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Résumé
Cette thèse s'ins
rit dans le 
adre d'une étude polyhédrale des problèmes de 
on
eptionde réseaux �ables ave
 forte 
onnexité. En parti
ulier, nous 
onsidérons les problèmesdits du sous-graphe k-arête-
onnexe et de 
on
eption de réseau k-arête-
onnexe ave

ontrainte de borne lorsque k ≥ 3.Dans un premier temps, nous étudions le problème du sous-graphe k-arête-
onnexe.Etant donné un graphe non orienté et valué G = (V, E) et un entier positif k, leproblème du sous-graphe k-arête-
onnexe 
onsiste à déterminer un sous-graphe de Gde poids minimum telle qu'il existe k 
haînes arête-disjointes entre 
haque paire desommets de V . Nous dis
utons du polytope asso
ié à 
e problème lorsque k ≥ 3. Nousintroduisons une nouvelle famille d'inégalités valides pour le polytope et présentonsplusieurs familles d'inégalités valides. Pour 
haque famille d'inégalités, nous étudionsles 
onditions sous lesquelles 
es inégalités dé�nissent des fa
ettes. Nous dis
utons aussidu problème de séparation asso
ié à 
haque famille d'inégalités ainsi que d'opérationsde rédu
tion de graphes. En utilisant 
es résultats, nous développons un algorithmede 
oupes et bran
hements pour le problème et donnons des résultats exprérimentaux.Ensuite, nous étudions le problème de 
on
eption de réseaux k-arête-
onnexe ave

ontrainte de borne. Soient G = (V, E) un graphe valué non orienté, un ensemble dedemandes D ⊆ V × V et deux entiers positifs k et L. Le problème de 
on
eption deréseaux k-arête-
onnexe ave
 
ontrainte de borne 
onsiste à déterminer un sous-graphede G de poids minimum telle qu'entre 
haque paire de sommets {s, t} ∈ D, il existe k
haînes arête-disjointes de longueur au plus L. Nous étudions 
e problème dans le 
asoù k ≥ 2 et L ∈ {2, 3}. Nous examinons la stru
ture du polytope asso
ié et montronsque, lorsque |D| = 1, 
e polytope est 
omplètement dé
rit par les inégalités dites de
st-
oupe et de L-
hemin-
oupe ave
 les inégalités triviales. Ce résultat généralise 
euxde Huygens et al. [75℄ pour k = 2, L ∈ {2, 3} et Dahl et al. [35℄ pour k ≥ 2, L = 2.En�n, nous nous intéressons au problème de 
on
eption de réseau k-arête-
onnexeave
 
ontrainte de borne lorsque k ≥ 2, L ∈ {2, 3} et |D| ≥ 2. Le problème est



ivNP-di�
ile dans 
e 
as. Nous introduisons quatre nouvelles formulations du problèmesous la forme de programmes linéaires en nombres entiers. Celles-
i sont basées surla transformation du graphe G en graphes orientés appropriés. Nous dis
utons dupolytope asso
ié à 
haque formulation et introduisons plusieurs familles d'inégalitésvalides. Pour 
ha
une d'elles, nous dé
rivons des 
onditions pour que 
es inégalitésdé�nissent des fa
ettes. En utilisant 
es résultats, nous développons des algorithmes de
oupes et bran
hements et de 
oupes, generation de 
olonnes et bran
hements pour leproblème. Nous donnons des résultats expérimentaux et menons une étude 
omparativeentre les di�érentes formulations.Mots 
lés: Réseau �able, graphe k-arête-
onnexe, 
haîne de longueur bornée, poly-tope, fa
ette, séparation, génération de 
olonnes, algorithme de 
oupes et bran
he-ments.



Abstra
t
This thesis presents a polyhedral study of survivable network design problems withhigh 
onne
tivity requirement. In parti
ular, the k-edge-
onne
ted subgraph and the k-edge-
onne
ted hop-
onstrained network design problems when k ≥ 3 are investigated.We �rst 
onsider the k-edge-
onne
ted subgraph problem. Given a weighted undi-re
ted graph G = (V, E) and a positive integer k, the k-edge-
onne
ted subgraphproblem is to �nd a minimum weight subgraph of G whi
h 
ontains k-edge-disjointpaths between every pair of nodes of V . We dis
uss the polytope asso
iated with thatproblem when k ≥ 3. We introdu
e a new 
lass of valid inequalities and present severalother 
lasses of valid inequalities. For ea
h 
lass we study the 
onditions under whi
hthe 
on
erned inequalities are fa
et de�ning. We also dis
uss the separation problemasso
iated with ea
h 
lass of inequalities and 
onsider some graph redu
tion operations.Using these results, we devise a Bran
h-and-Cut algorithm for the problem and givesome 
omputational results.We also study the k-edge-
onne
ted hop-
onstrained network design problem. Let
G = (V, E) be a weighted undire
ted graph, a demand set D ⊆ V × V , two positiveintegers k and L. The k-edge-
onne
ted hop-
onstrained network design problem isto �nd a minimum weight subgraph of G su
h that for every {s, t} ∈ D there existat least k-edge-disjoint st-paths of length at most L. We investigate the stru
ture ofthe asso
iated polytope when k ≥ 2 and L ∈ {2, 3}. We show that, in the 
ase where
|D| = 1, this polytope is 
ompletely des
ribed by the so-
alled st-
ut and L-path-
ut inequalities toghether with the trivial inequalities. This result generalizes thoseobtained by Huygens et al. [75℄ for k = 2, L ∈ {2, 3} and Dahl et al. [35℄ for k ≥ 2,
L = 2. We show that this 
omplete des
ription yields a polynomial time algorithm forthe problem when |D| = 1, k ≥ 2 and L ∈ {2, 3}.We �nally 
onsider the k-edge-
onne
ted hop-
onstrained network design problemwhen k ≥ 2, L = 2, 3 and |D| ≥ 2. The problem is NP-hard in this 
ase. Weintrodu
e four new integer programming formulations based on the transformation of



vithe graph G into appropriate dire
ted graphs. We dis
uss the polytope asso
iated withea
h formulation and introdu
e several 
lasses of inequalities that are valid for thesepolytopes. We also study 
onditions for these inequalities to be fa
et de�ning. Usingthese results, we devise Bran
h-and-Cut and Bran
h-and-Cut-and-Pri
e algorithms forthe problem. We provide some 
omputational results and a 
omparative study betweenthe di�erent formulations we have introdu
ed for the problem.Keywords: Survivable network, k-edge-
onne
ted graph, hop-
onstrained path, poly-tope, fa
et, separation, 
olumn generation, Bran
h-and-Cut algorithm.
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Introdu
tion
Tele
ommuni
ations have a major importan
e in the fun
tioning of modern so
ieties.They are parti
ularly important as many transa
tions are done throughout tele
om-muni
ation networks. The appearan
e of �ber opti
 te
hnology in tele
ommuni
ations(1984) and the introdu
tion of new generation network proto
ols (SONET/SDH, ATM,IP, MPLS, GMPLS, et
.) have allowed networks to 
onvey more and more data. Asa 
onsequen
e, more 
omplex appli
ations su
h as video 
onferen
e, Virtual PrivateNetworks (VPN) and mobile telephony, have been developed and are used in variousdomains in
luding �nan
e, e
onomy, medi
ine, s
ienti�
 resear
h and s
hooling.Su
h an importan
e implies to have robust networks. Whatever the nature of anetwork, it must survive after any equipment network failure. In 
ase of an outageof a network, the loss of money 
ould rea
h several millions of euros. Survivablenetworks must satisfy some 
onne
tivity requirements that is, there exist a 
ertainnumber of disjoint paths between some pair of nodes of the network. This 
onditionensures that the tra�
 
an still be routed between two nodes after the failure of a givennumber of links or nodes, and that the network is still fun
tional. One of the mainobje
tives when designing a tele
ommuni
ation network is to provide a su�
ient degreeof survivability, and this, with a minimum 
ost of 
onstru
tion and maintainan
e. Also,the dimensionning problem is often 
onsidered, that is to give the appropriate 
apa
itiesto the links of the network in order to 
onvey the tra�
 between some nodes and satisfya given quality of servi
e.A network 
an be represented by a graph G = (V, E) where V is the set of nodesand E, the set of edges. Di�erent topologies have been proposed to design survivablenetworks. Ea
h topology depends on the use of the network. However, as pointedout in [83℄ (see also [80℄), the topology that seems to be very e�
ient (and needed inpra
ti
e) is the uniform topology, that is to say that 
orresponding to networks thatsurvive after the failures of k − 1 or fewer links, for some k ≥ 2. The 2-
onne
tedtopology (k = 2) provides an adequate level of survivability sin
e most failure usually
an be repaired relatively qui
kly. However, for many appli
ations, a higher level of
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onne
tivity may be ne
essary.Another reliability 
ondition 
on
erns the length of the paths used to route the tra�
.In fa
t, the alternative paths 
ould be too long to guarantee an e�e
tive routing. Indata networks, su
h as Internet, the elongation of the route of the information 
ould
ause a strong loss in the transfert speed and de
rease the quality of servi
e. For othernetworks, the signal itself 
ould be degraded by a longer routing. In su
h 
ases, the
L-path requirement (paths of length at most L), with L ≥ 2, guarantees exa
tly theneeded quality of the alternative routes.Network design problems, as well as many 
ombinatorial optimization problems, havebeen studied using di�erent methods. Among those methods, the polyhedral approa
hhas appeared to be very e�e
tive in solving di�
ult problems. This method, introdu
edby Edmonds [45℄, 
onsists in redu
ing the resolution of a 
ombinatorial optimizationproblem to that of a linear program. This is done thanks to the 
omplete (or evenpartial) des
ription of the polyhedron asso
iated with the problem. The polyhedralapproa
h is part of the exa
t methods used to solve 
ombinatorial optimization prob-lems.The survivable network design problem has been widely studied when the 
onne
tiv-ity requirement is low (k = 2). However, the high 
onne
tivity requirement 
ase (k ≥ 3)has re
eived a little attention. In this thesis, we study the survivable network designproblem with high 
onne
tivity requirement. In parti
ular, we fo
us on two variants ofthe problem: when k-edge-disjoint paths are required between every pair of nodes (the
k-edge-
onne
ted subgraph problem) and when k-edge-disjoint paths of length at most
L are required between 
ertain pairs of nodes (the k-edge-
onne
ted hop-
onstrainednetwork design problem). The study is led using the polyhedral approa
h and providesexa
t and e�
ient algorithms to solve these problems.This thesis is organized as follows. In Chapter 1, we present the basi
 notions andnotations that will be used throughout this thesis. We also present a state-of-the-art onsurvivable network design problems. Chapters 2 and 3 deal with the k-edge-
onne
tedsubgraph problem when k ≥ 3. We study the polytope asso
iated with this problemand devise a Bran
h-and-Cut algorithm. Chapters 4, 5 and 6 are dedi
ated to the
k-edge-
onne
ted hop-
onstrained network design problem. In Chapter 4, we give a
omplete des
ription of the polytope asso
iated with the problem in the 
ase where
k-edge-disjoint L-paths are required between a single pair of nodes. We present apolynomial time 
utting plane algorithm to solve the problem in this 
ase. Chapters 5and 6 
on
ern the general 
ase where the k-edge-disjoint L-paths are required betweenmore than one pair of nodes of the network. We introdu
e new integer programming



3formulations for this more general problem and study the asso
iated polytopes. Wedevise Bran
h-and-Cut and Bran
h-and-Cut-and-Pri
e algorithms for the problem andpresent extensive 
omputational results.



Chapter 1
Preliminary Notions andState-of-the-Art
In this 
hapter we give some basi
 notions of 
ombinatorial optimization, 
omplexitytheory and polyhedra. We present 
utting plane and 
olumn generation methods aswell as Bran
h-and-Cut and Bran
h-and-Cut-and-Pri
e algorithms. We also presentthe basi
 de�nitions of graph theory that will be used throughout this thesis. Finallywe give a state-of-the-art on the survivable network design problem.1.1 Preliminary notions1.1.1 Combinatorial optimizationCombinatorial Optimization is a bran
h of operations resear
h and is related to 
om-puter s
ien
e and applied mathemati
s. It aims to study optimization problems wherethe set of feasible solutions is dis
rete or 
an be represented as a dis
rete one. A
ombinatorial optimization problem 
an be formulated in the following way. Let
E = {e1, ..., en} be a �nite set 
alled basi
 set where ea
h element ei is asso
iated witha weight w(ei). Let F be a family of subset of E. If F ∈ F, then w(F ) =

∑

ei∈F

w(ei) isthe weight of F . The problem 
onsists in �nding an element F ∗ of F whose weight is



1.1. PRELIMINARY NOTIONS 5minimum (or maximum).




Minimize (or Maximize)w(F )

s.t.

F ∈ F.

F is the set of feasible solutions of the problem. The term optimizationmeans that weare looking for the best possible solution. The term 
ombinatorial refers to the dis
retestru
ture of F. Most of the time, this stru
ture is represented by a graph. Also, thenumber of feasible solutions is generally exponential, whi
h makes di�u
lt or even im-possible to solve a 
ombinatorial optimization problem with an enumerative pro
edure.Di�erent methods exist in the litterature to solve 
ombinatorial optimization problems,espe
ially graph theory, linear and non-linear programming, integer programming andpolyhedral approa
h.Many real-world problems 
an be formulated as 
ombinatorial optimization onessu
h as the Knapsa
k Problem, the Travelling Salesman Problem, tele
ommuni
ationnetwork design problems, VLSI 
ir
uit design problems, ma
hine sequen
ing problem,et
. Some of them are dire
tly applied in everyday life. For example Video On Demandservi
es (VOD) are studied as a 
ombinatorial optimization problem. The obje
tive isto satisfy the demand of every 
lient (the end users) and su
h that the total bandwidthallo
ated by the tele
ommuni
ation operator for the servi
e is minimum. This way,the operator 
an evaluate the quality of the servi
e he provides and the 
orresponding
ost. Another example is the GPS (GPS stands for Global Positioning System) whi
hhelps a driver to �nd the best way (in terms of distan
e or in terms of time) to go fromone pla
e to another. This is a dire
t appli
ation of the shortest path problem.Combinatorial optimization is 
losely related to algorithm theory and 
omputational
omplexity theory. The next se
tion introdu
es 
omputational issues of 
ombinatorialoptimization.1.1.2 Computational and 
omplexity theoryComputational and 
omplexity theory is a bran
h of 
omputer s
ien
e whose obje
tiveis to 
lassify problems a

ording to their inherent di�
ulty. We distinguish �easy� and�di�
ult� problems. Computational and 
omplexity theory is based on the works ofCook [22℄, Edmonds [44℄ and Karp [77℄. For more details on this topi
, the reader isreferred to [56℄.



6 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ARTA problem is a question whose answer is unknown and depends on some input pa-rameters. A problem is spe
i�ed by des
ribing its input parameters and the propertythat these parameter must satisfy. An instan
e of a problem is obtained by giving aspe
i�
 value to all its input parameters. A resolution algorithm is a pro
edure, that isa su

ession of elementary operations, whi
h produ
es a solution for a given instan
eof the problem. The number of input parameters ne
essary to des
ribe an instan
e ofa problem is the size of that problem.An algorithm is said to be polynomial when the number of elementary operationsne
essary to solve an instan
e of size n is bounded by a polynomial fun
tion in n. Aproblem is of 
lass P if there exists a polynomial algorithm to solve it. We also saythat this problem is easy or 
an be solved qui
kly.A de
ision problem is a problem whose answer is either �yes� of �no�. Let P be ade
ision problem and I the set of instan
es of that problem for whi
h the answer is�yes�. P is said to be of 
lass NP (where NP stands for Nondeterministi
 Polynomial) ifthere exists a polynomial algorithm whi
h 
an verify that the answer is �yes� for everyinstan
e of I. Clearly, every problem of 
lass P is also of 
lass NP (see Figure 1.1).NP
NP-
omplete

P
Figure 1.1: Relation between P, NP, NP-
omplete problems.It is not known whether every problem in NP 
an be solved in polynomial time butit has been 
onje
tured that P = NP . If this 
onje
ture is proved, its 
onsequen
e willbe that every problem known as �di�
ult� 
an, in fa
t, be solved in polynomial time.In the 
lass NP, we distinguish a parti
ular set of problems, the NP-
omplete prob-lems. The notion of NP-
ompleteness relies on the notion of polynomial redu
tion ortransformation. A de
ision problem P1 
an be polynomialy redu
ed (or transformed)



1.1. PRELIMINARY NOTIONS 7into another de
ision problem P2 if there exists a polynomial fun
tion f su
h that forevery instan
e I of P1, the answer is �yes� if and only if the answer of f(I) for P2 is �yes�.A problem P is NP-
omplete if every problem of 
lass NP 
an be polynomialy redu
edinto P. The 3-satis�ability problem is the �rst problem showen to be NP-
omplete (see[22℄).Every 
ombinatorial optimization problem 
an be asso
iated with a de
ision problem.A 
ombinatorial optimization problem whose de
ision problem is NP-
omplete is said tobe NP-hard. Most of the 
ombinatorial optimization problems are NP-hard. Amongthe methods used to solve them, the polyhedral approa
h has appeared to be verye�
ient.1.1.3 Polyhedral approa
h and Bran
h-and-Cut methodPolyhedral theory has been introdu
ed by Edmonds in 1965 [45℄. He �rst developedthis method for the mat
hing problem. Later, further works were done on this topi
.Polyhedral approa
h has appeared to be e�e
tive for solving many problems and slowlybe
omes a must for the study of 
ombinatorial optimization problems. Here we presentthe basi
 notions of polyhedral theory. For more details, the reader is referred to[90, 96℄. We also present the applied aspe
t of polyhedra to 
ombinatorial optimizationproblems and des
ribe the so-
alled Bran
h-and-Cut method.1.1.3.1 Polyhedral theoryLet n ∈ N be a positive integer and x ∈ R
n. We say that x is a linear 
ombination of

x1, ..., xm ∈ R
n if there exist m s
alar λ1, ..., λm su
h that x =

m∑

i=1

λixi. If m∑

i=1

λi = 1,then x is said to be an a�ne 
ombination of x1, ..., xm. Moreover, if λi ≥ 0 for all
i ∈ {1, ..., m}, we say that x is a 
onvex 
ombination of x1, ..., xm.Given a set S = {x1, ..., xm} ∈ R

n×m, the 
onvex hull of S is the set of point x ∈ R
nwhi
h are 
onvex 
ombination of x1, ..., xm (see Figure 1.2), that is

conv(S) = {x ∈ R
n | x is a 
onvex 
ombination of x1, ..., xm}.The points x1, ..., xm ∈ R

n are linearly independant if the unique solution of thesystem m∑

i=1

λixi = 0 is λi = 0, i = 1, ..., m. They are a�nely independant if the unique
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onv(S)Figure 1.2: A 
onvex hullsolution of the system 




m∑

i=1

λixi = 0,

m∑

i=1

λi = 0,is λi = 0, i = 1, ..., m.A polyhedron P is the set of solutions of a linear system Ax ≤ b, that is P = {x ∈

R
n | Ax ≤ b}, where A is a m-lines n-
olumn matrix and b ∈ R

m. A polytope is abounded polyhedron. A point x of P will be also 
alled a solution of P .A polyhedron P ⊆ R
n is said of dimension p if the maximum number of solutions of

P that are a�nely independant is p + 1. We denote it by dim(P ) = p. We also havethat dim(P ) = n − rank(A=) where A= is the submatrix of A of inequalities that aresatis�ed with equality by all the solutions of P (impli
it equalities). The polyhedron
P is full dimensional if dim(P ) = n.An inequality ax ≤ α is valid for a polyhedron P ⊆ R

n if for every solution x ∈ P ,
ax ≤ α. This inequality is said to be tight for a solution x ∈ P if ax = α. The inequality
ax ≤ α is violated by x ∈ P if ax > α. The set F = {x ∈ P | ax = α} is 
alled a fa
eof P . We also say that F is the fa
e indu
ed by ax ≤ α. If F 6= ∅ and F 6= P , we saythat F is a proper fa
e of P . If F is a proper fa
e and dim(F) = dim(P )− 1, then F is
alled a fa
et of P . We also say that ax ≤ α indu
es a fa
et of P or is a fa
et de�ninginequality.If P is full dimensional, then ax ≤ α is a fa
et of P if and only if F is a proper fa
e



1.1. PRELIMINARY NOTIONS 9and there exists a fa
et bx ≤ β of P and a s
alar ρ 6= 0 su
h that F ⊆ {x ∈ P | bx = β}and b = ρa.An inequality ax ≤ α is essential if it de�nes a fa
et of P . It is redundant if thesystem A′x ≤ b′ obtained by removing this inequality from Ax ≤ b de�nes the samepolyhedron P . This is the 
ase when ax ≤ α 
an be written as a linear 
ombinationof the inequalities of the system A′x ≤ b′. A 
omplete minimal linear des
ription of apolyhedron 
onsists of the system given by its fa
et de�ning inequalities and its impli
itequalities.A solution x is an extreme point of a polyhedron P if and only if it 
annot be writtenas the 
onvex 
ombination of two di�erent solutions of P . It is equivalent to say that xindu
es a fa
e of dimension 0. The polyhedron P 
an also be des
ribed by its extremepoints. In fa
t, every solution of P 
an be written as a 
onvex 
ombination of someextreme points of P . Figure 1.3 illustrates the main de�nitions given in this se
tion.Extreme pointsValid inequality
Non valid inequality

fa
etProper fa
ebut not fa
etP

Figure 1.3: Valid inequality, fa
et and extreme points
1.1.4 Polyhedral approa
h, Bran
h-and-Cut methodHere we present the algorithmi
 aspe
t of polyhedra and its appli
ation to 
ombi-natorial optimization problems. Let P be a 
ombinatorial optimization problem, Eits basi
 set, w(.) the weight fun
tion asso
iated with the variables of P and S theset of feasible solutions. Suppose that P 
onsists in �nding an element of S whose



10 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ARTweight is maximum. If F ⊆ E, then the 0-1 ve
tor xF ∈ R
E su
h that xF (e) = 1 if

e ∈ F and xF (e) = 0 otherwise, is 
alled the in
iden
e ve
tor of F . The polyhedron
P (S) = conv{xS | S ∈ S} is the polyhedron of the solutions of P or polyhedron asso-
iated with P. P is thus equivalent to the linear program max{wx | x ∈ P (S)}. Thepolyhedron P (S) 
an be des
ribed by a set of fa
et de�ning inequalities. When all theinequalities of this set are known, then solving P redu
es to solve a linear program.The obje
tive of the polyhedral approa
h for 
ombinatorial optimization problems isto redu
e the resolution of P to that of a linear program. The e�
ien
y of the methodthus relies on a deep study of the polyhedron asso
iated with the problem.However, a 
omplete 
hara
terization of the polytope of a problem is di�
ult todetermine. In parti
ular, when the problem is NP-hard there is a little hope to �nd su
ha 
hara
terization. Moreover, the number of inequalities des
ribing this polyhedronis, in general, exponential. Therefore, even if we know the 
omplete des
ription ofthat polyhedron, its resolution remains a hard task be
ause of the large number ofinequalities.Fortunately, as it has been shown by Gröts
hel, Lovász and S
hrijver [64℄, the dif-�
ulty for solving a linear program does not depend on the number of inequalities ofthe program, but on whi
h is 
alled the separation problem asso
iated with the in-equality system of the program. Let Ax ≤ b be a system of inequalities in R

n. Theseparation problem asso
iated with Ax ≤ b is, given x ∈ R
n, to determine whether

x satis�es Ax ≤ b and, if not, to �nd an inequality ax ≤ α of Ax ≤ b violated by
x. In 1981, Gröts
hel, Lovász and S
hrijver [64℄ showed that an optimization prob-lem max{cx, Ax ≤ b} 
an be solved in polynomial time if and only if the separationproblem asso
iated with Ax ≤ b so is. The 
utting plane method 
onsists in solvinga linear program having a large number of inequalities by using the following steps.Let LP = max{cx, Ax ≤ b} be a linear program and LP ′ a linear program obtainedby 
onsidering a small number of inequalities among Ax ≤ b. Let x∗ be its optimalsolution. We solve the separation problem asso
iated with Ax ≤ b and x∗. This phaseis 
alled the separation phase. If every inequality of Ax ≤ b is satis�ed by x∗, then x∗is also optimal for LP . If not, let ax ≤ α be an inequality violated by x∗. Then we add
ax ≤ α it to LP ′ and repeat this pro
ess until an optimal solution is found. Algorithm1 summarizes the di�erent steps of a 
utting plane algorithm.



1.1. PRELIMINARY NOTIONS 11Algorithm 1: A 
utting plane algorithmData: A linear program LP and Ax ≤ b its system of inequalitiesResult: Optimal solution x∗ of LPbeginConsider a linear program LP ′ with a small number of inequalities of LP1 Solve LP ′ and let x∗ be an optimal solution2 Solve the separation problem asso
iated with Ax ≤ b and x∗3 if an inequality ax ≤ α of LP is violated by x∗ then4 Add ax ≤ α to LP ′5 Repeat step 26 else
x∗ is optimal for LP7 return x∗8 endThe polyhedron P (S) is often not 
ompletely known be
ause P may be NP-hard. Inthis 
ase, it would not be possible to solve P as a linear program. However, one may beable to solve e�
iently the linear relaxation of P (S). In general, the solution obtainedfrom the linear relaxation of P (S) is fra
tional. The resolution of P 
an then be doneby 
ombining the 
utting plane method with a Bran
h-and-Bound algorithm. Su
halgorithm is 
alled a Bran
h-and-Cut algorithm. Ea
h node of the Bran
h-and-Boundtree (also 
alled Bran
h-and-Cut tree) 
orresponds to a linear program. Suppose that Pis equivalent to max{wx | Ax ≤ b, x ∈ {0, 1}n} and that Ax ≤ b has a large number ofinequalities. A Bran
h-and-Cut algorithm starts by 
reating a Bran
h-and-Bound treewhose root node 
orresponds to a linear program LP0 = max{wx | A0x ≤ b0, x ∈ R

n},where A0x ≤ b0 is a subsystem of Ax ≤ b with a small number of inequalities. Thenwe solve the linear relaxation of P that is LP = max{cx | Ax ≤ b, x ∈ R
n}, using a
utting plane algorithm starting from the program LP0. Let x∗

0 be its optimal solutionand A′
0x ≤ b′0 the set of inequalities added to LP0 at the end of the 
utting plane phase.If x∗

0 is integral, then it is optimal for P. If x∗
0 is fra
tional, then we start the bran
hingphase. This 
onsists in 
hoosing a variable, say x1, having a fra
tional value andadding two nodes P1 and P2 in the Bran
h-and-Cut tree. The node P1 
orrespondsto the linear program LP1 = max{wx | A0x ≤ b0, A

′
0x ≤ b′0, x

1 = 0, x ∈ R
n} and

LP2 = max{wx | A0x ≤ b0, A
′
0x ≤ b′0, x

1 = 1, x ∈ R
n}. We solve the linear program

LP 1 = max{wx | Ax ≤ b, x1 = 0, x ∈ R
n} (LP 2 = max{wx | Ax ≤ b, x1 = 1, x ∈

R
n}) by a 
utting plane method starting from LP1 (LP2). If the optimal solution of

LP 1 (LP 2) is integral then, it is feasible for P. Its value is thus a lower bound of theoptimal solution of P and the node P1 be
omes a leaf of the Bran
h-and-Cut tree. If



12 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ARTthis solution is fra
tional, then we sele
t a variable with a fra
tional value and add two
hildren to the node P1 (P2), and so on.The linear program 
orresponding to a node of the Bran
h-and-Cut tree may beinfeasible, that is the addition of a 
onstraint xi = 0 or xi = 1 makes the linearprogram infeasible. Also, even if it is feasible, its optimal solution may be worse thanthe best known lower bound of the problem. In both 
ases, we prune that node fromthe Bran
h-and-Cut tree. The algorithm ends when all the nodes have been explored.At the end of the algorithm, the optimal solution of P is the best feasible solutionamong the solutions given by the Bran
h-and-Bound tree. Figure 1.4 illustrates thealgorithm.
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x4 is fra
tionalmay improve the best lower bound
be
omes the best lower boundx1 is integral
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omponent x2
2 is fra
tional

x0 is fra
tional
omponent x1
0 is fra
tional

x1
0 = 0

x2
2 = 0

x3 is fra
tionalworse than the best lower boundthe node is pruned

P0

P1 P2

P4P3

Figure 1.4: A Bran
h-and-Cut tree.The algorithm 
an be improved by 
omputing a good lower bound of the optimalsolution of the problem before it starts. This lower bound 
an be used by the algorithmto prune the nodes whi
h will not allow an improvement of this lower bound. Thiswould permit to redu
e the number of nodes generated in the Bran
h-and-Cut tree andhen
e redu
e the time used by the algorithm. Also, this lower bound 
an be improvedby 
omputing at ea
h node of the Bran
h-and-Cut tree a feasible solution when thesolution obtained at a node is fra
tional. This is done by using a primal heuristi
. It



1.1. PRELIMINARY NOTIONS 13aims to produ
e a feasible solution for P from the solution obtained at a given node ofthe Bran
h-and-Cut tree, when this later solution is fra
tional (and hen
e infeasible for
P). Moreover, the weight of this solution must be as best as possible. When the solution
omputed is better than the best known lower bound, it 
an 
onsiderably redu
e thenumber of generated nodes as well as the CPU time. Moreover, this guarantees tohave an approximation of the optimal solution of P before visiting all the nodes of theBran
h-and-Cut tree, for example when a CPU time limit has been rea
hed.The Bran
h-and-Cut method is widely used to solve 
ombinatorial optimization prob-lems that are 
onsidered di�
ult to solve, su
h as the Travelling Salesman Problem[4℄. Its e�
ien
y 
an be 
onsiderably in
reased by a good knowledge of the polyhedronasso
iated with the problem and by e�
ient separation algorithms. The 
utting planemethod is e�e
tive when the number of variables is polynomial. However, when thenumber of variables is large (for example exponential), other methods, su
h as the
olumn generation method, are more appropriate to use. In the following se
tion webrie�y des
ribe this method.1.1.5 Column generation and Bran
h-and-Cut-and-Pri
e meth-odsThe 
olumn generation method is used to solve linear programs with a large number ofvariables. The method aims to solve the linear program by 
onsidering a small numberof variables. This method was introdu
ed by Dantzig and Wolfe [36℄ in 1960 in order tosolve linear programs with large number of variables by using few ressour
es (CPU timeand memory 
onsumption). The 
olumn generation method is used either for problemswhi
h 
an be solved using Dantzig-Wolfe de
omposition method or for problems with alarge number of variables.The idea of a 
olumn generation algorithm is to solve a sequen
e of linear programshaving a reasonable number of variables (also 
alled 
olumns). The algorithm startsby solving a linear program having a small number of variables and whi
h forms afeasible basis for the original program. At ea
h iteration of the algorithm, we solvethe so-
alled pri
ing problem whose obje
tive is to determine the variables whi
h mustenter the 
urrent basis. These variables are those having a negative redu
ed 
ost. Theredu
ed 
ost asso
iated with a variable is 
omputed using the dual variables. We thensolve the linear program obtained by the addition of these variables and repeat thepro
edure. The algorithm stops when the pri
ing algorithm does not generate new
olumn to add in the 
urrent basis. In this 
ase, the solution obtained from the lastrestri
ted program is optimal for the original one.



14 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ARTThe 
olumn generation method 
an be seen as the dual of the 
utting plane methodas it adds 
olumns (variables) instead of rows (inequalities) in the linear program. Thepri
ing problem 
an be NP-hard. In this 
ase, one 
an use heuristi
 pro
edures tosolve it. For more details on 
olumn generation algorithms, the reader is referred to[85, 86, 102℄.In order to solve integer linear programs, the 
olumn generation method 
an be
ombined with a Bran
h-and-Bound algorithm. In this 
ase, the algorithm is 
alleda Bran
h-and-Pri
e algorithm. The bran
hing phase happens when no variable 
anbe added into the 
urrent linear program and the solution given by that program isfra
tional. Moreover, the algorithm 
an be 
ombined with a 
utting plane algorithm,that looks for inequalities that are valid for the problem but violated by the 
urrentfra
tional solution. These 
an be added to the 
urrent linear program. In this 
ase, wespeak of Bran
h-and-Cut-and-Pri
e algorithm. Barnhart et al. [9℄ use this te
hniqueto solve large s
ale integer multi
ommodity �ow problems. Barhnart et al. [10℄ presenthuge problems whi
h have been solved using Bran
h-and-Pri
e method.1.1.6 Graph theory: notations and de�nitionsIn this se
tion, we present some basi
 de�nitions and notations of graph theory whi
hwill be frequently used in the subsequent 
hapters. For more details, the reader isreferred to [15℄.The graphs we 
onsider are either dire
ted or undire
ted, �nite, loopless and may
ontain multiple ar
s or edges.An undire
ted graph is denoted by G = (V, E) where V is the set of nodes and Eis the set of edges. If e ∈ E is an edge with endnodes u and v, we also write uv todenote e. For a node subset W ⊆ V , we denote by W the node set V \ W . Given Wand W ′, two disjoint subsets of V , [W, W ′] denotes the set of edges of G having oneendnode in W and the other one in W ′. If W ′ = W , then [W, W ] is 
alled a 
ut of
G and denoted by δ(W ). A 
ut δ(W ) is said to be proper if |W | ≥ 2 and |W | ≥ 2.If π = (V1, ..., Vp), p ≥ 2, is a partition of V , then we denote by δ(π) the set of edgeshaving their endnodes in di�erent sets. We may also write δ(V1, ..., Vp) for δ(π). Notethat for W ⊂ V , δ(W ) = δ(W, W ).A dire
ted graph is denoted by H = (U, A) where U is the node set and A the ar
set. An ar
 a with origin u and destination v is denoted by (u, v). Given two nodesubsets W and W ′ of U , [W, W ′] denotes the set of ar
s whose origins are in W and



1.1. PRELIMINARY NOTIONS 15destinations are in W ′. As before, we write [u, W ′] for [{u}, W ′] and W denotes thenode set U \W . The set of ar
s having their origin in W and destination in W is 
alleda dire
ted 
ut or di
ut of H . This ar
 set is denoted either by δ+(W ) or δ−(W ). Wealso write δ+(u) for δ+({u}) and δ−(u) for δ−({u}) with u ∈ U . If s and t are twonodes of H su
h that s ∈ W and t ∈ W , then δ+(W ) and δ−(W ) are 
alled an st-di
utsof H .Let G′ = (V ′, E ′) (resp. H ′ = (U ′, A′)) with V ′ ⊆ V and E ′ ⊆ E (resp. U ′ ⊆ U and
A′ ⊆ A) be a subgraph of G (resp. H). If w(.) is a weight fun
tion whi
h asso
iateswith ea
h edge (resp. ar
) e ∈ E (resp. a ∈ A) the weight w(e) (resp. w(a)), then thetotal weight of G′ (resp. H ′) is w(E ′) =

∑

e∈E′

w(e) (resp. w(A′) =
∑

e∈A′

w(a)).In the notation, we will spe
ify the graph as a subs
ript (that is, we will write δG(W ),
δG(π), δG(V1, ..., Vp), δ+

H(W ), δ−H(W ), [W, W ′]G, [W, W ′]H) whenever the 
onsideredgraphs may not be 
learly dedu
ed from the 
ontext.Given an undire
ted graph G = (V, E), for all F ⊆ E, V (F ) will denote the set ofnodes in
ident to the edges of F . For W ⊂ V , we denote by E(W ) the set of edgesof G having both endnodes in W and G[W ] the subgraph indu
ed by W , that is thegraph (W, E(W )). Given an edge e = uv ∈ E, 
ontra
ting e 
onsists in deleting e,identifying the nodes u and v and in preserving all adja
en
ies. Contra
ting a nodesubset W 
onsists in identifying all the nodes of W and preserving the adja
en
ies.Given a partition π = (V1, ..., Vp), p ≥ 2, we will denote by Gπ the subgraph indu
edby π, that is, the graph obtained from G by 
ontra
ting the sets Vi, for i = 1, ..., p.Note that the edge set of Gπ is the set δ(V1, ..., Vp).A Path P of an undire
ted graph G is an alternate sequen
e of nodes and edges
(u1, e1, u2, e2, ..., uq−1, eq−1, uq) where ei ∈ [ui, ui+1] for i = 1, ..., q − 1. We will denotea path P either by its node sequen
e (u1, ..., uq) or its edge sequen
e (e1, ..., eq−1). Thenodes u1 and uq are 
alled the endnodes of P , while its other nodes are said to beinternal. A path is simple if it does not 
ontain the same node twi
e. In the sequel,we will always 
onsider that the paths are simple. By opposition, a non-simple path is
alled a walk. A path whose endnodes are s and t will be 
alled an st-path. A 
y
le in
G is a path whose endnodes 
oin
ide, that is u1 = uq. Also, a 
y
le is simple if it doesnot 
ontain twi
e the same node, ex
epted u1. We 
all a 
hord an edge between twonon-adja
ent nodes of a path.Similarly, we 
all a dipath P a path in a dire
ted graph, that is an alternate sequen
eof ar
s (u1, a1, u2, a2, ..., uq−1, aq−1, uq) with ai ∈ [ui, ui+1], i = 1, ..., q − 1. A dipath isdenoted either by its node sequen
e (u1, ..., uq) or its ar
 sequen
e (a1, ..., aq−1), andthe nodes u1, uq are the endnodes of that dipath. A dipath whose endnodes 
oin
ide
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alled a 
ir
uit. If u1 = s and uq = t then P is 
alled an st-dipath. Adipath is simple if it does not 
ontain twi
e the same node.Given a �xed integer L ≥ 1 and a pair of nodes {s, t} ∈ V × V , an L-st-path in Gis a path between s and t whose length is at most L, where the length is the numberof edges of that path. The number of edges of a path is also 
alled hops and we alsospeak of L-hop-
onstrained paths for paths whose length is at most L.An undire
ted (resp. dire
ted) graph is 
onne
ted if for every pair of node (u, v) thereis at least one path (resp. dipath) between u and v. A 
onne
ted graph whi
h haveno 
y
le (resp. 
ir
uit) is 
alled a spanning tree. A 
onne
ted 
omponent of a graph G(resp. H) is a 
onne
ted subgraph of G (resp. H) whi
h is maximal, that is adding anode or an edge (resp. ar
) to that subgraph gives a non-
onne
ted graph.Given an undire
ted (resp. dire
ted) graph G = (V, E) (resp. H = (U, A)), two st-paths (resp. st-dipaths) are edge-disjoint (resp. ar
-disjoint) if they have no edge (resp.ar
) in 
ommon. They are node-disjoint if they have no internal node in 
ommon. Agraph is said to be k-edge-
onne
ted (resp. k-ar
-
onne
ted) if it 
ontains at least kedge-disjoint (resp. ar
-disjoint) st-paths (resp. st-dipaths) for all pair of node {s, t} ∈

V × V (resp. {s, t} ∈ U × U). It is k-node-
onne
ted if it 
ontains at least k node-disjoint st-paths or st-dipaths for all pair of node {s, t} ∈ V ×V (resp. {s, t} ∈ U ×U).The largest integer k su
h that the graph G (resp. H) is k-edge-
onne
ted (resp. k-ar
-
onne
ted) is the edge-
onne
tivity (resp. ar
-
onne
tivity) of G (resp. H). Similarly,the largest integer k su
h that the graph is k-node-
onne
ted is the node-
onne
tivity ofthe graph. We say that a graph is Steiner k-edge-
onne
ted (k-ar
-
onne
ted) (k-node-
onne
ted) if it is k-edge-
onne
ted (k-ar
-
onne
ted) (k-node-
onne
ted) relatively toa 
ertain pair of privileged nodes. We ommit the quali�
ative Steiner when the required
onne
tivity is for every pair of nodes of the graph. The privileged nodes are 
alledterminal nodes while non-privileged ones are 
alled Steiner nodes.Given an undire
ted graph G = (V, E), a demand set D ⊆ V ×V is a subset of pairsof nodes, 
alled demands. For a demand {s, t} ∈ D, s is the sour
e of the demand and
t is the destination of that demand. If several demands {s, t1}, ..., {s, td} have the samenode s as sour
e node, then these demands are rooted in s. A node involved in at leastone demand is said to be terminal. A node whi
h does not belong to any demand is
alled a Steiner node.A 
omplete graph is a graph in whi
h there is an edge between ea
h node and theothers. A 
omplete graph with n nodes is denoted by Kn. A bipartite graph G = (V, E)is an undire
ted graph su
h that V = V1 ∪ V2 with V1 ∩ V2 = ∅ and for every pair ofnodes u, v ∈ V1 (resp. u, v ∈ V2), [u, v] = ∅. A 
omplete bipartite graph is a bipartite



1.1. PRELIMINARY NOTIONS 17graph where there is an edge between ea
h node of V1 and the nodes of V2. A bipartite
omplete graph is denoted Km,n where m = |V1| and n = |V2|.An undire
ted graph is outerplanar when it 
an be drawn in the plane as a 
y
le withnon 
rossing 
hords. A graph is series-parallel if it 
an be obtained from a single edgeby iterative appli
ation of the two operations:i) addition of a parallel edge;ii) subdivision of an edge.Observe that a graph is series-parallel (outerplanar) if and only if it is not 
ontra
tibleto K4 (K4 and K3,2). Therefore, an outerplanar graph is also series-parallel.A graph G is said to be a Halin graph if G = (C ∪ T, E) where the subgraph of Gindu
ed by T is a tree whose leaves forms the 
y
le C in G. Figure 1.5 gives an exampleof ea
h type of graphs des
ribed above.

Series-parallel graphOuterplanar graph
Bipartite graphComplete graph on 5 nodes

Halin graphFigure 1.5: Complete, bipartite, outerplanar, series-parallel and Halin graphs.



18 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ART1.2 State-of-the-art on survivable network design prob-lemsSurvivable network design problems have been intensively studied for several de
ades.The �rst studies on the problems aimed to produ
e heuristi
s and approximation algo-rithms for these problems. Sin
e the begining of 90's, studies starts fo
using on exa
talgorithms with, in parti
ular, the use of the polyhedral approa
h.This se
tion is dedi
ated to the presentation of the previous works in the litteraturerelated to survivable network design problems. We �rst present the general survivablenetwork design problem, the related works and main results on this problem. Then wedis
uss two variants of the problem, the k-edge-
onne
ted subgraph problem and the
k-edge-
onne
ted hop-
onstrained network design problem. These will be studied inChapters 2 and 3 for the �rst one and Chapters 4, 5 and 6 for the se
ond one.1.2.1 The general survivable network design problemA network 
an be represented by a graph, dire
ted or undire
ted, where ea
h node ofthe network 
orresponds to a node of the graph and a link between two nodes of thenetwork is represented by an edge or an ar
 of the graph.Consider an undire
ted graph G = (V, E) representing a tele
ommuni
ation networkand w(.) a weight fun
tion whi
h asso
iates the weight w(e) with an edge e ∈ E. Ea
hnode v ∈ V is asso
iated with an integer, denoted by r(v) and 
alled 
onne
tivity typeof v, whi
h 
an be seen as the minimum number of edges 
onne
ting v to the rest ofthe network. The ve
tor (r(v) | v ∈ V ) is the 
onne
tivity type ve
tor asso
iated withthe nodes of G. We say that a subgraph H = (U, F ), U ⊆ V and F ⊆ E, satis�esthe edge-
onne
tivity (resp. node-
onne
tivity) requirement if for every pair of nodes
(s, t) ∈ V × V , there exist at least

r(s, t) = min{r(s), r(t)}edge-disjoint (resp. node-disjoint) paths between s and t. This 
ondition ensures thatthe network will be still fun
tional when 
ertain equipment fails. In fa
t, the tra�

an still be routed between two nodes s and t when at most r(s, t) − 1 links, in 
aseof edge-
onne
tivity, and at most r(s, t) − 1 nodes, in 
ase of node-
onne
tivity, fails.When r(u) = k, for every u ∈ V , the subgraph H is k-edge-
onne
ted (resp. k-node-
onne
ted).



