL-MCF were 7.96% and
1.46%, when |D| = 5; 14.79% and 2.73%, when |D| = 10;
and 19.36% and 3.45%, when |D| = 20. It is remarkable that
the average gap reduction is almost constant (about 82%) on
all those three cases.

The practical relevance of the new formulation to improv-
ing the state-of-the-art on the algorithmic solution of rooted
HSNDP instances can be summarized as follows:

• Formulation HL-MCF is much stronger than Hop-MCF
when K = 1. However, this fact does not lead to an

TABLE 1. Average percentage gaps and times for LRs of Hop-MCF and
HL-MCF on instances TC20-5, TC20-10, TC20-20, TE20-5, TE20-10, and
TE20-20.

Hop-MCF HL-MCF

H K Gap LRT Gap LRT Gap red(%) T factor

2 1 14.99 0.35 0.00 0.33 100 0.95
2 2 12.92 0.05 0.40 0.47 97 9.3
2 3 7.38 0.05 0.08 0.20 99 4.0
3 1 23.91 0.97 0.00 6.03 100 6.2
3 2 13.13 0.57 2.83 9.98 78 17.6
3 3 7.64 0.62 3.27 7.45 57 12.1
4 1 25.82 1.55 0.83 33.33 97 21.5
4 2 13.05 1.65 5.62 49.97 57 30.3
4 3 7.00 1.43 5.20 25.75 26 18.0
5 1 26.94 0.45 1.94 26.73 93 59.4
5 2 9.60 0.52 5.08 53.57 47 103.7
5 3 6.01 0.58 5.27 30.18 12 51.7

Avg. 14.03 0.73 2.54 20.33 82 27.8

improvement of the state-of-the-art. The rooted HSNDP
with K = 1 is equivalent to the Steiner/spanning tree with
hop constraints problem (HSTP). A stronger directed vari-
ant of Hop-MCF [8] can be applied in those problems.
More recently, it was found that it is even stronger to
model the HSTP as a directed Steiner tree problem, with-
out the need of having separated auxiliary networks for
each demand [9]. This enables the solution of instances
with a few hundred demands to optimality without branch-
ing. Anyway, the strength of HL-MCF when K = 1 can
be viewed as an indication of the potential power of the
new modeling idea behind it, which makes an undirected
formulation competitive with a directed formulation.

• Formulation HL-MCF is much stronger than Hop-MCF
when H = 2, a fact that has direct practical importance.
Although previous works agreed that the HSNDP with
H = 2 is easier than with H = 3, solving instances with
more 30 demands by branch-and-cut can still be very time
consuming [10]. The existence of the equivalent compact
formulation HL2 for that case makes the new approach
even more practical. As will be shown next, quite large
instances can be easily solved to optimality.

• When H = 3 and K = 2, HL-MCF is significantly
stronger than Hop-MCF, more than compensating for the
need of solving larger Linear Programs (LPs). As the next
experiments will show, solving HL-MCF with CPLEX
outperforms the branch-and-cut in [10] and the Benders
decomposition over Hop-MCF [3] on larger instances.

• When K = 2 and H = 4 or when K = 3 and H = 3, HL-
MCF is still much stronger than Hop-MCF. However, the
decreased gaps and smaller enumeration trees are roughly
compensated by the burden of the larger LPs; the average
results are comparable to those by the methods in [3].

• In the remaining three cases, HL-MCF is only slightly
stronger than Hop-MCF, which performs much better on
solving those instances to optimality [3].

Now we present the additional experiments made to sup-
port those claims. Table 2 presents results on rooted instances
from [11], for cases K = 2 and H = 2, 3. We compare the
performance of the CPLEX MIP solver over formulations
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TABLE 2. Comparison of methods on the rooted instances from Huygens et al. and Mahjoub (K = 2).

H = 2 H = 3

HL2 Hop-MCF
[11]

HL-MCF Hop-MCF
[11]

n |D| Gap Nd TT Gap Nd TT Gap Gap Nd TT Gap Nd TT Gap

20 5 0.00 1 0.01 6.30 2 0.03 0.9 3.23 6 2.75 8.15 12 0.66 5.2
10 0.00 1 0.01 12.73 22 0.44 6.8 4.09 16 10.6 12.52 181 26.0 6.8
15 0.00 1 0.03 12.90 55 0.40 9.2 3.82 141 76.6 16.33 6, 788 1,635 –