1.2. STATE-OF-THE-ART ON SURVIVABLE NETWORK DESIGN PROBLEMS 19Let rmax = max{r(u) | u ∈ V }. When rmax ≤ 2 we speak of low 
onne
tivityrequirement and of high 
onne
tivity requirement when rmax ≥ 3.Grots
hel, Monma and Stoer [66℄ introdu
ed the general survivable network designproblem whi
h 
onsists in �nding a minimum weight subgraph of G whi
h satis�es the
onne
tivity requirement. We will denote this problem by ESNDP (resp. NSNDP) foredge-
onne
tivity (resp. node-
onne
tivity) requirement.The ESNDP (NSNDP) is NP-hard as it 
ontains the Steiner tree problem as a spe
ial
ase (r(u) ∈ {0, 1} for all u ∈ V ) whi
h is known to be NP-hard [56℄. However, under
ertain 
onditions the problem 
an be solved in polynomial time. When r(u) = 1 forall u ∈ V , the problem is equivalent to the minimum weight spanning tree problem.Thus it is solvable in polynomial time using Kruskal [84℄ or Prim [95℄ algorithms. Alsowhen r(s) = r(t) = 1 for two nodes s, t ∈ V and r(u) = 0 for all u ∈ V \ {s, t}, theproblem is nothing but the shortest st-path problem whi
h 
an be solved in polynomialtime with the e�e
ient algorithm of Dijkstra [43℄.Menger [91℄ exhibited the relation between the number of edge-disjoint paths andthe 
ardinality of 
uts in the graph G. This relation is given in the theorem below.Theorem 1.2.1 [91, 96℄ Let G = (V, E) be an undire
ted graph and s, t two nodes of
G. Then, there exist at least k edge-disjoint paths between s and t if and only if every
st-
ut of G 
ontains at least k edges.By Theorem 1.2.1, the ESNDP 
an be des
ribed as a linear integer program. To thisend let us introdu
e �rst some notations.

r(W ) = max{r(u) | u ∈ W} for all W ⊆ V,

con(W ) = max{r(u, v) | u ∈ W, v ∈ W}

= min{r(W ), r(W )} for all W ⊆ V, ∅ 6= W 6= V.The ESNDP is equivalent to the following linear integer program.Minimize∑
e∈E

c(e)x(e)

x(δ(W )) ≥ con(W ) for all W ∈ V, ∅ 6= W 6= V, (1.1)
x(e) ≥ 0 for all e ∈ E, (1.2)
x(e) ≤ 1, for all e ∈ E (1.3)
x(e) ∈ {0, 1} (1.4)
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hel and Monma [65℄ study the polyhedral aspe
ts of that model. They dis
ussthe dimension of the asso
iated polytope as well as some basi
 fa
ets. In [66℄, Gröts
helet al. study further polyhedral aspe
ts of that model. They devise 
utting planealgorithms and give 
omputational results.In [57℄, Goemans and Bertsimas give an approximation algorithm based for the ES-NDP based on a new analysis of a well-known algorithm for the Steiner tree problem.A related problem is the so-
alled augmentation problem. Given an undire
ted graph
G = (V, E) and a 
onne
tivity ve
tor (r(v) | v ∈ V ), the augmentation problem is toadd as few edges as possible to G so that the resulting graph satis�es the 
onne
tivityrequirements given by r. This problem is equivalent to the general survivable networkdesign problem on a 
omplete graph where the weight of the edges of E is 0 and thatof the edges that 
an be added is 1. Eswaran and Tarjan [47℄ studied that problemin the 
ases where r(u) = 2 for all u ∈ V . They gave polynomial time algorithmsfor the 
ases where edge-disjoint and node-disjoint paths are required. Watanabe andNakamura [103℄ and Cai and Sun [18℄ studied the problem when r(u) = k for all u ∈ Vand k ∈ 2. They [18, 103℄ gave polynomial time algorithms for the problem in that
ase. Cai and Sun [18℄ also gave a min-max formula for the minimum number of edgesthat must be added. Frank [53℄ 
onsidered the problem for an arbitrary 
onne
tivityve
tor r ∈ N

V . Using the splitting theorem of Mader [87℄, he gave a min-max formulafor the minimum number of edges that must be added to the original graph and devisea polynomial time algorithm for the problem. Its results generalize those obtained by[47℄ and [18℄.1.2.2 The k-edge(node)-
onne
ted subgraph problemThe k-edge-
onne
ted subgraph problem has been extensively studied, espe
ially when
k = 2 (low 
onne
tivity requirement) [8, 49, 54, 80, 81, 83, 88, 89, 92℄. However, it hasre
eived a little attention in the 
ase where k ≥ 3.In [21℄, Chopra studied the problem for k odd when multiple 
opies of an edge maybe used. In parti
ular, he 
hara
terized the asso
iated polyhedron for outerplanargraphs. This polyhedron has been previously studied by Cornuéjols et al. [23℄. They
hara
terized the asso
iated polytope when the graph is series-parallel and k = 2. In[40℄, Didi Biha and Mahjoub also studied the problem when the graph is series-paralleland k ≥ 3, and gave a 
omplete des
ription of the polytope in that 
ase. In [49℄,Fonlupt and Mahjoub studied the fra
tional extreme points of the linear relaxationof the 2-edge-
onne
ted subgraph polytope. They introdu
ed an ordering on these
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hara
terized the minimal extreme points with respe
t to thatordering. As a 
onsequen
e, they obtained a 
hara
terization of the graphs for whi
hthe linear relaxation of that problem is integral. Didi Biha and Mahjoub [39℄, extendedsome of the results of Fonlupt and Mahjoub [49℄ to the 
ase k ≥ 3 and introdu
ed somegraph redu
tion operations.Mu
h work has been done on the problem when k = 2. In [7℄, Baïou and Mahjoubstudy the Steiner 2-edge-
onne
ted subgraph polytope. This has been generalized byDidi Biha and Mahjoub [41℄ to the Steiner k-edge-
onne
ted subgraph polytope for keven. Mahjoub [88℄ introdu
es a general 
lass of valid inequalities for the polytope ofthe problem when k = 2. Boyd and Hao [17℄ des
ribe a 
lass of �
omb inequalities�whi
h are valid for 2-edge-
onne
ted subgraph polytope. This 
lass, as well as thatintrodu
ed by Mahjoub [88℄, are spe
ial 
ases of a more general 
lass of inequalitiesgiven by Gröts
hel et al. [66℄ for the general survivable network polytope. In [8℄,Barahona and Mahjoub 
hara
terize the 2-edge-
onne
ted subgraph polytope for the
lass of Halin graphs. Kerivin et al. [81℄ des
ribe a general 
lass of valid inequalities forthe problem that generalizes the so-
alled F -partition inequalities introdu
ed by [88℄.They also develop a Bran
h-and-Cut algorithm for the problem. In [25, 26℄, Coullardet al. study the Steiner 2-node-
onne
ted subgraph problem. They devise in [25℄ alinear time algorithm for this problem on some spe
ial 
lasses of graphs. Moreover in[26℄, they 
hara
terize the dominant of the polytope asso
iated with this problem onthe graphs whi
h do not have K4 as a minor.Monma et al. [92℄ des
ribed some stru
tural properties of the optimal solution ofthe k-edge-
onne
ted subgraph problem when the 
ost fun
tion satis�es the triangleinequalities (i.e., c(e1) ≤ c(e2)+c(e3) for every three edges e1, e2, e3 de�ning a triangle).In parti
ular, they showed that every node of a minimum weight k-edge-
onne
tedsubgraph has degree 2 or 3. They also showed that the 
ost of an optimal tour solutionof the TSP (Travelling Salesman Problem) is at most 4
3
times the 
ost of an optimalsolution of the 2-edge-
onne
ted subgraph problem. They [92℄ devised a heuristi
 basedon these properties. Biensto
k et al. [14℄ extended the result obtained by [92℄ to the
ase where k ≥ 3 and showed that every node of a minimum 
ost k-edge-
onne
tedsubgraph has degree k or k + 1. This result also generalizes the result obtained byFrederi
kson and Jájá [54℄. In [82℄, Khuller and Raghava
hari gave an approximationalgorithm for the smallest k-edge-
onne
ted subgraph problem (c(e) = 1 for all e ∈ E).They proved that the 
ost of a solution given by their algorithm is at most 1.85 of theoptimal solution for all k ≥ 2. Fernandes [48℄ showed that the ratio of the algorithmof [82℄ is, in fa
t, 1.75 for all k ≥ 2. The algorithm is the �rst algorithm to a
hieve aperforman
e ratio less than 2. They [82℄ also gave an approximation algorithm for theminimum 
ost k-node-
onne
ted subgraph problem with k ≥ 2 in the 
ase where the
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ost fun
tion satis�es the triangle inequalities. The performan
e ratio of their algorithmis 2 + 2(k−1)
n

where n is the number of nodes of the graph. In [19℄, Cheriyan et al. gavean 17
12
-approximation algorithm for the 2-edge-
onne
ted subgraph problem. Cheriyanand Thurimella [20℄ gave a (1 + 2

k+1
)-approximation algorithm for the smallest k-edge-
onne
ted subgraph problem with k ≥ 2. Karger [78℄ gave a randomized algorithmfor the smallest k-edge-
onne
ted subgraph problem. He proved that the performan
eratio of its algorithm is 1 + O(

√
log n

k
). Gabow et al. [55℄ introdu
ed a approximationalgorithm for the k-edge-
onne
ted subgraph problem based on LP-rounding. Theyshowed that for undire
ted graphs the ratio of the LP-rounding algorithm is 1 + 3

kwhen k is odd and 1 + 2
k
when k is even.The dire
ted version of the Steiner k-edge-
onne
ted subgraph problem has also beenstudied. This problem is des
ribed as follows. Let H = (U, A) be a dire
ted graph,

D ⊆ U ×U be a set of demands and a weight fun
tion w(.) whi
h asso
iates the weight
w(a) with ea
h ar
 of H . Given an integer k ≥ 2, the Survivable Dire
ted NetworkDesign Problem (kDNDP for short) 
onsists in �nding a minimum 
ost subgraph of
H whi
h 
ontains k-ar
-disjoint st-dipaths for all {s, t} ∈ D. This problem has beenstudied by Suurballe [100℄ and Soenoka et al. [98℄. Suurballe [100℄ 
onsidered the
kDNDP when |D| = 1. The problem 
an be formulated in this 
ase as a network �owproblem, and hen
e, 
an be solved using for example network simplex. Suurballe [100℄gave a polynomial 
ombinatorial optimization algorithm for the problem in this 
ase.In [98℄, Soenoka et al. 
onsidered the problem of �nding a dire
ted k-ar
-
onne
tedgraph with a minimal number of ar
s and small diameter (the diamater is the largestamong all shortest path lengths, when all the ar
s have length 1). Dahl [27, 28, 29℄ alsostudied the problem from a polyhedral point of view. In [29℄, he des
ribed several validinequalities for the polytope of the problem and devised a 
utting plane algorithm.1.2.3 The k-edge-
onne
ted hop-
onstrained network design prob-lemGiven an undire
ted graph G = (V, E), a weight fun
tion w(.), a set of demands
D ⊆ V ×V and two integers k, L greater than 2, the k-edge-
onne
ted hop-
onstrainednetwork design problem 
onsists in �nding a subgraph of G of minimum weight su
hthat for every pair {s, t} ∈ D, there exist at least k edge-disjoint paths of length atmost L between s and t.This problem takes some importan
e sin
e the 
onne
tivity requierement is ofteninsu�
ient regarding the reliability of a tele
ommuni
ations network. In fa
t, the
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ould be too long to guarantee an e�e
tive routing. In data networks,su
h as Internet, the elongation of the route of the information 
ould 
ause a strongloss in the transfer speed. For other networks, the signal itself 
ould be degraded by alonger routing. In su
h 
ases, the L-path requirement guarantees exa
tly the neededquality of the alternative routes.The k-edge-
onne
ted hop-
onstrained network design problem is a generalization ofthe k-edge-
onne
ted subgraph problem. In fa
t, this later problem 
orresponds to the�rst one in the 
ase where L = |V | − 1 and D = V × V .The k-edge-
onne
ted hop-
onstrained network design problem has been studied insome spe
ial 
ases. Huygens et al. [75℄ have investigated the 
ase where k = 2,
|D| = 1 and the bound L on the length of the paths is 2 or 3. They give an integerprogramming formulation for the problem and show that the linear relaxation of thisformulation 
ompletely des
ribes the polytope asso
iated to the problem in this 
ase.From this, they obtain a minimal linear des
ription of that polytope. They also showthat this formulation is no longer valid when L ≥ 4. In [35℄, Dahl et al. study theproblem when L = 2, k ≥ 2 and |D| = 1. They give a 
omplete des
ription of theasso
iated polytope. There has been however a 
onsiderable amount of resear
h onmany related problems.In [31℄, Dahl 
onsiders the k-edge-
onne
ted hop-
onstrained path problem, that isthe problem of �nding between two distinguished nodes s and t a minimum 
ost pathwith no more than L edges when L is �xed. He gives a 
omplete des
ription of thedominant of the asso
iated polytope when L ≤ 3. Thus this hop-
onstrained pathproblem 
orresponds to the spe
ial 
ase k = 1 and |D| = 1 of the k-edge-
onne
tedhop-
ontrained network design problem. Dahl and Gouveia [32℄ 
onsider the dire
tedhop-
onstrained path problem. They des
ribe valid inequalities and 
hara
terize theasso
iated polytope when L ≤ 3. Huygens and Mahjoub [73℄ study the problem when
L ≥ 4 and |D| = 1. They also study the variant of the problem where k node-disjointpaths of length at most L are requiered between two terminals s and t. They give aninteger programming formulation for these two problems in the 
ase k = 2 and L = 4.The 
ase where several pairs (s, t) of terminals have to be linked by L-hop-
onstrainedpaths has also been studied in the litterature. In [34℄, Dahl and Johannessen 
onsiderthe 2-path network design problem whi
h 
onsists in �nding a minimum 
ost subgraph
onne
ting ea
h pair of terminal nodes by at least one path of length at most 2. Theproblem of �nding a minimum 
ost spanning tree with hop-
onstraints is also 
onsideredin [60℄, [61℄ and [63℄. Here, the hop-
onstraints limit to a positive integer H thenumber of links between the root and any terminal in the network. Dahl [30℄ studies



24 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ARTthe problem where H = 2 from a polyhedral point of view and gives a 
ompletedes
ription of the asso
iated polytope when the graph is a wheel. Finally, Huygenset al. [76℄ 
onsider the problem of �nding a minimum 
ost subgraph with at leasttwo edge-disjoint L-hop-
onstrained paths between ea
h given pair of terminal nodes.They give an integer programming formulation of that problem for L = 2, 3 and presentseveral 
lasses of valid inequalities. They also devise a Bran
h-and-Cut algorithm, anddis
uss some 
omputational results. In [24℄, Coullard et al. investigate the stru
ture ofthe polyhedron asso
iated with the st-walks of length K of a graph, where a walk is apath that may go through the same node more than on
e. They present an extendedformulation of the problem, and, using proje
tion, they give a linear des
ription of theasso
iated polyhedron. They also dis
uss 
lasses fa
ets of that polyhedron.Besides hop-
onstraints, another reliability 
ondition, whi
h is used in order to limitthe length of the routing, requires that ea
h link of the network belongs to a ring(
y
le) of bounded length. In [52℄, Fortz et al. 
onsider the 2-node 
onne
ted subgraphproblem with bounded rings. This problem 
onsists in �nding a minimum 
ost 2-node
onne
ted subgraph (V, F ) su
h that ea
h edge of F belongs to a 
y
le of length at most
L. They des
ribe several 
lasses of fa
et de�ning inequalities for the asso
iated polytopeand devise a Bran
h-and-Cut algorithm for the problem. In [51℄, Fortz et al. study theedge version of that problem. They give an integer programming formulation for theproblem in the spa
e of the natural design variables and des
ribe di�erent 
lasses ofvalid inequalities. They study the separation problem of these inequalities and dis
ussBran
h-and-Cut algorithm.



Chapter 2
The k-Edge-Conne
ted SubgraphProblem
In this 
hapter we 
onsider the k-edge-
onne
ted subgraph problem from a polyhedralpoint of view. We �rst present an integer programming formulation for the problem.We then introdu
e further 
lasses of valid inequalities for the asso
iated polytope, anddes
ribe su�
ient 
onditions for these inequalities to be fa
et de�ning. In Chapter 3we dis
uss the algorithmi
 aspe
t of this study. We devise separation heuristi
s forthe valid inequalities and dis
uss some redu
tion operations that 
an be used in aprepro
essing phase for the separation. Then we develop a Bran
h-and-Cut algorithmusing these results and present some 
omputational results. This work has led to anarti
le that will be published in Networks [12℄.2.1 Introdu
tionGiven an undire
ted graph G = (V, E), an integer k ≥ 2 and a weight fun
tion w(.)whi
h asso
iates with ea
h edge e ∈ E the weight w(e) ∈ R, the k-edge-
onne
tedsubgraph problem (kECSP for short) is to �nd a subgraph H = (V, F ) of G su
h that∑

e∈F

w(e) is minimum.Remind that, given an edge subset F ⊆ E, the 0-1 ve
tor xF ∈ R
E su
h that

xF (e) = 1 if e ∈ F and 0 if e ∈ E\F is 
alled the in
iden
e ve
tor of F . Let kECSP(G)be the 
onvex hull of the in
iden
e ve
tors of the k-edge-
onne
ted subgraphs of G,
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kECSP(G) = 
onv{xF ∈ R

E | F ⊆ E and (V, F ) is a k-edge-
onne
ted subgraph of G}.If xF is the in
iden
e ve
tor of the edge set F of a k-edge-
onne
ted subgraph of G,then xF satis�es the following inequalities:
x(e) ≥ 0 for all e ∈ E, (2.1)
x(e) ≤ 1 for all e ∈ E, (2.2)
x(δ(W )) ≥ k for all W ⊂ V, W 6= V, W 6= ∅. (2.3)Conversely, any integer solution of the system de�ned by inequalities (2.1)-(2.3) is thein
iden
e ve
tor of the edge set of a k-edge-
onne
ted subgraph of G. Constraints (2.1)and (2.2) are 
alled trivial inequalities and 
onstraints (2.3) are 
alled 
ut inequalities.We will denote by P (G, k) the polytope given by inequalities (2.1)-(2.3).2.2 Fa
ets of kECSP(G)In this se
tion we present three 
lasses of valid inequalities for kECSP(G). We des
ribesome 
onditions for these inequalities to be fa
et de�ning. But �rst, we give thefollowing lemmas, whi
h will be frequently used in this se
tion.Lemma 2.2.1 If an inequality ax ≥ α is di�erent from the trivial inequalities andde�nes a fa
et of kECSP(G), then a(e) ≥ 0 for all e ∈ E and α > 0.Proof. Suppose that a(e) < 0 for some edge e ∈ E. As ax ≥ α is di�erent from thetrivial inequality x(e) ≤ 1, there must exist a solution F ⊆ E of the kECSP whi
h doesnot 
ontain e and su
h that axF = α. Let F ′ = F ∪ {e}. Obviously, F ′ also indu
es asolution of the kECSP. However, sin
e a(e) < 0, we have that axF ′

= axF + a(e) < α,
ontradi
tion.In 
onsequen
e, a(e) ≥ 0 for all e ∈ E. Moreover, sin
e ax ≥ α is fa
et de�ning, oneshould have a(f) > 0 for at least one edge f of E. As ax ≥ α is di�erent from x(f) ≥ 0,there exists a solution F̃ of the kECSP whi
h 
ontains f and su
h that axF̃ = α. Thisyields α > 0. �



2.2. FACETS OF KECSP(G) 27Lemma 2.2.2 Let G = (V, E) be a k-edge-
onne
ted graph and e0 = u0v0 be an edgeof G su
h that every 
ut δ(U) of G 
ontaining e0, ex
ept eventually δ(u0), is su
h that
|δ(U)| ≥ k + 1. If G′ is a graph obtained from G by deleting e0 and adding an edge fin
ident to u0, then G′ is k-edge-
onne
ted.Proof. Let δG′(U ′) be a 
ut of G′. If δG′(U ′) does not separate u0 and v0, then,as G is k-edge-
onne
ted, we have that |δG′(U ′)| ≥ k. If this is not the 
ase and
U ′ 6= {u0}, then δG(U ′) 
ontains at least k + 1 edges and hen
e |δG′(U ′)| ≥ k. Finally,if U ′ = {u0}, sin
e G is k-edge-
onne
ted and δG′(u0) = (δG(u0) \ {e0})∪ {f}, we havethat |δG′(u0)| ≥ k. �2.2.1 Odd path inequalitiesLet G = (V, E) be a (k + 1)-edge 
onne
ted graph and π = (W1, W2, V1, ..., V2p) apartition of V with p ≥ 2. Let I1 = {4r, 4r + 1, r = 1, ...,

⌈
p
2

⌉
− 1} and I2 = {2, ..., 2p−

1} \ I1. We say that π indu
es an odd path 
on�guration if1. |[Vi, Wj]| = k − 1 for (i, j) ∈ (I1 × {1}) ∪ (I2 × {2}),2. |[W1, W2]| ≤ k − 1,3. δ(Vi) = [Vi, W1]∪ [Vi−1, Vi]∪ [Vi, Vi+1] (resp. δ(Vi) = [Vi, W2]∪ [Vi−1, Vi]∪ [Vi, Vi+1])if i ∈ I1 (resp. i ∈ I2),4. δ(V1) = [W1, V1] ∪ [V1, V2] and δ(V2p) = [W1, V2p] ∪ [V2p−1, V2p] (resp. δ(V2p) =

[W2, V2p] ∪ [V2p−1, V2p]) if p is even (resp. odd) (see Figure 2.1 for k = 3 and peven).Note that by 
onditions 3) and 4), we have that [Vl, Vt] = ∅ for all l, t ∈ {1, ..., 2p} and
|l − t| > 1.Let C =

2p−1⋃

i=1

[Vi, Vi+1]. Thus C 
an be seen as an odd path of extremities V1 and V2p inthe graph Gπ. With an odd path 
on�guration we asso
iate the inequality
x(C) ≥ p. (2.4)Inequalities of type (2.4) will be 
alled odd path inequalities. We have the following.
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V1

V3

V2

V4

W2W1

V5
V6

V2p V2p−1

Figure 2.1: An odd path 
on�guration with k = 3 and p even.Theorem 2.2.1 Inequality (2.4) is valid for kECSP(G).Proof. As |[Vi, Wj]| = k − 1 and x(δ(Vi)) ≥ k is valid for kECSP(G), for (i, j) ∈

(I1 × {1}) ∪ (I2 × {2}), we have
x([V2s−1, V2s]) + x([V2s, V2s+1]) ≥ 1 for s = 1, ..., p − 1, (2.5)
x([V2s, V2s+1]) + x([V2s+1, V2s+2]) ≥ 1 for s = 1, ..., p − 1. (2.6)By multiplying ea
h inequality (2.5) (resp. inequality (2.6)) 
orresponding to s ∈

{1, ..., p − 1} by p−s
p

(resp. s
p
) and summing these inequalities, we obtain

∑

i∈I

x([Vi, Vi+1]) +
∑

i∈I

p − 1

p
x([Vi, Vi+1]) ≥ p − 1, (2.7)where I = {2, 4, 6, ..., 2p− 2} and I = {1, ..., 2p − 1} \ I.By 
onsidering the 
ut inequality indu
ed by W1∪V1∪(

⋃

i∈I1

Vi) (resp. W1∪V1∪(
⋃

i∈I1

Vi)∪

V2p) if p is odd (resp. even) we have
x([W1, W2]) +

∑

i∈I

x([Vi, Vi+1]) ≥ k.As |[W1, W2]| ≤ k − 1, it follows that
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1

p

∑

i∈I

x([Vi, Vi+1]) ≥
1

p
. (2.8)By summing inequalities (2.7) and (2.8) and rounding up the right hand side, we getinequality (2.4). �In what follows, we des
ribe ne
essary 
onditions for inequality (2.4) to be fa
etde�ning. For this, we �rst give a te
hni
al lemma.Lemma 2.2.3 Let π = (W1, W2, V1, ..., V2p), p ≥ 2, be a partition of V whi
h indu
esan odd path 
on�guration and F a solution of the kECSP. Let Vr, ..., Vs, with 2 ≤ r <

s ≤ 2p − 1, be a sequen
e of node sets of π. Then F must 
ontain at least ⌈s−r+1
2

⌉edges from C.Proof. As |[W1, Vi]| = k − 1 for all i ∈ {r, ..., s} ∩ I1 and |[W2, Vi]| = k − 1 for all
i ∈ {r, ..., s}∩I2, F must 
ontain at least one edge from ea
h set δ(Vi)∩C, i ∈ {r, ..., s}.Thus the statement follows. �Theorem 2.2.2 Inequality (2.4) de�nes a fa
et for kECSP(G) only ifa) [V1, W1] 6= ∅ and [V2p, W1] 6= ∅ (resp. [V2p, W2] 6= ∅) if p is even (resp. odd),b) [Vi, Vi+1] 6= ∅ for i = 1, ..., 2p − 1.Proof.a) Suppose for instan
e that p is even and [V1, W1] = ∅ (the proof is similar if either
[V2p, W1] = ∅ or p is odd and [V2p, W2] = ∅). By 
ontra
ting the sets V1, V2, W2, weobtain a smaller odd path 
on�guration with 2p elements. Let

x(C ′) ≥ p − 1 (2.9)be the 
orresponding odd path inequality. As δ(V2) = [V1, V2] ∪ [V2, V3] ∪ [V2, W2] and
|[V2, W2]| = k − 1, by the 
ut 
onstraint on V2, we have that

x([V1, V2]) + x([V2, V3]) ≥ 1 (2.10)



30 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEMis valid for kECSP(G). By adding (2.9) and (2.10), we get x(C) ≥ p, whi
h impliesthat (2.4) 
annot be fa
et de�ning.b) Suppose that [Vi, Vi+1] = ∅ for some i ∈ {1, ..., 2p−1}. We will show in the followin-ing that any solution F of the kECSP whose the in
iden
e ve
tor xF satis�es (2.4)with equality, interse
ts [Vi−1, Vi] in exa
tly one edge. To this end, we will distinguishtwo 
ases.Case 1. i, i + 1 ∈ I1 (the proof is similar if i, i + 1 ∈ I2). By Lemma 2.2.3 the edgeset F ′ = F ∩ C must 
over the node sets V2, ..., Vi−2 by at least ⌈ i−3
2
⌉ edges and thesets Vi+1, ...V2p−1 by at least ⌈2p−i−1

2
⌉ edges. As i, i + 1 ∈ I1, and then i is even, F ′must use, in 
onsequen
e, at least ( i

2
− 1) + (p − i

2
) = p − 1 edges from C \ [Vi−1, Vi].Sin
e δ(Vi) = [Vi−1, Vi] ∪ [Vi, W1] and |[Vi, W1]| = k − 1, F 
ontains at least one edgefrom [Vi−1, Vi]. As xF satis�es (2.4) with equality, it follows that F 
ontains exa
tlyone edge from [Vi−1, Vi].Case 2. i ∈ I1 and i+1 ∈ I2 (the proof is similar if i ∈ I2 and i+1 ∈ I1). First note thatin this 
ase i is odd. By Lemma 2.2.3, F must 
over the node sets V2, ..., Vi−2 by at least

⌈ i−3
2
⌉ = i−3

2
edges from C and the node sets Vi+1, ...V2p−1 by at least ⌈2p−i−1

2
⌉ = 2p−i−1

2edges from C. Hen
e F uses at least i−3
2

+ 2p−i−1
2

= p − 2 edges from C. Moreover,observe that if exa
tly p − 2 edges of C are used by F , then these edges should bebetween 
onse
utive node sets of the form [V2s, V2s+1], with s ∈ {1, ..., p − 1} \ { i−1
2
}.However, in this 
ase, in order to satisfy the 
ut inequality indu
ed by the node set

W1 ∪ (
⋃

r∈I1
Vr) ∪ V2p (resp. W1 ∪ (

⋃
r∈I1

Vr)) if p is even (resp. odd), F must 
ontainat least one more edge from C \ [Vi−1, Vi] between two 
onse
utive sets of the form
[V2s−1, V2s], with s ∈ {1, ..., p − 1} \ { i−1

2
}. In 
onsequen
e, F 
ontains at least p − 1edges from C \ [Vi−1, Vi]. As |F ∩ [Vi−1, Vi]| ≥ 1 and xF satis�es (2.4) with equality, wethen have that |F ∩ [Vi−1, Vi]| = 1.In 
onsequen
e, for any solution F ⊆ E of the kECSP, if xF satis�es (2.4) with equal-ity, it also satis�es the equation x(δ(Vi)) = k. Sin
e kECSP(G) is full dimensionnaland (2.4) is not a positive multiple of x(δ(Vi)) ≥ k, (2.4) 
annot de�ne a fa
et. �Now we give su�
ient 
onditions for inequality (2.4) to be fa
et de�ning. For this, letus denote by Γ the set of edges of G whi
h are not in C, that is, Γ = E \C. Moreover,if [Vi, Vi+1] 6= ∅, we let ei denote a �xed edge of [Vi, Vi+1], for i = 1, ..., 2p − 1.
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et for kECSP(G) if the following hold.i) Condition b) of Theorem 2.2.2 holds,ii) The subgraphs G[W1], G[W2] and G[Vi], for i = 1, ..., 2p, are (k+1)-edge 
onne
ted,iii) |[W1, W2]| = k − 1, |[V1, W1]| = k and |[V2p, W1]| = k (resp. |[V2p, W2]| = k) if p iseven (resp. odd).Proof. We will show the result for p even (the proof is similar if p is odd).Let E0 =

p⋃

s=1

[V2s−1, V2s], E1 =

p−1⋃

s=1

[V2s, V2s+1], E = δ(π)\(E0∪E1), Ẽ = E\(E0∪E1∪E).Inequality (2.4) 
an then be written as
x(E0) + x(E1) ≥ p. (2.11)Suppose that 
onditions 1) - 3) above hold. We �rst give a 
laim that will be useful inthe proof.Claim. If D is a subset of edges whi
h 
overs the node sets V2, ..., V2p−1, 
ontains atleast one edge of [Vi0 , Vi0+1] for some i0 ∈ {1, 3, ..., 2p − 1} and su
h that D ∩ Γ = ∅,then D ∪ Γ indu
es a k-edge-
onne
ted subgraph of G.Proof. Let F = D ∪ Γ. Let G be the graph indu
ed by F and G

′ the graph obtainedfrom G by 
ontra
ting the node sets W1, W2, V1, ..., V2p. Let w1, w2, v1, ..., v2p be thenodes of G
′ where wj (resp. vi) 
orresponding to Wj (resp. Vi) for j = 1, 2 (resp.

i = 1, ..., 2p). As by 
ondition 2), the subgraphs of G indu
ed by W1, W2, V1, ..., V2pare (k + 1)-edge 
onne
ted, to show the 
laim, it su�
es to show that G
′ is k-edge-
onne
ted. Let δ

G
′(W ) be a 
ut of G

′.If, say, w1 ∈ W and w2 ∈ W , then [w1, w2] ⊆ δG
′(W ). If δG

′(W ) separates vi0and vi0+1, as D interse
ts [Vi0 , Vi0+1], and by 
ondition 3), |[W1, W2]| = k − 1, wehave that |δ
G

′(W )| ≥ k. If vi0 , vi0+1 ∈ W , then [{vi0, vi0+1}, w2] ⊆ δ
G

′(W ). Sin
e
|[{vi0 , vi0+1}, w2]| ≥ k − 1 ≥ 1, this yields |δG

′(W )| ≥ k.Now if w1, w2 ∈ W (or w1, w2 ∈ W ), then δG
′(W ) 
ontains at least two edge sets ofthe form [vi, wj] with (i, j) ∈ (I1 × {1}) ∪ (I2 × {2}). Sin
e |[vi, wj]| = k − 1, we havethat |δG

′(W )| ≥ k.
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�Let us denote inequality (2.11) by ax ≥ α and F = {x ∈ kECSP(G) | ax = α}.Let S = Γ ∪ {e2s−1, s = 1, ..., p}. By the 
laim above, we 
an see that S indu
es a

k-edge-
onne
ted subgraph of G. Moreover, xS satis�es (2.11) with equality, whi
himplies that F is a proper fa
e of kECSP(G). Now suppose that there exists a nontrivial fa
et de�ning inequality bx ≥ β su
h that F ⊆ {x ∈ kECSP(G) | bx = β}. ByLemma 2.2.1, we have that β > 0, and hen
e we may suppose that β = α. As G is
(k +1)-edge 
onne
ted and thus kECSP(G) is full dimensional, it su�
es to show that
b = a.Let e ∈ [V2s−1, V2s] \ {e2s−1} for some s ∈ {1, ..., p} and S1 = (S \ {e2s−1}) ∪ {e}. Bythe 
laim above, S1 indu
es a k-edge-
onne
ted subgraph of G. Moreover, axS1 = α.It then follows that bxS1 = α, implying that

b(e) = ρ2s−1 for all e ∈ [V2s−1, V2s], for s = 1, ..., p, for some ρ2s−1 ∈ R, ρ2s−1 6= 0.(2.12)Similarly, for an edge e ∈ [V2s, V2s+1] \ {e2s} for some s ∈ {1, ..., p − 1} one 
an
onsider the edge sets S2 = Γ ∪ (

p−1⋃

i=1

{e2i}) ∪ {e1} and S3 = (S2 \ {e2s}) ∪ {e}. We 
ansee by the 
laim above that S2 and S3 indu
e k-edge-
onne
ted subgraphs of G. Sin
e,
axS2 = axS3 = α, it follows that bxS2 = bxS3 = α and then

b(e) = ρ2s for all e ∈ [V2s, V2s+1], for s = 1, ..., p − 1, for some ρ2s ∈ R, ρ2s 6= 0.(2.13)Consider the edge sets S4 = (S2 \ {e1}) ∪ {e2s−1} and S5 = (S2 \ {e1, e2s}) ∪

{e2s−1, e2s+1} for some s ∈ {1, ..., p − 1}. By the 
laim above, S4 and S5 indu
e k-edge-
onne
ted subgraphs of G. Sin
e axS4 = axS5 = α, bxS4 = bxS5 = α and hen
e
b(e1) = b(e2s) = b(e2s+1), for s = 1, ..., p − 1. (2.14)From (2.12), (2.13) and (2.14), it follows that b(e) is the same for every edge e ∈ E0∪E1.Sin
e axS = bxS = α, we get b(e) = 1 for all e ∈ E0 ∪ E1.Now we are going to show that b(e) = 0 for all e ∈ Ẽ ∪E. For this, �rst 
onsider anedge f ∈ Ẽ. From 
ondition 2), Sf = S \ {f} indu
es a k-edge-
onne
ted subgraph of
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G. Moreover, xSf satis�es (2.11) with equality. Hen
e axSf = α = bxSf . This impliesthat b(f) = bxS − bxSf = 0.Now let e ∈ [Vi, Wj] for (i, j) ∈ (I1∪{1, 2p}×{1})∪ (I2×{2}) and S6 = (S2 \{e1})∪

{ei−1} (resp. S6 = (S2 \ {e1}) ∪ {ei}) if i is even (resp. odd). From the 
laim above,we have that S6 and S ′
6 = S6 \ {e} indu
e k-edge-
onne
ted subgraphs of G and thattheir in
iden
e ve
tors satisfy ax ≥ α with equality. Hen
e b(e) = bxS6 − bxS′

6 = 0.For all e ∈ [W1, W2], by the 
laim above, the edge set S7 = S \ {e} indu
es a k-edge-
onne
ted subgraph of G. Moreover, xS7 satis�es ax ≥ α with equality. Hen
e
axS7 = α and bxS7 = bxS = α. Thus we obtain b(e) = 0 for all e ∈ [W1, W2].Consequently, b(e) = 0 for all e ∈ E \C, whi
h terminates the proof of the theorem.
�2.2.2 Lifting pro
edure for odd path inequalitiesIn what follows we are going to des
ribe a lifting pro
edure for the odd path inequalities.This will permit to extend these inequalities to a more general 
lass of valid inequalities.But �rst we give the following lemma whi
h easily follows from the general liftingpro
edure presented in [93℄.Lemma 2.2.4 Let G = (V, E) be a graph and ax ≥ α a valid inequality for kECSP(G).Let G′ = (V, E ′) be a graph obtained from G by adding an edge e, that is E ′ = E ∪{e}.Then the inequality

ax + a(e)x(e) ≥ α (2.15)is valid for kECSP(G′) where a(e) = α−γ with γ = min{ax | x ∈ kECSP(G′) and x(e) =

1}. Moreover, if ax ≥ α is fa
et de�ning for kECSP(G), then inequality (2.15) is alsofa
et de�ning for kECSP(G′). In addition, if edges e1, ..., ek−1, ek, ..., et are added to
G in this order and a(ek) is the lifting 
oe�
ient of ek with respe
t to this order, then
a(ek) ≤ a′(ek) where a′(ek) is the lifting 
oe�
ient of ek in any order ei1 , ..., eik−1

, ..., eitsu
h that il = l for l = 1, ..., k − 1 and is = k for some s ≥ k.Theorem 2.2.4 Let G = (V, E) be a graph and π = (W1, W2, V1, ..., V2p), p ≥ 2, apartition of V whi
h indu
es an odd path 
on�guration. Let C, I1 and I2 be de�nedas in Se
tion 2.2.1. Let U1 =
⋃

i∈I1

Vi, U2 =
⋃

i∈I2

Vi and W = U2 ∪ V2p ∪ W2 (resp.
W = U2 ∪ W2) if p is odd (resp. even). Suppose that 
onditions 1) - 3) of Theorem



34 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEM2.2.3 hold. If G′ = (V, E∪L) is a graph obtained from G by adding an edge set L, thenthe following inequality
x(C) +

∑

e∈L

a(e)x(e) ≥ p, (2.16)with
a(e) =





1 if e ∈ (
⋃

j=1,2

[Wj, U1 ∪ U2]) ∪ [W1, W2] ∪ (
⋃

j=1,2p

[Vj , U1 ∪ U2]) or
e ∈ ([V1, V2p ∪ W2] ∪ [V2p, W1 ∪ W2]) ∩ δ(W ),

2 if e ∈ [Vi, Vj], i, j ∈ {2, ..., 2p − 1} with j > i + 1 and i even, j odd,
λ if e ∈ [Vi, Vj] with i, j ∈ {2, ..., 2p − 1}, j > i + 1 and i oddor i and j have same parity,
0 otherwise,where 1 ≤ λ ≤ 2 is the lifting 
oe�
ient obtained using the lifting pro
edure of Lemma2.2.4, is fa
et de�ning for kECSP(G′).Proof. Let us 
onsider the following edge subsets of L:

L1 = (
⋃

j=1,2

[Wj , U1 ∪ U2]) ∪ [W1, W2] ∪ (
⋃

j=1,2p

[Vj , U1 ∪ U2])∪

(([V1, V2p ∪ W2] ∪ [V2p, W1 ∪ W2]) ∩ δ(W )),

L2 = {[Vi, Vj], i, j ∈ {2, ..., 2p − 1}, j > i + 1, i even , j odd},
L3 = {[Vi, Vj], i, j ∈ {2, ..., 2p − 1}, j > i + 1, i odd or, i and j have the same parity},
L4 = L \ (L1 ∪ L2 ∪ L3).We will �rst show that the lifting 
oe�
ient of the edges of L4 is equal to 0, inde-pendently of the order in whi
h they are added to G. Let e be an edge of L4 and letus denote by a′x ≥ α′ the lifted inequality obtained on G′. As, by our assumptions,(2.4) de�nes a fa
et of kECSP(G), a′x ≥ α′ also de�nes a fa
et of kECSP(G′). Sin
e
a′x ≥ α′ is di�erent from the trivial inequality x(e) ≥ 0, there must exist a solution
F ′ ⊆ E ′ of the kECSP on G′ su
h that e ∈ F ′ and whose the in
iden
e ve
tor satis�es
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a′x ≥ α′ with equality. Let h1, ..., hk be the edges of E between V1 and W1. Note that
a′(h1) = ... = a′(hk) = 0. We will distinguish two 
ases.Case 1. |[F ′ ∩ {h1, ..., hk}]| ≤ k − 1. Let hi be an edge not 
ontained in F ′. Let
F ′′ = (F ′ \ {e}) ∪ {hi}. Sin
e F ′ indu
es a k-edge-
onne
ted subgraph of G′, F ′′ sois. Hen
e we have that a′xF ′′

= a′xF ′
− a′(e) + a′(hi) ≥ α′. This yields a′(e) ≤ a′(hi).Sin
e a′(hi) = 0, and by Lemma 2.2.1, a′(e) ≥ 0, we get a′(e) = 0.Case 2. {h1, ..., hk} ⊆ F ′. Here we also have that F ′′ = F ′ \ {e} indu
es a k-edge-
onne
ted subgraph of G′. As a′xF ′′

= a′xF ′
−a′(e) ≥ α′, and thus a′(e) ≤ 0, it follows,by Lemma 2.2.1, that a′(e) = 0.Therefore a(e) = 0 for all e ∈ L4, and this, independently of the order in whi
h e isadded to G.Now we 
onsider the edges of L \ L4. For this, we give the following 
laim.Claim. a(e) ≥ 1 if e ∈ L1 ∪ L3, and a(e) ≥ 2 if e ∈ L2.Proof. We will show �rst that if we add one edge e ∈ L1 (resp. e ∈ L2) (resp.

e ∈ L3) to G, the lifting 
oe�
ient of e in the new graph is 1 (resp. 2) (resp. 1). Forthis, let us denote by G̃ = (V, Ẽ) the graph obtained by adding the edge e, that is,
Ẽ = E ∪ {e}. Suppose �rst that e ∈ L1 and assume that, for instan
e, e ∈ [Wj0 , Vi0],with i0 ∈ {2, ..., 2p − 1} and even, and j0 ∈ {1, 2} (if i0 is odd, it su�
es to 
onsiderthe path V1, ..., V2p in the opposite way). Note that any solution F̃ ⊆ Ẽ of the kECSPon G̃ must 
over the node sets V2, ..., Vi0−1 and Vi0+1, ..., V2p−1 by edges from C. ByLemma 2.2.3, F̃ must use at least ⌈ i0−2

2
⌉ + ⌈2p−i0−1

2
⌉ = p − 1 edges from C. Thus

γ ≥ p − 1 where γ is as de�ned in Lemma 2.2.4. Moreover, be
ause the 
onditions ofTheorem 2.2.3 are satis�ed, by the 
laim given in the proof of that theorem, the edgeset F̃1 = {e2, e4, ..., ei0−2}∪{ei0+1, ei0+3, ..., e2p−1}∪Γ∪{e} indu
es a k-edge-
onne
tedsubgraph of G̃. Sin
e F̃1 
ontains e and uses exa
tly p− 1 edges from C, we have that
γ = p − 1. By Lemma 2.2.4, it then follows that the lifting 
oe�
ient of e is equal to1.
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j0 > i0+1, and i0 is even and j0 odd. If F̃ is a solution of the kECSP on G̃, then F̃ must
over the node sets V2, ..., Vi0−1, Vi0+1, ..., Vj0−1 and Vj0+1, ..., V2p−1. Thus by Lemma2.2.3, F̃ must use ⌈ i0−2

2
⌉+⌈ j0−i0−1

2
⌉+⌈2p−j0−1

2
⌉ = p−2 edges from C. Thus, γ ≥ p−2.Now let F̃2 = {e2, e4, ..., ei0−2}∪{ei0+1, ei0+3, ..., ej0−2}∪{ej0+1, ej0+3, ..., e2p−2}∪Γ∪{e}.We 
an see as before that F̃2 indu
es a k-edge-
onne
ted subgraph of G̃ and 
ontainsexa
tly p − 2 edges from C. Sin
e e ∈ F̃2, we obtain that γ = p − 2, and therefore thelifting 
oe�
ient of e equals 2.Finally, suppose that e is an edge of L3 between two non 
onse
utive node sets

[Vi0 , Vj0] with i0, j0 ∈ {2, ..., 2p − 1}, j0 > i0 + 1, and , say, i0 is odd and j0 iseven (the proof is similar if i0 and j0 have the same parity). Here observe thatany solution F̃ ⊆ Ẽ of the kECSP on G̃ must 
over by edges from C the node sets
V2, ...Vi0−1, Vi0+1, ..., Vj0−1 and Vj0+1, ..., V2p−1. By Lemma 2.2.3, F̃ must then use atleast ⌈ i0−2

2
⌉ + ⌈ j0−i0−1

2
⌉ + ⌈2p−j0−1

2
⌉ = p − 1 edges from C. Thus γ ≥ p − 1. Moreover,as the edge set F̃3 = {e1, e3, ..., ei0−2} ∪ {ei0+1, ei0+1, ..., e2p−2} ∪ Γ ∪ {e} indu
es a k-edge-
onne
ted subgraph of G̃ and 
ontains exa
tly p − 1 edges from C, we have that

γ = p − 1. Hen
e the lifting 
oe�
ient of e in G̃ is equal to 1.Consequently the lifting 
oe�
ient of e equals 1 (resp. 2) (resp. 1) if e ∈ L1 (resp.
e ∈ L2) (resp. e ∈ L3). By Lemma 2.2.4, we then have that a(e) ≥ 1 if e ∈ L1 ∪ L3and a(e) ≥ 2 if e ∈ L2, whi
h ends the proof of the 
laim. �In what follows, we are going to show that we also have a(e) ≤ 1 (resp. a(e) ≤ 2)(resp. 1 ≤ a(e) ≤ 2) if e ∈ L1 (resp. e ∈ L2) (resp. e ∈ L3). For this, let us 
onsidera sequen
e f1, ..., ft, t ≥ 1, of edges of L, and suppose that f1, ..., ft are the edges thatare added to G before e.Suppose �rst that e ∈ L1 and let us assume as before that e ∈ [Wj0 , Vi0] with
i0 ∈ {2, ..., 2p − 1} and even, and j0 ∈ {1, 2}. Let Ĝ = (V, Ê) be the graph where
Ê = E ∪ {f1, ..., ft, e}. Any solution F̂ ⊆ Ê of the kECSP on Ĝ must 
over the nodesets V2, ..., Vi0−1 and Vi0+1, ..., V2p−1 by edges from (C ∪ {f1, ..., ft}) \ L4. By Lemma2.2.3, F̂ must use at least ⌈ i0−2

2
⌉ + ⌈2p−i0−1

2
⌉ = p− 1 edges from (C ∪ {f1, ..., ft}) \ L4.Sin
e, by the 
laim above, a(f) ≥ 1 for every edge f ∈ (C ∪ {f1, ..., ft}) \ L4, we havethat γ ≥ p − 1 and hen
e by Lemma 2.2.4, we have that a(e) ≤ 1. As, by the 
laimabove a(e) ≥ 1, this implies that a(e) = 1. Moreover, this holds independently on theorder in whi
h e is added to G.
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Now 
onsider an edge e ∈ L2 and suppose that e ∈ [Vi0, Vj0], with i0, j0 ∈ {2, ..., 2p −

1}, j0 > i0 + 1, i0 even and j0 odd. Any solution F̂ ⊆ Ê of the kECSP on Ĝmust 
over the node sets V2, ..., Vi0−1, Vi0+1, ..., Vj0−1 and Vj0+1, ..., V2p−1 by edges from
(C∪{f1, ..., ft})\L4. By Lemma 2.2.3, F̂ must use ⌈ i0−2

2
⌉+⌈ j0−i0−1

2
⌉+⌈2p−j0−1

2
⌉ = p−1edges of (C ∪ {f1, ..., ft}) \ L4. Thus γ ≥ p − 2 and therefore a(e) ≤ 2. Sin
e, by the
laim above, a(e) ≥ 2, we get a(e) = 2.If e is an edge of L3, we show along the same line that 1 ≤ a(e) ≤ 2.In 
onsequen
e, a(e) = 1 if e ∈ L1, a(e) = 2 if e ∈ L2, 1 ≤ a(e) ≤ 2, whi
h ends theproof of the theorem.

�Observe that the lifting 
oe�
ients of the edges other than those between two subsets
Vi and Vj su
h that i, j ∈ {2, ..., 2p − 1}, j > i + 1, i is odd or i and j have the sameparity do not depend on the order of their addition in G. Inequalities (2.16) will be
alled lifted odd path inequalities. As it will turn out, these inequalities are very usefulfor our Bran
h-and-Cut algorithm.2.2.3 F -partition inequalitiesIn [88℄, Mahjoub introdu
ed a 
lass of valid inequalities for 2ECSP(G) as follows. Let
(V0, V1, ..., Vp), p ≥ 2, be a partition of V and F ⊆ δ(V0) with |F | odd. By adding theinequalities

x(δ(Vi)) ≥ 2 for i = 1, ..., p, (2.17)
− x(e) ≥ −1 for e ∈ F, (2.18)
x(e) ≥ 0 for e ∈ δ(V0) \ F, (2.19)we obtain 2x(∆) ≥ 2p−|F | where ∆ = δ(V0, V1, ..., Vp)\F . Dividing by 2 and roundingup the right hand side lead to

x(∆) ≥ p −
|F | − 1

2
. (2.20)
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alled F -partition inequalities. Didi Biha [38℄ extended theseinequalities for all k ≥ 2. He showed that, given a partition (V0, V1, ..., Vp), p ≥ 2, of Vand F ⊆ δ(V0) with F 6= ∅, the inequality
x(δ(V0, V1, ..., Vp) \ F ) ≥

⌈
kp − |F |

2

⌉
, (2.21)is valid for kECSP(G). Note here that |F | 
an be either odd or even. Also note thatif kp and |F | have the same parity, then the 
orresponding inequality (2.21) is impliedby the 
ut and the trivial inequalities.In what follows, we des
ribe su�
ient 
onditions for inequalities (2.21) to be fa
etde�ning. Theorems 2.2.5 and 2.2.6 des
ribe these 
onditions for k odd and k even,respe
tively. Note that all the indi
es we will 
onsider here will be modulo 2l + 1.Theorem 2.2.5 Let G = (V, E) be a graph and k ≥ 3 an odd integer. Let π =

(W, V1, ..., V2l+1,

U1, ..., U2l+1), with l ≥ k−1
2
, be a partition of V su
h thati) G[W ], G[Vi], G[Ui], i = 1, ..., 2l + 1, are (k + 1)-edge 
onne
ted,ii) |[W, Vi]| ≥ k − 2 for i = 1, ..., 2l + 1,iii) |[Ui, Ui+1]| ≥

k−1
2

for i = 1, ..., 2l + 1,iv) |[Vi, Vi+1]| ≥ 1 for i = 1, ..., 2l + 1,v) |[Vi, Ui]| ≥ 1 and |[Vi, Ui−1]| ≥ 1 for i = 1, ..., 2l + 1(see Figure 2.2 for an illustration with k = 5 and l = 2).Let Fi be an edge subset of [W, Vi] su
h that |Fi| = k − 2, i = 1, ..., 2l + 1 and let
F =

2l+1⋃

i=1

Fi. Then the F -partition inequality
x(δ(π) \ F ) ≥ l(k + 2) +

⌈
k

2

⌉
+ 1, (2.22)indu
ed by π and F , de�nes a fa
et of kECSP(G).
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U1

V1 V2 U2

V3

W

V5

U3

V4

U4

U5

Figure 2.2: An F -partition 
on�guration with k = 5Proof. First observe that, by 
onditions 1) - 5), G is (k + 1)-edge 
onne
ted andhen
e kECSP(G) is full dimensional. Let us denote inequality (2.22) by ax ≥ α andlet F = {x ∈ kECSP(G) | ax = α}. Clearly, F is a proper fa
e of kECSP(G). Nowsuppose that there exists a fa
et de�ning inequality bx ≥ α su
h that F ⊆ {x ∈

kECSP(G) | bx = α}. We will show that b = a.Let ei be an edge of [Vi, Vi+1], i = 1, ..., 2l + 1, and fi and f ′
i be edges of [Vi, Ui−1]and [Vi, Ui], respe
tively, for i = 1, ..., 2l + 1. Let Ti be an edge subset of [Ui, Ui+1] of

k−1
2

edges, for i = 1, ..., 2l + 1.Let E0 be the set of edges not in F and having both endnodes in the same elementof π. First we will show that b(e) = 0 for all e ∈ E0 ∪ F . Let i0 ∈ {1, ..., 2l + 1} and
onsider the edge sets
E1 = {ei0+2r, r = 0, ..., l} ∪ {f ′

i , i = 1, ..., 2l + 1} ∪ (
2l+1⋃

i=1

Ti),

E2 = E1 ∪ F ∪ E0.Claim. E2 indu
es a k-edge-
onne
ted subgraph of G.Proof. Let G2 be the subgraph of G indu
ed by E2. Sin
e by 
ondition 1) the graphsindu
ed by the node sets W and Vi, Ui, i = 1, ..., 2l + 1, are (k + 1)-edge 
onne
ted, itsu�
es to show that the graph obtained by 
ontra
ting W and Vi, Ui, i = 1, ..., 2l+1, is
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k-edge-
onne
ted. Let G2 = (V 2, E2) be that graph and w ,v1, ..., v2l+1, u1, ..., u2l+1 thenodes of G2 where w 
orresponds toW , vi to Vi and ui to Ui, for i = 1, ..., 2l+1. Let δ(U)be a 
ut of G2 and let G

′

2 = (V
′

2, E
′

2) the subgraph of G2 indu
ed by {w, v1, ..., v2l+1}and G
′′

2 = (V
′′

2, E
′′

2) the graph obtained from G2 by 
ontra
ting {w, v1, ..., v2l+1}. Notethat E
′

2 ∩E
′′

2 = ∅ and E2 = E
′

2 ∪E
′′

2. Also note that G
′

2 is (k − 1)-edge 
onne
ted andthat G
′′

2 is a k-edge-
onne
ted wheel. Thus if U does not interse
t {w, v1, ..., v2l+1},then δ(U) is a 
ut of G
′′

2 and hen
e |δ(U)| ≥ k. If U interse
ts {w, v1, ..., v2l+1}, then
δ(U) 
ontains at least k−1 edges from E

′

2. However, in this 
ase δ(U) also 
ontains atleast one edge from E
′′

2. Thus we have that |δ(U)| ≥ k, and the statement follows. �Note that there are k + 1 edges in
ident to Vi0 in the graph indu
ed by E2. Now,observe that for any edge e ∈ Fi0 , one 
an show in a similar way as in the 
laim abovethat E ′
2 = E2 \ {e} also indu
es a k-edge-
onne
ted subgraph of G. As xE2 and xE′

2belong to F, it follows that bxE2 = bxE′
2 = α, implying that b(e) = 0 for all e ∈ Fi0 .As i0 is arbitrarily 
hosen, we obtain that b(e) = 0 for all e ∈ F . Moreover, as thesubgraphs indu
ed by W , V1, ..., V2l+1, U1, ..., U2l+1 are all (k + 1)-edge 
onne
ted, thesubgraph indu
ed by E2 \ {e}, for all e ∈ E0, is also k-edge-
onne
ted. This yields asbefore b(e) = 0 for all e ∈ E0. Thus b(e) = 0 for all e ∈ F ∪ E0.Next, we will show that b(e) = a(e) for all e ∈ δ(π) \ F . Let gi be a �xed edge of Tiand let T ′

i = Ti \ {gi}, for i = 1, ..., 2l + 1. Consider the edge sets
E3 = {fi, f

′
i , i = 1, ..., 2l + 1} ∪ (

l⋃

i=1

T2i) ∪ T2l+1 ∪ (

l−1⋃

i=0

T ′
2i+1),

E4 = E3 ∪ F ∪ E0,

E ′
4 = (E4 \ g2l+1) ∪ {g1}.Note that g1 /∈ T ′
1 and thus g1 /∈ E4, and that g2l+1 ∈ E4. The edge sets E4 and E ′

4 
anbe obtained from E2 using re
ursively the edge-swapping operation of Lemma 2.2.2.Hen
e both E4 and E ′
4 indu
e k-edge-
onne
ted subgraphs of G. Moreover, we havethat xE4 and xE′

4 belong to F. Thus bxE4 = bxE′
4 = α and therefore b(g2l+1) = b(g1). As

g1 and g2l+1 are arbitrary edges of T1 and T2l+1, respe
tively, it follows that b(e) = b(e′)for all e ∈ T1 and e′ ∈ T2l+1. Moreover, we have that T1 and T2l+1 are arbitrary subsetsof [U1, U2] and [U2l+1, U1], respe
tively. This implies that b(e) = b(e′) for all e ∈ [U1, U2]and e′ ∈ [U2l+1, U1]. Consequently, by symmetry, we get
b(e) = ρ for all e ∈ [Ui, Ui+1], i = 1, ..., 2l + 1, (2.23)for some ρ ∈ R.
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E5 = (E4 \ {f1}) ∪ {e2l+1}.Using Lemma 2.2.2 and the fa
t that E4 indu
es a k-edge-
onne
ted subgraph of G,we have that E5 indu
es a k-edge-
onne
ted subgraph of G. Moreover, xE5 belongsto F, implying that bxE4 = bxE5 = α. Hen
e b(f1) = b(e2l+1). In a similar way,we 
an show that b(f ′

2l+1) = b(e2l+1). As f1, f ′
2l+1 and e2l+1 are arbitrary edges of

[U2l+1, V1], [V2l+1, U2l+1] and [V2l+1, V1], respe
tively, we obtain that b(e) is the same forall e ∈ [U2l+1, V1]∪ [V2l+1, U2l+1]∪ [V2l+1, V1]. By ex
hanging the roles of V2l+1, V1, U2l+1and Vi, Vi+1, Ui, for i = 1, ..., 2l, we obtain by symmetry that
b(e) = ρ′

i for all e ∈ [Ui, Vi] ∪ [Vi, Vi+1] ∪ [Vi+1, Ui], (2.24)
i = 1, ..., 2l + 1, for some ρ′

i ∈ R.Consider the edge set
E ′

5 = (E4 \ {f1}) ∪ {e1}.Similarly, we 
an show that E ′
5 indu
es a k-edge-
onne
ted subgraph of G. As xE4 and

xE′
5 belong to F, it follows in a similar way that b(e1) = b(f1). From (2.24), we havethat ρ′

1 = ρ′
2l+1. By symmetry, it then follows that ρ′

i = ρ′
j for i, j = 1, ..., 2l + 1, i 6= j,and therefore

b(e) = ρ′ for all e ∈ [Ui, Vi] ∪ [Vi, Vi+1] ∪ [Vi+1, Ui], (2.25)for i = 1, ..., 2l + 1, for some ρ′ ∈ R.Let e ∈ ([V2l+1, W ] \F2l+1)∪ [V2l+1, Vj], j ∈ {2, ..., 2l− 1}. As before, we 
an observethat E6 = (E4\{f
′
2l+1})∪{e} indu
es a k-edge-
onne
ted subgraph of G. Sin
e xE6 ∈ F,this implies that bxE6 = bxE4 = α and hen
e b(e) = b(f ′

2l+1). By (2.25), we then obtainthat b(e) = ρ′ for all e ∈ ([V2l+1, W ] \ F2l+1) ∪ [V2l+1, Vi] for i ∈ {2, ..., 2l − 1}. Byex
hanging the roles of V2l+1 and Vi, i = 1, ..., 2l, we obtain by symmetry that b(e) = ρ′for all e ∈ ([Vi, W ]\Fi)∪ [Vi, Vj], i = 1, ..., 2l+1 and j ∈ {1, ..., 2l+1} \ {i−1, i, i+1}.For any edge e between U2l+1 and either W , Uj , j ∈ {1, ..., 2l + 1} \ {1, 2l, 2l + 1}, or
Vt, t ∈ {1, ..., 2l + 1} \ {1, 2l + 1}, we 
an show, using Lemma 2.2.2 and the fa
t that
E4 indu
es a k-edge-
onne
ted subgraph of G, that

E7 = (E4 \ {f
′
2l+1, f1}) ∪ {e, e2l+1}also indu
es a k-edge-
onne
ted subgraph of G. Sin
e xE4 and xE7 belong to F, wehave that bxE7 = bxE4 = α and b(f ′

2l+1) + b(f1) = b(e) + b(e2l+1). As by (2.25),
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b(f ′

2l+1) = b(f1) = b(e2l+1) = ρ′, we get b(e) = ρ′. Here again, by ex
hanging the rolesof U2l+1 and Ui, i = 1, ..., 2l, we obtain that b(e) = ρ′ for all e ∈ [Ui, W ]∪[Ui, Uj]∪[Ui, Vt],
i = 1, ..., 2l + 1, j ∈ {1, ..., 2l + 1} \ {i, i + 1} and t ∈ {1, ..., 2l + 1} \ {i − 1, i, i + 1}.As xE2 and xE4 belong to F, we have that bxE2 = bxE4 = α. Thus from (2.23) and(2.25), we obtain that ρ = ρ′, and in 
onsequen
e, the edges of E \ (E0 ∪ F ) have allthe same 
oe�
ient in bx ≥ α. Sin
e axE2 = bxE2 = α, this yields b(e) = 1 for all
e ∈ E \ (E0 ∪ F ).Thus we obtain that b = a, whi
h ends the proof of the theorem. �We now des
ribe spe
ial 
ases in whi
h inequalities (2.21) de�ne fa
ets when k is even.Consider a graph G = (V, E) and an even integer k = 2q with q ≥ 1, a generalized odd-wheel 
on�guration is given by an integer l ≥ 1, a set of positive integers {p1, ..., p2l+1}and a partition π = (V0, V

s
i , i = 1, ..., 2l + 1, s = 0, ..., pi) of V su
h thati) G[V0] and G[V s

i ] are (k + 1)-edge 
onne
ted, for s = 1, ..., pi and i = 1, ..., 2l + 1,ii) |[V 0
i , V 0

i+1]| ≥ 2q for i = 1, ..., 2l + 1,iii) |[V s
i , V s+1

i ]| ≥ 2q for s = 0, ..., pi and i = 1, ..., 2l + 1,iv) [V s
i , V t

i ] = ∅ for s, t ∈ {1, ..., pi}, |s − t| > 1 and (s, t) 6= (0, pi + 1), and i =

1, ..., 2l + 1,v) [V s
i , V t

t ] = ∅ for s ∈ {1, ..., pi}, t ∈ {1, ..., pt}, i, t ∈ {1, ..., 2l+1}, i 6= t (see Figure2.3).Let F 0
i be an edge subset of [V0, V

pi

i ] of q (resp. q − 1) edges if q is odd (resp. even)and F =

2l+1⋃

i=1

F 0
i .With a generalized odd-wheel 
on�guration with q odd (resp. even) we asso
iate thefollowing F -partition inequality indu
ed by the partition π and F ,

x(δ(π) \ F ) ≥ q

2l+1∑

i=1

pi + ql +
q + 1

2
,

(resp. x(δ(π) \ F ) ≥ q
2l+1∑

i=1

pi + (q + 1)l +
q + 2

2
).

(2.26)
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edges of F

edges of δ(π) \ F

V 0

5

V 0

1

V 1

1

V 2

2

V 1

2

V 0

2

V 2

3
V 2

4

V 1

4

V 0

4
V 0

3

V 1

3

V 2

5

V 1

5

V0

Figure 2.3: A generalized odd-wheel 
on�guration with k = 4Inequalities of type (2.26) will be 
alled generalized odd-wheel inequalities. We havethe following theorem given without proof, sin
e it follows the same line as that ofTheorem 2.2.5Theorem 2.2.6 Inequalities (2.26) de�ne fa
ets of kECSP(G).2.2.4 SP -partition inequalitiesIn [21℄, Chopra introdu
es a 
lass of valid inequalities for the kECSP when the graph
G is outerplanar, k is odd, and ea
h edge 
an be used more than on
e. Let G = (V, E)be an outerplanar graph and k ≥ 1 an odd integer. He showed that if π = (V1, ..., Vp),
p ≥ 2, is a partition of V , then the inequality

x(δ(V1, ..., Vp)) ≥

⌈
k

2

⌉
p − 1, (2.27)is valid for kECSP(G).Didi Biha and Mahjoub [40℄ extended this result for general graphs and when ea
hedge 
an be used at most on
e. They showed that if G is a graph and π = (V1, ..., Vp),

p ≥ 2, is a partition of V su
h that Gπ is series-parallel and k is odd, then inequality
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alled inequalities (2.27) SP -partition inequalities(SP stands for series-parallel). They also des
ribed ne
essary 
onditions for inequality(2.27) to be fa
et de�ning, and showed that if G is series-parallel and k is odd, then
kECSP(G) is de�ned by the trivial, 
ut and SP -partition inequalities. Further 
on-ditions for inequalities (2.27) to be fa
et de�ning are given in the following theorems.But before, we give the next two lemmas whi
h des
ribe stru
tural properties of thesolutions of the kECSP whi
h satisfy inequalities (2.27) with equality. Note that, inthe following results, the indi
es are taken modulo p.Lemma 2.2.5 [40℄ Let x ∈ P (G, k) and π = (V1, ..., Vp), p ≥ 2, a partition of V whi
hindu
es a series-parallel graph. If the SP -partition inequality indu
ed by π is tight for
x, then

x([Vi, Vj]) ≤

⌈
k

2

⌉
, for all i, j ∈ {1, ..., p}, i 6= j. (2.28)Moreover, if (2.28) is tight for x for a given i and j with i < j, then the partition π′obtained by 
ontra
ting Vi and Vj is also tight for x.Lemma 2.2.6 Let x be an integer solution of P (G, k) and π = (V1, ..., Vp), p ≥ 2, bea partition of V su
h that Gπ is series-parallel. Let also t ∈ {1, ..., p}, su
h that theset Vt is adja
ent to exa
tly two elements of π, say Vt−1 and Vt+1. Then x satisi�es atleast one of these inequalities

x([Vt, Vj0]) ≥

⌈
k

2

⌉ with j0 ∈ {t − 1, t + 1}. (2.29)Moreover, if x satisi�es with equality the inequality (2.27) indu
ed by π, then
x([Vt, Vj0]) =

⌈
k

2

⌉
.Proof. Let x ∈ R

E be an integer solution of P (G, k). Suppose, w.l.o.g., that
x([Vt, Vt−1]) ≥ x([Vt, Vt+1]) and that j0 = t − 1. As x ∈ P (G, k), we have that

x(δ(Vt)) = x([Vt, Vt−1]) + x([Vt, Vt+1]) ≥ k.As x is integer, this yields x([Vt, Vt−1]) ≥
⌈

k
2

⌉.Now if x satis�es with equality the SP -partition inequality indu
ed by π, then, byLemma 2.2.5, x([Vt, Vt−1]) ≤
⌈

k
2

⌉, implying, together with the previous result, that
x([Vt, Vt−1]) =

⌈
k

2

⌉
.
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�Theorem 2.2.7 Let G = (V, E) be a (k + 1)-edge 
onne
ted graph and k ≥ 3 an oddinteger. Let π = (V1, ..., Vp), p ≥ 2, be a partition of V su
h that Gπ is series-parallel.The SP -partition inequality indu
ed by π de�nes a fa
et of kECSP(G), di�erent fromthe trivial inequalities, only ifi) Gπ is 2-node-
onne
ted,ii) Gπ is outerplanar,iii) |[Vi, Vi+1]| ≥

⌈
k
2

⌉ for i = 1, ..., p.Proof.i) First observe that Gπ is k-node-
onne
ted with 1 ≤ k ≤ 2. In fa
t, sin
e Gπ isseries-parallel, it 
ontains a node whi
h is adja
ent to exa
tly two other nodes. Thisimplies that the node-
onne
tivity of Gπ is at most 2. Moreover, as G is 
onne
ted,
Gπ is also 
onne
ted. Thus k ≥ 1. We will show in the following that in fa
t k = 2.Suppose, on the 
ontrary, that k = 1, that is Gπ is 1-node-
onne
ted. Thus there existsa node vi0 ∈ Vπ and two node sets W1 and W2 of Vπ su
h that ({vi0}, W1, W2) forms apartition of Vπ and [W1, W2] = ∅ (see Figure 2.4).

vi0

W1 W2Figure 2.4: A 1-node-
onne
ted graphLet pi = |Wi|, i = 1, 2, and π1 (resp. π2) be the partition obtained by 
ontra
tingthe sets of π whi
h 
orrespond to the nodes of W2 (resp. W1) toghether with those
orresponding to vi0 . Clearly, Gπi
, i = 1, 2, is series-parallel. Thus, the followinginequalities are valid for kECSP(G)

x(δ(πi)) ≥

⌈
k

2

⌉
(pi + 1) − 1, for i = 1, 2. (2.30)



46 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEMAs [W1, W2] = ∅, by summing the inequalities (2.30), we get
x(δ(π)) ≥

⌈
k

2

⌉
(p1 + p2 + 2) − 2 =

⌈
k

2

⌉
p − 1 +

⌈
k

2

⌉
− 1. (2.31)As k ≥ 3, we have that ⌈

k
2

⌉
− 1 > 0, implying that the inequality (2.27) indu
ed by

π is dominated by those indu
ed by π1 and π2, and hen
e, 
annot de�ne a fa
et.ii) Suppose that Gπ is series-parallel but not outerplanar, that is one 
annot draw Gπin the plane as a 
y
le with non 
rossing 
hords. Thus, there exist two 
onse
utivesets of π, say Vi and Vi+1, su
h that there exist two sets, W 1
i , W 2

i , of elements of πsatisfying the following 
onditions (see Figure 2.5)a) [W 1
i , W 2

i ] = ∅,b) [W j
i , Vi] 6= ∅ 6= [W j

i , Vi+1] for j = 1, 2.
V1

V3
V6

V5
V4

V2

W1

1

W2

4 W1

4

W2

1

Figure 2.5: A partition indu
ing a series-parallel but not outerplanar graphLet I = {i ∈ {1, ..., p} | Vi, Vi+1 ∈ π and there exist W 1
i , W 2

i ⊆ Vπ satisfyingConditions a) and b)}. Hen
e, I 6= ∅. Let π′ be the partition obtained by 
ontra
ting



2.2. FACETS OF KECSP(G) 47together the sets Vi, Vi+1, W 1
i , W 2

i , for every i ∈ I. Clearly, Gπ′ is outerplanar. Let
p1

i (resp. p2
i ) be the number of elements of π that are in
luded in W 1

i (resp. W 2
i ), and

pi = p1
i + p2

i . Also let r =
∑

i∈I

pi and πW j
i
, i ∈ I, j ∈ {1, 2}, be the partition obtainedfrom π by 
ontra
ting together every set of π whi
h is not in W j

i (see Figure 2.6).
V2V1

V3

V5
V4

V6

partition π′

V2V1

V6
V3

V4V5 partition πW2
1Figure 2.6: Two partitions π′ and πW j

iObviously, the graph Gπ
W

j
i

is series-parallel. Thus, the following inequalities are validfor kECSP(G),
x(δ(π′)) ≥

⌈
k

2

⌉
(p − r − |I|) − 1 (inequality (2.27) indu
ed by π′), (2.32)

x(δ(πW 1
i
)) ≥

⌈
k

2

⌉
(p1

i + 1) − 1, for all i ∈ I (inequality (2.27) indu
ed by πW 1
i
),(2.33)

x(δ(πW 2
i
)) ≥

⌈
k

2

⌉
(p2

i + 1) − 1, for all i ∈ I (inequality (2.27) indu
ed by πW 2
i
,(2.34)

x([Vi, Vi+1]) ≥ 0 (trivial inequalities). (2.35)By summing these inequalities, we get
x(δ(π)) ≥

⌈
k

2

⌉
p − 1 + |I|(

⌈
k

2

⌉
− 2). (2.36)If k = 3, the right hand side of (2.36) is the same as that of (2.27) indu
ed by

π. Therefore inequality (2.27) is redundant with respe
t to (2.32), (2.33), (2.34) and(2.35), and hen
e 
annot de�ne a fa
et.
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e |I| ≥ 1, the right hand side of (2.36) is greater than that of (2.27).Therefore, (2.27) is dominated by (2.32), (2.33), (2.34) and (2.35), and hen
e 
annotde�ne a fa
et.iii) Let ax ≥ α denotes the SP -partition inequality indu
ed by π and suppose that thisinequality de�nes a fa
et of kECSP(G) di�erent from the trivial inequalities. Supposethat there exists an integer i ∈ {1, ..., p} su
h that |[Vi, Vi+1]| ≤
k−1
2
. Let ei be a �xededge of [Vi, Vi+1]. As ax ≥ α is di�erent from inequality x(ei) ≤ 1, there exists asolution x ∈ kECSP(G) su
h that ax = α and x(ei) = 0. We distinguish two 
ases.Case 1. The set Vi or Vi+1 is exa
tly adja
ent to two elements of π. W.l.o.g. we willsuppose that Vi is adja
ent to Vi−1 and Vi+1 only. As |[Vi, Vi+1]| ≤
k−1
2

and x(ei) = 0,we have x([Vi, Vi+1]) ≤
k−1
2

− 1 and x([Vi−1, Vi]) ≥
k+1
2

+ 1, whi
h 
ontradi
ts Lemma2.2.5.Case 2. The sets Vi and Vi+1 are both adja
ent to at least three elements of π (seeFigure 2.7).
V2

V3

V6

V5

V1

V7

V4

Figure 2.7: The sets V1 and V2 are both adja
ent to at least three elements of πObserve that, as Gπ is outerplanar and hen
e series-parallel, one 
an obtain from π atwo-size partition by applying repeatidly the following operation. Let πj = (V j
1 , ..., V j

pj
)be a SP -partition of G and an element V j

i0
in
ident to exa
tly two elements V j

i0−1 and
V j

i0+1 of πj . By Lemma 2.2.6, we have either x([V j
i0
, V j

i0−1]) = k+1
2

or x([V j
i0
, V j

i0+1]) =
k+1
2
. W.l.o.g., we will suppose that x([V j

i0
, V j

i0−1]) = k+1
2

sin
e i0 − 1 and i0 + 1 playthe same role. Then, the operation 
onsists in 
ontra
ting the sets V j
i0−1 and V j

i0
and
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onsidering the partition πj+1 = (V j+1
1 , ..., V j+1

pj+1
) where

V j+1
i = V j

i for i = 1, ..., i0 − 2,

V j+1
i0−1 = V j

i0−1 ∪ V j
i0
,

V j+1
i = V j

i+1 for i = i0, ..., pj − 1.We will say that V j
i0
is merged with V j

i0−1. Note that ea
h partition πj indu
es anouterplanar subgraph of G and that we apply p − 2 times the operation to obtain atwo-size partition from π. Also note that, by Lemma 2.2.5, the SP -partition inequalityindu
ed by ea
h partition πj is tight for x.Let πj0 be the �rst partition obtained by the appli
ation of this pro
edure and su
hthat there exists a node set V j0
r of πj0 whi
h is adja
ent to exa
tly two elements, say

V j0
r−1 and V j0

r+1, and su
h that either Vi ⊆ V j0
r or Vi+1 ⊆ V j0

r . W.l.o.g., we will supposethat Vi ⊆ V j0
r and Vi+1 ⊆ V j0

r+1. Remark that πj0 is obtained by the appli
ation ofthe pro
edure to πj0−1 and V j0−1
s , for some s ∈ {1, ..., pj0−1}, with V j0−1

s adja
ent toexa
tly two elements of πj0−1.Sin
e πj0 is the �rst partition that we have meet during the su

essive appli
a-tions of the pro
edure and whi
h satis�es the above 
ondition, the partition πj0−1 =

(V j0−1
1 , ..., V j0−1

pj0−1
) is ne
essarily su
h that1. V j0−1

s is adja
ent to exa
tly two elements V j0−1
s−1 and V j0−1

s+1 ,2. Vi ⊆ V j0−1
s−1 and Vi+1 ⊆ V j0−1

s+2 ,3. V j0−1
s−1 is adja
ent to exa
tly three elements and V j0−1

s+2 is adja
ent to at least threeelements.One 
an suppose, w.l.o.g., that V j0−1
s has been merged with V j0−1

s−1 to obtain πj0 (seeFigure 2.8).
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V j0−1

s+2 = V j0
r+1

V j0−1
s+1 = V j0

r

V j0−1
s

V j0−1
s−1

V j0−1
s+3 = V j0

r+2

V j0−1
s+4 = V j0

r+3

V j0
r−1 = V j0−1

s ∪ V j0−1
s−1

V2

V3

V6

V5

V4

V1

V7

Figure 2.8: Partitions πj0−1 and πj0.Now, sin
e by assumption Vi ⊆ V j0
r and Vi+1 ⊆ V j0

r+1, we have that |[V j0
r , V j0

r+1]| ≥

|[Vi, Vi+1]|. We are going to show that in fa
t |[V j0
r , V j0

r+1]| = |[Vi, Vi+1]|. Suppose the
ontrary, that is to say that there exists an edge e ∈ [V j0
r , V j0

r+1]\[Vi, Vi+1]. Clearly, thereexist two elements Vt and Vt′ of π su
h that e ∈ [Vt, Vt′ ] and Vt ⊆ V j0
r and Vt′ ⊆ V j0

r+1.Sin
e Gπ is outerplanar, and hen
e its nodes 
an be drawn on a 
y
le with no 
rossing
hords, and sin
e Vi and Vi+1 are 
onse
utive on this 
y
le, the node set Vt 
omes before
Vi and Vt′ 
omes after Vi+1 on this 
y
le (see Figure 2.9 for an illustration).
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V
j0

r−1 = V
j0−1

s ∪ V
j0−1

s−1

V
j0−1

s+3 = V
j0

r+2

V
j0−1

s+4 = V
j0

r+3

V
j0−1

s+2 = V
j0

r+1

V
j0−1

s+1 = V
j0
r

V
j0−1

s

V
j0−1

s−1

V2

V3

V6

V5

V4

V1

V7

Figure 2.9: An edge of e ∈ [V j0
r , V j0

r+1] \ [V1, V2]. Here e ∈ [Vt, Vt′] with t = 7 and t′ = 3.However, in this situation, any edge e ∈ [Vt, Vt′ ] is a 
hord whi
h ne
essarily 
rossesthe edges of δ(Vi∪Vi+1) (see Figure 2.9), 
ontradi
ting the fa
t that Gπ is outerplanar.Thus |[V j0
r , V j0

r+1]| = |[Vi, Vi+1]|. Therefore, as |[Vi, Vi+1]| ≤
k−1
2

and x(ei) = 0, we havethat x([V j0
r , V j0

r+1]) ≤ k−1
2

− 1 and x([V j0
r , V j0

r−1]) ≥ k+1
2

+ 1, whi
h 
ontradi
ts Lemma2.2.5 and ends the proof. �The following theorem gives some su�
ient 
onditions for inequalities (2.27) to befa
et de�ning.Theorem 2.2.8 Let G = (V, E) be a graph and k ≥ 3 an odd integer. Let π =

(V1, ..., Vp), p ≥ 2, be a partition of V su
h that Gπ is outerplanar and 2-node-
onne
ted.Then the SP -partition inequality indu
ed by π is fa
et de�ning for kECSP(G), if thefollowing 
onditions holdi) G[Vi] is (k + 1)-edge 
onne
ted for i = 1, ..., p,ii) |[Vi, Vi+1]| ≥
⌈

k
2

⌉, i = 1, ..., p(see Figure 2.10 for an illustration with k = 3).
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V1

V2
V6

V4

V3
V5

Figure 2.10: An outerplanar 
on�guration with k = 3Proof. Note that sin
e Gπ is outerplanar and Conditions 1) and 2) hold, G is
(k + 1)-edge 
onne
ted. It then follows that kECSP(G) is full dimensional. Letus denote by ax ≥ α the SP -partition inequality indu
ed by π and let F = {x ∈

kECSP(G) | ax = α}. Clearly, F is a proper fa
e of kECSP(G). Now suppose thatthere exists a fa
et de�ning inequality bx ≥ α di�erent from the trivial inequalitiessu
h that F ⊆ {x ∈ kECSP(G) | bx = α}. We will show as before that b = a.Let Ti be an edge subset of [Vi, Vi+1], i = 1, ..., p, of k+1
2

edges and let T ′
i = Ti \ {gi},where gi is a �xed edge of Ti. Consider

E0 =

p⋃

i=1

E(Vi),

E1 = (

p⋃

i=1

Ti) \ {gi0} for some i0 ∈ {1, ..., p},

E2 = E1 ∪ E0.Note that gi0 /∈ E2 and gi0+1 ∈ E2. Sin
e by Condition 1) the subgraphs indu
ed bythe node sets V1, ..., Vp are (k + 1)-edge 
onne
ted, it is not hard to see that E2 and
E ′

2 = (E2 \ {gi0+1}) ∪ {gi0} indu
e k-edge-
onne
ted subgraphs of G. Sin
e xE2 and
xE′

2 belong to F, we have that bxE2 = bxE′
2 = α and hen
e b(gi0) = b(gi0+1). As gi0 and

gi0+1 are arbitrary edges of Ti0 and Ti0+1, respe
tively, it follows that b(e) = b(e′) for all
e ∈ Ti0 and e′ ∈ Ti0+1. Moreover, sin
e Ti0 and Ti0+1 are arbitrary subsets of [Vi0 , Vi0+1]and [Vi0+1, Vi0+2], respe
tively, we obtain that b(e) = b(e′) for all e ∈ [Vi0 , Vi0+1] and
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e′ ∈ [Vi0+1, Vi0+2], i0 = 1, ..., p. Consequently, by symmetry, we get

b(e) = b(e′) for all e, e′ ∈

p⋃

i=1

[Vi, Vi+1]. (2.37)Now let e ∈ [Vi0, Vj0], i0, j0 ∈ {1, ..., p} with |i0 − j0| > 1. Note that T0 = Tp,
T−1 = Tp−1 and T ′

0 = T ′
p. Consider the edge sets

E4 = (E2 \ {gi0−1}) ∪ {e},

E ′
4 = (E4 \ {e}) ∪ {gi0}.Using Lemma 2.2.2 and the fa
t that E2 indu
es a k-edge-
onne
ted subgraph of G,we 
an see that E4 and E ′

4 indu
e k-edge-
onne
ted subgraphs of G. Sin
e xE4 and
xE′

4 belong to F, it follows that bx4 = bxE′
4 = α, and hen
e b(e) = b(gi0). By (2.37)this yields

b(e) = b(e′) for all e, e′ ∈ δ(π).Sin
e axE2 = bxE2 = α, we obtain that b(e) = 1 for all e ∈ δ(π).Next, we will show that b(e) = 0 for all e ∈ E0. Consider the edge set
E5 = E2 \ {e} for some e ∈ E0.Sin
e G[Vi], i = 1, ..., p, are (k + 1)-edge 
onne
ted, E5 indu
es a k-edge-
onne
tedsubgraph of G. As xE2 and xE5 belong to F, we have that bxE2 = bxE5 = α, and thus

b(e) = 0 for all e ∈ E0.In 
onsequen
e we get b = a and the proof is 
omplete. �Chopra [21℄ des
ribed a lifting pro
edure for inequalities (2.27) whi
h 
an be pre-sented as follows. Let G = (V, E) be a graph and k ≥ 3 an odd integer. Let
G′ = (V, E∪L) be a graph obtained fromG by adding an edge set L. Let π = (V1, ..., Vp)be a partition of V su
h that Gπ is series-parallel. Then the following inequality is validfor kECSP(G′)

x(δG(V1, ..., Vp)) +
∑

e∈L∩δG′ (V1,...,Vp)

a(e)x(e) ≥

⌈
k

2

⌉
p − 1, (2.38)



54 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEMwhere a(e) is the length (in terms of edges) of a shortest path in Gπ between theendnodes of e, for all e ∈ L ∩ δG′(V1, ..., Vp).We will 
all inequalities of type (2.38) lifted SP -partition inequalities. Chopra [21℄also showed that, when G is outerplanar, inequality (2.38) de�nes a fa
et of kECSP(G′)if G is maximal outerplanar, that is to say G is outerplanar and if we add a new edgein G the new graph is not outerplanar. In the following we show that under the same
onditions, an inequality of type (2.38) also de�nes a fa
et of kECSP(G).Before this, we give the following lemma whose proof 
an be found in [21℄.Lemma 2.2.7 [21℄ Let G = (V, E) be a maximal outerplanar graph whi
h is 2-node
onne
ted. Let u, v be two nodes of G and P1 and P2 two node-disjoint paths between
u and v. Also let U = {u0, ..., ur1}, r1 ≥ 2 and W = {w0, ..., wr2}, r2 ≥ 2, the nodesets of P1 and P2 respe
tively, with u0 = w0 = u and ur1 = ur2 = v. Remark that
U ∩ W = {u, v} and V = U ∪ W . If l ≥ 2 is the length of a shortest path between uand v in G, then there exists at least l− 1 egdes e = uiwi su
h that ui ∈ U \ {u, v} and
wi ∈ W \ {u, v}.Theorem 2.2.9 Let G = (V, E) be a graph and π = (V1, ..., Vp), p ≥ 2, be a partitionof V su
h that Gπ = (Vπ, Eπ) is outerplanar. Let G = (V, E) be a graph su
h that
E = E ∪ {e1, ..., el}, l ≥ 1. The lifted SP -partition inequality indu
ed by π on Gde�nes a fa
et of kECSP(G) if the following 
onditions holds.1. Gπ is 2-node-
onne
ted and maximal outerplanar,2. |[Vi, Vi+1]| ≥

⌈
k
2

⌉, i = 1,...,p, (modulo p),3. G[Vi] is (k + 1)-edge 
onne
ted for all i = 1, ..., p.Proof. Note that if Conditions 1)-3) hold, then G and G are both (k + 1)-edge
onne
ted. It then follows that kECSP(G) is full dimensional.Let us denote by ax ≥ α, the lifted SP -partition inequality indu
ed by π on G and
F = {x ∈ kECSP(G) | ax = α}. By Conditions 1)-3), the restri
tion of ax ≥ α to Gde�nes a fa
et of kECSP(G). Thus, F 6= ∅ and is a proper fa
e of kECSP(G). Nowsuppose that there exists a fa
et de�ning inequality bx ≥ α di�erent from the trivialinequalities su
h that F ⊆ {x ∈ kECSP(G) | bx = α}. We will show that b = a.



2.2. FACETS OF KECSP(G) 55Let Vπ = {v1, ..., vp}, where vi 
orresponds to the set Vi, i = 1, ..., p, and let Gπ =

(Vπ, Eπ) be the subgraph of G indu
ed by π. Note that Eπ ⊆ Eπ. Sin
e Conditions1)-3) hold, by Theorem 2.2.8, the SP -partition inequality indu
ed by π on G de�nes afa
et of kECSP(G). Using a proof similar to that of Theorem 2.2.8, one 
an show that
b(e) = 0, for all e ∈ (

p⋃

i=1

E(Vi)), and b(e) = 1, for all e ∈ Eπ. In the following, we aregoing to show that b(e) = a(e) for all e ∈ {e1, ..., el}. Re
all that for all e ∈ Eπ \ Eπ,
a(e) is the length of a shortest path in Gπ between the endnodes of e.Let Ti be an edge subset of [Vi, Vi+1], i = 1, ..., p, of k+1

2
edges and T ′

i = Ti \ {gi},where gi is a �xed edge of Ti. Let e = uv ∈ {e1, ..., el} and P1 and P2 be two pathsin Gπ between u and v. Also let r be the length of a shortest path between u and
v in Gπ. Let U and W denote the node sets of P1 and P2 respe
tively. By Lemma2.2.7, there exist r − 1 edges fi ∈ Eπ, i ∈ {1, ..., r − 1}, whose endnodes are in U and
W , respe
tively. We let wi0 = u and wi0 , ..., wi0+r−1 be the endnodes of the edges fi,
i = 1, ..., r − 1, in W .Let

E1 = {f1, ..., fr−1} ∪ (
r−1⋃

j=0

T ′
i0+j) ∪ (

i0−1⋃

i=1

Ti) ∪ (

p⋃

i=i0+r

Ti) ∪ (

p⋃

i=1

)E(Vi).Obviously, E1 indu
es a solution of the kECSP on G and its in
iden
e ve
tor, xE1,satis�es ax ≥ α with equality. Let gi ∈ Ti, for i ∈ {1, ..., p} \ {i0, ..., i0 + r − 1}, and
onsider the edge set
E2 = (E1 ∪ {e}) \ {gi, i = i0 − r, ..., i0 − 1}.It is not hard to see that E2 indu
es a solution of the kECSP on G. Moreover, xE2satis�es ax ≥ α with equality. This implies that bxE1 = bxE2 = β. Thus,

bxE2 = bxE1 + b(e) −
i0−1∑

i=i0−r

b(gi).Sin
e gi ∈ Eπ, i = i0 − r, ...i0 − 1, and hen
e b(gi) = 1, we have that b(e) = r.Therefore, for an edge e ∈ {e1, ..., el}, b(e) = a(e).From this, we get b(e) = a(e), for all e ∈ E and hen
e, we have b = a, whi
h endsthe proof of the theorem. �
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tion we present a further 
lass of inequalities, valid for kECSP(G), introdu
edby Gröts
hel et al. in [66℄, that generalizes the 
ut inequalities. These inequalities,
alled partition inequalities, are de�ned as follows.Let π = (V1, ..., Vp), p ≥ 3, be a partition of V . The partition inequality indu
ed by
π is given by

x(δ(V1, ..., Vp)) ≥

⌈
kp

2

⌉
. (2.39)If kp is even, then inequality (2.39) is redundant with respe
t to the 
ut inequalities.Gröts
hel et al. [66℄ gave su�
ient 
onditions for the partition inequalities (2.39) tobe fa
et de�ning.Note that the partition inequalities are not a spe
ial 
ase of the F -partition in-equalities. In fa
t, if we 
onsider a partition π = (V0, V1, ..., Vp), p ≥ 2, the partitioninequality indu
ed by π is

x(δ(V0, V1, ..., Vp)) ≥

⌈
k(p + 1)

2

⌉
. (2.40)However the F -partition inequality indu
ed by π and F = ∅ is given by

x(δ(V0, V1, ..., Vp)) ≥

⌈
kp

2

⌉
. (2.41)One 
an remark that inequality (2.40) dominates inequality (2.41).2.3 Redu
tion operationsIn this se
tion, we are going to des
ribe some graph redu
tion operations whi
h will beutile for our Bran
h-and-Cut algorithm. These operations are based on the 
on
ept of
riti
al extreme points of P (G, k) introdu
ed by Fonlupt and Mahjoub [49℄ for k = 2and extended by Didi Biha and Mahjoub [39℄ for k ≥ 3.2.3.1 Des
riptionBefore des
ribing these operations, we shall �rst introdu
e some notation and de�nition.Let G = (V, E) be a graph and k ≥ 2 an integer. If x is a solution of P (G, k), we will



2.3. REDUCTION OPERATIONS 57denote by E0(x), E1(x) and Ef (x) the sets of edges e ∈ E su
h that x(e) = 0, x(e) = 1and 0 < x(e) < 1, respe
tively. We also denote by Cd(x) the set of degree tight 
uts
δ(u) su
h that δ(u) ∩ Ef(x) 6= ∅, and by Cp(x) the set of proper tight 
uts δ(W ) with
δ(W ) ∩ Ef(x) 6= ∅. Let x be an extreme point of P (G, k). Thus there is a set of 
uts
C∗

p(x) ⊆ Cp(x) su
h that x is the unique solution of the system
S(x)





x(e) = 0 for all e ∈ E0(x);

x(e) = 1 for all e ∈ E1(x);

x(δ(u)) = k for all δ(u) ∈ Cd(x);

x(δ(W )) = k for all δ(W ) ∈ C∗
p(x).Note that the system S(x) 
annot 
ontain an equation x(δ(W )) = k su
h that δ(W )∩

Ef (x) = ∅. Su
h an equation is redundant with respe
t to x(e) = 0, e ∈ E0(x), and
x(e) = 1, e ∈ E1(x).Suppose that x is fra
tional. Let x′ be a solution obtained by repla
ing some (but atleast one) fra
tional 
omponents of x by 0 or 1 (and keeping all the other 
omponentsof x un
hanged). If x′ is a point of P (G, k), then it 
an be written as a 
onvex
ombination of extreme points of P (G, k). If y is su
h an extreme point, then y is saidto be dominated by x, and we write x ≻ y. Note that if x dominates y, then {e ∈

E | 0 < y(e) < 1} ⊂ {e ∈ E | 0 < x(e) < 1}, {e ∈ E | x(e) = 0} ⊆ {e ∈ E | y(e) = 0}and {e ∈ E | x(e) = 1} ⊆ {e ∈ E | y(e) = 1}. The relation ≻ de�nes a partial orderingon the extreme points of P (G, k). The minimal elements of this ordering (i.e., theextreme points x for whi
h there is no extreme point y su
h that x ≻ y) 
orrespondto the integer extreme points of P (G, k). The minimal extreme points of P (G, k) are
alled extreme points of rank 0. An extreme point x is said to be of rank p, if x onlydominates extreme points of rank ≤ p−1 and if it dominates at least one extreme pointof rank p − 1. We noti
e that if x is an extreme point of rank 1 and if we repla
e onefra
tional 
omponent of x by 1, keeping un
hanged the other integral 
omponents, weobtain a feasible solution x′ of P (G, k) whi
h 
an be written as a 
onvex 
ombinationof integer extreme points of P (G, k).Didi Biha and Mahjoub [39℄ introdu
ed the following redu
tion operations with re-spe
t to a solution x of P (G, k).
θ1: delete an edge e ∈ E su
h that x(e) = 0;
θ2: 
ontra
t a node subset W ⊆ V su
h that G[W ] is k-edge-
onne
ted and x(e) = 1for all e ∈ E(W );
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θ3: 
ontra
t a node subset W ⊆ V su
h that |W | ≥ 2, |W | ≥ 2, |δ(W )| = k and

E(W ) 
ontains at least one edge with fra
tional value;
θ4: 
ontra
t a node subset W ⊆ V su
h that |W | ≥ 2, |W | ≥ 2, G[W ] is ⌈

k
2

⌉-edge
onne
ted, |δ(W )| = k + 1 and x(e) = 1 for all e ∈ E(W ).Starting from a graph G and a solution x ∈ P (G, k) and applying θ1, θ2, θ3, θ4, weobtain a redu
ed graph G′ and a solution x′ ∈ P (G′, k). Didi Biha and Mahjoub [39℄showed that x′ is an extreme point of P (G′, k) if and only if x is an extreme point of
P (G, k). Moreover, they showed the following results.Lemma 2.3.1 [39℄ x′ is an extreme point of rank 1 of P (G′, k) if and only if x is anextreme point of rank 1 of P (G, k).Lemma 2.3.2 [39℄ If C∗

p(x) = ∅, then the graph indu
ed by Ef(x) is an odd 
y
le
C ⊆ E su
h thati) x(e) = 1

2
for all e ∈ C,ii) x(δ(u)) = k for all u ∈ V (C).An extreme point x of P (G, k) will be said 
riti
al if it is of rank 1 and none of theoperations θ1, θ2, θ3, θ4 
an be applied to it. If su
h an extreme point satis�es theassumption of Lemma 2.3.2, then it violates the following F -partition inequality

∑

e∈C

x(e) ≥
|C| + 1

2
.Hen
e the 
riti
al extreme points of P (G, k) that satisfy the assumption of Lemma2.3.2 
an be separated in polynomial time.We will use operations θ1, θ2, θ3, θ4 in our Bran
h-and-Cut algorithm for the kECSP.As we will see, we use them as a prepro
essing for the separation pro
edures.2.3.2 Redu
tion operations and valid inequalitiesGiven a fra
tional solution x of P (G, k), we let G′ = (V ′, E ′) and x′ be obtained byrepeated appli
ations of operations θ1, θ2, θ3, θ4 with respe
t to x.As pointed out above, x′ is an extreme point of P (G′, k) if and only if x is an extremepoint of P (G, k). Moreover, we have the following lemmas whi
h 
an be easily seen.