30 8 0.22 3 0.06 9.28 5 0.99 3.3 5.28 14 25.2 10.75 53 8.45 5.3
15 0.00 1 0.05 14.27 36 0.44 7.4 4.23 86 217 18.36 7, 026 2,110 –
22 0.00 1 0.17 18.31 685 8.29 – 3.37 1, 608 6, 754 22.01 – >24 h –

40 10 0.00 1 0.05 12.64 22 0.46 7.4 2.24 5 100 8.84 117 43.7 7.4
20 0.00 1 0.09 14.96 263 5.47 – 6.23 6, 819 21, 866 18.06 – >24 h –
30 0.00 1 0.23 16.60 8, 456 198 – 4.11 23, 014 83, 150 20.98 – >24 h –

Avg. 0.02 1 0.08 13.11 1, 061 23.8 5.8 4.07 3, 523 12, 466 15.11 – – 6.18

Hop-MCF and HL-MCF, in terms of root gaps (columns
Gap), number of nodes in the branch tree (columns Nd), and
total time to solve the instance (columns TT). The root gaps
of the branch-and-cut in [11] are also presented (only for
the instances that the branch-and-cut could solve to optimal-
ity within the time limit). The results in Table 2 make clear
that the instances with H = 2 are easily solved by the HL2
formulation. The results for H = 3 show that HL-MCF is
better than Hop-MCF, at least when those formulations are
given to the MIP solver. It should be noted that the root gaps
of the branch-and-cut in [11] are not much worse than those
obtained with HL-MCF. The superiority of HL-MCF in solv-
ing the instances to optimality can be partially attributed to
slow cut separation but also to the lack of some advanced
algorithmic features that are part of the commercial MIP
solvers, like sophisticated primal heuristics or branching by
pseudocosts.

Table 3 presents a detailed comparison of HL-MCF and
Hop-MCF over the larger instances in Botton et al. [3]. The

results of solving HL-MCF with CPLEX are compared with
the solution of Hop-MCF with CPLEX, but also with the
method bc-n-heur, that implements a branch-and-cut algo-
rithm based on the Benders decomposition of Hop-MCF.
The root of that branch-and-cut tree obtains the same lower
bounds as the LR of Hop-MCF. However, as cut separa-
tion is only performed up to a certain depth of the tree
(except on integral solutions to check feasibility), the num-
ber of nodes can be much larger. The experiments in [3]
were also performed with CPLEX 12, using a Intel Core
Duo T7200@2.00 GHz machine. As our P7350 is essentially
a more power efficient version of the T7200 processor, the
running times can be directly compared. Columns give the
value of the LR and the time to obtain it (TLR), the best inte-
gral solution found Upper Bound (UB), the number of nodes
explored (Nd), and the total time (TT). This time is limited to
10,800 s. The columns (Gap) have value 0.0 if the instance is
solved to optimality; otherwise they are the final gaps, when
the run was stopped. Values in bold indicate the method that

TABLE 3. Comparison of methods on the larger instances from Botton et al. [3] (H ∈ {3, 4}, K ∈ {2, 3}).