2.3. REDUCTION OPERATIONS 59Lemma 2.3.3 Let a′x ≥ α be an F -partition inequality (resp. partition inequality)valid for kECSP(G′) indu
ed by a partition π′ = (V ′
0 , V

′
1 , ..., V

′
p), p ≥ 2, (resp. π′ =

(V ′
1 , ..., V

′
p), p ≥ 3) of V ′. Let π = (V0, V1, ..., Vp), p ≥ 2, (resp. π = (V1, ..., Vp), p ≥ 3)be the partition of V obtained by expanding the subsets V ′

i of π′. Let ax ≥ α be aninequality su
h that
a(e) =





a′(e) for all e ∈ E ′,

1 for all e ∈ (E \ E ′) ∩ δG(π),

0 otherwise.Then ax ≥ α is valid for kECSP(G). Moreover, if a′x ≥ α is violated by x′, then
ax ≥ α is violated by x.Lemma 2.3.4 Let a′x ≥ α be an odd path inequality (resp. SP -partition inequality)valid for kECSP(G′) indu
ed by a partition π′ = (W ′

1, W
′
2, V

′
1 , ..., V

′
2p), p ≥ 2 (resp.

π = (V ′
1 , ..., V

′
p), p ≥ 3). Let π = (W1, W2, V1, ..., V2p), p ≥ 2 (resp. π = (V1, ..., Vp),

p ≥ 3), be the partition of V obtained by expanding the elements of π′. Let ax ≥ αbe the 
orresponding lifted odd path inequality (resp. lifted SP -partition inequality)obtained from a′x ≥ α by appli
ation of the lifting pro
edure des
ribed in Se
tion 2.2.2(resp. Se
tion 2.2.4) for the edges of E \ E ′. Then ax ≥ α is violated by x, if a′x ≥ αis violated by x′.Lemmas 2.3.3 and 2.3.4 show that looking for an odd path, F -partition, SP -partitionor a partition inequality violated by x redu
es to looking for su
h inequality violated by
x′ onG′. Note that this pro
edure 
an be applied for any solution of P (G, k) and may, in
onsequen
e, permit to separate fra
tional solutions whi
h are not ne
essarily extremepoints of P (G, k). In 
onsequen
e, for more e�
ien
y, our separation pro
edures willbe performed on the redu
ed graph G′. The violated inequalities generated in G′ withrespe
t to x′ are lifted to violated inequalities in G with respe
t to x using Lemmas2.3.3 and 2.3.4.



Chapter 3
Bran
h-and-Cut algorithm for the
kECSP
In this 
hapter, we des
ribe a Bran
h-and-Cut algorithm for the kECSP. Our aim is toaddress the algorithmi
 appli
ations of the theoriti
al results presented in the previousse
tions and des
ribe some strategi
 
hoi
es made in order to solve that problem. So,let us assume that we are given a graph G = (V, E) and a weight ve
tor w ∈ R

Easso
iated with the edges of G. Let k ≥ 3 be the 
onne
tivity requirement for ea
hnode of V .3.1 Bran
h-and-Cut algorithm3.1.1 Des
riptionWe des
ribe the framework of our algorithm. To start the optimization we 
onsiderthe following linear program given by the degree 
uts asso
iated with the verti
es ofthe graph G together with the trivial inequalities, that isMin ∑

e∈E

w(e)x(e)

x(δ(u)) ≥ k for all u ∈ V,

0 ≤ x(e) ≤ 1 for all e ∈ E.The optimal solution y ∈ R
E of this relaxation of the kECSP is feasible for the problemif y is an integer ve
tor that satis�es all the 
ut inequalities. Usually, the solution y is



3.1. BRANCH-AND-CUT ALGORITHM 61not feasible for the kECSP, and thus in ea
h iteration of the Bran
h-and-Cut algorithm,it is ne
essary to generate further inequalities that are valid for the kECSP but violatedby the 
urrent solution y. For this, one has to solve the so-
alled separation problem.This 
onsists, given a 
lass of inequalities, in de
iding whether the 
urrent solution
y statis�es all the inequalities of this 
lass, and if not, in �nding an inequality thatis violated by y. An algorithm solving this problem is 
alled a separation algorithm.The Bran
h-and-Cut algorithm uses the inequalities previously des
ribed and theirseparations are performed in the following order1. 
ut inequalities,2. SP -partition inequalities,3. odd path inequalities,4. F -partition inequalities,5. partition inequalities.We remark that all inequalities are global (i.e., valid for all the Bran
h-and-Cuttree) and several inequalities may be added at ea
h iteration. Moreover, we go tothe next 
lass of inequalities only if we haven't found any violated inequalities in the
urrent 
lass. Our strategy is to try to dete
t violated inequalities at ea
h node of theBran
h-and-Cut tree in order to obtain the best possible lower bound and thus limitthe number of generated nodes. Generated inequalities are added by sets of 200 orfewer at a time.Now we des
ribe the separation pro
edures used in our Bran
h-and-Cut algorithm.These are all heuristi
 pro
edures ex
ept that for the 
ut inequalities whi
h is performedusing an exa
t polynomial-time algorithm. The pro
edures are applied on G′ withweights (y′(e), e ∈ E ′) asso
iated with its edges where y′ is the restri
tion on E ′ of the
urrent LP-solution y (G′ and y′ are obtained by repeated appli
ations of operations
θ1, θ2, θ3, θ4).3.1.2 Separation of 
ut inequalitiesThe separation of the 
ut inequalities (2.3) 
an be performed by 
omputing minimum
uts in G′. This 
an be done in polynomial time using Gus�eld algorithm [68℄. Thisalgorithm produ
es the so-
alled Gomory-Hu tree with the property that for all pairs



62 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE KECSPof nodes s, t ∈ V ′, the minimum (s, t)-
ut in the tree is also a minimum (s, t)-
ut in thegraph G′. The algorithm requires |V ′|−1 maximum �ow 
omputations. The maximum�ow 
omputations are handled by the e�
ient Goldberg and Tarjan algorithm [58℄ thatruns in O(m′n′ log n′2

m′ ) time where m′ and n′ are the number of edges and nodes of G′,respe
tively. Thus our separation algorithm for the 
ut inequalities is exa
t and runsin O(m′n′2 log n′2

m′ ) time.3.1.3 Separation of odd path inequalitiesIn what follows, we 
onsider the separation of the odd path inequalities (2.4). For this,we need the following lemma.Lemma 3.1.1 Let x ∈ R
E be a fra
tional solution of P (G, k) and π = (W1, W2, V1, ..., V2p),

p ≥ 2, a partition of V , whi
h indu
es an odd path 
on�guration. If ea
h edge set
[Vi, Vi+1], i = 1, ..., 2p − 1, 
ontains an edge with fra
tional value and

x([Vi−1, Vi]) + x([Vi, Vi+1]) ≤ 1 for i = 2, ..., 2p − 1,then the odd path inequality indu
ed by π is violated by x.Proof. As x([Vi−1, Vi]) + x([Vi, Vi+1]) ≤ 1, i = 2, ..., 2p − 1, we have that
x([V2s−1, V2s]) + x([V2s, V2s+1]) ≤ 1 for s = 1, ..., p − 1, (3.1)
x([V2s, V2s+1]) + x([V2s+1, V2s+2]) ≤ 1 for s = 1, ..., p − 1. (3.2)By multiplying inequality (3.1) by p−s

p
and inequality (3.2) by s

p
and summing theresulting inequalities, we obtain

∑

i∈I

x([Vi, Vi+1]) +
∑

i∈I

p − 1

p
x([Vi, Vi+1]) ≤ p − 1, (3.3)where I = {2, 4, 6, ..., 2p− 2} and I = {1, 2, ..., 2p − 1} \ I. Be
ause ea
h set [Vi, Vi+1],

i = 1, ..., 2p − 1, 
ontains an edge with fra
tional value, we have that x([Vi, Vi+1]) < 1for all i ∈ I. Hen
e
∑

i∈I

x([Vi, Vi+1]) < p. (3.4)



3.1. BRANCH-AND-CUT ALGORITHM 63By multiplying inequality (3.4) by 1
p
and summing the resulting inequality and inequal-ity (3.3), we obtain

2p−1∑

i=1

x([Vi, Vi+1]) < p,and the result follows. �Our separation heuristi
 is based on Lemma 3.1.1. The idea is to �nd a partition
π = (W ′

1, W
′
2, V ′

1 , ..., V
′
2p), p ≥ 2, whi
h indu
es an odd path 
on�guration that satis�esthe 
onditions of Lemma 3.1.1. The pro
edure works as follows. We �rst look, usinga greedy method, for a path Γ = {e1, ..., e2p−1}, p ≥ 2, in G′ su
h that the edges

e1, ..., e2p−1 have fra
tional values and y′(ei−1) + y′(ei) ≤ 1, for i = 2, ..., 2p − 1. If
v′
1, ..., v

′
2p are the nodes of Γ taken in this order when going through Γ, we let V ′

i = {v′
i},

i = 1, ...2p, and T1 = (
⋃

i∈I1

V ′
i ) ∪ V ′

1 (resp. T1 = (
⋃

i∈I1

V ′
i ) ∪ V ′

1 ∪ V ′
2p) if p is odd (resp.even), and T2 = (

⋃

i∈I2

V ′
i ) ∪ V ′

2p (resp. T2 = (
⋃

i∈I2

V ′
i )) if p is odd (resp. even) where I1and I2 are as de�ned in Se
tion 2.2.1. In order to determine W ′

1 and W ′
2, we 
omputea minimum 
ut separating T1 and T2. If δ(W ) is su
h a 
ut with T1 ⊆ W , we let

W ′
1 = W \ T1 and W ′

2 = V ′ \ (W ∪ T2). If the partition π = (W ′
1, W

′
2, V

′
1 , ..., V

′
2p) thusobtained indu
es an odd path 
on�guration, then, by Lemma 3.1.1, the 
orrespondingodd path inequality is violated by y′. If not, we apply again that pro
edure by lookingfor an other path. In order to avoid the dete
tion of the same path, we label the edgesof the dete
ted paths so that they won't appear again when sear
hing for a new path.This pro
edure is iterated until either a violated odd path inequality is found or all theedges, having fra
tional values, are labeled. The routine that permits to look for anodd path runs in O(m′n′) time. To 
ompute the minimum 
ut separating T1 and T2,we use Goldberg and Tarjan algorithm [58℄. Sin
e this algorithm runs in O(m′n′log n′2

m′ )time, our pro
edure is implemented to run in O(m′2n′ log n′2

m′ ) time.In the lifting pro
edure for inequalities (2.4) given in Se
tion 2.2.2 we have to 
omputea 
oe�
ient λ for some edges e ∈ E \ E ′. Sin
e the 
omputation of this 
oe�
ient isitself a hard problem, and λ ≤ 2, we 
onsider 2 as lifting 
oe�
ient for those edgesrather than λ.



64 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE KECSP3.1.4 Separation of F -partition inequalitiesNow we dis
uss our separation pro
edure for the F -partition inequalities (2.21). Theseinequalities 
an be separated in polynomial time using the algorithm of Baïou et al.[6℄ when k is even and the edge set F is �xed. For the general 
ase, we devised threeheuristi
s to separate them.Our �rst heuristi
 is based on Lemma 2.3.2. As pointed out by that lemma, if x is a
riti
al extreme point of P (G, k) su
h that C∗
p(x) = ∅, then the edges having fra
tionalvalues with respe
t to x have all a value equal to 1

2
and form an odd 
y
le C. Moreover,

x(δ(u)) = k for all u ∈ V (C) and
∑

e∈C

x(e) ≥
|C| + 1

2
,is an F -partition inequality violated by x. The heuristi
 works as follows. It startsby determining an odd 
y
le in G′ whose edges have fra
tional value and nodes aretight. Let v′

1, ..., v
′
p, p ≥ 3, be the nodes involved in this 
y
le. Then we let V ′

i = {v′
i},for i = 1, ..., p, and V ′

0 = V ′ \ {v′
1, ..., v

′
p}. We 
hoose the edges of F among those of

δ(V ′
0) having values greater than 1

2
and in su
h a way that |F | and kp have di�erentparities (if su
h an edge set F is empty then we look for an other partition). The 
y
leis obtained by a dire
t labeling pro
edure. Hen
e the heuristi
 runs in a linear time.Before introdu
ing our se
ond heuristi
, we �rst give the following lemma.Lemma 3.1.2 Let x ∈ R

E be a fra
tional solution of P (G, k) and π = (V0, V1, ..., Vp),
p ≥ 2, a partition of V su
h that x(δ(Vi)) = k for i = 1, ..., p. Then an F -partitioninequality, indu
ed by π and an edge set F ⊆ δ(V0) su
h that |F | and kp have di�erentparities is violated by x if the following inequality holds

|F | − x(F ) + x(δ(V0) \ F ) < 1. (3.5)Proof. As x(δ(Vi)) = k, i = 1, ..., p, we have that
p∑

i=1

x(δ(Vi)) = 2x(δ(V1, ..., Vp)) + x(δ(V0)) = kp.This together with (3.5) yield
− 2x(F ) + 2x(δ(V0)) + 2x(δ(V1, ..., Vp)) < kp − |F | + 1,



3.1. BRANCH-AND-CUT ALGORITHM 65and thus the statement follows. �The heuristi
 is based on Lemma 3.1.2. It starts by determining all the nodes u of V ′su
h that y′(δ(u)) = k and δ(u) 
ontains at least one edge with fra
tional value. Let
{v′

1, ..., v
′
p}, p ≥ 2, be the set of su
h nodes. We 
onsider the partition (V ′

0 , V
′
1 , ..., V

′
p)su
h that V ′

i = {v′
i}, for i = 1, ..., p, and V ′

0 = V ′\{v1, ..., vp}, and 
hoose the edges of Fin a similar way as in the �rst heuristi
. If inequality (3.5) holds with respe
t to F and
V ′

0 , then by Lemma 3.1.2 the F -partition inequality 
orresponding to (V ′
0 , V

′
1 , ..., V

′
p)and F is violated by y′.Before presenting our last heuristi
 for the F -partition inequalities, let us �rst remarkthat a partition (V ′

0 , V
′
1 , ..., V

′
p) and an edge set F ⊆ δ(V ′

0) may indu
e a violated F -partition inequality if y′(δ(V ′
0)) is high and the edges of F are among those of δ(V ′

0)with high values. Our heuristi
 tries to �nd su
h a partition. For this, we �rst 
omputea Gomory-Hu tree in G′ with the weights (1− y′(e), e ∈ E ′) asso
iated with its edges.Then from ea
h proper 
ut δ(W ) with V ′ \ W = {v′
1, ..., v

′
p}, p ≥ 2, obtained from theGomory-Hu tree, we 
onsider the partition π = (V ′

0 , V
′
1 , ..., V

′
p) su
h that V ′

i = {v′
i},for i = 1, ..., p, and V ′

0 = W . The edge set F is 
hosen in a similar way as in theprevious heuristi
s. Sin
e the 
omputation of the Gomory-Hu tree 
an be done in
O(m′n′2 log n′2

m′ ) time, the heuristi
 runs in O(m′n′2 log n′2

m′ ).These three heuristi
s are applied in the Bran
h-and-Cut algorithm in that order.3.1.5 Separation of SP -partition inequalitiesNow we turn our attention to the separation of the SP -partition inequalities (2.27).These inequalities 
an be separated in polynomial time using the algorithm of Baöuet al. [6℄ when G′ is series-parallel. That algorithm uses a redu
tion of the separationproblem to the minimization of a submodular fun
tion. Re
ently, Didi Biha et al. [42℄devised a pure 
ombinatorial algorithm for the separation of the SP -partition inequali-ties when the graph is series-parallel. For our purpose, we devised a heuristi
 to separateinequalities (2.27) in the general 
ase. This heuristi
 is based on Theorems 2.2.7 and2.2.8. The main idea of the heuristi
 is to determine a partition π = (V ′
1 , ..., V

′
p), p ≥ 3,of V ′ whi
h indu
es an outerplanar graph su
h that |[V ′

i , V
′
i+1]| ≥

⌈
k
2

⌉, i = 1, ..., p,(modulo p) (see Figure 2.10), and for every 
onse
utive sets V ′
i and V ′

j , the edge set
[V ′

i , V
′
j ] 
ontains at least one edge with fra
tional value. To this end, we look in G′ for a
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1v

′
2, v

′
2v

′
3, ..., v

′
p−2v

′
p−1}, p ≥ 3, su
h that |[v′

i, v
′
i+1]| ≥

⌈
k
2

⌉ and [v′
i, v

′
i+1] 
on-tains one edge or more with fra
tional value, for i = 1, ..., p−2. We then let V ′
i = {v′

i},
i = 1, ..., p− 1, and V ′

p = V ′ \ {v′
1, ..., v

′
p−1}. Afterwards, we 
he
k by a simple heuristi
if the graph G′

π is outerplanar. Finally, we 
he
k if the SP -partition inequality indu
edby π is violated by y′ or not. If either the graph G′
π is not outerplanar or the SP -partition inequality, indu
ed by π, is not violated by y′, we apply again this pro
edureby looking for an other path. In order to avoid the dete
tion of the same path, welabel the nodes we met during the sear
h of the previous ones, so that they won't be
onsidered in the sear
h of a new path. This pro
ess is iterated until either we �nd aviolated SP -partition inequality or all the nodes of V ′ are labeled. The heuristi
 
anbe implemented to run in O(m′n′) time.3.1.6 Separation of partition inequalitiesNow we dis
uss the separation of the partition inequalities (2.39). First observe thatif π = (V ′

1 , ..., V
′
p) is a partition of V ′, with p ≥ 3 and odd, su
h that y′(δ(V ′

i )) = k,for i = 1, ..., p, then the partition inequality indu
ed by π is violated by y′. Thusone 
an devise a heuristi
 to separate inequalities (2.39) whi
h 
onsists in �nding apartition π = (V ′
1 , ..., V

′
p), with p ≥ 3 and odd, su
h that y′(δ(V ′

i )) is as small aspossible for i = 1, ..., p. To do this, we 
ompute a Gomory-Hu tree, say T, in G′with the weights (y′(e), e ∈ E ′) asso
iated with its edges. After that, we 
ontra
t thedisjoint node subsets that indu
e proper tight 
uts in T. Let V ′
1 , ..., V

′
t be these sets and

{vt+1, ..., vp} = V ′ \ (

t⋃

i=1

V ′
i ). We then 
onsider the partition (V ′

1 , ..., V
′
t , {vt+1}, ..., {vp})and 
he
k whether or not the 
orresponding partition inequality is violated by y′. Thisalgorithm leads to an O(m′n′2 log n′2

m′ ) time 
omplexity.To store the generated inequalities, we 
reate a pool whose size in
reases dynami
ally.All the generated inequalities are put in the pool and are dynami
, i.e., they areremoved from the 
urrent LP when they are not a
tive. We �rst separate inequalitiesfrom the pool. If all the inequalities in the pool are satis�ed by the 
urrent LP-solution,we separate the 
lasses of inequalities in the order given above.3.1.7 Implementation of redu
tion operationsAs mentioned before, the redu
tion operations θ1, θ2, θ3, θ4 are applied before the sepa-ration pro
edures. Here we des
ribe the implementation of these redu
tion operations.



3.1. BRANCH-AND-CUT ALGORITHM 67We give only the algorithms for Operations θ2, θ3 and θ4. That of θ1 is trivial sin
e it
onsists in deleting every edge e ∈ E with y(e) = 0. Note that Operations θ2, θ3 and
θ4 are applied on the support graph G(y).3.1.7.1 Implementation of Operation θ2Operation θ2 
onsists in 
ontra
ting a node set W ⊆ V su
h that the subgraph G[W ]indu
es a k-edge-
onne
ted subgraph and y(e) = 1 for all e ∈ E(W ).We apply the following heuristi
 for Operation θ2. First, we 
onsider the graph
G1 obtained by deleting from G(y) all the edges with a fra
tional value and 
omputethe 
onne
ted 
omponents of G1. Let (V1, ..., Vp), p ≥ 1, be the set of the 
onne
ted
omponents. Note that G1 may be 
onne
ted. Then, we apply the following pro
edureto every 
onne
ted 
omponent of G1. Consider a sta
k Q of node sets, initialized withthe sets Vi, i = 1, ..., p. Remind that to push a node set W in Q is to put W on thetop of Q. Also to pop an element from Q is to remove from Q the node set whi
h ison the top Q. We apply the following algorithm on the sets in Q until Q is empty.Algorithm 2: Operation θ2Data: Q = {V1, ..., Vp}, G(y) = (V, E(y))Result: Redu
ed graph Gr = (Vr, Er)beginwhile Q is not empty doLet W be the top of Q and pop W ;if |W | ≥ 2 and |V \ W | ≥ 2 thenif the subgraph indu
ed by W in G(y) does not 
ontain edges withfra
tional value thenChe
k if G1[W ] is k-edge-
onne
ted or not by 
omputing theminimum 
apa
ity 
ut of G1[W ];if true then
ontra
t W ;elseLet [W1, W2] denote the minimum 
apa
ity 
ut of G1[W ];Push W1 and W2 on Q;endTo 
ompute the minimum 
apa
ity 
ut of G1[W ], we use Hao and Orlin's algorithm[69℄ whi
h runs in O(nm log n2

m
) times. Note that given a set Vi, i = 1, ..., p, the main
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ontains a number of iterations in O(log(|Vi|)). Ea
h iteration
onsists at most in 
he
king if the graph indu
ed by W 
ontains edges with fra
tionalvalue and 
omputating of a minimum 
apa
ity 
ut. Thus, the algorithm for Operation
θ2 runs in O(log (n)(nm log (n2

m
) + m)). Hen
e, this pro
edure is polynomial.3.1.7.2 Implementation of Operation θ3Operation θ3 
onsists in 
ontra
ting a node set W su
h that |W | ≥ 2, |V \ W | ≥ 2,

|δ(W )| = k and E(V \W ) 
ontains edges with fra
tional values. We devise the followingheuristi
 for this operation. First we give 1 as 
apa
ity for every edge of G(y) and
ompute a Gomory-Hu tree on it. Let T be the tree obtained. Observe that everyedge of T with weight k indu
es a 
ut δ(W ) of exa
tly k edges in G(y). We apply thepro
edure des
ribed below on every k-
apa
ity 
ut δ(W ) obtained from T until we �nda 
andidate node set to 
ontra
t or we explore all the k-
apa
ity 
uts obtained from
T . The pro
edure is des
ribed as follows. If |W | ≥ 2 and |V \ W | ≥ 2, then we 
he
kif the subgraph indu
ed by V \W in G(y) 
ontains edges with fra
tional values or not.If this is the 
ase, then we 
ontra
t W . If not, then we 
he
k if the graph indu
ed by
W in G(y) 
ontains edges with fra
tional values. If this is the 
ase, then we 
ontra
t
V \ W and terminate the pro
edure.We repeat this pro
edure until no 
ontra
tion is possible by the algorithm.The implementation for Operation θ3 is summarized by Algorithm 3.



3.1. BRANCH-AND-CUT ALGORITHM 69Algorithm 3: Operation θ3Data: G(y) = (V, E(y))Result: Redu
ed graph Gr = (Vr, Er)beginrepeatGive 1 as 
apa
ity on the edges of G(y);Compute a Gomory-Hu tree T ;forea
h δ(W ) obtained from T su
h that |δ(W )| = k doif |W | ≥ 2 and |V \ W | ≥ 2 thenif G(y)[V \ W ] 
ontains edges with fra
tional values thenContra
t W ;Break;elseif G(y)[W ] 
ontains edges with fra
tional values thenContra
t V \ W ;Break;until no 
ontra
tion is possible;endThis algorithm 
ontains at most O(log (n)) iterations. Ea
h iteration is 
omposed ofthe 
omputation of a Gomory-Hu tree and, for every 
ut δ(W ) obtained in T , the 
he
kthat G(y)[V \W ] or G(y)[W ] 
ontains edges with fra
tional values. As the 
omputationof the Gomory-Hu tree runs in O(mn2 log n2

m
), ea
h iteration runs in O(mn2 log n2

m
+m).Thus, the whole algorithm runs in O(log (n)(mn2 log n2

m
+ m)) and is polynomial.3.1.7.3 Implementation of operation θ4Operation θ4 
onsists in 
ontra
ting a node set W su
h that |W | ≥ 2, |V \ W | ≥ 2,

|δ(W )| = k + 1, G[W ] is ⌈
k
2

⌉-edge-
onne
ted and y(e) = 1 for all e ∈ E(W ). Wepropose two heuristi
s for this operation.The �rst heuristi
 is as follows. We give 1 as 
apa
ity for every edge of G(y) and
ompute a Gomory-Hu tree on G(y) with these 
apa
ities. If T denotes this tree, one
an observe that every edge of T with weight k + 1 indu
es in G(y) a 
ut δ(W ) ofexa
tly k + 1 edges. For every 
ut δ(W ) su
h that |δ(W )| = k + 1 obtained from T ,we 
he
k if the subgraph G(y)[W ] does not 
ontain any edge with fra
tional value.If this is the 
ase, then we 
he
k if G(y)[W ] is ⌈
k
2

⌉-edge-
onne
ted by 
omputing its



70 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE KECSPminimum 
ut. If G(y)[W ] is ⌈
k
2

⌉-edge-
onne
ted, then we 
ontra
t W . If G(y)[W ] isnot ⌈
k
2

⌉-edge-
onne
ted or it 
ontains edges with fra
tional values, then we perform thesame 
he
ks on W . If G(y)[W ] does not 
ontain edges with fra
tional value and is ⌈
k
2

⌉-edge-
onne
ted, then we 
ontra
t W . We repeat this algorithm until no 
ontra
tion ispossible.In the se
ond heuristi
, we look for 
liques W of G(y) with (
⌈

k
2

⌉
+1) nodes su
h that

y(e) = 1 for all E(y)(W ) and su
h that |δ(W )| = k + 1. It is not hard to see that if Wis a 
lique of (
⌈

k
2

⌉
+ 1) nodes, then the subgraph indu
ed by W is ⌈

k
2

⌉-edge-
onne
ted.If su
h 
lique exists in G(y) with |δ(W )| = k+1 and y(e) = 1 for all e ∈ E(y)(W ), thenwe 
ontra
t W . One 
an use a greedy algorithm to 
ompute a 
lique W of (
⌈

k
2

⌉
+ 1)nodes and su
h that the subgraph indu
ed by W does not 
ontain edges with fra
tionalvalue. As for the previous heuristi
, we repeat this algorithm until no 
ontra
tion ispossible.These two algorithms are summurized in Algorithms 4 and 5.Algorithm 4: Operation θ4 − 1Data: G(y) = (V, E(y))Result: Redu
ed graph Gr = (Vr, Er)beginrepeatGive 1 as 
apa
ity on the edges of G(y);Compute a Gomory-Hu tree T ;forea
h δ(W ) obtained from T su
h that |δ(W )| = k + 1 doif |W | ≥ 2 and |V \ W | ≥ 2 thenif G(y)[W ] does not 
ontain edges with fra
tional value thenCompute the minimum 
ut of G(y)[W ];if G(y)[W ] is ⌈

k
2

⌉-edge-
onne
ted thenContra
t W ;Break;until no 
ontra
tion is possible;end



3.1. BRANCH-AND-CUT ALGORITHM 71Algorithm 5: Operation θ4 − 2Data: G(y) = (V, E(y))Result: Redu
ed graph Gr = (Vr, Er)beginrepeatSear
h a 
lique W of G(y) on (
⌈

k
2

⌉
+ 1) nodes and su
h that y(e) = 1 for all

e ∈ E(y)(W );if W exists and |W | ≥ 2 and |V \ W | ≥ 2 thenif |δG(y)(W )| = k + 1 thenContra
t W ;Break;until no 
ontra
tion is done;endThe minimum 
ut of a subgraph G[W ] is 
omputed using Hao and Orlin's algorithm[69℄. As for Operation θ3, the �rst heuristi
 runs in O(log (n)(mn2 log n2

m
+ m)). It isthus polynomial. For the se
ond algorithm, the greedy algorithm used to �nd 
liquesof G(y) runs in O(n2K3

2
) where K = max{|δG(y)(u)|, for all u ∈ V }. Remark that inmost 
ases, |δG(y)(u)| ≤ 2k, for every u ∈ V . We will thus 
onsider that K ≤ 2k. Thisimplies that the heuristi
 runs in O(n2k3) in most 
ases, and is polynomial.Figure 3.1 gives an example of appli
ation of Operations θ3 and θ4 on a fra
tionalextreme point of P (G, k). The dashed edges have value 0.5 and the plain edges havevalue 1.
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11

edges with value 1edges with value 0.5
912 8 14 3 4

6 513 7 1210
θ3

{9, 10, 11}

1 6 125432 8 13 714
θ4

2 714 456
3

12{1, 8, 9, 10, 11} 13
θ4

{1, 8, 9, 10, 11}

{5, 6, 12}13 7142 3 4
Figure 3.1: Example of appli
ation of Operations θ3 and θ4 for k = 3On Figure 3.1, we 
an easily see that the partitions

π1 = ({1, 8, 9, 10, 11}, {2}, {13}, {3, 4, 5, 6, 7, 12, 14}) and
π2 = ({5, 6, 12}, {4}, {7}, {1, 2, 3, 8, 9, 10, 11, 13, 14}) indu
e two SP -partition inequali-ties that are violated by the underlying fra
tional solution of the example.3.1.8 Primal heuristi
Another important issue in the e�e
tiveness of the Bran
h-and-Cut algorithm is the
omputation of a good upper bound at ea
h node of the Bran
h-and-Cut tree. Todo this, if the separation pro
edures do not generate any violated inequality and the
urrent solution y is still fra
tional, then we transform y into a feasible solution ofthe kECSP, say ŷ, by rounding up to 1 all the fra
tional 
omponents of y. We thentry to redu
e the weight of the solution thus obtained by removing from the subgraph
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H = (V, Ê) indu
ed by ŷ some une
essary edges, that is to say edges whi
h do nota�e
t the k-edge-
onne
tedness of H . To this end, we remove from Ê ea
h edge e = uvsu
h that |δ(u)∩ Ê| ≥ k +1 and |δ(v)∩ Ê| ≥ k+1. We then 
he
k if the resulting edgeset, say Ê ′, indu
es a k-edge-
onne
ted subgraph of G by 
omputing a Gomory-Hutree. If there exists in Ê ′ a 
ut δ(W ), W ⊆ V , 
ontaining less than k edges, then weadd in Ê ′ edges of [W, V \ W ] \ δ(W ) that have been previously removed from Ê asmany as ne
essary in order to satisfy the 
ut δ(W ). We do this until the graph (V, Ê ′)be
omes k-edge-
onne
ted. Note that we add to ea
h violated 
ut the edges havingthe smallest weights.3.2 Computational resultsThe Bran
h-and-Cut algorithm des
ribed in the previous se
tion has been implementedin C++, using ABACUS 2.4 alpha [1, 101℄ to manage the Bran
h-and-Cut tree, andCPLEX 9.0 [2℄ as LP-solver. It was tested on a Pentium IV 3.4 Ghz with 1 Gb ofRAM, running under Linux. We �xed the maximum CPU time to 5 hours. The testproblems were obtained by taking TSP test problems from the TSPLIB library [3℄.The test set 
onsists in 
omplete graphs whose edge weights are the rounded eu
lidiandistan
e between the edge's verti
es. The tests were performed for k = 3, 4, 5. Inall our experiments, we have used the redu
tion operations des
ribed in the previousse
tions, unless otherwise spe
i�ed. Ea
h instan
e is given by its name followed byan extension representing the number of nodes of the graph. The other entries of thevarious tables are:
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ut inequalities;NSP : number of generated SP -partition inequalities;NOP : number of generated odd path inequalities;NFP : number of generated F -partition inequalities;NP : number of generated partition inequalities;COpt : weight of the optimal solution obtained;Gap1 : the relative error between the best upper bound(the optimal solution if the problem has been solvedto optimality) and the lower bound obtained at theroot node of the Bran
h-and-Cut tree using only the
ut and the trivial inequalities;Gap2 : the relative error between the best upper bound(the optimal solution if the problem has been solvedto optimality) and the lower bound obtained at theroot node of the Bran
h-and-Cut tree;NSub : number of subproblems in the Bran
h-and-Cut tree;TT : total CPU time in hours:min:se
.The instan
es indi
ated with "*" are those whose CPU time ex
eeded 5 hours. Forthese instan
es, the gap is indi
ated in itali
.Our �rst series of experiments 
on
erns the kECSP for k = 3. The instan
es wehave 
onsidered have graphs with 14 up to 318 nodes. The results are summarizedin Table 3.1. It appears from Table 3.1 that all the instan
es have been solved tooptimality within the time limit ex
ept the last �ve instan
es. Also we have thatfour instan
es (burma14, gr21, fri26, brazil58) have been solved in the 
utting planephase (i.e., no bran
hing is needed). For most of the other instan
es, the relative errorbetween the lower bound at the root node of the Bran
h-and-Cut tree and the bestupper bound (Gap2) is less than 1%. We also observe that our separation pro
eduresdete
t a large enough number of SP -partition and F -partition inequalities and seemto be quite e�
ient.Our se
ond series of experiments 
on
erns the kECSP with k = 4, 5. The resultsare given in Table 3.2 for k = 4 and Table 3.3 for k = 5. The instan
es 
onsideredhave graphs with 52 up to 561 nodes. Note that for k = 4, the SP -partition andpartition inequalities are redundant with respe
t to the 
ut inequalities (2.3). Thusthese inequalities are not 
onsidered in the resolution pro
ess for k = 4, and thereforedo not appear in Table 3.2.
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Instan
e NCut NSP NOP NFP NP COpt Gap1 Gap2 NSub TTburma14 4 3 0 0 4 5530 4.67 0.00 1 0:00:01ulysses16 5 7 1 15 7 11412 1.17 0.39 3 0:00:11gr21 5 6 1 0 2 4740 1.65 0.00 1 0:00:01fri26 9 5 0 0 0 1543 1.30 0.00 1 0:00:01bayg29 14 16 2 33 2 2639 1.76 0.19 7 0:00:01dantzig42 41 31 6 90 18 1210 2.27 0.68 71 0:00:07att48 34 34 5 60 9 17499 1.83 0.56 61 0:00:06berlin52 36 31 12 97 6 12601 1.66 0.45 33 0:00:03brazil58 46 42 2 36 29 42527 2.67 0.00 1 0:00:05eil76 9 12 3 298 2 876 0.63 0.06 7 0:00:03pr76 130 207 72 2231 54 187283 3.9 1.50 6767 0:35:32rat99 41 26 13 341 23 2029 1.26 0.38 41 0:00:47kroA100 170 197 31 1207 57 36337 4.64 0.97 4201 0:54:06kroB100 130 114 37 830 47 37179 2.61 0.73 723 0:08:00rd100 101 74 11 418 18 13284 1.91 0.43 171 0:03:37eil101 86 72 21 3604 15 1016 1.06 0.55 1109 0:17:41lin105 179 198 47 829 68 25530 3.66 0.69 1031 0:22:39pr107 201 190 34 674 114 70852 2.48 0.84 2071 1:26:49gr120 50 45 6 588 17 11442 1.12 0.19 99 0:11:15bier127 46 59 4 276 13 198184 1.50 0.15 11 0:01:55
h130 121 132 30 1355 40 10400 2.27 0.55 1693 1:05:05
h150 92 93 19 588 22 11027 2.04 0.41 193 0:20:31kroA150 155 143 41 845 47 44718 2.27 0.53 1205 1:16:35kroB150 130 110 16 952 48 43980 2.26 0.31 437 0:38:43rat195 24 19 3 514 1 3934 0.48 0.06 7 0:08:21d198 171 105 23 617 59 25624 2.00 0.21 159 1:04:19gr202 77 69 14 558 22 65729 1.02 0.11 69 0:13:16*pr226 364 248 35 162 41 - 11.05 9.02 261 5:00:00*gr229 179 245 23 1568 94 - 2.43 1.00 1219 5:00:00*pr264 275 181 145 668 62 - 12.56 12.29 69 5:00:00*a280 142 84 56 2539 59 - 3.73 2.69 459 5:00:00*lin318 189 147 15 610 58 - 6.5 4.94 25 5:00:00Table 3.1: Results for k = 3 with redu
tion operations.



76 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE KECSPFirst observe that for k = 4, the CPU time for all the instan
es is relatively small andmost of the instan
es have been solved in less than 1 minute. We 
an also observe that23 instan
es over 27 are solved in the 
utting plane phase. Moreover, a few numberof odd path inequalities are generated. However a large enough number of F -partitioninequalities is dete
ted. Thus these latter inequalities seem to be very e�e
tive forsolving the kECSP when k is even. This also shows that the kECSP is easier to solvewhen k is even, what is also 
on�rmed by the results of Table 3.3 for k = 5. In fa
t, theinstan
e pr264 has been solved for k = 4 in 1 se
ond, whereas it 
ould not be solved tooptimality for k = 5 after 5 hours. The same observation 
an be done for pr439. Also,we 
an remark that the CPU time for all the instan
es when k = 5 is higher than thatwhen k = 4. For instan
e, the test problem d198 has been solved in 1h 50mn when
k = 5, whereas only 16 se
onds were needed to solve it for k = 4.Compared to Table 3.1, Tables 3.2 and 3.3 also show that, for the same parity of k,the kECSP be
omes easier to solve when k in
reases. In fa
t, with k = 3, we 
ould notsolve to optimality instan
es with more than 202 nodes, whereas for k = 5, we 
ouldsolve larger instan
es.The results for k = 3, 4, 5 
an also be 
ompared to those obtained by Kerivin et al.[81℄ for the 2ECSP. It turns out that for the same instan
es, the problem has beeneasier to solve for k = 2 than for k = 3. However, for k = 4 the problem appearedto be easier to solve than for k = 2. This shows again that the 
ase when k is odd isharder to solve than that when k is even and that the problem be
omes easier when kin
reases with the same parity.In order to evaluate the impa
t of the redu
tion operations θ1, θ2, θ3, θ4 on theseparation pro
edures, we tried to solve the kECSP, for k = 3, without using them.The results are given in Table 3.4.As it appears from Tables 3.1 and 3.4, the CPU time in
reased for the majority of theinstan
es when the redu
tion operations are not used. In parti
ular, for the instan
epr107, without the redu
tion operations, we 
ould not rea
h the optimal solution after5 hours, whereas with the redu
tion operations, it has been solved to optimality after1h 26mn. Also, the CPU time for the instan
es 
h130 and d198 in
reased from 1 hourto more than 4 hours. Moreover, we remark that when using the redu
tion operations,we generate more SP -partition, F -partition and partition inequalities and fewer nodesin the Bran
h-and-Cut tree. This implies that our separation heuristi
s are less e�
ientwithout the redu
tion operations. It seems then that the redu
tion operations play animportant role in the resolution of the problem. They permit to strengthen mu
h morethe linear relaxation of the problem and a

elerate its resolution.



3.3. CONCLUDING REMARKS 77We also tried to measure the e�e
t of the di�erent non-basi
 
lasses of inequalities(i.e., inequalities other than 
ut and trivial inequalities). For this, we have �rst 
on-sidered a Bran
h-and-Cut algorithm for the kECSP with k = 3 using only the 
ut
onstraints in addition to the trivial ones. As it appears from Table 3.1, for all theinstan
es we have that Gap1 is greater than Gap2. For example, for the instan
esKroA100 and rat195, the gap is in
reased by almost 3%.Furthermore, in this 
ase, we 
ould not solve any of the instan
es with more than52 nodes. Even more, after less than 10 minutes of CPU time, the Bran
h-and-Cuttree got a very big size and the resolution pro
ess stops. To illustrate this, take forexample the instan
e brazil58. For this instan
e, the Bran
h-and-Cut tree 
ontained11769 nodes after 10 minutes when the Bran
h-and-Cut algorithm used only the 
utand trivial inequalities, whereas it has been solved without bran
hing when using theother 
lasses of inequalities.Finally, we tried to evaluate separately the e�
ien
y of ea
h 
lass of the non-basi
inequalities. For this, we also 
onsidered the 
ase when k = 3. We have seen thatall the 
lasses of inequalities have a big e�e
t on the resolution of the problem. Inparti
ular, the SP -partition inequalities seem to play a 
entral role. This 
an be seenby 
onsidering the instan
e d198. This instan
e has been solved in 1h 04mn using allthe 
onstraints. However, without the SP -partition inequalities, we 
ould not rea
hthe optimal solution after 5 hours. We also remarked that the gap2 in
reased whenone of these 
lasses of inequalities is not used in the Bran
h-and-Cut algorithm.3.3 Con
luding remarksIn this 
hapter, we have studied the k-edge-
onne
ted subgraph problem with high
onne
tivity requirement, that is, when k ≥ 3. We have presented some 
lasses of validinequalities and des
ribed some 
onditions for these inequalities to be fa
et de�ning forthe asso
iated polytope. We also dis
ussed separation heuristi
s for these inequalities.Using these results, we have devised a Bran
h-and-Cut algorithm for the problem. Thisalgorithm uses some redu
tion operations.Our 
omputational results have shown that the odd path, the F -partition, the SP -partition and the partition inequalities are very e�e
tive for the problem when k isodd. They have also shown the importan
e of the F -partition inequalities for the even
ase. We 
ould also see the importan
e of our separation heuristi
s. In parti
ular,our heuristi
s to separate the SP -partition and F -partition inequalities have appeared
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ient. In addition, the redu
tion operations have been essential forhaving a good performan
e of the Bran
h-and-Cut algorithm. In fa
t, they permittedto 
onsiderably redu
e the size of the graph supporting a fra
tional solution and toa

elerate the separation pro
ess.These experiments also showed that the kECSP is easier to solve when k is even andthat, for the same parity of k, the problem be
omes easier to solve when k in
reases.One of the separation heuristi
 devised for the F -partition inequalities is based ona partial 
hara
terization of the 
riti
al extreme points of the linear relaxation of the
k-edge-
onne
ted subgraph polytope. It would be very interesting to have a 
omplete
hara
terization of these points. This may yield the identi�
ation of new fa
et de�ninginequalities for the problem. It may also permit to devise more appropriate separationheuristi
s for the inequalities given in this 
hapter.In many real instan
es, we may 
onsider node-
onne
tivity instead of edge-
onne
tivity.The study presented in this 
hapter may be very usefull for the k-node-
onne
ted sub-graph problem for whi
h we require k node-disjoint paths between every pair of nodes.In addition to the survivability aspe
t, one 
an 
onsider the 
apa
ity dimensioningof the network. These issues have been mostly treated separately in the literature. Itwould be interesting to extend the study developed in this 
hapter to the more general
apa
itated survivable network design model.
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Instan
e NCut NOP NFP COpt Gap2 NSub TTberlin52 5 0 2 18295 0.00 1 0:00:01pr76 3 0 4 266395 0.00 1 0:00:01kroA100 10 0 11 51221 0.00 1 0:00:47kroB100 9 5 123 53597 0.08 21 0:00:09rd100 10 1 91 19130 0.00 1 0:00:05eil101 0 0 60 1453 0.00 1 0:00:02lin105 20 1 5 36353 0.00 1 0:00:01pr107 29 0 0 98381 0.00 1 0:00:01gr120 6 0 36 16400 0.00 1 0:00:02bier127 16 0 0 282207 0.00 1 0:00:01
h130 12 0 132 14854 0.00 1 0:00:05
h150 12 2 70 15854 0.00 1 0:00:02kroA150 13 0 27 64249 0.00 1 0:00:02kroB150 20 0 4 62710 0.00 1 0:00:01rat195 0 0 37 5750 0.00 1 0:00:13d198 43 0 71 35404 0.01 3 0:00:16gr202 13 3 220 94841 0.02 3 0:01:28pr226 91 0 6 183537 0.00 1 0:00:04gr229 24 2 15 318565 0.00 1 0:00:03pr264 59 1 7 122941 0.00 1 0:00:06a280 3 0 180 6317 0.00 1 0:01:00pr299 30 0 427 117559 0.00 1 0:00:20lin318 28 0 2 105000 0.00 1 0:00:06rd400 21 2 232 36676 0.00 1 0:07:39pr439 78 3 61 264975 0.02 19 0:02:52si535 0 0 4 53604 0.00 1 0:00:39pa561 10 1 306 6724 0.00 1 0:08:37Table 3.2: Results for k = 4.
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Instan
e NCut NSP NOP NFP NP COpt Gap2 NSub TTberlin52 5 2 2 26 2 24845 0.00 1 0:00:01pr76 2 0 0 52 1 372392 0.00 1 0:00:01kroA100 5 1 5 76 6 71422 0.04 11 0:00:06kroB100 6 1 2 83 5 74241 0.01 3 0:00:06rd100 6 2 6 193 5 26168 0.01 5 0:00:24eil101 1 0 0 309 0 1938 0.00 1 0:01:10lin105 9 1 3 119 3 50711 0.00 1 0:00:26pr107 92 40 57 680 33 132870 0.41 381 0:14:45gr120 2 0 3 93 3 22024 0.11 27 0:00:17bier127 22 2 12 450 8 383165 0.09 25 0:04:25
h130 1 0 0 45 0 20508 0.01 3 0:00:05
h150 5 0 7 58 1 21791 0.01 37 0:00:50kroA150 9 0 5 141 3 87950 0.07 11 0:00:19kroB150 14 1 7 462 6 85583 0.02 11 0:15:39rat195 1 0 0 508 0 7773 0.00 1 0:20:54d198 56 9 6 1093 32 47614 0.15 337 1:50:40gr202 0 0 0 64 0 128990 0.00 1 0:00:31pr226 142 34 20 661 50 260878 0.58 103 2:38:50gr229 18 1 11 679 9 434422 0.06 43 0:31:58*pr264 105 12 38 1327 28 - 1.78 43 5:00:00a280 2 0 2 302 0 8643 0.02 7 0:05:05pr299 11 3 2 637 1 161576 0.00 1 0:05:12lin318 24 3 11 1548 11 144341 0.02 7 4:34:39rd400 11 1 15 691 6 49893 0.01 17 1:29:09*pr439 46 2 8 746 0 - 3.46 1 5:00:00si535 0 0 0 0 0 79115 0.00 1 0:00:19pa561 1 0 2 286 1 9161 0.00 1 3:26:58Table 3.3: Results for k = 5.
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Instan
e NCut NSP NOP NFP NP COpt Gap2 NSub TTberlin52 31 28 19 44 4 12601 0.44 15 0:00:04brazil58 50 27 1 28 31 42527 0.22 3 0:00:07eil76 9 6 3 102 2 876 0.00 1 0:00:01pr76 103 168 65 1378 37 187283 1.60 3483 0:38:46rat99 41 19 10 223 17 2029 0.32 61 0:01:29kroA100 193 234 47 1765 70 36337 1.42 7575 4:13:38kroB100 141 142 36 899 38 37179 0.98 1337 0:45:34rd100 103 84 15 445 21 13284 0.40 233 0:11:40eil101 77 58 26 2527 12 1016 0.38 801 0:18:50lin105 161 158 50 569 53 25530 0.61 547 0:34:25*pr107 218 221 136 1101 104 - 0.81 4447 5:00:00gr120 42 38 6 252 15 11442 0.18 93 0:05:38bier127 58 56 9 240 12 198184 0.16 17 0:04:43
h130 141 147 38 1590 45 10400 0.52 2459 4:10:31
h150 90 76 15 391 23 11027 0.39 107 0:21:07kroA150 155 135 23 705 56 44718 0.55 1107 3:08:37kroB150 150 141 22 1006 43 43980 0.31 535 1:55:20rat195 23 18 7 898 1 3934 0.01 19 0:19:23d198 192 118 25 720 50 25624 0.27 585 5:03:16gr202 73 62 13 278 23 65729 0.05 37 0:37:31Table 3.4: Results for k = 3 without redu
tion operations.



Chapter 4
The k-Edge-Disjoint Hop-ConstrainedPaths Problem
Given a graph G = (V, E) and two nodes s, t ∈ V , and a positive integer L ≥ 2, an
L-st-path in G is a path between s and t of length at most L, where the length is thenumber of its edges. Given a fun
tion c : E → R whi
h asso
iates a 
ost c(e) to ea
hedge e ∈ E and an integer k ≥ 2, the k-Edge-Disjoint Hop-Constrained Paths problem(kHPP for short) is to �nd a minimum 
ost subgraph su
h that between s and t thereexist at least k edge-disjoint L-st-paths.In this 
hapter, we 
onsider the kHPP from a polyhedral point of view. In parti
ular,we give a 
omplete des
ription of the asso
iated polytope in the 
ase L = 3. We givean integer programming formulation for the problem in this 
ase. In parti
ular, weshow that for L = 3, the kHPP polytope is given by the so-
alled st-
ut and L-path-
ut inequalities together with the trivial inequalities. We also des
ribe ne
essaryand su�
ient 
onditions for these inequalities to be fa
et de�ning and show that the
kHPP polytope is 
ompletely des
ribed by the st-
ut and L-path-
ut toghether withthe trivial inequalities. These results generalize those obtained by [75℄ who give a
omplete des
ription of the kHPP polytope in the 
ase k = 2 and L = 2, 3 and by [35℄who 
ompletely 
hara
terize the kHPP polytope when k ≥ 2 and L = 2. This work hasled to a te
hni
al report submitted for possible publi
ation in Dis
rete Optimization[13℄.The 
hapter is organized as follows. In next se
tion, we give some preliminary resultswe will use along this 
hapter. In Se
tion 4.2, we des
ribe ne
essary and su�
ient
onditions for the so-
alled st-
ut and L-path-
ut inequalities to be fa
et de�ning.



4.1. PRELIMINARY RESULTS 83Our main result, whi
h is a 
omplete des
ription of the kHPP polytope for L = 3, ispresented in Se
tion 4.3. In Se
tion 4.4, we give some 
on
luding remarks.4.1 Preliminary results4.1.1 Valid inequalities for the kHPP polytopeGiven a graph G = (V, E), two nodes s, t of V and a positive integer k ≥ 2, we willdenote by kHPP(G) the kHPP polytope that is the 
onvex hull of the in
iden
e ve
torsof the solutions of the kHPP on G.If xF is the in
iden
e ve
tor of the edge set F of a solution of the kHPP, then 
learly
xF statis�es the following inequalities:

x(δ(W )) ≥ k, for all st − 
ut δ(W ), (4.1)
0 ≤ x(e) ≤ 1, for all e ∈ E. (4.2)Inequalities (4.1) will be 
alled st-
ut inequalities and inequalities (4.2) trivial inequal-ities.In [31℄, Dahl 
onsiders the problem of �nding a minimum 
ost path between two giventerminal nodes s and t of length at most L. He des
ribes a 
lass of valid inequalities forthe problem and gives a 
omplete 
hara
terization of the asso
iated L-path polyhedronwhen L ≤ 3. In parti
ular he introdu
es a 
lass of valid inequalities as follows.Let V0, V1, ..., VL+1 be a partition of V su
h that s ∈ V0 and t ∈ VL+1, and Vi 6= ∅ forall i = 1, ..., L. Let T be the set of edges e = uv, where u ∈ Vi, v ∈ Vj , and |i− j| > 1.Then the inequality

x(T ) ≥ 1is valid for the L-path polyhedron.Using the same partition, this inequality 
an be generalized in a straightforward wayto the kHPP polytope as
x(T ) ≥ k. (4.3)



84CHAPTER 4. THE K-EDGE-DISJOINT HOP-CONSTRAINED PATHS PROBLEM
V2

V3 V4

ts

V1V0

Figure 4.1: Support graph of a 3-path-
ut inequality.The set T is 
alled an L-path-
ut, and a 
onstraint of type (4.3) is 
alled an L-path-
utinequality. See Figure 4.1 for an example of a 3-path-
ut inequality with V0 = {s} and
V4 = {t}. Note that T interse
ts every 3-st-path in at least one edge and ea
h st-
ut
δ(W ) interse
ts every st-path. We denote by Pk(G) the polytope given by inequalities(4.1)-(4.3).4.1.2 FormulationIn this subse
tion, we give an integer programming formulation for the kHPP. We willshow that the st-
ut, 3-path-
ut and trivial inequalities, together with the integrality
onstraints su�
e to formulate the kHPP as a 0-1 linear program. To this end, we �rstgive a lemma. Its proof 
an be found in [75℄.Lemma 4.1.1 [75℄ Let G = (V, E) be an undire
ted graph and s and t two nodes of
V . Suppose that there do not exist k edge-disjoint 3-st-paths in G, with k ≥ 2. Thenthere exists a set of at most k − 1 edges that interse
ts every 3-st-path.Theorem 4.1.1 Let G = (V, E) be a graph and k ≥ 2. Then the kHPP is equivalentto the integer program Min{

cx; x ∈ Pk(G), x ∈ {0, 1}E
}

.Proof. To prove the theorem, it is su�
ient to show that every 0-1 solution x of Pk(G)indu
es a solution of the kHPP. Let us assume the 
ontrary and suppose that x doesnot indu
e a solution of the kHPP but satsi�es the st-
ut and trivial inequalities. We
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essarily violates at least one 3-path-
ut inequality. Let G(x) bethe subgraph of G indu
ed by x, that is the graph obtained from G by deleting everyedge e ∈ E su
h that x(e) = 0. As x is not a solution of the problem, G(x) does not
ontain k edge-disjoint 3-st-paths. By Lemma 4.1.1, it follows that there exist at most
k − 1 edges in G(x) that interse
t every 3-st-path. Consider the graph G′(x) obtainedfrom G(x) by deleting these edges. Obviously, G′(x) does not 
ontain any 3-st-path.We 
laim that G′(x) 
ontains at least one st-path of length at least 4. In fa
t, as x isa 0-1 solution and satis�es the st-
ut inequalities, G(x) 
ontains at least k edge-disjoint
st-paths. Sin
e at most k−1 edges were removed from G(x), at least one path remainsbetween s and t. However, sin
e G′(x) does not 
ontain a 3-st-path, that st-path mustbe of length at least 4.Now 
onsider the partition (V0, ..., V4) of V with V0 = {s}, Vi the set of nodes atdistan
e i from s in G′(x) for i = 1, 2, 3, and V4 = V \ (

3⋃

i=0

Vi), where the distan
ebetween two nodes is the length of a shortest path between these nodes. Sin
e theredoes not exist a 3-st-path in G′(x), it is 
lear that t ∈ V4. Moreover, as by the
laim above, G′(x) 
ontains an st-path of length at least 4, the sets V1, V2 and V3are nonempty. Futhermore, no edge of G′(x) is a 
hord of the partition (that is anedge between two sets Vi an Vj where |i − j| > 1). In fa
t, if there exists an edge
e = vivj ∈ [Vi, Vj] with |i− j| > 1 and i < j, then vj is at distan
e i + 1 < j, from s, a
ontradi
tion.Thus, the edges deleted from G′(x) are the only edges that may be 
hords of thepartition G(x). In 
onsequen
e, if T is the set of 
hords of the partition in G, then
x(T ) ≤ k−1. But this implies that the 
orresponding 3-path-
ut inequality is violatedby x. �

4.1.3 Disjoint st-paths in dire
ted graphsHere we will introdu
e known results related to disjoint st-paths in dire
ted graphswhi
h will be very useful in the following se
tions.Given a dire
ted graph D = (V, A), two nodes s, t ∈ V , an integer k ≥ 2 and aweight fun
tion c(.) on the ar
s of D, the k ar
-disjoint st-paths problem (kADPP forshort) 
onsists in �nding a minimum weight subgraph of D whi
h 
ontains at least k



86CHAPTER 4. THE K-EDGE-DISJOINT HOP-CONSTRAINED PATHS PROBLEMar
-disjoint paths from s to t. Let kADPP(D) be the 
onvex hull of the solutions ofthe kADPP on D.If B is an ar
 subset of A whi
h indu
es a solution of the kADPP, then its in
iden
eve
tor xB satis�es the following inequalities:
x(δ+(W )) ≥ k, for all W ⊆ V, s ∈ W and t ∈ W, (4.4)
0 ≤ x(a) ≤ 1, for all a ∈ A. (4.5)Conversely, any integral solution of the system given by inequalities (4.4) and (4.5)indu
es a solution of the kADPP. Inequalities (4.4) are 
alled st-di
ut inequalities and
onstraints (4.5) are 
alled trivial inequalities. Thus, the kADPP is equivalent tomin{cx | x satis�es (4.4), (4.5), x ∈ {0, 1}A}.Theorem 4.1.2 [96℄The polytope kADPP(D) is full dimensional if and only if every st-di
ut δ+(W ) of D
ontains at least k + 1 ar
s.Theorem 4.1.3 An inequality (4.4), indu
ed by a node set W ⊆ V , de�nes a fa
etof kADPP(D) if and only if the 
orresponding st-di
ut is minimal in
lusionwise and
ontains at least k + 1 ar
s.The following theorem shows that the st-di
ut and the trivial inequalities su�
e todes
ribe the polytope kADPP(G).Theorem 4.1.4 [96℄The polytope kADPP(G) is 
ompletely des
ribed by inequalities (4.4) and (4.5).The following theorem indi
ates that two node subsets W1 and W2 of V that indu
etight st-di
ut inequalities for a solution y ∈ kADPP(D), 
an be seen as embeddednode sets. This 
omes from the fa
t that the sets indu
ing st-di
uts in a graph form alaminar family.Theorem 4.1.5 [96℄Let W1 and W2 be two node subsets of V that indu
e st-di
uts of D su
h that W1∩W2 6=

∅ 6= (V \ W1) ∩ W2. If the st-di
ut inequalities, indu
ed by W1 and W2, are tight fora solution x of kADPP(G), then there exists a node set di�erent from W1 and W2
ontained either in W1 or in W1 ∪ W2 whi
h indu
es a tigh st-di
ut inequality for x.



4.2. FACETS OF KHPP(G) 87These results will be utile in the rest of the 
hapter for exhibiting some fa
ets of the
kHPP polytope, and for proving our main result.4.2 Fa
ets of kHPP(G)In this se
tion, we give ne
essary and su�
ient 
onditions for inequalities (4.1)-(4.3)to de�ne fa
ets. These will be useful in the sequel.Let G = (V, E) be an undire
ted graph, s and t two nodes of G and k a positiveinteger ≥ 2. An edge e ∈ E is said to be 3-st-essential if e belongs to an st-
ut or a
3-path-
ut of 
ardinality k. Let E∗ be the set of the 3-st-essential edges. We have thefollowing results that 
an be easily seen to be true.Theorem 4.2.1 dim(kHPP(G)) = |E| − |E∗|.An immediate 
onsequen
e of Theorem 4.2.1 is the following.Corollary 4.2.1 If G = (V, E) is a 
omplete graph su
h that |V | ≥ k + 2, then
kHPP(G) is full dimensional.In the rest of the 
hapter, we will 
onsider that G = (V, E) is a 
omplete graphwith |V | ≥ k + 2, and whi
h may 
ontain multiple edges. Thus, by Corollary 4.2.1,
kHPP(G) is full dimensional.Lemma 4.2.1 Let ax ≥ α be an inequality whi
h de�nes a fa
et of kHPP(G), di�erentfrom (4.2). Then a(e) ≥ 0 for all e ∈ E.Proof. Let f ∈ E. As ax ≥ α is di�erent from fa
ets indu
ed by the trivial inequalities,it is di�erent from x(f) ≤ 1. Thus, there exists a solution x ∈ kHPP(G) su
h that
ax = α and x(f) = 0. Let x′ be the solution de�ned by

x′(e) =

{
x(e), for all e ∈ E \ {f},

1 if e = f.Clearly, x′ is a solution of kHPP(G). Hen
e, ax′ = ax+a(f) ≥ α, yielding a(f) ≥ 0. �The following theorems show when inequalities (4.1)-(4.3) de�ne fa
ets for kHPP(G).



88CHAPTER 4. THE K-EDGE-DISJOINT HOP-CONSTRAINED PATHS PROBLEMTheorem 4.2.2 1. Inequality x(e) ≤ 1 de�nes a fa
et of kHPP(G) for all e ∈ E.2. Inequality x(e) ≥ 0 de�nes a fa
et of kHPP(G) if and only if either |V | ≥ k + 3or |V | = k + 2 and e does not belong neither to an st-
ut nor to a 3-path-
ut
ontaining exa
tly k + 1 edges.Proof. 1) As |V | ≥ k + 2 and G is 
omplete, the edge set Ef = E \ {f} is a solutionof kHPP, for all f ∈ E \ {e}. Hen
e, the sets E and Ef , for all f ∈ E \ {e}, 
onstitutea set of |E| solutions of the kHPP. Moreover, their in
iden
e ve
tors satisfy x(e) = 1and are a�nelly independant.2) Suppose that |V | ≥ k+3. Then G 
ontains k+2 node-disjoint st-paths (an edge of
[s, t] and k+1 paths of the form (s, u, t), u ∈ V \{s, t}). Hen
e any edge set E \{f, g},
f, g ∈ E, 
ontains k edge-disjoint 3-st-paths among these 3-st-paths.Consider the |E| edge sets E \ {e} and Ef = E \ {e, f} for all f ∈ E \ {e}. There-fore, these sets indu
e solutions of the kHPP. Moreover the in
iden
e ve
tors of thesesolutions satisfy x(e) = 0 and are a�nelly independant.Now suppose that |V | = k +2. If e belongs to an st-
ut δ(W ) (resp. a 3-path-
ut T )with k + 1 edges, then x(e) ≥ 0 is redundant with respe
t to the inequalities

x(δ(W )) ≥ k (resp. x(T ) ≥ k),

− x(f) ≥ −1 for all f ∈ δ(W ) \ {e}(resp. f ∈ T \ {e}),and 
annot hen
e be fa
et de�ning. If e does not belong neither to an st-
ut nor to a
3-path-
ut with k+1 edges, then the edge sets E \{e} and Ef , f ∈ E \{e}, introdu
edabove, are still solutions of kHPP. Moreover, their in
iden
e ve
tors satisfy x(e) = 0and are a�nelly independant. �Theorem 4.2.3 Every st-
ut inequality de�nes a fa
et of kHPP(G).Proof. Let W ⊆ V su
h that s ∈ W and t ∈ W . Observe that [s, t] ⊆ δ(W ). Let us de-note by ax ≥ α the st-
ut inequality indu
ed by W and let Fa = {x ∈ kHPP(G) | ax =

α}. We �rst show that Fa is a proper fa
e of kHPP(G). As |V | ≥ k + 2, there exist
W1 ⊆ W \ {s} and W2 ⊆ W \ {t} su
h that |W1| + |W2| = k. Note that W1 and W2



4.2. FACETS OF KHPP(G) 89may be empty but not both. Let F1 = {sv, v ∈ W2}∪{ut, u ∈ W1} and E1 = F1 ∪E0where E0 = E(W ) ∪ E(W ). It is not hard to see that E1 is a solution of the kHPPwhose in
iden
e ve
tor satis�es ax ≥ α with equality. Hen
e, Fa 6= ∅ and, therefore, isa proper fa
e of kHPP(G).Now suppose that there exists a fa
et de�ning inequality bx ≥ β su
h that Fa ⊆ {x ∈

kHPP(G) | bx = β}. We will show that there exists a s
alar ρ su
h that b = ρa.Consider an edge e ∈ F1. Clearly, the edge set E2 = (E1 \ {e}) ∪ {st} is a solutionof the kHPP and its in
iden
e ve
tor satis�es ax ≥ α with equality. It then followsthat bxE2 = bxE1 − b(e) + b(st). Sin
e xE1 ∈ Fa, we obtain that b(e) = b(st). As e isarbitrary in F1, this implies that
b(e) = b(st) = ρ for all e ∈ F1. (4.6)Now let f = uv ∈ δ(W ) \ F1, with u ∈ W \ {s} and v ∈ W \ {t}. If u ∈ W1and v ∈ W2, then let E3 = (E1 \ {sv, ut}) ∪ {f, st}. Clearly, E3 is a solution of the

kHPP and its in
iden
e ve
tor satis�es ax ≥ α with equality. Hen
e, we have that
bxE3 = bxE1 . This implies that b(sv) + b(ut) = b(f) + b(st). From (4.6), it follows that
b(f) = ρ.If u ∈ W1∪{s} (resp. u ∈ W \(W1∪{s})) and v ∈ W \(W2∪{t}) (resp. v ∈ W2∪{t}),by 
onsidering the edge set E4 = (E1 \ {ut}) ∪ {f} (resp. E4 = (E1 \ {sv}) ∪ {f}), wesimilarly obtain that b(f) = ρ.If u /∈ W1 and v /∈ W2, then one 
an 
onsider the solution E5 = (E1 \{e})∪{f}, where
e is an edge of F1, and obtain along the same lines that b(f) = ρ.Thus, toghether with (4.6), this yields

b(e) = ρ for all e ∈ δ(W ).Now let e ∈ E0, and suppose, w.l.o.g., that e ∈ E(W ). If e does not belong to a
3-st-path of E1, then the edge set E6 = E1 \ {e} also indu
es a solution of the kHPPand satis�es ax ≥ α with equality. We then have that bxE6 = bxE1 implying b(e) = 0.If e belongs to a 3-st-path of E1, say (su, ut), then the edge set E7 = (E1 \{su, ut})∪

{st} indu
es a solution of the kHPP and its in
iden
e ve
tor satis�es ax ≥ α withequality. It then follows that bxE7 = bxE1 and hen
e b(st) = b(su)+ b(ut). As by (4.6),
b(ut) = b(st), we get b(e) = 0.
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b(e) =

{
ρ for all e ∈ δ(W ),

0 if not.Thus, b = ρa with ρ ∈ R, and the result follows. �The next theorem des
ribes ne
essary and su�
ient 
onditions for L-path-
ut in-equalities to de�ne fa
ets. But before, we give the following lemma.Lemma 4.2.2 Let T be an L-path-
ut indu
ed by a partition π = (V0, ..., V4) with
s ∈ V0 and t ∈ V4. If an edge set F ⊆ E indu
es a solution of the kHPP su
h that
xF (T ) = k, then F ∩ ([s, V1] ∪ [V3, t] ∪ [s, t]) ≥ k. Moreover, if F ∩ [V1, V3] 6= ∅, then
F ∩ ([s, V1] ∪ [V3, t] ∪ [s, t]) ≥ k + 1.Proof. Let A = [s, V1] ∪ [V3, t] ∪ [s, t]. Sin
e ea
h 3-st-path of F interse
ts T atleast on
e and |F ∩ T | = k, F ne
essarily 
ontains exa
tly k edge-disjoint 3-st-paths.Moreover, ea
h of these paths interse
ts T only on
e. This implies that every 3-st-pathof F is of the formi) (su1, u1u2, u2t), (su2, u2u3, u3t), (su1, u1t), (su3, u3t), (st) orii) (su1, u1u3, u3t).If P is one of these st-paths, then |P ∩ A| = 1 (resp. |P ∩ A| = 2) if P is of type i)(resp. ii)). Thus, |F ∩ A| ≥ k.Now if F ∩ [V1, V3] 6= ∅, then F 
ontains at least one path of type ii) and therefore
|F ∩ A| ≥ k + 1. �Theorem 4.2.4 An inequality (4.3), indu
ed by a partition π = (V0, ..., V4) with s ∈ V0and t ∈ V4, de�nes a fa
et of kHPP(G), di�erent from a trivial inequality, if and onlyif 1. |V0| = |V4| = 1;2. |[s, V1]| + |[V3, t]| + |[s, t]| ≥ k + 1.
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ut indu
ed by π. Let ax ≥ α denote the 3-path-
utinequality produ
ed by T and F = {x ∈ kHPP(G) | ax = α}.Ne
essity.1) We will show that if |V0| ≥ 2, inequality x(T ) ≥ k does not de�ne a fa
et. The 
asewhere |V4| ≥ 2 follows by symmetry. Suppose that |V0| ≥ 2 and 
onsider the partition
π′ = (V ′

0 , ..., V
′
4) given by

V ′
0 = {s},

V ′
1 = V1 ∪ (V0 \ {s}),

V ′
i = Vi, i = 2, 3, 4.The partition π′ produ
es a 3-path-
ut inequality x(T ′) ≥ k, where T ′ = T\[V0\{s}, V2].Sin
e G is 
omplete, [V0\{s}, V2] 6= ∅ and T ′ is stri
tly 
ontained in T . Thus, x(T ) ≥ kis redundant with respe
t to the inequalities

x(T ′) ≥ k,

x(e) ≥ 0 for all e ∈ [V0 \ {s}, V2],and hen
e 
annot de�ne a fa
et of kHPP(G).2) Suppose that 
ondition 1) holds. Let A = [s, V1]∪ [V3, t]∪ [s, t] and let ui be a �xednode of Vi, i = 1, 2, 3. Let us suppose that F is a fa
et of kHPP(G) di�erent from atrivial inequality. Thus there exists a solution F of the kHPP su
h that xF ∈ F and
F ∩ [V1, V3] 6= ∅. If this is not the 
ase, then F would be equivalent to a fa
et de�ned byany of the inequalities x(e) ≥ 0, e ∈ [V1, V3]. Hen
e, as F ∩ [V1, V3] 6= ∅, from Lemma4.2.2, we have that |F ∩ A| ≥ k + 1.Su�
ien
y.Suppose that 
onditions 1) and 2) hold. First we show that F 6= ∅. As |[s, V1]∪ [V3, t]∪

[s, t]| ≥ k +1, there exist node sets U1 ⊆ V1, U3 ⊆ V3, and an edge set E0 ⊆ [s, t] \ {st}su
h that |U1| + |U3| + |E0| = k. Consider the st-paths (su, ut), u ∈ U1 ∪ U3 and (e),
e ∈ E0. Clearly, these st-paths form a set of k edge-disjoint 3-st-paths. Moreover,ea
h of these paths interse
ts T only on
e. Thus they indu
e a solution, say E1, of the
kHPP whose in
iden
e ve
tor belongs to F. Therefore F 6= ∅.Now suppose that there exists a fa
et de�ning inequality bx ≥ β su
h that F ⊆ {x ∈

kHPP(G) | bx = β}. As before, we will show that there exists a s
alar ρ 6= 0 su
h that
b = ρa.Let e ∈ E1∩T (where E1 is the solution introdu
ed above). Let E2 = (E1\{e})∪{st}.Sin
e E2 is a solution of the kHPP whose in
iden
e ve
tor belongs to F, we have
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bxE2 = bxE1 = β, implying that b(e) = b(st). As e is an arbitrary edge, we then obtainthat

b(e) = ρ for all e ∈ (E1 ∩ T ) ∪ {st}, for some ρ ∈ R. (4.7)Now let e ∈ E \ T . If e /∈ E1, then let E3 = E1 ∪ {e} is a solution of the kHPP.Moreover, its in
iden
e ve
tor belongs to F. Hen
e, b(e) = bxE3 − bxE1 = 0. If
e ∈ E1 \ T , then e is either of the form su, u ∈ U1, or vt, v ∈ V3. Suppose, w.l.o.g.,that e = su, the 
ase where e = vt is similar. Note that, by the de�nition of E1, ut alsobelongs to E1. Let E ′

3 = (E1 \ {su, ut})∪ {st}. We have that E ′
3 indu
es of the kHPPand xE′

3 ∈ F. Hen
e, bxE′
3 = bxE1 = β and, in 
onsequen
e, b(su) + b(ut) = b(st). As,by (4.7), b(ut) = b(st), we have that b(su) = 0. Thus, we obtain that

b(e) = 0 for all e ∈ E \ T. (4.8)Consider now an edge e ∈ T \ E1. If e ∈ [s, t] \ {st}, then 
learly, the edge set
(E1 \ {g}) ∪ {e} indu
es a solution of the kHPP and its in
iden
e ve
tor belongs to Fwhere g is an edge of E1. Hen
e, as before, b(e) = b(g) = ρ.Now if e = sv (resp. e = vt) with v ∈ V2, then the edge set E4 = (E1 \{su3})∪{e, vu3}(resp. E4 = (E1 \ {u1t}) ∪ {u1v, e}) indu
es a solution of the kHPP. Moreover, itsin
iden
e ve
tor belongs to F. Thus, bxE4 − bxE1 = b(e) + b(vu3) − b(su3) = 0 (resp.
bxE4 − bxE1 = b(u1v) + b(e) − b(u1t) = 0). From (4.7) and (4.8) we get b(e) = ρ.Let e = sv with v ∈ V3. The 
ase where e ∈ [V1, t] is similar. If v ∈ U3, then the edge set
E5 = (E1 \ {f})∪{e}, where f is the edge of E1 between s and v, indu
es a solution ofthe kHPP whose in
iden
e ve
tor belongs to F. Hen
e bxE5 − bxE1 = b(e)− b(su3) = 0.By (4.7), we get b(e) = ρ. If v /∈ U3, then we have that E ′

5 = (E1 \ {f ′}) ∪ {e, vt},where f ′ ∈ E1 ∩ [s, U3], also indu
es a solution of the kHPP and its in
iden
e ve
torbelongs to F. Thus, bxE′
5 − bxE1 = b(e) + b(u3t)− b(f) = 0. By (4.7) and (4.8), we get

b(e) = ρ.Now suppose that e = uv ∈ [V1, V3]. If u ∈ U1 and v ∈ U3, then by 
onsidering theedge set E6 = (E1 \ {ut, sv}) ∪ {e, st}, we get b(e) + b(st) = b(sv) + b(ut). From (4.7)and (4.8), we have that b(e) = ρ. If u /∈ U1 and v ∈ U3, then by 
onsidering theedge set E7 = (E1 \ {g}) ∪ {su, e}, where g is the edge of E1 between s and v, we get
b(e) + b(su) = b(g). By (4.7) and (4.8), we have b(e) = ρ. If u ∈ U1 and v /∈ U3, thenwe show in a similar way that b(e) = ρ. If u /∈ U1 and v /∈ U3, then by 
onsidering theedge set E8 = (E1 \ {st}) ∪ {su, e, vt}, we get b(e) = ρ. Thus, we obtain

b(e) = ρ for all e ∈ T \ (E1 ∪ {st}). (4.9)
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b(e) =

{
ρ for all e ∈ T,

0 if not.Therefore, b = ρa. Moreover ρ 6= 0 sin
e bx ≥ β de�nes a fa
et whi
h ends the proofof the theorem. �As it will turn out in the next se
tion, the 
onditions given for inequalities (4.1)-(4.3)to de�ne fa
ets will be useful for 
hara
terizing the kHPP polytope.4.3 Complete des
ription of kHPP(G)In this se
tion, we will present our main result, that is the polytope Pk(G), given bythe st-
ut, the 3-path-
ut and the trivial inequalities, is integral, whi
h implies that
kHPP(G) is 
ompletely des
ribed by these inequalities.To this end, 
onsider an undire
ted graph G = (V, E). Let N = V \ {s, t}, N ′ be a
opy of N and Ṽ = N ∪ N ′ ∪ {s, t}. The 
opy in N ′ of a node u ∈ N will be denotedby u′. Let G̃ = (Ṽ , Ã) be the dire
ted graph su
h that Ṽ = N ∪ N ′ ∪ {s, t} and Ã isobtained from as follows. To ea
h edge e ∈ [s, t], we asso
iate an ar
 from s to t in G̃.To ea
h edge su ∈ E (resp. vt ∈ E), we asso
iate in G̃ the ar
 (s, u), u ∈ N (resp.
(v′, t), v′ ∈ N ′). To ea
h edge uv ∈ E, with u, v /∈ {s, t}, we asso
iate two ar
s (u, v′)and (v, u′), with u, v ∈ N and u′, v′ ∈ N ′. Finally, to ea
h node u ∈ V \ {s, t}, weasso
iate in G̃ k ar
s (u, u′) (see Figure 4.2 for an illustration for k = 3).Remark that any st-dipath in G̃ is of length no more than 3. Also note that ea
h
3-st-path in G 
orresponds to an st-path in G̃ and vi
e-versa. In fa
t, a 3-st-path
Γ = (s, u, v, t), with u 6= v, u, v /∈ {s, t}, 
orresponds to an st-path in G̃ of the form
(s, u, v′, t) with u ∈ N and v′ ∈ N ′, and a 3-st-path L = (s, u, t), u /∈ {s, t} 
orrespondsto an st-path in G̃ of the form (s, u, u′, t).The main idea of the proof is to show that ea
h solution of Pk(G) 
orresponds to asolution of kADPP(G̃) and vi
e versa. We will use this 
orrespondan
e together withTheorem 4.1.4 to a
hieve the proof.Given a solution x of R

E , we let y be the solution of R
eA obtained from x as follows.
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G G̃Figure 4.2: Constru
tion of G̃

y(a) =





x(su) if a = (s, u), u ∈ N,

x(vt) if a = (v′, t), v′ ∈ N ′,

x(uv) if a ∈ {(u, v′), (v′, u)}, u, v ∈ N, u′, v′ ∈ N ′, u 6= v, u′ 6= v′,

x(st) if a = (s, t),

1 if a = (u, u′), u ∈ N, u′ ∈ N ′.We will say that the solutions x and y are asso
iated.In what follows we will show that any st-
ut and 3-path-
ut of G 
orresponds toan st-di
ut in G̃. Indeed, let us 
onsider an edge set C ⊆ E and an ar
 set C̃ ⊆ Ãobtained from C as follows.i) For an edge st ∈ C, add (s, t) in C̃;ii) for an edge su ∈ C, add (s, u) in C̃, u ∈ N ;iii) for an edge vt ∈ C, add (v′, t) in C̃, v′ ∈ N ′;iv) for an edge uv ∈ C, u 6= v, u, v ∈ N ,iv.1) if su ∈ C or vt ∈ C, then add (v, u′) in C̃, with v ∈ N and u′ ∈ N ′;



4.3. COMPLETE DESCRIPTION OF KHPP(G) 95iv.2) if su /∈ C and vt /∈ C, then add (u, v′) in C̃.Observe that C̃ does not 
ontain any ar
 of the form (u, u′) with u ∈ N and u′ ∈ N ′.Also note that C̃ does not 
ontain at the same time two ar
s (u, v′) and (v, u′), for anedge uv ∈ E with u, v ∈ V \ {s, t}.Conversly, an ar
 subset C̃ of Ã 
an be obtained from an edge set C ⊆ E if C̃ doesnot 
ontain simultaneously two ar
s (u, v′) and (v, u′), u, v ∈ N , u′, v′ ∈ N ′, and doesnot 
ontain any ar
 of the form (u, u′) with u ∈ N , u′ ∈ N ′.As ea
h ar
 of C 
orresponds to a single ar
 of C̃ and vi
e versa, both sets have thesame weight, that is x(C) = y(C̃).Lemma 4.3.1 Let C ⊆ E be an edge set of G whi
h is an st-
ut or a 3-path-
utindu
ed by a partition (V0, ..., V4) su
h that |V0| = |V4| = 1. Then the ar
 set obtainedfrom C by the pro
edure given above is an st-di
ut of G̃. Moreover, x(C) = y(C̃)Proof. Suppose �rst that C is an st-
ut δ(W ) for some W ⊂ V with s ∈ W and t ∈ W .Let W̃ ⊆ Ṽ su
h that W̃ = W ∪ {u′ | u ∈ W \ {s}}. We will show that C̃ = δ+(W̃ ).We �rst show that C̃ ⊆ δ+(W̃ ). Observe that any ar
 f of C̃ is of the form (s, t), (s, u),
u 6= t, (v′, t), (u, v′) or (v, u′), u, v ∈ N , u′, v′ ∈ N ′. In fa
t, if f = (s, u) ∈ C̃, with
u ∈ N ∪ {t}, then su ∈ C. Thus, u ∈ W and therefore, (s, u) ∈ δ+(W̃ ).If f = (v′, t) for v′ ∈ N ′, this implies that vt ∈ C. Thus, v ∈ W and hen
e (v′, t) ∈

δ+(W̃ ).If f = (v, u′) for v ∈ N , u′ ∈ N ′, then by step iv.a) of the 
onstru
tion of C̃, weshould have su and vt in C. Hen
e, v ∈ W and u ∈ W . Therefore, v ∈ W̃ and
u′ ∈ Ṽ \ W̃ . Hen
e (v, u′) ∈ δ+(W̃ ). If f = (u, v′), it similarly follows that f ∈ δ+(W̃ ).Consequeltly, we have that C̃ ⊆ δ+(W̃ ).Next, we show that δ+(W̃ ) ⊆ C̃. Let g be an ar
 of δ+(W̃ ). If g = (s, u) for u ∈ N ,then u ∈ Ṽ \ W̃ and hen
e su ∈ δ(W )(= C). This implies that (s, u) ∈ C̃.If g = (v′, t) for v′ ∈ N ′, then v′ and hen
e v belongs to W̃ . Thus, vt ∈ δ(W ) andtherefore (v′, t) ∈ C̃. If g = (v, u′) with v ∈ N and u′ ∈ N ′, then v ∈ W̃ , and
u, u′ ∈ Ṽ \ W̃ . This implies that v ∈ W and u ∈ W . In 
onsequen
e, su ∈ δ(W ) and
vt ∈ δ(W ), and thus (v, u′) ∈ C̃.If g = (u, v′) with u ∈ N and v′ ∈ N ′, we similarly show that g ∈ C̃.
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e δ+(W̃ ) = C̃.Now suppose that C is a 3-path-
ut indu
ed by a partition (V0, V1, V2, V3, V4) su
hthat V0 = {s} and V4 = {t}. By 
onsidering W̃ = V1 ∪ {u′ | u ∈ V1 ∪ V2}, we 
an showas before that C̃ = δ+(W̃ ). �Note that for an edge set C whi
h is a 3-path-
ut of G, indu
ed by a partition
(V0, ..., V4) su
h that |V0| ≥ 2 or |V4| ≥ 2, the 
orresponding ar
 set C̃ may not bean st-di
ut of G̃. In fa
t, C̃ may simultaneously 
ontain two ar
s (s, u), (u, v′) or
(u, v′), (v′, t). In the example of Figure 4.3, C̃ simultaneously 
ontains the ar
s (s, u2)and (u2, u

′
0). If there exists a node subset W̃ ⊆ Ṽ su
h that C̃ = δ+(W̃ ), we wouldhave u2 ∈ W̃ and u2 ∈ Ṽ \ W̃ , a 
ontradi
tion.Also note that by Theorem 4.2.4, the L-path-
ut inequalities indu
ed by su
h parti-tions do not de�ne fa
ets of kHPP(G).

t

V0 V1
V2 V3

u2

u0

s

V4

u′

0

t

u2 u′

2

s

u0

Figure 4.3: A 3-path-
ut in G whi
h does not indu
e an st-di
ut in G̃.The following lemma shows that an st-di
ut in G̃ whi
h does not 
ontain any ar
 ofthe form (u, u′), u ∈ V \ {s, t} 
orresponds to either an st-
ut or a 3-path-
ut in Gwith a lower weight.Lemma 4.3.2 Let C̃ be an st-di
ut of G̃ su
h that C̃ does not 
ontain an ar
 of the



4.3. COMPLETE DESCRIPTION OF KHPP(G) 97form (u, u′), u ∈ V \ {s, t}. Then there exists an st-
ut or a 3-path-
ut C ⊆ E in Gsu
h that x(C) ≤ y(C̃).Proof. Let C̃ = δ+(W̃ ) with W̃ ⊂ Ṽ . Sin
e C̃ does not 
ontain any ar
 of the form
(u, u′), u ∈ N , C̃ may 
ontain ar
s of the form either (u, v′) or (v, u′) or none of thembut not both.If C̃ 
ontains an ar
 of the form (u, v′) with u ∈ N , v′ ∈ N ′, sin
e C̃ is an st-di
ut in
G̃, the ar
s (s, u) and (v′, t) are not in C̃. If C̃ 
ontains an ar
 (v, u′), as C̃ does not
ontain ar
s of the form (z, z′), z ∈ N , we should have u ∈ Ṽ \ W̃ and v′ ∈ W̃ . Hen
e
(s, u) and (v′, t) are in C̃. Therefore C̃ 
an be obtained from an edge set C ⊆ E of G.Moreover x(C) = y(C̃).Futhermore, C interse
ts all the 3-st-paths of G. In fa
t, if there exists a 3-st-path
Γ = (su, uv, vt) whi
h does not interse
t C, then the ar
s (s, u), (u, v′), (v, u′) and (v′, t)of G̃ are not in C̃. Thus, the st-path ((s, u), (u, v′), (v′, t)) of G̃ does not interse
t C̃,
ontradi
ting the fa
t that C̃ is an st-di
ut of G̃. Thus C interse
ts all the 3-st-pathsof G.If C is an st-
ut then the result holds. If this is not the 
ase, then we will show thatthere exists a 3-path-
ut T su
h that T ⊆ C. Consider the graph G′ obtained from
G by deleting all the edges of C. G′ does not 
ontain any 3-st-path sin
e C intersetsall these paths. Let π = (V0, ..., V4) be a partition of V in G′ su
h that V0 = {s}, Vi,for i = 1, 2, 3, is the set of nodes of G′ at distan
e (in terms of edges) i from s and
V4 = V \ (

3⋃

i=0

Vi). As C interse
ts all the 3-st-paths of G, all the st-paths in G′ are oflength at least 4 and hen
e, t ∈ V4. Moreover, the subgraph G′
π indu
ed by π in G′does not 
ontain any 
hord, that is an edge uv with u ∈ Vi, v ∈ Vj , and |i− j| > 1. Infa
t, if uv is a 
hord, then v is at distan
e i + 1 < j of s, a 
ontradi
tion. Therefore,if T is the 3-path-
ut indu
ed by π, we have that T ⊆ C. As x(e) ≥ 0, for all e ∈ E,this implies x(T ) ≤ x(C) = y(C̃). �In what follows, we will show that Pk(G) is integral. To this end, we give somelemmas.Lemma 4.3.3 Let x ∈ Pk(G) and y be its asso
iated solution. Then y ∈ kADPP(G̃).



98CHAPTER 4. THE K-EDGE-DISJOINT HOP-CONSTRAINED PATHS PROBLEMProof. Clearly, y satis�es inequalities 0 ≤ y(a) ≤ 1, for all a ∈ Ã. Now supposethat there exists an st-di
ut inequality, say y(δ+(W̃ )) ≥ k with W̃ ⊆ Ṽ , su
h that
y(δ+(W̃ )) < k.First note that δ+(W̃ ) does not 
ontain any ar
 of the form (u, u′), u ∈ N . In fa
t,if (u, u′) ∈ δ+(W̃ ), for some u ∈ N , then one would have that [u, u′] ⊆ δ+(W̃ ). Sin
e
|[u, u′]| = k and y(a) = 1 for all a ∈ [u, u′], one would have y(δ+(W̃ )) ≥ k, a 
ontra-di
tion. Hen
e, from Lemma 4.3.2, there exists either an st-
ut or a 3-path-
ut C ⊆ Eof G su
h that x(C) ≤ y(δ+(W̃ )) and therefore x(C) < k. But this is impossible sin
e
x ∈ Pk(G). �Lemma 4.3.4 Let e = uv be an edge of G su
h that u, v ∈ V \ {s, t}, and y ∈ R

eA asolution of kADPP(G̃). If there exists an st-di
ut C̃ of G̃ whi
h does not 
ontain anyar
 of the form (z, z′), z ∈ V \ {s, t}, and su
h that (u, v′) ∈ C̃ and y(C̃) = k, then
y(C̃ ′) > k for all st-di
ut C̃ ′ of G̃ 
ontaining the ar
 (v, u′).Proof. Suppose that there exists an st-di
ut C̃ = δ+(W̃ ) of G̃ whi
h does not 
ontainar
s of the form (z, z′), z ∈ V \ {s, t} and su
h that (u, v′) ∈ C̃ and y(C̃) = k. Supposealso, on the 
ontrary, that there exists an st-di
ut C̃ ′ = δ+(W̃ ′) 
ontaining the ar

(v, u′) and su
h that y(C̃ ′) = k. From Theorem 4.1.5, W̃ and W̃ ′ 
an be 
hosen sothat either W̃ ′ ⊆ W̃ or W̃ ⊆ W̃ ′. As (u, v′) ∈ C̃, we have that u ∈ W̃ and v′ ∈ Ṽ \ W̃ .Sin
e (z, z′) /∈ C̃, for all z ∈ V \ {s, t}, it follows that u, u′ ∈ W̃ , and v, v′ ∈ Ṽ \ W̃ .Similarly, as (v, u′) ∈ C̃ ′, we have that v, v′ ∈ W̃ ′ and u, u′ ∈ Ṽ \ W̃ ′.If W̃ ′ ⊆ W̃ , then one would have v ∈ W̃ . But this 
ontradi
ts the fa
t that v ∈ Ṽ \W̃ .If W̃ ⊆ W̃ ′, then we would obtain that u ∈ W̃ ′. As u ∈ Ṽ \W̃ ′, this is a 
ontradi
tion. �Now we are ready to state our main result.Theorem 4.3.1 The polytope kHPP(G) is 
ompletely des
ribed by inequalities (4.1)-(4.3).Proof. We will show that the polytope Pk(G) is integral. For this, let us suppose, onthe 
ontrary, that there exists a fra
tional extreme point x of Pk(G). Then there existsa set of st-
uts C∗(x) and a set of 3-path-
uts T ∗(x) su
h that x is the unique solutionof the system
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S(x)





x(e) = 0, for all e ∈ E0(x),

x(e) = 1, for all e ∈ E1(x),

x(C) = k, for all C ∈ C∗(x),

x(T ) = k, for all T ∈ T ∗(x),where E0(x) (resp. E1(x)) is the set of edges su
h that x(e) = 0 (resp. x(e) = 1) and
|E0(x)| + |E1(x)| + |C∗(x)| + |T ∗(x)| = |E|.We will show that there exists a solution x′

1 of Pk(G) di�erent from x whi
h is alsoa solution of S(x), yielding a 
ontradi
tion.Clearly, the solution y, asso
iated with x, is fra
tional and, by Lemma 4.3.3, is asolution of kADPP(G̃). Let Ã0(y) = {(u, v) ∈ Ã | x(uv) = 0} and Ã1(y) = {(u, v) ∈

Ã | x(uv) = 1} ∪ {(u, u′), u ∈ N, u′ ∈ N ′}. By Lemma 4.3.1, ea
h st-
ut C ∈ C∗(x)and 3-path-
ut T ∈ T ∗(x) 
orresponds to an st-di
ut C̃ of G̃ having the same weight,that is y(C̃) = k. We denote by C∗(y) the set of the 
orresponding st-di
uts. It thenfollows that y is solution (not ne
essarily unique) of the system S(y) given by
S(y)





y(a) = 0, for all a ∈ Ã0(y),

y(a) = 1, for all a ∈ Ã1(y),

y(C̃) = k, for all C̃ ∈ C∗(y).Sin
e y is fra
tional and hen
e, by Theorem 4.1.4, 
annot be an extreme point of
kADPP(G̃), y 
an be written as a 
onvexe 
ombination of integral extreme points of
kADPP(G̃). Let y1 be one of these extreme points. Clearly, y1 is also a solution of S(y).In the following, we show that there exists an integer solution y′

1 of kADPP(G̃) whi
his a solution of S(y) and su
h that y′
1(u, v′) = y′

1(v, u′) for all pair of ar
s ((u, v′), (v, u′))of G̃, 
orresponding to an edge uv ∈ E with u, v ∈ V \ {s, t} and u 6= v. If su
h asolution exists, then y′
1 
an be asso
iated with a solution x′

1 ∈ Pk(G) satisfying S(x)and di�erent from x.If for all pair of ar
s ((u, v′), (v, u′)) of G̃, with u, v ∈ N , u′, v′ ∈ N ′, y1(u, v′) =

y1(v, u′), then we 
an take y′
1 = y1. So suppose that there exist two nodes u, v ∈

V \{s, t}, su
h that uv ∈ E and y1(u, v′) 6= y1(v, u′). As y1 is integral, we 
an suppose,w.l.o.g., that y1(u, v′) = 1 and y1(v, u′) = 0. It follows that y(u, v′), y(v, u′), x(uv)are fra
tional. Note that x(uv) = y(u, v′) = y(v, u′). Also note that any st-di
ut of
G̃ indu
ing a tight st-di
ut inequality for y or y1 does not 
ontain ar
s of the form
(z, z′), z ∈ V \ {s, t}. If there is an st-di
ut C̃ of G̃ whi
h 
ontains (u, v′), and su
hthat y1(C̃) = k, then, by Lemma 4.3.4, every st-di
ut 
ontaining (v, u′) is not tight for
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y1. Let y′

1 be the solution given by
y′

1(a) =

{
y1(a), for all a ∈ Ã \ {(v, u′)},

1, for a = (v, u′).Clearly, y′
1 is a solution of kADPP(G̃) with y′

1(u, v′) = y′
1(v

′, u) = 1, and satis�es withequality every st-di
ut inequality whi
h is tight for y1. In parti
ular, the st-di
utsinequalities of C̃∗(y) are also tight for y′
1. Hen
e, y′

1 is a solution of S(y).If there is an st-di
ut C̃ whi
h 
ontains (v, u′) and su
h that y1(C̃) = k, then, byLemma 4.3.4, every st-di
ut R̃ ⊆ Ã 
ontaining (u, v′) is su
h that y1(R̃) ≥ k + 1.Hen
e, the solution y′
1 given by
y′

1(a) =

{
y1(a), for all a ∈ Ã \ {(u, v′)},

0, for a = (u, v′),is a solution of kADPP(G̃) su
h that y′
1(u, v′) = y′

1(v
′, u) = 0, and every st-di
ut in-equality whi
h is tight for y1 is also tight for y′

1. Thus y′
1 is also a solution of S(y).Consequently, there exists an integer solution y′

1 ∈ kADPP(G̃) whi
h is a solutionof S(y) and su
h that y′
1(u, v′) = y′

1(u
′, v) for all ar
s (u, v′), (v, u′) ∈ Ã 
orrespondingto an edge uv ∈ E. Thus, y′

1 
an be asso
iated with a solution x′
1 of Pk(G). As y′

1is integral, x′
1 is also integral. Moreover, x′

1 is a solution of S(x). In fa
t, it is nothard to see that, as y′
1 is a solution of S(y), and y′

1(a) = 0 for all a ∈ Ã0(y) and
y′

1(a) = 1 for all a ∈ Ã1(y). Hen
e x′
1(e) = 0 for all e ∈ E0(x) and x′

1(e) = 1 forall e ∈ E1(x). Suppose that there is an st-
ut (resp. 3-path-
ut) inequality in C∗(x)(resp. T ∗(x)) whi
h is not tight for x′
1, say x′

1(C0) > k. Then by Lemma 4.3.2, we havethat x′
1(C0) ≤ y1(C̃0), where C̃0 is the st-di
ut of C̃∗(y) 
orresponding to C0. We thusobtain that y′

1(C̃0) > k. Hen
e y′
1 is not a solution of S(y), a 
ontradi
tion. Thus, x′

1is a solution of S(x). Sin
e x′
1 is integral and x is fra
tional, x′

1 6= x. In 
onsequen
e,
x is not the unique solution of S(x), 
ontradi
ting the fa
t that x is an extreme pointof Pk(G). Therefore, x 
annot be fra
tional, whi
h ends the proof of the theorem. �A dire
t 
onsequen
e of Theorems 4.2.2, 4.2.3, 4.2.4 and 4.3.1 is the following.Corollary 4.3.1 If G = (V, E) is a 
omplete graph and |V | ≥ k + 2, a minimal
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omplete linear des
ription of kHPP(G) is given by
x(δ(W )) ≥ k for all st − 
ut δ(W ),

x(T ) ≥ k for all 3-path-
ut T indu
ed by a partition satisfying
onditions 1) and 2) of Theorem 4.2.4,
x(e) ≥ 0 for all e ∈ E,

x(e) ≤ 1 for all e ∈ E.As mentionned in Se
tion 4.1.1, the separation problem for the st-
ut and 3-path-
ut inequalities 
an be solved in polynomial time. Thus, the kHPP 
an be solved inpolynomial time using a 
utting plane algorithm.4.4 Con
luding remarksIn this 
hapter we have given a 
omplete des
ription of the polytope asso
iated with the
k edge-disjoint hop-
onstrained paths problem when L = 3 and k ≥ 2. We have pre-sented valid inequalites for the problem and given an integer programming formulation.We have also des
ribed ne
essary and su�
ient 
onditions for the trivial inequalities,the st-
ut and L-path-
ut inequalities to de�ne fa
ets of the polytope. Using theseresults together with a transformation of the kHPP in G into the kADPP in a di-re
ted graph G̃, we have shown that the polytope kHPP(G) is 
ompletely des
ribedby the trivial, st-
ut and 3-path 
ut inequalities. As the separation problem for theseinequalities 
an be solved in polynomial time, this yields a polynomial time 
uttingplane algorithm to solve the problem.These results generalize those obtained by Huygens et al. [75℄ and Dahl et al. [35℄for k = 2 and L = 2, 3 and for k ≥ 2 and L = 2, respe
tively. Unfortunately thelinear des
ription of the kHPP is no longer valid when L ≥ 4. As shown by Huygensand Mahjoub [73℄, further inequalities are even needed for an integer programmingformulation of the problem when k = 2 and L = 4.The kHPP 
an also be seen as a minimum 
ost �ow problem in the graph G̃ byasso
iated with its ar
s unit 
apa
ities and appropriate weights. In fa
t, an ar
 of
G̃ whi
h 
orresponds to an edge of G takes the same weight as this edge while thear
s of the form (u, u′), u ∈ V \ {s, t} (whi
h do not 
orrespond to any edge in G)are given the weight 0. By the 
orrespondan
e between the 3-st-paths of G and the
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st-paths in G̃, a minimum weight subgraph of G whi
h 
ontains k edge-disjoint 3-st-paths 
orresponds to a subgraph of G̃ 
ontaining k ar
-disjoint st-paths of the sameweight. Moreover, the weight of this subgraph is minimum. The kHPP is thus equiva-lent to �nding a minimum 
ost �ow from s to t of value k in G̃. This implies that theproblem 
an also be solved in polynomial time using any minimum 
ost �ow algorithm.The integer programming formulation for the kHPP 
an be easily extended to themore general 
ase where more than pair of terminals are 
onsidered. However, aspointed out in [74℄, the 
ut inequalities toghether with the L-path-
ut and trivial in-equalities do not su�
e to 
ompletely des
ribe the kHPP polytope even when only twopair of terminals are 
onsidered L ≥ 3 and k = 2.The results of this 
hapter 
an be exploited in a Bran
h-and-Cut algorithm for thatgeneral 
ase. Also the transformation of the kHPP into the kADPP in an appropriatedire
ted graph introdu
ed and exploited here, 
an be used to give based �ow formula-tions. It would also be interesting to investigate this type of approa
h for L ≥ 4. Thisis our aim in the next 
hapter.