Hop-MCF - CPLEX Hop-MCF - Benders HL-MCF - CPLEX

Instance H K LR TLR UB Nd TT FGap TLR UB Nd TT FGap LR TLR UB Nd TT FGap

TC40-10 3 2 354.0 5 395 683 64 0.0 3 395 21, 374 100 0.0 381.9 71 395 37 104 0.0
TC40-10 3 3 539.6 5 574 284 23 0.0 4 574 14, 894 96 0.0 553.1 78 574 103 310 0.0
TC40-10 4 2 334.7 26 364 1, 249 2, 671 0.0 38 364 57, 347 566 0.0 353.0 303 364 68 7, 951 0.0
TC40-10 4 3 507.9 20 525 112 200 0.0 40 525 1, 383 64 0.0 514.9 352 525 35 4, 400 0.0
TE40-10 3 2 411.2 4 488 226 74 0.0 5 488 222, 212 2003 0.0 485.5 65 488 3 68 0.0
TE40-10 3 3 628.1 6 703 409 142 0.0 6 703 564, 487 6, 768 0.0 683.2 73 703 65 364 0.0
TE40-10 4 2 371.5 27 455 1, 475 10, 800 11.0 56 453 276, 695 10, 800 9.5 414.8 1, 226 452 63 10, 800 7.1
TE40-10 4 3 577.0 28 616 445 1, 754 0.0 60 616 450, 810 10, 703 0.0 591.2 297 616 52 10, 800 2.5
TC40-20 3 2 516.9 19 632 11, 373 10, 800 7.7 6 632 194, 901 10, 800 5.7 595.8 209 632 1, 534 6, 757 0.0
TC40-20 3 3 795.0 16 889 11, 656 10, 800 4.2 5 889 174, 101 10, 800 3.7 840.2 193 889 757 10, 800 3.2
TC40-20 4 2 456.4 146 548 125 10, 800 14.4 54 556 58, 801 10, 800 12.1 515.4 772 540 6 10, 800 4.4
TC40-20 4 3 710.4 134 803 206 10, 800 10.2 47 785 151, 278 10, 800 5.2 738.6 759 876 1 10, 800 15.7
TE40-20 3 2 616.9 34 810 1, 300 10, 800 20.4 13 930 39, 901 10, 800 29.8 758.3 177 790 1, 142 6, 811 0.0
TE40-20 3 3 932.5 32 1, 125 2, 570 10, 800 13.0 13 1, 197 34, 800 10, 800 18.51, 025.2 198 1,103 523 10, 800 5.6
TE40-20 4 2 528.4 196 707 99 10, 800 24.9 137 896 13, 301 10, 800 39.5 607.5 5, 174 837 1 10, 800 27.4
TE40-20 4 3 808.6 143 967 92 10, 800 15.2 117 1, 073 18, 201 10, 800 22.6 856.7 858 – 1 10, 800 –
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TABLE 4. Formulation HL2 on new larger instances (H = 2, K ∈ {2, 3}).

HL2 - CPLEX

Instance K LR TLR UB Nd TT FGap

TC160-40 2 14,85.0 1.1 1,485 1 1.1 0.0
TC160-40 3 2,138.0 1.5 2,149 1 6.0 0.0
TC160-80 2 2,439.5 8.4 2,246 46 20.9 0.0
TC160-80 3 3,524.5 10.8 3,544 67 37.9 0.0
TC160-160 2 3,921.7 14.0 3,930 224 93.3 0.0
TC160-160 3 5,679.7 24.0 5,718 8, 534 2, 605.4 0.0
TE160-40 2 1,856.0 1.2 1,856 1 2.6 0.0
TE160-40 3 2,681.1 2.2 2,693 3 9.5 0.0
TE160-80 2 2,889.0 6.8 2,891 1 14.7 0.0
TE160-80 3 4,203.1 14.7 4,229 1, 854 247.4 0.0
TE160-160 2 4,618.6 11.0 4,626 88 42.5 0.0
TE160-160 3 6,755.4 20.8 6,805 15, 246 10, 800.0 0.2

provided the smaller gap, for the instances that are not solved
to optimality by all the methods. Superior upper bounds are
also indicated by values in bold. We did not run the cases
H = 2 or K = 1, as HL-MCF would clearly perform much
better; neither did we run the case H = 5, as the Hop-MCF
based methods would perform much better. Therefore, we
test the cases where H ∈ {3, 4} and K ∈ {2, 3}.

The last experiments test the capacity of solving larger
instances in the case H = 2. We created instances TC160-40,
TC160-80, TC160-160, TE160-40, TE160-80, and TE160-
160, with n = 160 and 40, 80, and 160 demands. The
instances were run with K ∈ {2, 3}. The results in Table 4
make clear that formulation HL2 is indeed very effective.
The instances with 40 demands are quickly solved to opti-
mality. Only the instances with 160 demands and K = 3 are
still difficult.

7. CONCLUSIONS

This work presented an extended formulation for the
rooted HSNDP based on the concept of sorting the vertices
and edges in a solution into levels, given by their distance to
the root. We believe that this original modeling idea can be
useful for other network design problems. Anyway, the com-
putational results already obtained on the rooted HSNDP are
encouraging, improving the practical capability of solving
some important classes of instances. Further progress may
be obtained by working on two points:

1. Reducing the time to solve the linear programs asso-
ciated with HL-MCF. A promising approach would be
applying a Benders decomposition by demands, as done
with success in [3].

2. Further improving the quality of the lower bounds pro-
vided by HL-MCF. A possible way of doing that is
by generalizing the concept of solution level, associat-
ing the edges with arbitrary integer distances. In that

generalization, the parameter L, the largest level of a
vertex connected to the root, can be greater than H.
Preliminary experiments have shown that significantly
improved lower bounds can indeed be obtained. How-
ever, the very large size of the resulting linear programs
hinders the practical use of this generalized HL-MCF, at
least until the first point is addressed.
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