Chapter 5
The k-Edge-Conne
tedHop-Constrained Network DesignProblem
Let G = (V, E) be an undire
ted graph, a set of demands D ⊆ V × V , a 
ost fun
tion
c : E → R, whi
h asso
iates the 
ost c(e) with ea
h edge e ∈ E. The k-Edge-Conne
ted Hop-Constrained Network Design Problem (kHNDP for short) 
onsists in�nding a minimum 
ost subgraph of G su
h that there exist k edge-disjoint L-st-pathsbetween the terminals of ea
h demand {s, t} of D.In this 
hapter, we 
onsider the kHNDP with L = 2, 3 and k ≥ 2 and introdu
efour new integer programming formulations for the problem. In Se
tion 5.1, we givea formulation of the kHNDP using the design variables. In Se
tions 5.2 and 5.3,we introdu
ed four new integer programming formulations. These formulations usetransformations of the initial undire
ted graph into dire
ted graphs.5.1 Integer programming formulation for the kHNDPusing the design variablesLet G = (V, E) be an undire
ted graph, L ≥ 2 and D = {{s1, t1}, ..., {sd, td}}, d ≥ 2, bethe set of demands. We will denote by RD the set of terminal nodes of G, that is thosenodes of G whi
h are involved in at least one demand. It is 
lear that the in
iden
e
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tor xF of any solution (V, F ) of the kHNDP satis�es the following inequalities.
x(δ(W )) ≥ k for all st-
ut, {s, t} ∈ D, (5.1)
x(T ) ≥ k for all L-st-path-
ut, {s, t} ∈ D, (5.2)
x(e) ≥ 0 for all e ∈ E, (5.3)
x(e) ≤ 1 for all e ∈ E, (5.4)Conversely, any integer solution of the system de�ned by inequalities (5.1)-(5.4) isthe in
iden
e ve
tor of a solution of the kHNDP when L = 2, 3.Re
all that inequalities (5.1), (5.2) and (5.3)-(5.4) are 
alled respe
tively st-
ut in-equalities, L-st-path-
ut inequalities and trivial inequalities.It is not hard to see that the kHNDP 
an be formulated as a linear integer programsimilarly to the 
ase of a single demand (Chapter 4). The following lemma and theoremgive this result. Their proof are similar to those of Lemma 4.1.1 and Theorem 4.1.1.Lemma 5.1.1 Let G = (V, E) be an undire
ted graph and s and t two nodes of V .Suppose that there do not exist k edge-disjoint L-st-paths in G, with k ≥ 2. Then thereexists a set of at most k − 1 edges that interse
ts every L-st-path.Theorem 5.1.1 Let G = (V, E) be a graph, k ≥ 2 and L ∈ {2, 3}. Then the kHNDPis equivalent to the following inter program
min{cx; subje
t to (5.1) − (5.4), x ∈ Z

E}. (5.5)Formulation (5.5) will be 
alledNatural formulation. We will denote it by kHNDPNat.It only uses the design variables.In the next se
tions, we give new integer programming formulations for the kHNDPin the 
ase where k ≥ 2 and L = 2, 3.5.2 Separated formulations for the kHNDPIn this se
tion we introdu
e three integer programming formulations for the kHNDP.Let G = (V, E) be an undire
ted graph, L ∈ {2, 3}, k ≥ 2, two integers, and D a setof demands. Before giving these formulations, we introdu
e a graph transformationwhi
h produ
es |D| dire
ted graphs from the graph G.



5.2. SEPARATED FORMULATIONS FOR THE KHNDP 1055.2.1 Graph transformationLet {s, t} ∈ D and G̃st = (Ṽst, Ãst) be the dire
ted graph obtained from G using thefollowing pro
edure.Let Nst = V \ {s, t}, N ′
st be a 
opy of Nst and Ṽst = Nst ∪ N ′

st ∪ {s, t}. The 
opy in
N ′

st of a node u ∈ Nst will be denoted by u′. To ea
h edge e = st ∈ E, we asso
iate anar
 (s, t) in G̃st with 
apa
ity 1. With ea
h edge su ∈ E (resp. vt ∈ E), we asso
iatein G̃st the ar
 (s, u), u ∈ Nst (resp. (v′, t), v′ ∈ N ′
st) with 
apa
ity 1. With ea
h node

u ∈ V \ {s, t}, we asso
iate in G̃st one ar
 (u, u′) with an in�nit 
apa
ity. Finally, if
L = 3 we asso
iate with ea
h edge uv ∈ E \ {s, t}, two ar
s (u, v′) and (v, u′), with
u, v ∈ Nst and u′, v′ ∈ N ′

st with 
apa
ity 1 (see Figure 5.1 for an illustration with
L = 3).

Graph eGs1,t2
Graph eGs1,t2

Graph eGs3,t3

s1 t1

t2s3

u t3Graph G

t3
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u u′

t′
2

s′
3

t′
3

t1s1

t1

t3

u

s3 s′
3

t′
1

t′
3

u′

s1 t2

s1

t1

u

t2

t′
1

s′
1

u′

t′
2

s3 t3

Figure 5.1: Constru
tion of graphs G̃st with D = {{s1, t1}, {s1, t2}, {s3, t3}} for L = 3Note that ea
h graph G̃st 
ontains |Ṽst| = 2|V | − 2 (= |Nst ∪N ′
st ∪{s, t}|) nodes and

|Ãst| = |δ(s)|+ |δ(t)| − |[s, t]|+ |V | − 2 ar
s if L = 2 and |Ãst| = 2|E| − |δ(s)| − |δ(t)|+

|[s, t]| + |V | − 2 ar
s if L = 3, for all {s, t} ∈ D.Given a demand {s, t}, the asso
iated graph G̃st = (Ṽst, Ãst), and an edge e ∈ E, wedenote by Ãst(e) the set of ar
s of G̃st 
orresponding to the edge e.It is not hard to see that G̃st does not 
ontain any 
ir
uit. Also, observe that any
st-dipath in G̃st is of length no more than 3. Moreover ea
h L-st-path in G 
orrespondsto an st-dipath in G̃st and 
onversely. In fa
t, if L ∈ {2, 3}, every 3-st-path (s, u, v, t),
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orresponds to an st-dipath in G̃st of the form (s, u, v′, t)with u ∈ Nst and v′ ∈ N ′
st. Every 2-st-path (s, u, t), u ∈ V \ {s, t}, 
orresponds to an

st-dipath in G̃st of the form (s, u, u′, t).We have the following lemma.Lemma 5.2.1 Let L ∈ {2, 3} and {s, t} ∈ D.i) If two L-st-paths of G are edge-disjoint, then the 
orresponding st-dipaths in G̃stare ar
-disjoint.ii) If two st-dipaths of G̃st are ar
-disjoint, then the 
orresponding st-paths in G
ontain two edge-disjoint L-st-paths.Proof. We will suppose, w.l.o.g., that L = 3. The proof is similar for L = 2.i) Let P1 and P2 be two edge-disjoint 3-st-paths of G. Let P̃1 and P̃2 be the two st-dipaths of G̃st 
orresponding to P1 and P2, respe
tively. We will show that P̃1 and P̃2are ar
-disjoint. Let us assume that this is not the 
ase. Then they interse
t on an ar

a of the form either (s, t), (s, u), (v′, t), (u, v′) or (u, u′), with u ∈ Nst and v′ ∈ N ′

st.If a is of the form (s, t), (s, u), (v′, t) or (u, v′), then it 
orresponds to an edge e of
G of the form either st, su, vt or uv. This implies that P1 and P2 
ontain both theedge e, a 
ontradi
tion. Thus, P̃1 and P̃2 interse
t on an ar
 of the form (u, u′), with
u ∈ Nst. As the st-dipaths of G̃st 
ontain at most 3 ar
s, P̃1 and P̃2 are of the form
(s, u, u′, t). But this implies that P1 and P2 
ontain simulataneously the edges su and
ut, a 
ontradi
tion.ii) Now 
onsider two ar
-disjoint st-dipaths P̃1 and P̃2 of G̃st and let P1 and P2 be the
orresponding 3-st-paths of G. Suppose that P1 ∩P2 6= ∅. If P1 and P2 interse
t on anedge e = st, then P̃1 and P̃2 also 
ontain the ar
 (s, t), a 
ontradi
tion. If P1 and P2interse
t on an edge of the form su, u ∈ V \ {s, t} (resp. vt, v ∈ V \ {s, t}), then, asbefore, both P̃1 and P̃2 
ontain the ar
 (s, u) (resp. (v′, t)), yielding a 
ontradi
tion.Now if P1 and P2 interse
t on an edge of the form uv, u, v ∈ V \ {s, t}, then P̃1 and
P̃2 
ontain the ar
s (u, v′) and (v, u′) of G̃st. Sin
e P̃1 and P̃2 are ar
-disjoint, P̃1 
on-tains say (u, v′) and P̃2 (v, u′). Thus they are respe
tively of the form (s, u, v′, t) and
(s, v, u′, t). This implies that P1 = (su, uv, vt) and P2 = (sv, vu, ut). Let P ′

1 = (su, ut)and P ′
2 = (sv, vt). Clearly P ′

1 and P ′
2 are edge-disjoint and of length 2. Thus, weasso
iate P̃1 and P̃2 with them, whi
h ends the proof of the lemma. �
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onsequen
e of Lemma 5.2.1, for L ∈ {2, 3} and every demand {s, t} ∈ D, a setof k edge-disjoint L-st-paths of G 
orresponds to a set of k ar
-disjoint st-dipaths of
G̃st, and k ar
-disjoint st-dipaths of G̃st 
orrespond to k edge-disjoint L-st-paths of G.Therefore we have the following 
orollary.Corollary 5.2.1 Let H be a subgraph of G and H̃st, {s, t} ∈ D, the subgraph of G̃stobtained by 
onsidering all the ar
s of G̃st 
orresponding to an edge of H, plus the ar
s ofthe form (u, u′), u ∈ V \{s, t}. Then H indu
es a solution of the kHNDP if H̃st 
ontains
k ar
-disjoint st-dipaths, for every {s, t} ∈ D. Conversly, given a set of subgraphs H̃stof G̃st, {s, t} ∈ D, if H is the subgraph of G obtained by 
onsidering all the edges of
G asso
iated with at least one ar
 in a subgraph H̃st, then H indu
es a solution of the
kHNDP only if H̃st 
ontains k ar
-disjoint st-dipaths, for every {s, t} ∈ D.Remark that a graph G̃st will 
ontain k ar
-disjoint st-dipaths if and only if every
st-di
ut 
ontains at least k ar
s. This implies, by the Max �ow - Min 
ut Theorem,that G̃st 
ontains k ar
-disjoint st-dipaths if and only if there exists a feasible �ow ofvalue ≥ k where every ar
 of G̃st has 
apa
ity 1. Given a demand {s, t} and a feasible�ow f of value ≥ k on G̃st, we will denote by H̃f

st the set of ar
s of G̃st having a positivevalue of �ow with respe
t to f .In what follows, we will give three integer programming formulations for the kHNDPusing graphs G̃st, {s, t} ∈ D. These formulations will be 
alled separated formulations.5.2.2 Cut formulationThe �rst formulation is based on 
uts in the graphs G̃st, {s, t} ∈ D. Given a subgraph
H̃st of G̃st, we let y

eHst
st ∈ R

eAst be the in
iden
e ve
tor of H̃st, that is to say y
eHst
st (a) = 1if a ∈ H̃st and y

eHst
st (a) = 0 if not. By Corollary 5.2.1, if a subgraph H of G indu
esa solution of the kHNDP, then the subgraph H̃st 
ontains at least k ar
-disjoint st-dipaths, for all {s, t} ∈ D, and 
onversely. Thus, for any solution H of the kHNDP,the following inequalities are satis�ed by y

eHst
st , for all {s, t} ∈ D,

yst(δ
+(W̃ )) ≥ k, for all st-di
ut δ+(W̃ ) of G̃st, (5.6)

yst(a) ≤ x(e), for all a ∈ Ãst(e), e ∈ E, (5.7)
yst(a) ≥ 0, for all a ∈ Ãst, (5.8)
x(e) ≤ 1, for all e ∈ E. (5.9)
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eAst for all {s, t} ∈ D and x ∈ R

E.Inequalities (5.6) will be 
alled dire
ted st-
ut inequalities or st-di
ut inequalities andinequalities (5.7) linking inequalities. Inequalities (5.7) indi
ate that an ar
 a ∈ Ãst
orresponding to an edge e is not in H̃st if e is not taken in H . Inequalities (5.8) and(5.9) are 
alled trivial inequalities.We have the following result whi
h is given without proof sin
e it easily follows fromthe above results.Theorem 5.2.1 The kHNDP for L = 2, 3 is equivalent to the following integer pro-gram
min{cx; subje
t to (5.6) − (5.9), x ∈ Z

E
+, yst ∈ Z

eAst

+ ,for all {s, t} ∈ D}. (5.10)This formulation is 
alled Cut formulation and denoted by kHNDPCu. It 
ontains
|E| +

∑

{s,t}∈D

|Ãst| = |E| + d(n − 2) +
∑

{s,t}∈D

|δ(s)| +
∑

{s,t}∈D

|δ(t)| −
∑

{s,t}∈D

|[s, t]|variables if L = 2 and
|E| +

∑

{s,t}∈D

|Ãst| = |E| + 2d|E| + d(n − 2) −
∑

{s,t}∈D

|δ(s)| −
∑

{s,t}∈D

|δ(t)| +
∑

{s,t}∈D

|[s, t]|variables if L = 3 (remind that d = |D|).However, the number of 
onstraints is exponential sin
e the dire
ted st-
uts are inexponential number in G̃st, for all {s, t} ∈ D. As it will turn out in Chapter 6, itslinear relaxation 
an be solved in polynomial time using a 
utting plane algorithm.5.2.3 Node-Ar
 formulationLet H ⊆ E be a subgraph of G and xH its in
iden
e ve
tor. Given a demand {s, t},we let f st ∈ R
eAst be an integer �ow ve
tor on G̃st of value k. Then f st satis�es the�ow 
onservation 
onstraints, given by
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∑

a∈δ+(u)

f st
a −

∑

a∈δ−(u)

f st
a =





k if u = s,

0 if u ∈ Ṽst \ {s, t},

−k if u = t,





,for all u ∈ Ṽst. (5.11)Also xH and (f st){s,t}∈D satisfy the following inequalities
f st

a ≤ x(e), for all a ∈ Ãst(e), {s, t} ∈ D, e ∈ E, (5.12)
f st

a ≥ 0, for every a ∈ Ãst and {s, t} ∈ D, (5.13)
x(e) ≤ 1, for all edge e ∈ E. (5.14)Inequalities (5.12) are also 
alled linking inequalities. They indi
ate that if an edge

e ∈ E is not in the solution, then the �ow on every ar
 
orresponding to e is 0.Inequalities (5.13)-(5.14) are 
alled trivial inequalities.We have the following theorem whi
h will be given without proof.Theorem 5.2.2 The kHNDP for L = 2, 3 is equivalent to the following integer pro-gram
min{cx; subje
t to (5.11) − (5.14), x ∈ Z

E
+, f st ∈ Z

eAst

+ ,for all {s, t} ∈ D}. (5.15)This formulation will be 
alled Node-Ar
 formulation and denoted by kHNDPNA. It
ontains
|E| +

∑

{s,t}∈D

|Ãst| = |E| + d(n − 2) +
∑

{s,t}∈D

|δ(s)| +
∑

{s,t}∈D

|δ(t)| −
∑

{s,t}∈D

|[s, t]|variables if L = 2 and
|E| +

∑

{s,t}∈D

|Ãst| = |E| + 2d|E| + d(n − 2) −
∑

{s,t}∈D

|δ(s)| −
∑

{s,t}∈D

|δ(t)| +
∑

{s,t}∈D

|[s, t]|variables if L = 3.The number of 
onstraints is
d|V | +

∑

{s,t}∈D

|δ(s)| +
∑

{s,t}∈D

|δ(t)| −
∑

{s,t}∈D

|[s, t]|
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d|V | + 2d|E| −

∑

{s,t}∈D

|δ(s)| −
∑

{s,t}∈D

|δ(t)| +
∑

{s,t}∈D

|[s, t]|if L = 3.Clearly the number of variables and the number of 
onstraints are both polynomial.Hen
e, the linear relaxation of Formulation (5.15) 
an be solved in polynomial timeusing a linear programming method.5.2.4 Path-Ar
 formulationThe kHNDP 
an also be formulated using a path-based model. Every solution of theproblem is represented by a 
olle
tion of dire
ted st-paths in graphs G̃st, {s, t} ∈ D.Let {s, t} ∈ D and Pst be the set of st-dipaths in G̃st. Given a dire
ted path P̃ ∈ Pst,we denote by Γst
eP

= (γst
eP,a

)a∈ eAst
the in
iden
e ve
tor of P̃ that is the ve
tor given by

γst
eP,a

= 1 if a ∈ P̃ and γst
eP,a

= 0 otherwise. Given a subgraph H of G and a setof subgraphs H̃st of G̃st, {s, t} ∈ D, we let µst
eHst

∈ R
Pst be the 0-1 ve
tor su
h that

µst
eHst

(P̃ ) = 1 if P̃ ∈ Pst is in H̃st and µst
eHst

(P̃ ) = 0 otherwise.If H indu
es a solution of the kHNDP, then xH and (µst
eHst

){s,t}∈D satisfy the followinginequalities.
∑

eP∈Pst

µst(P̃ ) ≥ k, (5.16)
∑

eP∈Pst

γst
eP,a

µst(P̃ ) ≤ x(e), for all a ∈ Ãst(e), {s, t} ∈ D, e ∈ E, (5.17)
x(e) ≤ 1, for all edge e ∈ E, (5.18)
µst(P̃ ) ≥ 0, for every P̃ ∈ Pst, {s, t} ∈ D, (5.19)where µst ∈ R

Pst and x ∈ R
E.Inequalities (5.16) express the fa
t that the subgraph G̃st must 
ontain at least k

st-dipaths. Inequalities (5.17) indi
ate that the st-dipaths are ar
-disjoint.The following theorem gives an integer programming formulation for the kHNDPusing the path-based model des
ribed above.



5.3. AGGREGATED FORMULATION FOR THE KHNDP 111Theorem 5.2.3 The kHNDP for L = 2, 3 is equivalent to the following inter program
min{cx; subje
t to (5.17) − (5.19), x ∈ Z

E
+, µst ∈ Z

Pst

+ ,for all {s, t} ∈ D}. (5.20)Formulation (5.20) is 
alled Path-Ar
 formulation and denoted by kHNDPPA. Re-mark that this formulation 
ontains an exponential number of variables while the num-ber of non trivial inequalities is
∑

{s,t}∈D

|δ(s)| +
∑

{s,t}∈D

|δ(t)| −
∑

{s,t}∈D

|[s, t]| − d(n − 3)if L = 2 and
2d|E| −

∑

{s,t}∈D

|δ(s)| −
∑

{s,t}∈D

|δ(t)| +
∑

{s,t}∈D

|[s, t]| − d(n − 3)if L = 3, whi
h is polynomial. To solve the linear relaxation of Formulation (5.20), itis ne
essary to use appropriate method su
h as 
olumn generation.In the next se
tion we introdu
e a further formulation for the kHNDP also basedon dire
ted graphs. However, unlike the separated formulations, this formulation issupported by only one dire
ted graph.5.3 Aggregated formulation for the kHNDPLet G = (V, E) be an undire
ted graph, L ∈ {2, 3}, k ≥ 2 be two integers, and Dbe the demand set. We denote by SD and TD respe
tively the sets of sour
e anddestination nodes of D. In the 
ase where two demands {s1, t1} and {s2, t2} are su
hthat s1 = t2 = s, we keep a 
opy of s in both SD and TD.In this se
tion, we will introdu
e a new formulation for the kHNDP whi
h is supportedby a dire
ted graph G̃ = (Ṽ , Ã) obtained from G as follows. Let N ′ and N ′′ be two
opies of V . We denote by u′ and u′′ the nodes of N ′ and N ′′ 
orresponding to a node
u ∈ V . Let Ṽ = SD ∪N ′∪N ′′∪TD. For every node u ∈ V , we add in G̃ an ar
 (u′, u′′).For ea
h {s, t} ∈ D, with s ∈ SD and t ∈ TD, we apply the following pro
edure.i) For an edge e = st, we add in G̃ an ar
 (s, t′) and an ar
 (t′, t);ii) For an edge su ∈ E, u ∈ V \ {s, t}, we add an ar
 (s, u′) in G̃;



112 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMiii) For an edge vt ∈ E, v ∈ V \ {s, t}, we add an ar
 (v′′, t).If L = 3, for ea
h edge e = uv ∈ E, we also add two ar
s (u′, v′′) and (v′, u′′) (seeFigures 5.2 and 5.3 for examples with L = 2 and L = 3).
s′

1

s′

3

u′

t′
3

t′
1

t′
2

s′′

1

s′′

3

u′′

t′′
1

t′′
2

t′′
3

s1

t1

s1 t1

t2s3

u t3

t3

t2

s3

Graph eG

Graph G

Figure 5.2: Constru
tion of graph G̃ with D = {{s1, t1}, {s1, t2}, {s3, t3}} and L = 2.
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s′

1

s′

3

u′

t′
3

t′
1

t′
2

s′′

1

s′′

3

u′′

t′′
1

t′′
2

t′′
3

s1

t1

s1 t1

t2s3

u t3

t3

t2

s3

Graph eG

Graph G

Figure 5.3: Constru
tion of graph G̃ with D = {{s1, t1}, {s1, t2}, {s3, t3}} and L = 3.
G̃ 
ontains |Ṽ | = 2|V |+ |S|+ |T | nodes and |Ã| = |V |+

∑

s∈S

|δ(s)| +
∑

t∈T

|δ(t)| ar
s if
L = 2 and |Ã| = 2|E| + |V | +

∑

s∈S

|δ(s)| +
∑

t∈T

|δ(t)| ar
s if L = 3.If G̃ = (Ṽ , Ã) is the graph asso
iated with G, then for an edge e ∈ E, we denote by
Ã(e) the set of ar
s of G̃ 
orresponding to e.Observe that G̃ is 
ir
uitless. Also note that for a given demand {s, t} ∈ D, every
st-dipath in G̃ 
ontains at most 3 ar
s. An L-st-path P = (s, u, v, t) of G, where uand v may be the same, 
orresponds to an st-dipath P̃ = (s, u′, v′′, t) in G̃. Conversely,every st-dipath P̃ = (s, u′, v′′, t) of G̃, where u′ and v′′ may 
orrespond to the samenode of V , 
orreponds to an L-st-path P = (s, u, v, t), where u and v may be the same.Moreover G̃ does not 
ontain any ar
 of the form (s, s′) and (t′′, t), for every s ∈ SDand t ∈ TD. If a node t ∈ TD appears in exa
tly one demand {s, t}, then [s′′, t] = ∅. Inthe remain of this 
hapter we will suppose w.l.o.g. that ea
h node of TD is involved,as destination, in only one demand. In fa
t, in general, if a node t ∈ TD is involved, asdestination, in more than one demand, say {s1, t}, ..., {sp, t}, with p ≥ 2, then one mayrepla
e in TD t by p nodes t1, ..., tp and in D ea
h demand {si, t} by {si, ti}, i = 1, ..., p.We have the following result.
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h node t ∈ TD appears in exa
ly one demand,then for every {s, t} ∈ D,i) if two L-st-paths of G are edge-disjoint, then the 
orresponding st-dipaths of G̃are ar
-disjoint.ii) if two st-dipaths of G̃ are ar
-disjoint, then the 
orresponding st-paths in G 
on-tain two edge-disjoint L-st-paths.Proof. The proof will be given for L = 3. It follows the same lines for L = 2.i) Let {s, t} ∈ D and let P1 and P2 be two edge-disjoint 3-st-paths and P̃1 and P̃2 bethe two st-dipaths of G̃ 
orresponding to P1 and P2. We will show that P̃1 and P̃2 arear
-disjoint. Suppose the 
ontrary that is P̃1 and P̃2 interse
t on an ar
 a ∈ Ã of theform either (s, t′), (s, u′), (v′′, t), (u′, v′′) or (u′, u′′), with u′ ∈ N ′ and v′′ ∈ N ′′. If a isof the form (s, t′), (s, u′), (v′′, t) or (u′, v′′), then it 
orresponds to an edge e of G ofthe form either st, su, vt or uv. It then follows that P1 and P2 both 
ontain edge e,a 
ontradi
tion. If P̃1 and P̃2 interse
t on an ar
 of the form (u′, u′′), then they also
ontain ar
s of the form (s, u′) and (u′′, t). Thus, P1 and P2 also 
ontain simultaneouslythe edges su and ut, a 
ontradi
tion. Thus, P̃1 and P̃2 are ar
-disjoint.ii) Let P̃1 and P̃2 be two ar
-disjoint st-dipaths of G̃ and suppose that P1 and P2, the
3-st-paths of G 
orresponding to P̃1 and P̃2, are not edge-disjoint. Thus P1 and P2interse
t on edges of the form either st, su, vt or uv, with u, v 6= s, t.If P1 and P2 interse
t edge st, then ea
h path P̃1 and P̃2 
ontains at least one ar
among those 
orresponding to st in G̃, that is (s, t′), (s′, t′′) or (t′, s′′). If P̃1 and
P̃2 
ontain (s′, t′′), then they should also 
ontain ar
 (s, s′). Sin
e [s, s′] = ∅, this isimpossible. In a similar way, we show that P̃1 and P̃2 
annot 
ontain (t′, s′′). Hen
e,
P̃1 and P̃2 both 
ontain ar
 (s, t′), a 
ontradi
tion.If P1 and P2 interse
t on su, then ea
h path P̃1 and P̃2 
ontains either (s, u′), (s′, u′′) or
(u′, s′′). Sin
e [s, s′] = ∅ = [s′′, t], P̃1 and P̃2 should both use ar
 (s, u′), a 
ontradi
tion.If P1 and P2 interse
t on vt, then P̃1 and P̃2 
ontain either (v′, t′′), (t′, v′′) or (v′′, t). As
[t′′, t] = ∅, P̃1 and P̃2 
annot use ar
 (v′, t′′). Moreover, if P̃1 or P̃2 
ontains (t′, v′′), thenit also 
ontains ar
 (v′′, t). Hen
e, P̃1 and P̃2 both 
ontain ar
 (v′′, t), a 
ontradi
tion.In 
onsequen
e, P1 ∩ P2 = {uv}, u, v 6= s, t. This implies that P̃1 and P̃2 are re-spe
tively of the form (su′, u′v′′, v′′t) and (sv′, v′u′′, u′′t), and P1 = (su, uv, vt) and
P2 = (su, vu, ut). Let P ′

1 = (su, ut) and P ′
2 = (sv, vt). Clearly P ′

1 and P ′
2 are edge-disjoint. Sin
e they are of length 2, we simply asso
iate P̃1 and P̃2 with them, whi
h



5.3. AGGREGATED FORMULATION FOR THE KHNDP 115ends the proof of the lemma. �As a 
onsequen
e of Lemma 5.3.1, the graph G 
ontains k edge-disjoint L-st-pathsfor a demand {s, t} if and only if G̃ 
ontains at least k ar
-disjoint st-dipaths. Thuswe have the following 
orrollary.Corollary 5.3.1 Let H be a subgraph of G and H̃ the subgraph of G̃ obtained by
onsidering all the ar
s of G̃ 
orresponding to the edges of H toghether with the ar
sof the form (u′, u′′), u ∈ V , and (t′, t), for every t ∈ TD. Then H indu
es a solutionof the kHNDP if H̃ is a solution of the Survivable Dire
ted Network Design Problem(kDNDP). Conversely, if H̃ is a subgraph of G̃ and H is the subgraph of G obtainedby 
onsidering all the edges whi
h 
orrespond to at least one ar
 of H̃, then H indu
esa solution of the kHNDP only if H̃ is a solution of the kDNDP.By Menger's Theorem, G̃ 
ontains k ar
-disjoint st-dipaths if and only if every st-di
ut of G̃ 
ontains at least k ar
s. Let x ∈ R
E and y ∈ R

eA. If H̃ is a solution of the
kDNDP and H is the subgraph of G whose edges 
orrespond to the ar
s of H̃ , then
xH and y

eH, the in
iden
e ve
tors of H and H̃ , satisfy the following inequalities
y(δ+(W̃ )) ≥ k, for all st-di
ut δ+(W̃ ), {s, t} ∈ D, (5.21)
y(a) ≤ x(e), for all a ∈ Ã(e), e ∈ E, (5.22)
y(a) ≥ 0, for all a ∈ Ã, (5.23)
x(e) ≤ 1, for all e ∈ E. (5.24)We have the following theorem, whi
h easily follows from Corollary 5.3.1.Theorem 5.3.1 The kHNDP for L = 2, 3 is equivalent to the following integer pro-gram

min{cx; subje
t to (5.21) − (5.24), x ∈ Z
E
+, y ∈ Z

eA
+}. (5.25)Formulation (5.25) will be 
alled Aggregated formulation and denoted by kHNDPAg.Inequalities (5.21) will be 
alled dire
ted st-
ut inequalities or st-di
ut inequalities and(5.22) will be 
alled linking inequalities. The latter inequalities indi
ate that an ar
 a,
orresponding to an edge e, is not in H̃ if e is not taken in H . Inequalities (5.23) and(5.24) are 
alled trivial inequalities.
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ontains |E| + |Ã| = |E| + |V | +
∑

s∈SD

|δ(s)| +
∑

t∈TD

|δ(t)| variablesif L = 2 and |E| + |Ã| = 3|E| + |V | +
∑

s∈SD

|δ(s)| +
∑

t∈TD

|δ(t)| variables if L = 3. Thenumber of 
onstraints is exponential sin
e the st-di
uts are in exponential number.But, as it will turn out, the separation problem of inequalities (5.21) 
an be solved inpolynomial time and hen
e, the linear relaxation of (5.25) so is.In the next se
tion, we present a 
omparitive study of di�erent formulations presentedin the last se
tion. In parti
ular, we will show that the values of the linear relaxationsof the separated and Aggregated formulations are greater than that of the Naturalformulation and thus, these formulations are as strong as the Natural formulation.5.4 Separated and Aggregated formulations versus Nat-ural formulationHere we show that the values of the linear relaxations of Formulations (5.10)-(5.25),are greater than that of the Natural formulation of the kHNDP. For this, we show thata solution x of the linear relaxation of any of these four formulations is also a solutionof the linear relaxation of Formulation (5.5).5.4.1 Separated formulations versus Natural formulationWe �rst 
onsider the Cut, Node-Ar
 and Path-Ar
 formulations. We will examinethe Node-Ar
 formulation, the proof for the Cut and Path-Ar
 formulations is alongthe same lines. We will show that, if a ve
tor x ∈ R
E and |D| �ow ve
tors f

st
∈

R
eAst , {s, t} ∈ D, indu
e a solution of the linear relaxation of (5.15), then x alsosatis�es inequalities (5.1)-(5.4). To this end, we �rst asso
iate with ea
h digraph G̃sta solution yst ∈ R

eAst obtained from x. Then we introdu
e a pro
edure whi
h permitsto asso
iate with every st-
ut and L-st-path-
ut of G an st-di
ut of G̃st with the samevalue regarding yst.For all {s, t} ∈ D, let yst ∈ R
eAst be the ve
tor given by
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yst(a) =





x(su) if a is of the form (s, u), u ∈ Nst,

x(vt) if a is of the form (v′, t), v′ ∈ N ′
st,

x(uv) if a is of the form (u, v′) or (v′, u),

u, v ∈ Nst, u′, v′ ∈ N ′
st, u 6= v, u′ 6= v′,

x(st) if a is of the form (s, t),

1 if a is of the form (u, u′), u ∈ Nst, u′ ∈ N ′
st.Note that, sin
e f

st is of value ≥ k, for all {s, t} ∈ D, by inequalities (5.12), it followsthat yst(δ
+(W̃ )) ≥ k for all st-di
ut δ+(W̃ ) of G̃st.Now we introdu
e a pro
edure, 
alled Pro
edure A, whi
h, for a demand {s, t} andan edge set C ⊆ E, produ
es an ar
 subset C̃ of G̃st.i) For an edge st ∈ C, add the ar
 (s, t) in C̃;ii) for an edge su ∈ C, add the ar
 (s, u) in C̃, u ∈ Nst;iii) for an edge vt ∈ C, add the ar
 (v′, t) in C̃, v′ ∈ N ′

st;iv) for an edge uv ∈ C, u 6= v, u, v ∈ V \ {s, t},iv.1) if su ∈ C or vt ∈ C, then add (v, u′) in C̃, with v ∈ Nst and u′ ∈ N ′
st;iv.2) if su /∈ C and vt /∈ C, then add the ar
 (u, v′) in C̃.Observe that C̃ does not 
ontain any ar
 of the form (u, u′) with u ∈ Nst and u′ ∈ N ′

st.Also note that C̃ does not 
ontain at the same time two ar
s (u, v′) and (v, u′), for anedge uv ∈ E with u, v ∈ V \ {s, t}.Conversely, an ar
 subset C̃ of Ãst 
an be obtained from an edge set C ⊆ E, usingPro
edure A, if C̃ does not 
ontain simultaneously two ar
s (u, v′) and (v, u′), u, v ∈ Nst,
u′, v′ ∈ N ′

st, and does not 
ontain any ar
 of the form (u, u′) with u ∈ Nst, u′ ∈ N ′
st.As ea
h ar
 of C 
orresponds to a single ar
 of C̃ and vi
e versa, C and C̃ have thesame weight with respe
t to x and y, that is x(C) = yst(C̃).Lemma 5.4.1 Let (x, f

s1t1
, ..., f

sdtd
) be a solution of the linear relaxation of Formu-lation (5.15). Let C ⊆ E be an edge set of G whi
h is an st-
ut or a L-st-path-
utindu
ed by a partition (V0, ..., VL+1) su
h that |V0| = |VL+1| = 1, with L ∈ {2, 3}. Alsolet yst ∈ R

eAst be the solution obtained from x and G̃st. Then the ar
 set C̃ obtainedfrom C by Pro
edure A is an st-di
ut of G̃st. Moreover, x(C) = yst(C̃).



118 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMProof. Similar to that of Lemma 4.3.1. �By Lemma 5.4.1, every st-
ut and L-st-path-
ut C of G, indu
ed by a partition
(V0, ..., VL+1) su
h that |V0| = |VL+1| = 1, 
orresponds to an st-di
ut C̃ of G̃st of thesame weight, that is x(C) = yst(C̃). As by the remark above, yst(C̃) ≥ k, for every
st-di
ut of G̃st, we have that x(C) ≥ k. Therefore, x satis�es inequalities (5.1)-(5.4).This result implies that if a ve
tor x and a set of �ow ve
tors (f

st
){s,t}∈D indu
ingan optimal solution of the linear relaxation of Formulation (5.15), then x is a solutionof the linear relaxation of (5.5). This yields the theorem below.Theorem 5.4.1 If Z∗

NA (resp. Z∗
Cut) (resp. Z∗

PA) is the value of the linear relaxationof Formulation (5.15) (resp. (5.10)) (resp. (5.20)) and Z∗
nat is that of Formulation(5.5), then Z∗

nat ≤ Z∗
NA (resp. Z∗

nat ≤ Z∗
Cut) (resp. Z∗

nat ≤ Z∗
PA).In the next se
tion we show that this result also holds for the Aggregated formulation.5.4.2 The linear relaxation of the Aggregated formulationConsider the Aggregated formulation (5.25) and let G̃ = (Ṽ , Ã) be the dire
ted graphasso
iated with G. Let also (x, y) ∈ R

E × R
eA be a pair of ve
tors whi
h indu
es asolution of the linear relaxation of Formulation (5.25). As for the Node-Ar
 formulation,we are going to asso
iate with every edge set C ⊆ E and demand {s, t} ∈ D, an ar
set C̃ of G̃, and show that if C is an st-
ut or an L-st-path-
ut indu
ed by a partition

(V0, ..., VL+1) with |V0| = |VL+1| = 1, then C̃ is an st-di
ut of G̃.For this, we give the following pro
edure 
alled Pro
edure B. Let C ⊆ E and {s, t} ∈

D, and let C̃ be the ar
 set of G̃ obtained as follows.i) For an edge st ∈ C, add the ar
 (s, t′) in C̃;ii) for an edge su ∈ C, add the ar
 (s, u′) in C̃, u′ ∈ N ′;iii) for an edge vt ∈ C, add the ar
 (v′′, t) in C̃, v′′ ∈ N ′′;iv) for an edge uv ∈ C, u 6= v, u, v ∈ V \ {s, t},iv.1) if su ∈ C or vt ∈ C, then add (v′, u′′) in C̃, with v′ ∈ N ′ and u′′ ∈ N ′′;
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 (u′, v′′) in C̃.Observe that C̃ does not 
ontain any ar
 neither of the form (u′, u′′) with u′ ∈ N ′and u′′ ∈ N ′′, nor of the form (t′, t) for t ∈ TD. Also note that C̃ does not 
ontain atthe same time two ar
s (u′, v′′) and (v′, u′′), for an edge uv ∈ E.Conversely, an ar
 subset C̃ of Ã 
an be obtained by Pro
edure B from an edge set
C ⊆ E if C̃ does not 
ontain simultaneously two ar
s (u′, v′′) and (v′, u′′), u′, v′ ∈ N ′,
u′′, v′′ ∈ N ′′, and any ar
 of the form (u′, u′′) with u′ ∈ N ′, u′′ ∈ N ′′ and (t′, t), t ∈ TD.As ea
h ar
 of C 
orresponds to an ar
 of C̃ and vi
e versa, and (x, y) satis�esinequalities (5.22), we have that x(C) ≥ y(C̃). We then have the following result givenwithout proof sin
e its proof is similar to that of Lemma 4.3.1.Lemma 5.4.2 Let (x, y) be a solution of the linear relaxation of Formulation (5.25).Let C ⊆ E be an edge set of G whi
h is an st-
ut or a L-st-path-
ut indu
ed by apartition (V0, ..., VL+1) su
h that |V0| = |VL+1| = 1, with L ∈ {2, 3}. Then the ar
 setobtained from C and {s, t} by Pro
edure B is an st-di
ut of G̃. Moreover, x(C) ≥ y(C̃).Proof. The proof is similar to that of Lemma 4.3.1. �By Lemma 5.4.2, every st-
ut and L-st-path-
ut C of G 
orresponds to an st-di
ut
C̃ of G̃ su
h that x(C) ≥ y(C̃). As (x, y), indu
es a solution of the linear relaxationof Formulation (5.25), and hen
e, y(C̃) ≥ k, for every st-di
ut C̃ of G̃, we have that
x(C) ≥ k. Therefore, x satis�es inequalities (5.1)-(5.4), yielding the theorem below.Theorem 5.4.2 If Z∗

Ag is the optimal solution of Formulation (5.25) and Z∗
nat is theoptimal solution of Formulation (5.5), then Z∗

nat ≤ Z∗
Ag.The next se
tion is devoted to a polyhedral study of the di�erent formulations in-trodu
ed before. For the polytope asso
iated with ea
h formulation we des
ribe some
lasses of valid inequalities and give some 
onditions under whi
h these inequalitiesde�ne fa
ets.



120 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEM5.5 The kHNDP polytopesLet G = (V, E) be an undire
ted graph, L ∈ {2, 3} and k ≥ 2 two integers, and
D = {{s1, t1}, ..., {sd, td}}, d ≥ 2, the set of demands.We will denote by kHNDPAg(G, D) (resp. kHNDPCu(G, D)) (resp. kHNDPNA(G, D))(resp. kHNDPPA(G, D)) the polytope asso
iated with the Aggregated formulation(resp. Cut formulation), (resp. Node-Ar
 formulation), (resp. Path-Ar
 formulation).5.5.1 The polytope kHNDPAg(G, D)We �rst 
onsider the polytope kHNDPAg(G, D). Let G̃ = (Ṽ , Ã) be the dire
ted graphasso
iated with G and D in the 
ase of the Aggregated formulation. Let E∗ be theset of edges e ∈ E su
h that there exists a demand {s, t} ∈ D su
h that G \ {e}does not 
ontain k edge-disjoint L-st-paths. Su
h an edge is said to be L-st-essential.Also 
onsider an ar
 a ∈ Ã su
h that there exists a demand {s, t} ∈ D su
h that thegraph G̃ \ {a} does not 
ontain k ar
-disjoint st-dipaths. Su
h an ar
 a is said to be
st-essential. We will denote by Ã∗ the set of st-essential ar
s of G̃.The following theorem 
hara
terizes the dimension of kHNDPAg(G, D).Theorem 5.5.1 dim(kHNDPAg(G, D)) = |E| + |Ã| − |E∗| − |Ã∗|.Proof. Obviously, we have that dim(kHNDPAg(G, D)) ≤ |E|+ |Ã|− |E∗|− |Ã∗|. Nowwe show that dim(kHNDPAg(G, D)) ≥ |E|+ |Ã| − |E∗| − |Ã∗|. For this, we show thatthe maximum number of a�nely independant solutions of kHNDPAg(G, D) is greaterthan or equal to |E|+ |Ã| − |E∗| − |Ã∗|+ 1. Re
all that a solution of kHNDPAg(G, D)is des
ribed by a pair (F̃ , F ) where F̃ ⊆ Ã and F ⊆ E is the asso
iated edge set.Also note that an edge set F indu
es a solution of the kHNDP if and only if theasso
iated ar
 set F̃ indu
es a subgraph of G̃ 
ontaining k ar
-disjoint st-dipaths forevery {s, t} ∈ D.Consider the pairs (Ã \ {a}, E), for all a ∈ Ã \ Ã∗. As a /∈ Ã∗, these pairs indu
esolutions of kHNDPAg(G, D).For every edge e ∈ E \ E∗, 
onsider the pair (Ã \ Ã(e), E \ {e}). Remind that,for all e ∈ E, Ã(e) is the set of ar
s of Ã 
orresponding to e. As e ∈ E \ E∗, thesubgraph indu
ed by E \ {e} 
ontains k edge-disjoint L-st-paths for every {s, t} ∈ D



5.5. THE KHNDP POLYTOPES 121and the subgraph of G̃ indu
ed Ã\Ã(e) also 
ontains k ar
-disjoint st-dipaths for every
{s, t} ∈ D. Hen
e this pair indu
es a solution of kHNDPAg(G, D).One 
an easily observe that these solutions, toghether with the solution given by thepair (Ã, E), form a family of |E \ E∗| + |Ã \ Ã∗| + 1 solutions of the kHNDPAg thatare a�nely independant. Therefore, dim(kHNDPAg(G, D)) ≥ |E| + |Ã| − |E∗| − |Ã∗|,whi
h ends the proof of the theorem. �Consequently, kHNDPAg(G, D) is full dimensional if and only if E∗ = ∅ = Ã∗.The next theorem shows that if G is 
omplete and |V | ≥ k + 2, then E∗ = ∅ = Ã∗,implying that kHNDPAg(G, D) is full dimensional. But before, we give the followinglemma.Lemma 5.5.1 If G is 
omplete, then for every {s, t} ∈ D, there exist at least |V | − 1ar
-disjoint st-dipaths in G̃.Proof. Suppose that G is 
omplete. Consider a demand {s, t} ∈ D and the ar
 set
H̃ = [s, N ′]∪ [N ′, N ′′]∪ [N ′′, t]∪ [t′, t]. Clearly, sin
e G is 
omplete, |[s, N ′]| = |V | − 1,
|[N ′′, t]| = |V |−2. Moreover, by the 
onstru
tion of G̃, |[N ′, N ′′]| = |V | and |[t′, t]| ≥ 1.Thus, the subgraph indu
ed by H̃ 
ontains |V | − 1 ar
-disjoint st-dipaths in G̃. �A 
onsequen
e of Lemma 5.5.1 is that for a 
omplete graph G with |V | ≥ k + 2,the graph G̃ 
ontains at least k + 1 ar
-disjoint st-dipaths for every {s, t} ∈ D. Thisimplies that E∗ = ∅ = Ã∗. We thus have the following.Corollary 5.5.1 If G is 
omplete and |V | ≥ k + 2, then kHNDPAg(G, D) is full di-mensional.In what follows, we give ne
essary and su�
ient 
onditions for the trivial inequalitiesto de�ne fa
ets of kHNDPAg(G, D). Remark that the inequalities y(a) ≤ 1, for all
a ∈ Ã, and x(e) ≥ 0, for all e ∈ E, are redundant with respe
t to the inequalities

y(a) ≥ 0 for all a ∈ Ã,

x(e) ≤ 1 for all e ∈ E,

y(a) ≤ x(e) for all ar
 a ∈ Ã(e),and hen
e, do not de�ne fa
ets.
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omplete and |V | ≥ k + 2, then the following hold.i) Every inequality x(e) ≤ 1 de�nes a fa
et of kHNDPAg(G, D);ii) An inequality y(a) ≥ 0 de�nes a fa
et of kHNDPAg(G, D) if and only either |V | ≥

k +3 or |V | = k +2 and a does not belong to an st-di
ut of G̃ of 
ardinality k +1.Proof. First note that, as G is 
omplete and |V | ≥ k + 2, by Corollary 5.5.1,
kHNDPAg(G, D) is full dimensional.i) Let a ∈ Ã. Sin
e G is 
omplete and |V | ≥ k + 2, the subgraph indu
ed by Ã \ {a}
ontains k ar
-disjoint st-dipaths for every {s, t} ∈ D. Thus, the pair (Ã \ {a}, E)indu
es a solution of kHNDPAg(G, D). Moreover, its in
iden
e ve
tor satis�es x(e) = 1.Now let f ∈ E \ {e}. As before, the subgraph indu
ed by E \ {f} 
ontains k edge-disjoint L-st-paths, for every {s, t} ∈ D. Thus, the pair (Ã \ Ã(f), E \ {f}) indu
esa solution of kHNDPAg(G, D), whose in
iden
e ve
tor satis�es x(e) = 1. Re
all that
Ã(f) denotes the set of ar
s of G̃ 
orresponding to f .It is not hard to see that these two families of solutions, toghether with the so-lution indu
ed by the pair (Ã, E), form |E| + |Ã| solutions whose in
iden
e ve
torssatisfy x(e) = 1 and are a�nely independant. This yields x(e) ≤ 1 de�nes a fa
et of
kHNDPAg(G, D).ii) Consider an ar
 a ∈ Ã and suppose that |V | ≥ k+3. By Lemma 5.5.1, G̃ 
ontains atleast k+2 ar
-disjoint st-dipaths for every {s, t} ∈ D, and G 
ontains at least k+2 edge-disjoint L-st-paths. Thus for an edge e ∈ E, the pair (Ã\({a}∪Ã(e)), E \{e}) indu
esa solution of kHNDPAg(G, D). Also, for an ar
 a′ ∈ Ã \ {a}, the pair (Ã \ {a, a′}, E)indu
es a solution of kHNDPAg(G, D). These solution toghether with the solution
(Ã\{a}, E) form a family of |Ã|+|E| solutions whose in
iden
e ve
tors satisfy y(a) = 0and are a�nely independant. Thus, y(a) ≥ 0 de�nes a fa
et.Now suppose that |V | = k + 2. If a belongs to an st-di
ut δ+(W̃ ) of k + 1 ar
s, then
y(a) ≥ 0 is redundant with respe
t to the inequalities

y(δ+(W̃ )) ≥ k,

− y(a′) ≥ −1, for every ar
 a′ ∈ δ+(W̃ ) \ {a},and hen
e 
annot de�ne a fa
et. If a does not belong to an st-di
ut of k + 1 ar
s,then, the pairs (Ã \ ({a} ∪ Ã(e)), E \ {e}), for all e ∈ E, and (Ã \ {a, a′}, E), for
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e solutions of kHNDPAg(G, D). These solutions toghether withthe solution (Ã \ {a}, E) form a family of |Ã| + |E| solutions whose in
iden
e ve
-tors satisfy y(a) = 0 and are a�nely independant. Thus y(a) ≥ 0 de�nes a fa
et of
kHNDPAg(G, D). �The next theorem gives ne
essary and su�
ient 
onditions for the dire
ted st-
utinequalities to de�ne fa
ets of kHNDPAg(G, D).Theorem 5.5.3 Suppose that G is 
omplete and |V | ≥ k+2 and let W̃ ⊆ Ṽ be a nodeset su
h that there is a demand {s, t} ∈ D with s ∈ SD∩W̃ and t ∈ TD∩(Ṽ \W̃ ) (Re
allthat SD (resp. TD) is the set of terminals of G that are sour
e (resp. destination) inat least one demand). Then the st-di
ut inequality y(δ+(W̃ )) ≥ k de�nes a fa
et of
kHNDPAg(G, D) only if the following 
onditions holdi) W̃ ∩ SD = {s} and (Ṽ \ W̃ ) ∩ TD = {t};ii) s′ ∈ Ṽ \ W̃ , s′′ ∈ W̃ and t′′ ∈ W̃ .Proof. We will only show the �rst 
ondition of i). The proof for ii) follows the samelines. Suppose on the 
ontrary that there exists another node s1 6= s in W̃ ∩SD. Sin
e
s1 ∈ SD, we have that [s, s1] = ∅. Thus, δ+(W̃ \ {s1}) = δ+(W̃ ) \ δ+(s1). Note thatthe edges of G asso
iated with those of δ+(s1) are those of δ(s1). As G is 
omplete,
δ+(s1) 6= ∅. Therefore, the st-di
ut inequality indu
ed by W̃ is redundant with respe
tto the inequalities

y(δ+(W̃ \ {s1})) ≥ k,

y(a) ≥ 0 for all a ∈ δ+(s1),and hen
e, 
annot de�ne a fa
et. �

5.5.2 The polytope kHNDPCu(G, D)Now we 
onsider the Cut formulation. The results of this se
tion will be given withoutproof. In fa
t their proofs are similar to those of the previous se
tion.As before, we denote by E∗ the set of L-st-essential edges of G and Ã∗
st the set of

st-essential ar
s of G̃st, for every {s, t} ∈ D. The following theorem gives the dimensionof kHNDPCu(G, D).



124 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMTheorem 5.5.4 dim(kHNDPCu(G, D)) = |E| +
∑

{s,t}∈D

|Ãst| − |E∗| −
∑

{s,t}∈D

|Ã∗
st|.Proof. Similar to proof of Theorem 5.5.1. �Lemma 5.5.2 If G is 
omplete, then for every demand {s, t} ∈ D, there exists at least

|V | − 1 ar
-disjoint st-dipaths in G̃st.Proof. Similar to proof of Lemma 5.5.1. �As a 
onsequen
e, we have the following 
orollary.Corollary 5.5.2 If G is 
omplete and |V | ≥ k + 2, then kHNDPCu(G, D) is fulldimensional.Note that the inequalities yst(a) ≤ 1 and x(e) ≥ 0 are redundant with respe
t to
yst(a) ≥ 0, x(e) ≤ 1 and yst(a) ≤ x(e). The next theorem gives ne
essary and su�
ient
onditions for inequalities (5.8) and (5.9) to de�ne fa
ets.Theorem 5.5.5 If G is 
omplete and |V | ≥ k + 2, then the following hold.i) Every inequality x(e) ≤ 1 de�nes a fa
et of kHNDPCu(G, D).ii) An inequality y(a) ≥ 0 de�nes a fa
et of kHNDPCu(G, D) if and only if either

|V | ≥ k + 3 or |V | = k + 2 and a does not belong to an st-
ut of 
ardinality k + 1.Proof. Similar to proof of Theorem 5.5.2. �In the next se
tion, we des
ribe further 
lasses of valid inequalities for the polytopesdis
ussed above. We also give for some of them ne
essary and su�
ient 
onditions forthese inequalities to be fa
et de�ning.



5.6. VALID INEQUALITIES 1255.6 Valid inequalitiesHere we des
ribe various 
lasses of inequalities that are valid for the polytopes kHNDPAg(G, D),
kHNDPCu(G, D), kHNDPNA(G, D) or kHNDPPA(G, D) when L ∈ {2, 3}. But before,we give the following lemma.Lemma 5.6.1 The following inequalities are valid for kHNDPAg(G, D), kHNDPCu(G, D),
kHNDPNA(G, D), kHNDPPA(G, D):

x(δ(W )) ≥ k, for every st-
ut δ(W ) and every {s, t} ∈ D,

x(T ) ≥ k, for every L-st-path-
ut T and every {s, t} ∈ D.Proof. Easy. �

5.6.1 Aggregated 
ut inequalitiesHere we introdu
e a 
lass of inequalities that are valid for kHNDPAg(G, D) and kHNDPCu(G, D).This 
lass of inequalities are inspired from those introdu
ed by Dahl [29℄ for the poly-tope of the Survivable Dire
ted Network Design Problem (kDNDP). The kDNDP 
on-sists, given a dire
ted graph H̃ , a set of demands D and an integer k ≥ 2, in �ndinga minimum weight subgraph of H̃ whi
h 
ontains k ar
-disjoint st-dipaths for everydemand {s, t} ∈ D. We will �rst des
ribe these inequalities for kHNDPAg(G, D) andthen extend it to kHNDPCu(G, D).5.6.1.1 Aggregated 
ut inequalities for kHNDPAg(G, D)Let {W̃1, ..., W̃p}, p ≥ 2, be a family of node sets of Ṽ su
h that ea
h set W̃i indu
es an
st-di
ut of G̃, for some {s, t} ∈ D, and F̃ 0

i ⊆ δ+
eG
(W̃i). Let F̃ =

p⋃

i=1

[δ+
eG
(W̃i) \ F̃ 0

i ] and,for an ar
 a ∈ Ã, let r(a) be the number of sets δ+
eG
(W̃i) \ F̃ 0

i whi
h 
ontain the ar
 a.Note that if a ∈ Ã does not belong to any set δ+
eG
(W̃i) \ F̃ 0

i , then r(a) = 0. For an edge
e ∈ E and an ar
 subset Ũ ⊆ Ã, we let

r′(e, Ũ) =
∑

a∈ eA(e)∩eU

r(a), for all e ∈ E.
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y(δ+
eG
(W̃i)) ≥ k for i = 1, ..., p,

− y(a) ≥ −1 for all a ∈ F̃ 0
i , i = 1, ..., p.By summing these inequalities, we obtain

∑

a∈ eF

r(a)y(a) ≥ kp −

p∑

i=1

|F̃ 0
i |.If F̃1 (resp. F̃2) denotes the set of ar
s a ∈ F̃ su
h that r(a) is odd (resp. even), thenthe previous inequality 
an be written as

∑

a∈ eF1

r(a)y(a) +
∑

a∈ eF2

r(a)y(a) ≥ kp −

p∑

i=1

|F̃ 0
i |. (5.26)Let F̃ 2

1 ⊆ F̃1 su
h that, for every edge e ∈ E 
orresponding to an ar
 of F̃1, r′(e, F̃ 2
1 )is even. Let E2 be the set of edges 
orresponding to the ar
s of F̃ 2

1 . By summinginequality (5.26) with the inequalities
r(a)x(e) ≥ r(a)y(a), for all a ∈ F̃ 2

1 and e 
orresponding to a,we get
∑

e∈E2

r′(e, F̃ 2
1 )x(e) +

∑

a∈ eF1\ eF 2
1

r(a)y(a) +
∑

a∈ eF2

r(a)y(a) ≥ kp −

p∑

i=1

|F̃ 0
i |. (5.27)By dividing by 2 and rounding up the right hand side of inequality (5.27), we obtainthe following inequality

∑

e∈E2

r′(e, F̃ 2
1 )

2
x(e) +

∑

a∈ eF1\ eF 2
1

r(a) + 1

2
y(a) +

∑

a∈ eF2

r(a)

2
y(a) ≥




kp −

p∑

i=1

|F̃ 0
i |

2




. (5.28)
Inequalities of type (5.28) will be 
alled aggregated 
ut inequalities. We give thefollowing result whi
h dire
tly 
omes from the above des
ription.



5.6. VALID INEQUALITIES 127Theorem 5.6.1 Inequalities of type (5.28) are valid for kHNDPAg(G, D) when L ∈

{2, 3}.Inequalities (5.28) are produ
ed by families of st-di
uts of G̃ whi
h may have di�erentforms of 
on�gurations for the node sets W̃1, ..., W̃p, p ≥ 2, and the ar
 sets F̃ 0
i ⊆

δ+
eG
(W̃i), i = 1, ..., p. In the following, we dis
uss a spe
ial 
ase of these inequalities.Let {W̃1, ..., W̃p}, p ≥ 2, be a family of node sets of Ṽ su
h that ea
h set W̃i,

i = 1, ..., p, indu
es an st-di
ut, for some {s, t} ∈ D, and let F̃ 0
i ⊆ δ+

eG
(W̃i) be ar
 setssu
h that 0 ≤ r(a) ≤ 2 for all a ∈ Ã. Let F̃2 (resp. F̃1) be the set of ar
s su
h that

r(a) = 2 (resp. r(a) = 1). Let F̃ 2
1 be the set of ar
s a ∈ F̃1 for whi
h there is anotherar
 a′ ∈ F̃1 whi
h 
orresponds to the same edge of E, and let E2 be the set of the
orresponding edges. The inequality of type (5.28) asso
iated with this 
on�guration
an be written as

∑

a∈ eF2

y(a) +
∑

e∈E2

x(e) +
∑

a∈ eF1\ eF 2
1

y(a) ≥




kp −

p∑

i=1

|F̃ 0
i |

2




. (5.29)As it will turn out, inequalities (5.29) may de�ne fa
ets under 
ertain 
onditions andwill be useful for solving the kHNDP using a Bran
h-and-Cut algorithm (Chapter 6).5.6.1.2 Aggregated 
ut inequalities for kHNDPCu(G, D)The aggregated 
ut inequalities 
an be de�ned for the polytope kHNDPCu(G, D) ina similar way. Let G̃st = (Ṽst, Ãst), {s, t} ∈ D, be the dire
ted graphs asso
iatedwith G and {s, t} ∈ D in Formulation (5.10). Let {{s1, t1}, ..., {sq, tq}} be a subsetof demands. Consider a family of node sets {W̃ s1t1
1 , ..., W̃ s1t1

p1
, ..., W̃

sqtq
1 , ..., W̃

sqtq
pq }, with

pi ≥ 1, for all i ∈ {1, ..., q} and p =

q∑

i=1

pi ≥ 2, where W̃ siti
j , j = 1, ..., pi, indu
es an

siti-di
ut in G̃st. Let F̃ siti,0
j ⊆ δ+

eGsiti

(W̃ siti
j ). Let F̃ siti =

pi⋃

i=1

[δ+
eGsiti

(W̃ siti
j ) \ F̃ siti,0

j ] forevery i ∈ {1, ..., q}, and for a given ar
 a ∈ Ãsiti , i = 1, ..., q, we let rsiti(a) be thenumber of sets δ+
eGsiti

(W̃ siti
j ) \ F̃ siti,0

j 
ontaining ar
 a. If a does not belong to any ofthese sets, then rsiti(a) = 0. Given an edge e ∈ E and an ar
 subset Ũi ⊆ Ãsiti , we let
r′(e, Ũi) =

∑

a∈ eAsiti
(e)∩eUi

rsiti(a).
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ysiti(δ
+
eGsiti

(W̃ siti
j )) ≥ k for j = 1, ..., pi, i = 1, ..., q,

− ysiti(a) ≥ −1 for a ∈ F̃ siti
j , j = 1, ..., pi, i = 1, ..., q,By adding the inequalities, we get

q∑

i=1


 ∑

a∈ eF siti

rsiti(a)ysiti(a)


 ≥ kp −

q∑

i=1

pi∑

j=1

|F̃ siti,0
j |.Let F̃ siti,1 (resp. F̃ siti,2) be the set of ar
s a ∈ F̃ siti having rsiti(a) odd (resp. even).The inequality above 
an then be written as

q∑

i=1


 ∑

a∈ eF siti,1

rsiti(a)ysiti(a) +
∑

a∈ eF siti,2

rsiti(a)ysiti(a)


 ≥ kp −

q∑

i=1

pi∑

j=1

|F̃ siti,0
j |. (5.30)Now we let F̃ siti,1

2 ⊆ F̃ siti,1, i = 1, ..., q, be the ar
 sets su
h that, for every edge
e ∈ E asso
iated with an ar
 of F̃ siti,1

2 , q∑

i=1

r′(e, F̃ siti,1
2 ) is even. If E2 denotes the set ofedges 
orresponding to the ar
s of F̃ siti,1

2 , i = 1, ..., q, then by adding inequality (5.30)and the inequalities
rsiti(a)x(e) ≥ rsiti(a)ysiti(a) for all a ∈ F̃ siti,1

2 where e 
orresponds to a,we get
q∑

i=1


 ∑

a∈ eF siti,1\ eF
siti,1
2

rsiti(a)ysiti(a) +
∑

a∈ eF siti,2

rsiti(a)ysiti(a)


+

∑

e∈E2

(

q∑

i=1

r′(e, F̃ siti,1
2 ))x(e) ≥ kp −

q∑

i=1

pi∑

j=1

|F̃ siti,0
j |. (5.31)Finally, by dividing inequality (5.31) by 2 and rounding up the right hand side of the
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q∑

i=1


 ∑

a∈ eF siti,1\ eF
siti,1
2

rsiti(a) + 1

2
ysiti(a) +

∑

a∈ eF siti,2

rsiti(a)

2
ysiti(a)


+

∑

e∈E2

q∑

i=1

r′(e, F̃ siti,1
2 )

2
x(e) ≥




kp −

q∑

i=1

pi∑

j=1

|F̃ siti
j |

2




. (5.32)
We then have the following result.Theorem 5.6.2 Inequality (5.32) is valid for kHNDPCu(G, D).Inequalities (5.32) will be also 
alled aggregated 
ut inequalities.We are also going to spe
ify a spe
ial 
ase for inequalities (5.32). These inequali-ties will be util in the Bran
h-and-Cut algorithm based on the Cut formulation (seeChapter 6). Let {W̃ s1t1

1 , ..., W̃ s1t1
p1

, ..., W̃
sqtq
1 , ..., W̃

sqtq
pq }, with pi ≥ 1, for i = 1, ..., q,and p =

q∑

i=1

pi ≥ 2, be a family of node sets su
h that W̃ siti
j indu
es siti-di
ut of G̃siti ,

i = 1, ..., q. Let F̃ siti,0
j ⊆ δ+

eGsiti

(W̃ siti
j ) be ar
 sets and F̃ siti =

p⋃

i=1

[δ+
eGsiti

(W̃ siti
j ) \ F̃ siti,0

j ].Suppose that 0 ≤ rsiti(a) ≤ 2 for all a ∈ Ãsiti , i = 1, ..., q. Let F̃ siti,2 be the set of ar
sof F̃ siti having rsiti(a) = 2 and F̃ siti,1 the set of ar
s of F̃ siti having rsiti(a) = 1. Let
F̃ siti,1

2 be the subset of ar
s a ∈ F̃ siti,1 su
h that there exists another ar
 a′ ∈ F̃ siti,1whi
h 
orresponds to the same edge of E, and let E2 be the set of the 
orrespondingedges.Then the inequality (5.32) indu
ed by this 
on�guration 
an be written as
q∑

i=1


 ∑

a∈ eF siti,2

ysiti(a) +
∑

a∈ eF siti,1\ eF
siti,1
2

ysiti(a)


 +

∑

e∈E2

x(e) ≥




kp −

q∑

i=1

pi∑

j=1

|F̃ siti
j |

2




.(5.33)
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edure for aggregated 
ut inequalitiesIn what follows we de�ne a lifting pro
edure for the aggregated 
ut inequalities forboth Aggregated and Cut formulations, (5.29) and (5.33). This will permit to extendthese inequalities to a more general 
lass of valid inequalities.Consider �rst the polytope kHNDPAg(G, D). The lifting pro
edure is given in thefollowing theorem.Theorem 5.6.3 Let G = (V, E) be an undire
ted graph, D ⊆ V × V and G̃ = (Ṽ , Ã)be the dire
ted graph asso
iated with G in the Aggregated formulation. Let
∑

e∈E

α(e)x(e) +
∑

a∈ eA

β(a)y(a) ≥ γbe an inequality of type (5.29) indu
ed by a family of node sets Π = {W̃1, ..., W̃p} andar
 sets F̃ 0
i ⊆ δ0

i , p ≥ 2, whi
h is valid for kHNDPAg(G, D). Let G′ = (V, E ∪ E ′)be a graph obtained by adding to G an edge set E and let G̃′ = (Ṽ , Ã ∪ Ã′) be thedire
ted graph asso
iated with G′ in the Aggregated formulation (Ã′ is the set of ar
s
orresponding to the edges of E ′). Then, the inequality
∑

e∈E

α(e)x(e) +
∑

a∈ eA

β(a)y(a) +
∑

a∈ eA′

⌈
q(a)

2

⌉
y(a) ≥ γ, (5.34)is valid for kHNDPAg(G

′, D), where q(a) is the number of di
uts δ+
eG′

(W̃i) 
ontainingthe ar
 a, for all a ∈ Ã′.Proof. W.l.o.g., we will suppose that E ′ = {e0}. The proof is similar in the 
ase wheremore than one edge are added to G. Also, for more 
larity, we will 
onsider that onlyone ar
, say a0, is asso
iated with e0 in G̃′, that we will 
onsider that Ã′ = {a0}.We are going to show that for every solution (x, y) ∈ kHNDPAg(G, D),
∑

e∈E

α(e)x(e) +
∑

a∈ eA

β(a)y(a) +

⌈
q(a0)

2

⌉
y(a0) ≥




kp −

p∑

i=1

|F̃ 0
i |

2




.

First, let ∆(x, y) = αx + βy, that is
∆(x, y) =

∑

a∈ eF2

y(a) +
∑

e∈E2

x(e) +
∑

a∈ eF1\ eF 2
1

y(a),



5.6. VALID INEQUALITIES 131where F̃2, F̃1, F̃ 2
1 and E2 are the ar
 and edge sets involved in αx + βy ≥ γ. The liftedinequality 
an hen
e be written as

∆(x, y) +

⌈
q(a0)

2

⌉
y(a0) ≥




kp −

p∑

i=1

|F̃ 0
i |

2




.

If y(a0) = 0, then obviously the restri
tion of (x, y) to E and Ã is in kHNDPAg(G, D).Thus, ∆(x, y) ≥




kp−

p∑

i=1

|F̃ 0
i |

2




, and hen
e
∆(x, y) +

⌈
q(a0)

2

⌉
y(a0) ≥




kp −

p∑

i=1

|F̃ 0
i |

2




.

Now suppose that y(a0) = 1. We have that
p∑

i=1

y(δ+
eG
(W̃i) \ F̃ 0

i ) =

p∑

i=1

y(δ+
eG
(W̃i)) − y(F̃ 0

i )

= 2
∑

a∈ eF2

y(a) +
∑

a∈ eF 2
1

y(a) +
∑

a∈ eF1\ eF 2
1

y(a)

≤ 2
∑

a∈ eF2

y(a) + 2
∑

e∈E2

x(e) +
∑

a∈ eF1\ eF 2
1

y(a)

= 2∆(x, y) −
∑

a∈ eF1\ eF 2
1

y(a)Thus we get
∆(x, y) ≥

1

2




p∑

i=1

y(δ+
eG
(W̃i)) −

p∑

i=1

y(F̃ 0
i ) +

∑

a∈ eF1\ eF 2
1

y(a)




≥
1

2

[
p∑

i=1

y(δ+
eG
(W̃i)) −

p∑

i=1

y(F̃ 0
i )

]
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∆(x, y) ≥




p∑

i=1

y(δ+
eG
(W̃i)) −

p∑

i=1

|F̃ 0
i |

2




. (5.35)
If W̃i, i = 1, ..., q(a0), are the node sets of Π su
h that the di
ut δ+

eG′
(W̃i) 
ontains a0,then we have that

y(δ+
eG
(W̃i)) = y(δ+

eG′
(W̃i)) − y(a0), i = 1, ..., q(a0),

y(δ+
eG
(W̃i)) = y(δ+

eG′
(W̃i)), i = q(a0) + 1, ..., p.As (x, y) indu
es a solution of kHNDPAg on G′, we have that y(δ+

eG′
(W̃i)) ≥ k, i =

1, ..., p. Moreover, sin
e y(a0) = 1, we have that
y(δ+

eG
(W̃i)) ≥ k − 1, i = 1, ..., q(a0). (5.36)Thus, from (5.35) and (5.36), we obtain

∆(x, y) ≥




k(p − q(a0)) + (k − 1)q(a0) −

p∑

i=1

|F̃ 0
i |

2




,

∆(x, y) ≥




kp −

p∑

i=1

|F̃ 0
i | − q(a0)

2




,

∆(x, y) ≥




kp −

p∑

i=1

|F̃ 0
i |

2




−

⌈
q(a0)

2

⌉
.

Therefore, sin
e y(a0) = 1, we get
∆(x, y) +

⌈
q(a0)

2

⌉
y(a0) ≥




kp −

p∑

i=1

|F̃ 0
i |

2




,
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h ends the proof of the theorem. �Now we give a lifting pro
edure for aggregated 
ut inequalities (5.33) when the Cutformulation is 
onsidered. This pro
edure is similar to that introdu
ed for inequalities(5.29) for the Aggregated formulation. It is given in the theorem below.Theorem 5.6.4 Let G = (V, E) be an undire
ted graph, D ⊆ V × V and G̃st be thedire
ted graph asso
iated with G and a demand {s, t} ∈ D in the 
ut formulation, forall {s, t} ∈ D. Let
∑

e∈E

α(e)x(e) +

q∑

i=1

∑

a∈ eAsiti

βsiti(a)ysiti(a) ≥ γ,be an inequality of type (5.33) indu
ed by a demand set {{s1, t1}, ..., {sq, tq}}, a familyof node sets {W̃ s1t1
1 , ..., W̃ s1t1

p1
, ..., W̃

sqtq
1 , ..., W̃

sqtq
pq }, with pi ≥ 1, for all i ∈ {1, ..., q}and p =

q∑

i=1

pi ≥ 2, and ar
 sets F̃ siti,0
j ⊆ δ eGsiti

(W̃ siti
j ), j = 1, ..., pi, i = 1, ..., q. Let

G′ = (V, E ∪ E ′) and G̃′
st = (Ṽst, Ãst ∪ Ã′

st) be the dire
ted graph asso
iated with G′ inthe Cut formulation, for all {s, t} ∈ D(Ã′
st is the set of ar
s 
orresponding to the edgesof E ′).The inequality

∑

e∈E

α(e)x(e) +

q∑

i=1

∑

a∈ eAsiti

βsiti(a)ysiti(a) +

q∑

i=1

∑

a∈ eA′
siti

⌈
qsiti(a)

2

⌉
ysiti(a) ≥ γ (5.37)is valid for kHNDPCu(G

′, D), where qsiti(a) is the number of di
uts δ+
eG′

siti

(W̃ siti
j ) 
on-taining the ar
 a, for every a ∈ Ã′

siti
, i = 1, ..., p.Proof. Similar to that of Theorem 5.6.3. �The next 
lasses of inequalities apply only on the variable x ∈ R

E and are valid for
kHNDPAg(G, D), kHNDPCu(G, D), kHNDPNA(G, D) and kHNDPPA(G, D).5.6.2 Double 
ut inequalitiesIn the following we introdu
e a 
lass of inequalities that are valid for the kHNDPpolytopes for L ≥ 2 and k ≥ 2. They are given by the following theorem.



134 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMTheorem 5.6.5 Let {s, t} be a demand, i0 ∈ {0, ..., L} and
Π = {V0, ..., Vi0−1, V

1
i0
, V 2

i0
, Vi0+1, ..., VL+1} a family of node sets of V su
h that

π = (V0, ..., Vi0−1, V
1
i0, V

2
i0 ∪ Vi0+1, Vi0+2, ..., VL+1) indu
es a partition of V . Suppose that1. V 1

i0 ∪ V 2
i0 indu
es an sj1tj1-
ut of G with {sj1, tj1} ∈ D and sj1 ∈ V 1

i0 or tj1 ∈ V 1
i0(note that sj1 and tj1 
annot be simultaneously in V 1

i0
and are not in V 2

i0
. Alsonote that V 2

i0
may be empty);2. Vi0+1 indu
es an sj2tj2-
ut of G with {sj2 , tj2} ∈ D (note that j1 and j2 may beequal);3. π indu
es an L-st-path-
ut of G with s ∈ V0 (resp. t ∈ V0) and t ∈ VL+1 (resp.

s ∈ VL+1).Let E = [Vi0−1, V
1
i0
]∪ [Vi0+2, V

2
i0
∪Vi0+1]∪


 ⋃

k,l/∈{i0,i0+1},|k−l|>1

[Vk, Vl]


 and F ⊆ E su
hthat |F | and k have di�erent parities.Let also Ê = (

i0−2⋃

i=0

[Vi, Vi+1]) ∪ (
L⋃

i=i0+2

[Vi, Vi+1]) ∪ F. Then, the inequality
x(δ(π) \ Ê) ≥

⌈
3k − |F |

2

⌉
, (5.38)is valid for kHNDPAg(G, D), kHNDPCu(G, D), kHNDPNA(G, D) and kHNDPPA(G, D)(re
all that δ(π) is the set of edges of the E having their endnodes in di�erent elementsof π).Proof. Let T be the L-st-path-
ut of G indu
ed by the partition π. As T is an L-st-path-
ut, and V 1

i0 ∪ V 2
i0 and Vi0+1 indu
e st-
ut with {s, t} ∈ {{sj1, tj1}, {sj2, tj2}}, byLemma 5.6.1, the inequalities below are valid for the kHNDP polytopes

x(T ) ≥ k,

x(δ(V 1
i0
∪ V 2

i0
)) ≥ k,

x(δ(Vi0+1)) ≥ k,

− x(e) ≥ −1 for all e ∈ F,

x(e) ≥ 0 for all e ∈ E \ F.



5.6. VALID INEQUALITIES 135By summing these inequalities, dividing by 2 and rounding up the right hand side,we obtain inequality (5.38). �Inequalities of type (5.38) are 
alled double 
ut inequalities. They generalize thoseintrodu
ed by Huygens and Mahjoub [73℄ for the kHNDP when k = 2. We dis
uss in thefollowing spe
ial 
ases for these inequalities. This 
on
erns the 
ase where L ∈ {2, 3}and i0 = 0.The set of edges having a positive 
oe�
ient in inequality (5.38) plus the edges of Fis 
alled a double 
ut. Figure 5.4 gives an example for L = 3 and i0 = 0.
V2

V3

t

V1

V4

s

V 1

0
V 2

0

s1

edges of the double 
ut not in Fpossible edge of F

edge not in the double 
ut

Figure 5.4: A double 
ut with L = 3 and i0 = 0Let L = 2, {s, t} ∈ D and Π = {V 1
0 , V 2

0 , V1, V2, V3} be a family of node sets of V su
hthat π = (V 1
0 , V 2

0 ∪ V1, V2, V3) indu
es a 2-st-path-
ut, and V1 indu
es a valid s1t1-
utin G, for some {s1, t1} ∈ D. If F ⊆ [V 2
0 ∪ V1, V2] is 
hosen su
h that |F | and k havedi�erent parities, then the double 
ut inequality indu
ed by Π and F in this 
ase 
anbe written as

x([V 1
0 , V1 ∪ V2 ∪ V3]) + x([V 2

0 , V1 ∪ V3]) + x([V1, V3])

+ x([V 2
0 ∪ V1, V2] \ F ) ≥

⌈
3k − |F |

2

⌉
. (5.39)Now let L = 3, {s, t} ∈ D and Π = {V 1

0 , V 2
0 , V1, V2, V3, V4} be a family of node setsof V su
h that π = (V 1

0 , V 2
0 ∪ V1, V2, V3, V4) indu
es a 3-st-path-
ut, and V1 indu
es avalid s1t1-
ut in G. If F ⊆ [V 2

0 ∪V1∪V4, V2] is 
hosen su
h that |F | and k have di�erent



136 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMparities, then the double 
ut inequality indu
ed by Π and F 
an be written as
x([V 1

0 , V1 ∪ V2 ∪ V3 ∪ V4]) + x([V 2
0 , V1 ∪ V3 ∪ V4]) + x([V1, V3 ∪ V4])

+ x([V 2
0 ∪ V1 ∪ V4, V2] \ F ) ≥

⌈
3k − |F |

2

⌉
. (5.40)As it will turn out, inequalities (5.39) and (5.40) are very e�e
tive in the Bran
h-and-Cut algorithms we developed for the problem.5.6.3 Triple path-
ut inequalitiesHere is a further 
lass of valid inequalities. They also generalizes inequalities given byHuygens and Mahjoub [73℄. We distinguish the 
ases where L = 2 and L = 3. Wehave the following theorem.Theorem 5.6.6 i) Let L = 2 and {V0, V1, V2, V

1
3 , V 2

3 , V 1
4 , V 2

4 } be a family of node setsof V su
h that (V0, V1, V2, V
1
3 ∪V 2

3 , V 1
4 ∪V 2

4 ) indu
es a partition of V and there exist twodemands {s1, t1} and {s2, t2} with s1, s2 ∈ V0, t1 ∈ V 2
3 and t2 ∈ V 2

4 . The sets V 1
3 and

V 1
4 may be empty and s1 and s2 may be the same. Let also V3 = V 1

3 ∪V 2
3 , V4 = V 1

4 ∪V 2
4and F ⊆ [V 2

3 , V1 ∪ V 1
4 ]∪ [V 1

3 , V 2
4 ] su
h that |F | and k have di�erent parities. Then, theinequality

2x([V0, V2]) + x([V0, V3 ∪ V4]) + x([V 2
4 , V1 ∪ V 2

3 ])+

x(([V 2
3 , V1 ∪ V 1

4 ] ∪ [V 1
3 , V 2

4 ]) \ F ) ≥

⌈
3k − |F |

2

⌉ (5.41)is valid for kHNDPAg(G, D), kHNDPCu(G, D), kHNDPNA(G, D) and kHNDPPA(G, D).ii) Let L = 3 and (V0, ..., V3, V
1
4 , V 2

4 , V 1
5 , V 2

5 ) be a family of node sets of V su
h that
(V0, ..., V3, V

1
4 ∪ V 2

4 , V 1
5 ∪ V 2

5 ) indu
es a partition of V and there exist two demands
{s1, t1} and {s2, t2} with s1, s2 ∈ V0, t1 ∈ V 2

4 and t2 ∈ V 2
5 . The sets V 1

4 and V 1
5 maybe empty and s1 and s2 may be the same. Let also V4 = V 1

4 ∪ V 2
4 , V5 = V 1

5 ∪ V 2
5and F ⊆ [V2, V

2
4 ] ∪ [V3, V4 ∪ V5] su
h that |F | and k have di�erent parities. Then, theinequality

2x([V0, V2]) + 2x([V0, V3]) + 2x([V1, V3]) + x([V0 ∪ V1, V4 ∪ V5]) + x([V4, V5])+

x([V2, V
2
5 ]) + x(([V2, V

2
4 ] ∪ [V3, V4 ∪ V5]) \ F ) ≥

⌈
3k − |F |

2

⌉ (5.42)is valid for kHNDPAg(G, D), kHNDPCu(G, D), kHNDPNA(G, D) and kHNDPPA(G, D).



5.6. VALID INEQUALITIES 137Proof.i) Let T1 be the 2-s1t1-path-
ut indu
ed by the partition (V0, V1 ∪ V4, V2 ∪ V 1
3 , V 2

3 ) and
T2 and T3 the 2-s2t2-path-
uts indu
ed by the partitions (V0, V1 ∪ V3, V2 ∪ V 1

4 , V 2
4 ) and

(V0, V1, V2 ∪ V3 ∪ V 1
4 , V 2

4 ), respe
tively. By Lemma 5.6.1, the following inequalities arevalid for the kHNDP polytopes
x(T1) ≥ k,

x(T2) ≥ k,

x(T3) ≥ k,

− x(e) ≥ −1, for all e ∈ F,

x(e) ≥ 0, for all e ∈ ([V 2
3 , V1 ∪ V 1

4 ] ∪ [V 1
3 , V 2

4 ]) \ F.By adding these inequalities, dividing by 2 and rounding up the right hand side, weget inequality (5.41).ii) Let T1 be the 3-s1t1-path-
ut indu
ed by the partition (V0, V1 ∪ V5, V2, V3 ∪ V 1
4 , V 2

4 ),and T2 and T3 be the 3-s2t2-path-
uts indu
ed by the partitions (V0, V1 ∪ V4, V2, V3 ∪

V 1
5 , V 2

5 ) and (V0, V1, V2, V3 ∪ V4 ∪ V 1
5 , V 2

5 ), respe
tively. By Lemma 5.6.1, the followinginequalities are valid for the kHNDP polytopes
x(T1) ≥ k,

x(T2) ≥ k,

x(T3) ≥ k,

− x(e) ≥ −1, for all e ∈ F,

x(e) ≥ 0, for all e ∈ ([V2, V
2
4 ] ∪ [V3, V4 ∪ V5]) \ F.By adding these inequalities, dividing by 2 and rounding up the right hand side, weget inequality (5.42). �Inequalities of type (5.41) and (5.42) will be 
alled triple path-
ut inequalities. Theset of edges having a positive 
oe�
ient in inequality (5.41) ((5.42)) plus the edges of

F will be 
alled a triple path-
ut (see Figure 5.5 for an example with L = 2).In the next two se
tions, we des
ribe two more 
lasses of inequalities.5.6.4 Steiner-partition inequalitiesLet (V0, V1, ..., Vp), p ≥ 2, be a partition of V su
h that V0 ⊆ V \ RD, where RD is theset of terminal nodes of G, and for all i ∈ {1, ..., p} there is a demand {s, t} ∈ D su
h
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V 1

0

s2

s1 t1 t1

V1 V 1

3 V 2

3

V 1

4

V 2

4

V2

possible edge of F

edge not in the double 
utedge of the triple path 
ut not in F

Figure 5.5: A triple path-
ut with L = 2that Vi indu
es an st-
ut of G. Note that V0 may be empty. Su
h a partition is 
alleda Steiner-partition. With a Steiner-partition, we asso
iate the inequality
x(δ(V0, V1, ..., Vp)) ≥

⌈
kp

2

⌉
. (5.43)Inequalities of type (5.43) will be 
alled Steiner-partition inequalities. We have thefollowing result.Theorem 5.6.7 Inequality (5.43) is valid for kHNDPAg(G, D), kHNDPCu(G, D), kHNDPNA(G, D)and kHNDPPA(G, D).Proof. By Lemma 5.6.1, the inequalities below are valid for the kHNDP polytopes

x(δ(Vi)) ≥ k, for i = 1, ..., p,

x(e) ≥ 0, for all e ∈ δ(V0).By adding them, we obtain
2x(δ(V0, ..., Vp)) ≥ kp.By dividing by 2 and rounding up the right hand side, we get inequality (5.43). �Inequality (5.43) expresses the fa
t that, in a solution of the kHNDP, the multi
utindu
ed by a Steiner-partition (V0, V1, ..., Vp), p ≥ 2, must 
ontain at least ⌈

kp
2

⌉ edges,sin
e there must exist k edge-disjoint paths between every pair of nodes {s, t} ∈ D.



5.6. VALID INEQUALITIES 1395.6.5 Steiner-SP -partition inequalitiesLet π = (V1, ..., Vp), p ≥ 3, be a partition of V su
h that the graph Gπ = (Vπ, Eπ) isseries-parallel (Gπ is the subgraph of G indu
ed by π). Suppose that Vπ = {v1, ..., vp}where vi is the node of Gπ 
orresponding to the set Vi, i = 1, ..., p. The partition π issaid to be a Steiner-SP -partition if and only if π is a Steiner-partition and either1. p = 3 or2. p ≥ 4 and there exists a node vi0 ∈ Vπ in
ident to exa
tly two nodes vi0−1 and vi0+1su
h that the partitions π1 and π2 obtained from π by 
ontra
ting respe
tivelythe sets Vi0, Vi0−1 and Vi0, Vi0+1 are themselves Steiner-SP -partitions.The pro
edure to 
he
k if a partition is a Steiner-SP -partition is re
ursive. It stopswhen the partition obtained after the di�erent 
ontra
tions is either a Steiner-partitionand of size three or it is not a Steiner-partition.In the following theorem, we give ne
essary and su�
ient 
ondition for a Steiner-partition to be a Steiner-SP -partition. Remind that the demand graph is denoted by
GD = (RD, ED), where RD is the set of terminal nodes of G. The edge set ED isobtained by adding an edge between two nodes of RD if and only if {u, v} ∈ D.Theorem 5.6.8 Let π = (V1, ..., Vp), p ≥ 3, be a partition of V su
h that Gπ is series-parallel. The partition π is a Steiner-SP -partition of G if and only if the subgraph of
GD indu
ed by π is 
onne
ted.Proof. First observe that, as π is a SP -partition of G, one 
an obtain from π a two-size partition by applying repeatidly the following operation. Let πj = (V j

1 , ..., V j
pj

) bea SP -partition of G. Suppose that V j
i0
, for some i0, is in
ident to exa
tly two elements

V j
i0−1 and V j

i0+1. Then, the operation 
onsists in 
ontra
ting the sets V j
i0−1 and V j

i0
and
onsider the partition πj+1 = (V j+1

1 , ..., V j+1
pj+1

) where
V j+1

i = V j
i for i = 1, ..., i0 − 2,

V j+1
i0−1 = V j

i0−1 ∪ V j
i0
,

V j+1
i = V j

i+1 for i = i0, ..., pj − 1.Note that the new partition πj+1 indu
es a SP -partition of G and that we have p−2iterations to obtained a two-size partition from π.



140 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMNow, we have that π is not a Steiner-SP -partition if and only if there exists an in-teger q ≤ p − 2 su
h that the partition πq = (V q
1 , ..., V q

pq
), obtained by appli
ation ofthe above operation, is not a Steiner-partition, that is the node set V q

i0
of πq obtainedby the 
ontra
tion pro
edure to the partition πq−1 is su
h that δGD

(V q
i0
) = ∅. Thus, if

Vi1 , ..., Vir , r ≥ 2, are the node sets of π that have been redu
ed to V q
i0
during the di�er-ent steps of the 
ontra
tion pro
edure, then we have that δGD

(

r⋃

i=1

Vir) = ∅. Therefore,the subgraph of Gd indu
ed by π is not 
onne
ted, whi
h ends the proof. �As a 
onsequen
e of Theorem 5.6.8, if the demand graph is 
onne
ted (this is the 
asewhen, for instan
e, all the demands are rooted in the same node), then every Steiner-partition of V indu
ing a series-parallel subgraph of G is a Steiner-SP -partition of
V .With a Steiner-SP -partition (V1, ..., Vp), p ≥ 3, we asso
iate the following inequality

x(δ(V1, ..., Vp)) ≥

⌈
k

2

⌉
p − 1. (5.44)Inequalities of type (5.44) will be 
alled Steiner-SP -partition inequalities. We havethe following.Theorem 5.6.9 Inequality (5.44) is valid for kHNDPAg(G, D), kHNDPCu(G, D), kHNDPNA(G, D)and kHNDPPA(G, D).Proof. Let π = (V1, ..., Vp), p ≥ 3 be a Steiner-SP -partition. The proof is by indu
tionon p. If p = 3, then, as π is a Steiner-partition, the inequality

x(δ(V1, V2, V3)) ≥

⌈
3k

2

⌉
= 3

⌈
k

2

⌉
− 1is valid.Now suppose that every inequality (5.44) indu
ed by a Steiner-SP -partition of pelements, p ≥ 3, is valid for the kHNDP polytopes and 
onsider a Steiner-SP -partition

π = (V1, ..., Vp, Vp+1). As Gπ is series-parallel, there exists a node set Vi0 of π whi
h isin
ident to exa
tly two elements of π, say Vi0−1 and Vi0+1. We let F1 = [Vi0, Vi0−1] and
F2 = [Vi0, Vi0+1]. Sin
e π is a Steiner-SP -partition and hen
e is a Steiner-partition, by
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es a valid st-
ut inequality, for some {s, t} ∈ D. Hen
e we havethat
x(F1) + x(F2) ≥ k.W.l.o.g., we will suppose that

x(F1) ≥

⌈
k

2

⌉
. (5.45)Consider the partition π′ = (V1, ..., Vi0−2, Vi0−1 ∪ Vi0, Vi0+1, ..., Vp+1). As π is a Steiner-

SP -partition 
ontaining more than three elements, π′ is also a Steiner-SP -partitionwhi
h 
ontains p elements. Thus, by the indu
tion hypothesis, the Steiner-SP -partitioninequality indu
ed by π′, that is
x(δ(V1, ..., Vi0−2, Vi0−1 ∪ Vi0, Vi0+1, ..., Vp+1)) ≥

⌈
k

2

⌉
p − 1 (5.46)is valid. By summing the inequalities (5.45) and (5.46), we get

x(δ(V1, ..., Vp, Vp+1)) ≥

⌈
k

2

⌉
(p + 1) − 1,whi
h ends the proof of the theorem. �Inequality (5.44) expresses the fa
t that in a solution of the kHNDP the multi
utindu
ed by a Steiner-SP -partition 
ontains at least ⌈

k
2

⌉
p− 1 edges, sin
e this solution
ontains k edge-disjoint paths between every pair of nodes {s, t} ∈ D.Chopra [21℄ des
ribed a lifting pro
edure for inequalities (2.27) for the kECSP. Thispro
edure 
an be easily extended, for the kHNDP, to inequalities of type (5.44). Itis des
ribed as follows. Let G = (V, E) be a graph and k ≥ 3 an odd integer. Let

G′ = (V, E ∪ E ′) be a graph obtained from G by adding an edge set E ′. Let π =

(V1, ..., Vp) be a Steiner-SP -partition of G. Then the following inequality is valid for
kHNDPAg(G, D), kHNDPCu(G, D), kHNDPNA(G, D) and kHNDPPA(G, D)

x(δG(V1, ..., Vp)) +
∑

e∈E′∩δG′ (V1,...,Vp)

a(e)x(e) ≥

⌈
k

2

⌉
p − 1, (5.47)where a(e) is the length (in terms of edges) of a shortest path in Gπ between theendnodes of e, for all e ∈ E ′ ∩ δG′(V1, ..., Vp).We will 
all inequalities of type (5.47) lifted Steiner-SP -partition inequalities.In the next se
tion, we investigate 
onditions under whi
h aggregated 
ut, double
ut and triple path-
ut inequalities de�ne fa
ets of the kHNDP polytopes.



142 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEM5.7 Fa
etsThroughout this se
tion, we 
onsider a 
omplete graph G = (V, E) and suppose that
|V | ≥ k + 2.The �rst result 
on
erns ne
essary 
onditions for the aggregated 
ut inequalities(5.29) to de�ne fa
ets for kHNDPAg(G, D). To this end, we �rst give the followinglemma.Lemma 5.7.1 Consider an inequality of type (5.29) indu
ed by a family of node sets
Π = {W̃1, ..., W̃p}, p ≥ 2, and ar
 subsets F̃ 0

i ⊆ δ+
eG
(W̃i), i = 1, ..., p. Let F̃2, F̃1, F̃ 2

1and E2 be the ar
 and edge sets involved in this inequality. Then (5.29) 
an be writtenas
p∑

i=1

y(δ+(W̃i)) + 2
∑

e∈E2

x(e) −
∑

a∈ eF 2
1

y(a) +

p∑

i=1

(|F̃ 0
i | − y(F̃ 0

i )) +
∑

a∈ eF1\ eF 2
1

y(a) ≥ kp + 1.(5.48)Moreover, (5.29) is tight for a solution (x0, y0) ∈ kHNDPAg(G, D) if and only if oneof the following 
onditions holdsi)
2

∑

e∈E2

x0(e) −
∑

a∈ eF 2
1

y0(a) +

p∑

i=1

(|F̃ 0
i | − y0(F̃

0
i )) +

∑

a∈ eF1\ eF 2
1

y0(a) = 1 (5.49)and y0(δ
+(W̃i)) = k, for i = 1, ..., p;ii)

2
∑

e∈E2

x0(e) −
∑

a∈ eF 2
1

y0(a) +

p∑

i=1

(|F̃ 0
i | − y0(F̃

0
i )) +

∑

a∈ eF1\ eF 2
1

y0(a) = 0 (5.50)and there exists i0 ∈ {1, ..., p} su
h that y0(δ
+(W̃i)) = k, for i ∈ {1, ..., p} \ {i0}and y0(δ

+(W̃i0)) = k + 1.



5.7. FACETS 143Proof. First we show that αx + βy ≥ γ is equivalent to (5.48). As kp and p∑

i=1

|F̃ 0
i |have di�erent parities, αx + βy ≥ γ is equivalent to

2
∑

e∈E2

x(e) + 2
∑

a∈ eF2

y(a) + 2
∑

a∈ eF1\ eF 2
1

y(a) ≥ kp −

p∑

i=1

|F̃ 0
i | + 1. (5.51)From the st-di
uts indu
ed by the sets W̃i, we have that

p∑

i=1

y(δ+(W̃i) \ F̃ 0
i ) = 2

∑

a∈ eF2

y(a) +
∑

a∈ eF 2
1

y(a) +
∑

a∈ eF1\ eF 2
1

y(a),

= 2
∑

a∈ eF2

y(a) + 2
∑

e∈E2

x(e) − 2
∑

e∈E2

x(e) +
∑

a∈ eF 2
1

y(a) +
∑

a∈ eF1\ eF 2
1

y(a).Toghether with (5.51), we get
p∑

i=1

y(δ+(W̃i) \ F̃ 0
i ) + 2

∑

e∈E2

x(e) −
∑

a∈ eF 2
1

y(a) +
∑

a∈ eF1\ eF 2
1

y(a) ≥ kp −

p∑

i=1

|F̃ 0
i | + 1.(5.52)By 
ombining (5.52) and y(δ+(W̃i) \ F̃ 0

i ) = y(δ+(W̃i)) − y(F̃ 0
i ), i = 1, ..., p, we get(5.48).Now 
onsider a solution (x0, y0) ∈ kHNDPAg(G, D) satisfying (5.29) with equality.By the previous result, we have that

p∑

i=1

y0(δ
+(W̃i)) +

p∑

i=1

(|F̃ 0
i | − y0(F̃

0
i )) + 2

∑

e∈E2

x0(e) −
∑

a∈ eF 2
1

y0(a) +
∑

a∈ eF1\ eF 2
1

y0(a) = kp + 1.(5.53)As (x0, y0) indu
es a solution of the kHNDP, we have that y0(δ
+(W̃i)) ≥ k, i = 1, ..., p.Therefore, p∑

i=1

y0(δ
+(W̃i)) ≥ kp, and hen
e,

p∑

i=1

(|F̃ 0
i | − y0(F̃

0
i )) + 2

∑

e∈E2

x0(e) −
∑

a∈ eF 2
1

y0(a) +
∑

a∈ eF1\ eF 2
1

y0(a) ≤ 1. (5.54)



144 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMIf (5.54) is satis�ed with equality, then, 
learly y0(δ
+(W̃i)) = k, i = 1, ..., p. Ifnot, then, as y0(δ

+(W̃i)) ≥ k, i = 1, ..., p, this yields y0(δ
+(W̃i0)) = k + 1 for some

i0 ∈ {1, ..., p} and y0(δ
+(W̃i)) = k, for i ∈ {1, ..., p} \ {i0}.Conversely, if (5.54) is tight for (x0, y0) and y0(δ

+(W̃i)) = k for all i ∈ {1, ..., p}, then
learly, (5.48) is tight for (x0, y0) and hen
e αx + βy ≥ γ is tight for (x0, y0). If (5.54)is not tight for (x0, y0), that is
p∑

i=1

(|F̃ 0
i | − y0(F̃

0
i )) + 2

∑

e∈E2

x0(e) −
∑

a∈ eF 2
1

y0(a) +
∑

a∈ eF1\ eF 2
1

y0(a) = 0,and y0(δ
+(W̃i0)) = k + 1 for some i0 ∈ {1, ..., p} and y0(δ

+(W̃i0)) = k for i ∈

{1, ..., p} \ {i0}, then 
learly, (5.48) is also tight for (x0, y0). Thus, αx + βy ≥ γ istight for (x0, y0). �Corollary 5.7.1 Consider an inequality of type (5.29) indu
ed by a family of nodesets {W̃1, ..., W̃p}, p ≥ 2, and ar
 subsets F̃ 0
i ⊆ δ+

eG
(W̃i), i = 1, ..., p. Let F̃2, F̃1, F̃ 2

1 and
E2 be the ar
 and edge sets involved in this inequality. If (5.29) is tight for a solution
(x0, y0) of kHNDPAg(G, D) then,

2
∑

e∈E2

x0(e) −
∑

a∈ eF 2
1

y0(a) +

p∑

i=1

(|F̃ 0
i | − y0(F̃

0
i )) +

∑

a∈ eF1\ eF 2
1

y0(a) ≤ 1. (5.55)Theorem 5.7.1 Let Π = {W̃1, ..., W̃p}, p ≥ 2, be a family of node sets of Ṽ su
hthat ea
h set W̃i, i = 1, ..., p, indu
es an siti-di
ut of G̃, for some {si, ti} ∈ D, and
F̃ 0

i ⊆ δ+
eG
(W̃i). Suppose that every ar
 of Ã belongs to at most two sets δ+

eG
(W̃i) \ F̃ 0

i .Then, the aggregated 
ut inequality (5.29) indu
ed by Π and F̃ 0
i , i = 1, ..., p, de�nesa fa
et of kHNDPAg(G, D) di�erent from the trivial and siti-di
ut inequalities, only iffor all i ∈ {1, ..., p}, one of the following 
onditions holds1. |W̃i ∩ SD| = |(Ṽ \ W̃i) ∩ TD| = 1;2. |W̃i ∩ SD| ≥ 2 and for all s ∈ (W̃i \ {si}) ∩ SD, [s, Ṽ \ W̃i] = ∅;3. |(Ṽ \ W̃i) ∩ TD| ≥ 2 and for all t ∈ [(Ṽ \ W̃i) \ {ti}] ∩ TD, [W̃i, t] = ∅.



5.7. FACETS 145Proof. Let us denote by αx + βy ≥ γ the inequality (5.29) indu
ed by Π and F̃ 0
i ,

i = 1, ..., p, and suppose that it de�nes a fa
et of kHNDPAg(G, D). We will show that
|W̃i ∩SD| = 1, for i = 1, ..., p. The proof follows the same lines for |(Ṽ \ W̃i)∩TD| = 1.Also the proof for 2) and 3) is similar.Suppose on the 
ontrary that there exists i0 ∈ {1, ..., p} su
h that W̃i0 indu
es an
st-di
ut of G̃ and that (W̃i0 \ {s}) ∩ SD 6= ∅. Let s′ be a node of (W̃i0 \ {s}) ∩ SD andsuppose that [s′, Ṽ \ W̃i0 ] 6= ∅ (see Figure 5.6).

W̃i0

t

s′

Ṽ \ W̃i0

s

Figure 5.6: A set W̃i0 
ontaining two nodes of SFirst observe that δ eG(W̃ ′
i0
) = δ eG(W̃ ′

i0
) \ [s′, Ṽ \ W̃i0 ] and that two ar
s of [s′, Ṽ \ W̃i0 ]do not 
orrespond to the same edge of E.Let H̃0 = F̃2 ∩ [s′, Ṽ \ W̃i0 ] and H̃1 = (F̃1 \ F̃ 2

1 ) ∩ [s′, Ṽ \ W̃i0 ]. Also let H̃2 =

F̃ 2
1 ∩ [s′, Ṽ \ W̃i0 ], H̃3 be the set of ar
s of F̃ 2

1 
orresponding to the same edges as thear
s of H̃2. Let E0 be edge set 
orresponding to the ar
s of H̃2 and H̃3. Considernow the aggregated 
ut inequality indu
ed by {W̃ ′
1, ..., W̃

′
p} and F̃ 0′

i , i = 1, ..., p, where
W̃ ′

i = W̃i, F̃ 0′

i = F̃ 0
i , for i ∈ {1, ..., p}\{i0}, and W̃ ′

i0
= W̃i0\{s

′}, F̃ 0′

i = F̃ 0
i \[s′, Ṽ \W̃i0].Let F̃ ′

2, F̃ ′
1, F̃ 2′

1 and E ′
2 be the set of ar
s and edges involved in this inequality. Bythe above observation, as the ar
s of H̃3 
orrespond to those of H̃2, we have that

H̃3 ∩ [s′, Ṽ \ W̃i0 ] = ∅. Also, by the same observation, no ar
 of H̃0 may 
orrespond to
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 of H̃2 and H̃3. Thus, we have that
F̃ ′

2 = F̃2 \ H̃0,

F̃ 2′

1 = F̃ 2
1 \ (H̃2 ∪ H̃3),

F̃ ′
1 \ F̃ 2′

1 = [(F̃1 \ F̃ 2
1 ) \ H̃1] ∪ H̃0 ∪ H̃3.

E ′
2 = E2 \ E0.Therefore, the inequality (5.29) indu
ed by {W̃ ′

1, ..., W̃
′
p} and F̃ 0′

i , i = 1, ..., p, 
an bewritten as
∑

a∈ eF2\ eH0

y(a) +
∑

e∈E2\E0

x(e) +
∑

a∈( eF1\ eF 2
1 )\ eH1

+
∑

a∈ eH0

y(a) +
∑

a∈ eH3

y(a) ≥




kp −

p∑

i=1

|F̃ 0′

i |

2




.(5.56)By summing up inequality (5.56) and the inequalities
x(e) ≥ y(a), for all a ∈ H̃3,where e is the edge of E0 
orresponding to a. (5.57)
y(a) ≥ 0, for all a ∈ H̃1, (5.58)we get

∑

a∈ eF2

y(a) +
∑

e∈E2

x(e) +
∑

a∈ eF1\ eF 2
1

y(a) ≥




kp −

p∑

i=1

|F̃ 0′

i |

2




. (5.59)Clearly if F̃i0 ∩ [s′, Ṽ \ W̃i0] = ∅, then F̃ ′
i0

= F̃i0 and inequality (5.59) is the same as
αx + βy ≥ γ. Thus αx + βy ≥ γ is redundant with respe
t to (5.56)-(5.58), and hen
e
annot de�ne a fa
et of kHNDPAg(G, D). If F̃i0 ∩ [s′, Ṽ \ W̃i0] 6= ∅, then the right handside of inequality (5.59) is greater than that of αx + βy ≥ γ. Thus, αx + βy ≥ γ isdominated by (5.56)-(5.58), and hen
e 
annot de�ne a fa
et of kHNDPAg(G, D). �The next theorems give ne
essary 
onditions for the double 
ut and triple path-
utinequalities to de�ne fa
ets of the kHNDP polytopes. Before ea
h theorem, we willgive a te
hni
al lemma whi
h will be useful to prove the theorem.



5.7. FACETS 147Lemma 5.7.2 Let αx ≥ γ be a double 
ut inequality indu
ed by a family of node sets
Π = (V 1

0 , V 2
0 , V1, ..., VL+1) of V , F ⊆ E and {s, t} ∈ D with s ∈ V 1

0 and t ∈ VL+1 (here
i0 = 0). Then, αx ≥ γ 
an be written as

x(T ) + x(δ(V 1
0 ∪ V 2

0 )) + x(δ(V1)) + x(E \ F ) + |F | − x(F ) ≥ 3k + 1, (5.60)where T is the L-st-path-
ut indu
ed by the partition (V 1
0 , V 2

0 ∪ V1, V2, ..., VL+1).Moreover, αx ≥ γ is tight for a solution x0 of kHNDPAg, kHNDPCut, kHNDPNA,
kHNDPPA, where x0 ∈ R

E, if and only if one of the following 
onditions holds.i) x0(E \ F ) + |F | − x0(F ) = 1 and x0(T ) = x0(δ(V
1
0 ∪ V 2

0 )) = x0(V1) = k;ii) x0(E \ F ) + |F | − x0(F ) = 0 anda) x0(T ) = k + 1, x0(δ(V
1
0 ∪ V 2

0 )) = k and x0(V1) = k;b) x0(T ) = k, x0(δ(V
1
0 ∪ V 2

0 )) = k + 1 and x0(V1) = k;
) x0(T ) = k, x0(δ(V
1
0 ∪ V 2

0 )) = k and x0(V1) = k + 1;Proof. W.l.o.g., we will 
onsider the polytope kHNDPAg(G, D). The proof is similarfor The proof is similar for kHNDPCut(G, D), kHNDPNA(G, D) and kHNDPPA(G, D).Let H denote the double 
ut indu
ed by Π. The inequality αx ≥ γ is equivalent to
x(H \ E) + x(E \ F ) ≥

3k − |F | + 1

2
.This implies that

2x(H \ E) + 2x(E) − 2x(F ) ≥ 3k − |F | + 1. (5.61)From the L-st-path-
ut T and 
uts δ(V 1
0 ∪ V 2

0 ) and δ(V1), we have that
x(T ) + x(δ(V 1

0 ∪ V 2
0 )) + x(δ(V1)) = 2x(H \ E) + x(E). (5.62)By 
ombining (5.61) and the (5.62), we get

x(T ) + x(δ(V 1
0 ∪ V 2

0 )) + x(δ(V1)) + x(E) − 2x(F ) ≥ 3k − |F | + 1,and hen
e
x(T ) + x(δ(V 1

0 ∪ V 2
0 )) + x(δ(V1)) + x(E \ F ) + |F | − x(F ) ≥ 3k + 1.



148 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMTherefore, αx ≥ γ is equivalent to (5.60).Now suppose that αx ≥ γ is tight for (x0, y0). From the development above, we havethat inequality (5.60) is also tight for (x0, y0), that is
x0(T ) + x0(δ(V

1
0 ∪ V 2

0 )) + x0(δ(V1)) + x0(E \ F ) + |F | − x0(F ) = 3k + 1.Sin
e by Lemma 5.6.1, x0(T ) ≥ k, x0(δ(V
1
0 ∪ V 2

0 )) ≥ k and x0(δ(V1)) ≥ k, it is 
learthat x0(E \F ) + |F | −x0(F ) ≤ 1. Hen
e, if x0(E \F ) + |F | −x0(F ) = 1, we have that
x0(T ) = x0(δ(V

1
0 ∪V 2

0 )) = x0(δ(V1)) = k. If x0(E \F )+ |F | −x0(F ) = 0, then, 
learly,either x0(T ), x0(δ(V
1
0 ∪ V 2

0 )) or x0(δ(V1)) is equal to k + 1 and the others are equal to
k.Consider now a solution (x0, y0) ∈ kHNDPAg(G, D) su
h that x0(E \ F ) + |F | −

x0(F ) = 1 and x0(T ) = x0(δ(V
1
0 ∪ V 2

0 )) = x0(δ(V1)) = k. Then, 
learly, inequality(5.60) is satis�ed with equality, and hen
e, αx ≥ γ is tight for (x0, y0). Similarly, if
x0(E \ F ) + |F | − x0(F ) = 0 and either x0(T ), x0(δ(V

1
0 ∪ V 2

0 )) or x0(δ(V1)) is equal to
k +1 with the others equal to k, then (5.60) is satis�ed with equality by x0 and hen
e,
αx ≥ γ is tight for (x0, y0), whi
h ends the proof of the lemma. �Theorem 5.7.2 Suppose that L ≥ 2 and k ≥ 2, and let {s, t} ∈ D.Let Π = {V 1

0 , V 2
0 , V1, ..., VL+1} be a family of node sets of V and F ⊆ E whi
h indu
e adouble 
ut of G with respe
t to {s, t}, s ∈ V 1

0 and t ∈ VL+1 (here i0 = 0). Then,the double 
ut inequality indu
ed by Π and F de�nes a fa
et of kHNDPAg(G, D),
kHNDPCu(G, D), kHNDPNA(G, D), kHNDPPA(G, D) di�erent from the trivial in-equalities and inequalities (5.1)-(5.2) only if the following 
onditions holdi) |V 1

0 | = |VL+1| = 1;ii) if L = 3, then |[V 1
0 , V 2

0 ∪ V1] ∪ [V3, V4] ∪ [V 1
0 , V4]| ≥ k.Proof. The proof will be done for kHNDPAg(G, D) as it is similar for kHNDPCu(G, D),

kHNDPNA(G, D) and kHNDPPA(G, D). We will denote by αx ≥ γ the double 
utinequality indu
ed by Π and F . Let F = {(x, y) ∈ kHNDPAg(G, D) su
h that αx = γ}and let T denote the L-st-path-
ut indu
ed by the partition (V 1
0 , V 2

0 ∪ V1, V2, ..., VL+1).i) Let us denote by H the double 
ut indu
ed by Π and F . Suppose �rst that |V 1
0 | ≥ 2.By 
onsidering the family of node sets Π′ = {{s}, V 2

0 ∪V 1
0 \{s}, V1, ..., VL+1}, the double
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ut H ′ indu
ed by Π′ and F is su
h that H = H ′∪ [V 1
0 \ {s}, V1]. Thus, the double 
utinequality indu
ed by H is redundant with respe
t to

x(H ′ \ F ) ≥

⌈
3k − |F |

2

⌉

x(e) ≥, for all e ∈ [V 1
0 \ {s}, V1], (5.63)and hen
e, 
annot de�ne a fa
et.ii) We will show that F 6= ∅ only if ii) holds. As F de�nes a fa
et di�erent from

x(δ(V 1
0 ∪ V 2

0 )) ≥ k, there exists a solution (x, y) ∈ F su
h that x(δ(V 1
0 ∪ V 2

0 )) ≥ k + 1.Thus, by Lemma 5.7.2, x(T ) = k. Therefore, the graph indu
ed by x 
ontains exa
tly
k edge-disjoint L-st-paths. Moreover, ea
h L-st-path interse
ts T only on
e. Thus, byLemma 4.2.2, we have that |[V 1

0 , VL+1]| + |[V 1
0 , V 2

0 ∪ V1]| + |[VL, VL+1]| ≥ k. �Lemma 5.7.3 Let αx ≥ γ be a triple path-
ut inequality indu
ed by a family of nodeset Π = {V0, ..., VL, V 1
L+1, V

2
L+1, V

1
L+2, V

2
L+2} and F ⊆ E. Then αx ≥ γ 
an be writtenas

x(T1) + x(T2) + x(T3) + x(E \ F ) + |F | − x(F ) ≥ 3k + 1 (5.64)where T1, T2 and T3 are the triple path-
uts indu
ed by the partitions (V0, V1 ∪ V4, V2 ∪

V 1
3 , V 2

3 ), (V0, V1 ∪ V3, V2 ∪ V 1
4 , V 2

4 ) and (V0, V1, V2 ∪ V3 ∪ V 1
4 , V 2

4 ), respe
tively, and E =

[V 2
3 , V1 ∪ V 1

4 ] ∪ [V 1
3 , V 2

4 ] (resp. E = [V2, V
2
4 ] ∪ [V3, V4 ∪ V5]) if L = 2 (resp. L = 3).Moreover, αx ≥ γ is tight for a solution x0 of the kHNDP, where x0 ∈ R

E, if andonly if one of the following inequalities holdsi) x0(E \ F ) + |F | − x0(F ) = 1 and x0(T1) = x0(T2) = x0(T3) = k;ii) x0(E \ F ) + |F | − x0(F ) = 0 and, for some i0 ∈ {1, 2, 3}, x0(Ti0) = k + 1 and
x0(Ti) = k for i ∈ {1, 2, 3} \ {i0}.Proof. Similar to that of Lemma 5.7.2. �Theorem 5.7.3 Let L ∈ {2, 3} and 
onsider Π = {V0, ..., VL, V 1

L+1, V
2
L+1, V

1
L+2, V

2
L+2}be a family of node sets of V and F ⊆ E whi
h indu
e a triple path-
ut of G withrespe
t to demands {s1, t1} and {s2, t2}. Then, the triple path-
ut inequality indu
edby Π and F de�nes a fa
et of kHNDPAg(G, D), kHNDPCu(G, D), kHNDPNA(G, D),

kHNDPPA(G, D) only if the following 
onditions hold



150 CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORKDESIGN PROBLEMi) V0 \ {s1, s2} = ∅;ii) |V 2
L+1| = 1;iii) |V 2
L+2| = 1;iv) if L = 3, thena) |[{s1, s2}, V1 ∪ V 1

5 ∪ {t2}]| + |[V3 ∪ V 1
4 , t1]| + |[{s1, s2}, t1]| ≥ k;b) |[{s1, s2}, V1 ∪ V 1

4 ∪ {t1}]| + |[V3 ∪ V 1
5 , t2]| + |[{s1, s2}, t2]| ≥ k;
) |[{s1, s2}, V1]| + |[V3 ∪ V 1

4 ∪ {t1} ∪ V 1
5 , t2]| + |[{s1, s2}, t2]| ≥ k.Proof. For the proof of Conditions i)-iii), we will 
onsider, w.l.o.g., that L = 3. Wewill denote by αx ≥ γ the triple-
ut inequality indu
ed by Π and F .i) Suppose that V0 \{s1, s2} 6= ∅ and denote by H the triple path-
ut indu
ed by Π and

F . Consider the family of node sets Π′ = {{s1, s2}, V0\{s1, s2}∪V1, V2, V3, V
1
4 , V 2

4 , V 1
5 , V 2

5 }and F ′ = F . If H ′ denotes the triple path-
ut indu
ed by Π′ and F ′, we have that
H ′ = H \ [V0 \ {s1, s2}, V2]. Thus, as V0 \ {s1, s2} 6= ∅, inequality (5.42) indu
ed by Πand F is redundant with respe
t to the inequalities

2x([{s1, s2}, V2]) + 2x([{s1, s2}, V3]) + 2x([V1 ∪ (V0 \ {s1, s2}), V3])+

x([{s1, s2} ∪ V1 ∪ (V0 \ {s1, s2}), V4 ∪ V5]) + x([V4, V5]) + x([V2, V
2
5 ])+

x(([V2, V
2
4 ] ∪ [V3, V4 ∪ V5]) \ F ) ≥

⌈
3k − |F |

2

⌉
,

x(e) ≥ 0, for all e ∈ [V0 \ {s1, s2}, V2].Therefore, the triple path-
ut inequality indu
ed by Π and F 
annot de�ne a fa
etof the kHNDP polytopes.ii) Now we show that |V 2
4 | = 1. Suppose on the 
ontrary that |V 2

4 | ≥ 2 and let αx ≥ γdenote the triple path-
ut inequality indu
ed by Π and F . Let Π′ = {V0, ..., V3, V
1
4 ∪

V 2
4 \ {t1}, {t1}, V

1
5 , V 2

5 }. First suppose that F ∩ [V2, V
2
4 \ {t1}] = ∅ and let H ′ bethe triple path-
ut indu
ed by Π′ and F . As F ∩ [V2, V

2
4 \ {t1}] = ∅, we have that

H ′ = H \ [V2, V
2
4 \ {t1}]. If α′x ≥ γ′ denotes the triple path-
ut inequality indu
ed by

Π′ and F , then it is not hard to see that α′(e) = α(e), for all e ∈ H ′ \ F , and that
γ′ = γ. Thus, αx ≥ γ is redundant with respe
t to the following inequalities

α′x ≥ γ,

x(e) ≥ 0, for all e ∈ [V2, V
2
4 \ {t1}],
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e, 
annot de�ne a fa
et of the kHNDP poytopes.If F ∩ [V2, V
2
4 \ {t1}] 6= ∅, then we 
onsider F ′ = F \ (F ∩ [V2, V

2
4 \ {t1}]) and let

α′x ≥ γ′ be the triple path-
ut inequality indu
ed by Π′ and F ′. Also let H ′ denotesthis triple path-
ut. As before, we have that H ′ = H \ [V2, V
2
4 \ {t1}] and, for all

e ∈ H ′ \ F ′, α′(e) = α(e). Moreover, γ =
⌈

3k−|F |
2

⌉ and γ′ =
⌈

3k−|F |+|F∩[V2,V 2
4 \{t1}]|

2

⌉. As
|F ∩ [V2, V

2
4 \ {t1}]| ≥ 1, we have that γ′ ≥ γ. This implies that αx ≥ γ is dominatedby the inequalities

α′x ≥ γ′,

x(e) ≥ 0, for all e ∈ [V2, V
2
4 \ {t1}] \ F.Thus, it 
annot de�ne a fa
et of the kHNDP poytopes.iii) Suppose that |V 2

5 | ≥ 2. Consider Π′ = {V0, ..., V3, V
1
4 , V 2

4 , V 1
5 ∪V 2

5 \{t2}, {t2}} and let
H and H ′ denote the triple path-
uts indu
ed by Π and F , and by Π′ and F respe
tively.If F ∩ [V3, V

2
5 \{t2}] = ∅, then, 
learly, H ′ = H \ [V2, V

2
5 \{t2}]. If F ∩ [V3, V

2
5 \{t2}] 6= ∅,then it is also not hard to see that, as before, H ′ = H \ [V2, V

2
5 \ {t2}].This implies that the triple path-
ut inequality indu
ed by H is redundant withrespe
t to that indu
ed by H ′ and the inequalities x(e) ≥ 0, for all e ∈ [V2, V

2
5 \ {t2}].Thus, it 
annot de�ne a fa
et.iv) To show that 
onditions iv) are ne
essary for αx ≥ γ to de�ne a fa
et, we show thatthe sets Fi = {x ∈ R

E su
h that x indu
es a solution of the kHNDP and x(Ti) = k},
i = 1, 2, 3, are non empty only if 
onditions iv) are satis�ed. As F is di�erent from theinequality x(e) ≤ 0 for some e ∈ F , there exists a solution (x, y) ∈ F su
h that x(e) = 0.Thus, |F | − x(F ) ≥ 1. By Lemma 5.7.3, this implies that x(E \ F ) + |F | − x(F ) = 1and hen
e, x(Ti) = k, for i = 1, 2, 3. Therefore, from Lemma 4.2.2, we obtain that

|[{s1, s2}, V1 ∪ V 1
5 ∪ {t2}]| + |[V3 ∪ V 1

4 , t1]| + |[{s1, s2}, t1]| ≥ k,

|[{s1, s2}, V1 ∪ V 1
4 ∪ {t1}]| + |[V3 ∪ V 1

5 , t2]| + |[{s1, s2}, t2]| ≥ k,

|[{s1, s2}, V1]| + |[V3 ∪ V 1
4 ∪ {t1} ∪ V 1

5 , t2]| + |[{s1, s2}, t2]| ≥ k,whi
h ends the proof of the theorem. �In the following 
hapter, we use all the results presented in this 
hapter to deviseBran
h-and-Cut and Bran
h-and-Cut-and-Pri
e algorithms for the kHNDP. As it willturn out, these results will be parti
ularly useful to develop e�e
ient separation algo-rithms for the various inequalities we have presented here.



Chapter 6
Bran
h-and-Cut andBran
h-and-Cut-and-Pri
e Algorithmsfor the kHNDP
In this 
hapter we present Bran
h-and-Cut and Bran
h-and-Cut-and-Pri
e algorithmswe have devised to solve the kHNDP. In Se
tions 6.1 and 6.2, we will des
ribe theframework of these algorithms. In Se
tion 6.4, we will present some 
omputationalresults and in Se
tion 6.5 we give some 
on
luding remarks.In order to solve the kHNDP using Aggregated, Cut and Node-Ar
 formulations,we use a Bran
h-and-Cut algorithm. These formulations use a polynomial number ofvariables. For the Path-Ar
 formulation, we use a Bran
h-and-Cut-and-Pri
e algorithmsin
e this formulation uses an exponential number of variables. These algorithms aredes
ribed in Se
tions 6.1 and 6.2. Se
tion 6.3 des
ribes the various separation routinesused in both Bran
h-and-Cut and Bran
h-and-Cut-and-Pri
e algorithms.Here we re
all some notations that will be used all along this 
hapter. Given anundire
ted graph G = (V, E) and a demand set D ⊆ V × V , the set of terminal nodesinvolved in a demand as sour
e (resp. destination) node is denoted by SD (resp. TD).The set of terminal nodes is denoted by RD. The demand graph GD = (RD, ED) isthe undire
ted graph whose nodes are those of RD and, for every demand {u, v} ∈ D,we add an edge uv in GD. The dire
ted graph asso
iated with G in the Aggregatedformulation is denoted by G̃ = (Ṽ , Ã) and the dire
ted graphs asso
iated with G inthe separated formulations (Cut, Node-Ar
 and Path-Ar
 formulations) are denotedby G̃st = (Ṽst, Ãst), {s, t} ∈ D.



6.1. BRANCH-AND-CUT ALGORITHMS FOR AGGREGATED, CUT ANDNODE-ARC FORMULATIONS 153Given a solution x ∈ [0, 1]E, the support graph G(x) = (V, E(x)) is the subgraphof G obtained by removing from G all the edges e ∈ E su
h that x(e) = 0, that is
E(x) = {e ∈ E | x(e) > 0}. Also, we let

E0(x) = {e ∈ E | x(e) = 0},

E1(x) = {e ∈ E | x(e) = 1},

Ef (x) = {e ∈ E | 0 < x(e) < 1}.In a similar way, given a solution y ∈ [0, 1]
eA, the support graph G̃(y) = (Ṽ , Ã(y)) isthe subgraph of G̃ obtained by removing from G̃ all the ar
s a ∈ Ã su
h that y(a) = 0,that is Ã(y) = {a ∈ Ã | y(a) = 0}. Also, we let

Ã0(x) = {a ∈ Ã | y(e) = 0},

Ã1(x) = {a ∈ Ã | y(e) = 1},

Ãf (x) = {a ∈ Ã | 0 < y(e) < 1}.Finally, for a demand {s, t} ∈ and a solution yst ∈ [0, 1]
eAst , the support graph is thegraph G̃st(yst) = (Ṽst, Ãst(yst)), is the graph su
h that Ãst(yst) = {a ∈ Ãst | yst(a) > 0}.We let

Ã0
st(yst) = {a ∈ Ãst | yst(a) = 0},

Ã1
st(yst) = {a ∈ Ãst | yst(a) = 1},

Ãf
st(yst) = {a ∈ Ãst | 0 < yst(a) < 1}.6.1 Bran
h-and-Cut algorithms for Aggregated, Cutand Node-Ar
 formulationsWe �rst des
ribe a Bran
h-and-Cut algorithm for the Aggregated formulation. To startthe optimization, we 
onsider the linear program given by the st-di
ut inequalitiesindu
ed by the node sets {s}, {s} ∪ N ′ and {s} ∪ N ′ ∪ N ′′, for all s ∈ SD, toghether



154 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPwith the linking and trivial inequalities. That is to say, we 
onsider the programMin∑

e∈E

c(e)x(e)

y(δ+
eG
(s)) ≥ k,

y(δ+
eG
({s} ∪ V1)) ≥ k,

y(δ+
eG
({s} ∪ V1 ∪ V2)) ≥ k,





for all s ∈ SD,

y(a) ≤ x(e), for all a ∈ Ã(e), e ∈ E,

y(a) ≥ 0, for all a ∈ Ã,

x(e) ≤ 1, for all e ∈ E.The optimal solution (x, y) of this LP is feasible for kHNDPAg if and only if (x, y) isintegral and satis�es every st-di
ut inequality, for all {s, t} ∈ D. If (x, y) is not feasiblefor the problem, then we generate further valid inequalities for kHNDPAg(G, D) thatare violated by (x, y). To do this, the algorithm tries to add in the 
urrent LP thefollowing inequalities, in this order,1. st-di
ut inequalities,2. aggregated 
ut inequalities,3. double 
ut inequalities,4. triple path-
ut inequalities,5. Steiner-partition inequalities,6. Steiner-SP -partition inequalities.For the Cut formulation, the optimization starts by 
onsidering the following linearprogram Min∑

e∈E

c(e)x(e)

yst(δ
+
eGst

(s)) ≥ k,

yst(δ
+
eGst

({s} ∪ Nst)) ≥ k,

yst(δ
+
eGst

({s} ∪ Nst ∪ N ′
st)) ≥ k,

yst(a) ≤ x(e), for all a ∈ Ãst(e), e ∈ E,

yst(a) ≥ 0, for all a ∈ Ãst,





for all {s, t} ∈ D,

x(e) ≤ 1, for all e ∈ E.
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) is feasible for kHNDPCu if (x, ys1t1 , ..., ysdtd

)is integral and satis�es every st-di
ut inequality, for all {s, t} ∈ D. If (x, ys1t1 , ..., ysdtd
)is not feasible for the problem, then we generate, as before, further valid inequalitiesfor kHNDPCu(G, D) that are violated by (x, ys1t1 , ..., ysdtd

). For this, we look for thefollowing inequalities, in this order,1. st-di
ut inequalities,2. aggregated 
ut inequalities,3. double 
ut inequalities,4. triple path-
ut inequalities,5. Steiner-partition inequalities,6. Steiner-SP -partition inequalities.Now we des
ribe the Bran
h-and-Cut algorithm for the Node-Ar
 formulation. Theoptimization starts by solving the linear relaxation of Formulation (5.15). As thisformulation 
ontains a polynomial number of variables and 
onstraints, its linear re-laxation 
an be solved using only one linear program,Min∑

e∈E

c(e)x(e)suje
ted to
(5.11) − (5.14).The optimal solution (x, f

s1t1
, ..., f

sdtd
) of this LP is feasible for kHNDPNA if it isintegral. If this is not the 
ase, we then try to add further inequalities that are valid for

kHNDPNA(G, D) and violated by this solution. The inequalities that are 
onsideredhere are the following, generated in this order,1. double 
ut inequalities,2. triple path-
ut inequalities,3. Steiner-partition inequalities,4. Steiner-SP -partition inequalities.



156 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDP6.2 A Bran
h-and-Cut-and-Pri
e algorithm for Path-Ar
 formulationThe Bran
h-and-Cut-and-Pri
e algorithm for the kHNDP starts by solving the linearrelaxation of Formulation (5.20). As this formulation uses an exponential number ofvariables but a polynomial number of 
onstraints, we use a 
olumn generation algorithmto solve its linear relaxation.6.2.1 Column generation algorithmRemind that the 
olumn generation algorithm starts by solving a linear program ob-tained from the linear relaxation of the Path-Ar
 formulation by 
onsidering a subsetof variables whi
h indu
e a feasible basis for the initial problem. For our purpose, we
onsider �rst the sets of st-dipaths Bst ⊆ Pst, {s, t} ∈ D, su
h that |Bst| ≥ k and thepaths of Bst are ar
-disjoint. Note that the subgraph of G̃st indu
ed by the paths of
Bst 
ontains k ar
-disjoint st-dipaths. By Corollary 5.2.1, the edge set 
orrespondingto the ar
s involved in the paths of Bst, {s, t} ∈ D, indu
es a solution of the kHNDP,and, toghether with the sets Bst, {s, t} ∈ D, indu
es a feasible solution for the linearrelaxation of Formulation (5.20). Hen
e, we 
onsider as initial set of variables thoseindu
ed by the edge set E and the sets Bst, {s, t} ∈ D. The �rst the linear programsolved in the 
olumn generation algorithm is, therefore, the one obtained from thelinear relaxation of Formulation (5.20) and these variables. This linear program isMin ∑

e∈E

c(e)x(e)

∑

eP∈Bst

µst(P̃ ) ≥ k, (6.1)
∑

eP∈Bst

γst
eP,a

µst(P̃ ) ≤ x(e), for all a ∈ Ãst(e), e ∈ E, (6.2)
µst(P̃ ) ≥ 0, for every P̃ ∈ Bst, and every {s, t} ∈ D, (6.3)
x(e) ≤ 1, for all edge e ∈ E. (6.4)At ea
h iteration, the algorithm tries to generate new 
olumns, that is to add to Bst,

{s, t} ∈ D, dire
ted paths P̃ ∈ Pst \ Bst su
h that the variable µst(P̃ ) has a negativeredu
ed 
ost. This is done by solving the so-
alled satellite problem whi
h 
onsists in�nding, for all {s, t} ∈ D, a path P̃ ∗ su
h that cr(P̃
∗) = min{cr(P̃ ) | P̃ ∈ Pst} and

cr(P̃
∗) < 0, where cr(P̃ ) is the redu
ed 
ost of the variable µst(P̃ ).
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ed 
ost cr(P̃ ) is 
omputed using the dual optimal solution. Let λst
0 and λst

a ,
a ∈ Ãst, be the dual variables asso
iated with inequalities (6.1) and (6.2), respe
tively.Then, given a path P̃ ∈ Pst, for some {s, t} ∈ D, the redu
ed 
ost of the variable
µst(P̃ ) is given by

cr(P̃ ) = λst
0 +

∑

a∈ eAst

γst
eP,a

λst
a = λst

0 +
∑

a∈ eP

λst
a .Thus, the satellite problem redu
es to �nd a shortest st-dipath in the graph G̃st, forall {s, t} ∈ D, with respe
t to lengths λst

a on ar
 a ∈ Ãst. If a shortest st-dipath of G̃st,say P̃ ∗, is su
h that ∑

a∈ eP ∗

λst
a < −λst

0 , then cr(P̃
∗) < 0. If not, then cr(P̃ ) ≥ 0 for every

st-dipath P̃ ∈ Pst. Sin
e λst
a ≥ 0, for all a ∈ Ãst, the satellite problem 
an be solved inpolynomial time. As the graphs G̃st are 
ir
uitless, the shortest paths between s and t
an be 
omputed using for instan
e Bellman algorithm [11℄.If cr(P̃ ) ≥ 0 for all P̃ ∈ Pst, {s, t} ∈ D, then the optimal solution of the 
urrentlinear program is optimal for the linear relaxation of Formulation (5.20).The initial sets Bst are 
hosen in the following way. For all {s, t} ∈ D, we add in

Bst k st-dipaths of the form (s, t) or (s, u, u′, t). To improve the 
onvergen
e of the
olumn generation algorithm, at ea
h iteration we add to a set Bst all the dipaths of
G̃st having a negative redu
ed 
ost, that is having length < −λst

0 . This 
an be donein polynomial time using Epstein [46℄ or Hershberger et al. algorithms [70℄. For ourpurpose, we devise an algorithm whi
h relies on the layered stru
ture of the graph G̃st.The algorithm works as follows for a pair {s, t} ∈ D. First, we 
ompute, using Bellmanalgorithm [11℄, the shortest paths from s to every other node of Ṽst \ {s}, and let lst(u)denote the length of the shortest path from s to u, u ∈ Ṽst \ {s}. If lst(t) ≥ −λst
0 , then,for every st-dipath P̃ ∈ Pst, cr(P̃ ) ≥ 0. If lst(t) < −λst

0 , then at least one st-dipathwill be added to Bst. We �rst look for a path (s, t). If λst
(s,t) < −λst

0 , then we addthe path (s, t) to Bst. Afterwards, we look for a st-dipath of the form (s, u, v′, t), with
u ∈ Nst and v′ ∈ N ′

st. In fa
t, every st-dipath of G̃st di�erent from (s, t) is of the form
(s, u, v′, t). For every node v′ ∈ N ′

st, if lst(v
′) + λst

(v′,t) < −λst
0 , then we add the st-path

(s, u, v′, t) to Bst. We repeat this pro
edure for every {s, t} ∈ D. The algorithm isexa
t and runs in polynomial time.6.2.2 Bran
h-and-Cut-and-Pri
e algorithmThe optimal solution of the linear relaxation of Formulation (5.20) is feasible for For-mulation (5.20) if it is integral. If this is not the 
ase, then we add further valid



158 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPinequalities for kHNDPPA(G, D) that are violated by this solution. The inequalitiesthat are 
onsidered are the following, in this order,1. double 
ut inequalities,2. triple path-
ut inequalities,3. Steiner-partition inequalities,4. Steiner-SP -partition inequalities.For our di�erent Bran
h-and-Cut and Bran
h-and-Cut-and-Pri
e algorithms, all theinequalities that are 
onsidered are global, that is valid for all the Bran
h-and-Cuttree, and several inequalities may be added at ea
h iteration of the Bran
h-and-Cutand Bran
h-and-Cut-and-Pri
e algorithms. These inequalities are lifted before theirintrodu
tion in the 
urrent LP. We go to the next 
lass of inequalities only if we havenot found any violated inequality in the 
urrent 
lass.In the following se
tion, we des
ribe the di�erent pro
edures we use to dete
t theviolated inequalities.6.3 Separation pro
edures6.3.1 Separation of st-di
ut inequalitiesThe separation of st-di
ut inequalities (5.6) and (5.21) 
an be performed in polynomialtime by 
omputing, for every {s, t} ∈ D, a minimum weight st-di
ut in G̃st(yst) (resp.
G̃(y)) with weights (yst(a), a ∈ Ãst(yst)) (resp. (y(a), a ∈ Ã(y))) for inequalities (5.6)(resp. (5.21)). By minimum 
ut - maximum �ow relationship, 
omputing a minimumweight st-di
ut of G̃st(yst) (resp. G̃(y)) is equivalent to 
omputing a maximum �owseparating s and t. We use, for 
omputing maximum �ows, the e�
ient algorithm ofGoldberg and Tarjan [58℄ whi
h runs in O(|Ṽst||Ãst| log |eVst|2

| eAst|
), for all {s, t} ∈ D (resp.

O(|Ṽ ||Ã| log |eV |2

| eA|
)). As this operation is repeated |D| times, the whole algorithm runsin O(|D||Ṽst||Ãst| log |eVst|2

| eAst|
), for all {s, t} ∈ D (resp. O(|D||Ṽ ||Ã| log |eV |2

| eA|
)), and hen
eis polynomial time.



6.3. SEPARATION PROCEDURES 1596.3.2 Separation of aggregated 
ut inequalitiesTo separate the aggregated 
ut inequalities, we 
onsider the inequalities of type (5.29)and (5.33) and devise an heuristi
 to separate them. In parti
ular, we 
onsider theinequalities des
ribed in the following two lemmas. The separation pro
edure relieson a spe
ial graph (introdu
ed later) de�ned with respe
t to G̃ (G̃st, {s, t} ∈ D)and a fra
tional solution. Re
all that these inequalities are valid for the polytopes
kHNDPAg(G, D) and kHNDPCu(G, D).Lemma 6.3.1 Consider an inequality αx+βy ≥ γ of type (5.29) indu
ed by a node setfamily Π = {W̃1, ..., W̃p}, p ≥ 2, and ar
 subsets F̃ 0

i ⊆ δ+
eG
(W̃i) su
h that |F̃ 0

i | = k − 1.Let F̃ =

p⋃

i=1

(δ+
eG
(W̃i) \ F̃ 0

i ), F̃2 be the set of ar
s of Ã whi
h appear twi
e in F̃ and F̃1those whi
h appear on
e in F̃ . Suppose that for all ar
 a ∈ F̃1 there is another ar

a′ ∈ F̃1 whi
h 
orresponds to the same edge of G as a. Let E2 be the set of edges of G
orresponding to the ar
s of F̃1.If (x, y) ∈ R

E×R
eA is a fra
tional solution of kHNDPAg(G, D) su
h that y(δ+

eG
(W̃i)) =

k and y(a) = 1, for all a ∈ F̃ 0
i , i = 1, ..., p, then αx + βy ≥ δ is violated by (x, y) ifand only if
2

∑

e∈E2

x(e) −
∑

a∈ eF1

y(a) < 1. (6.5)Proof. First observe that inequality αx + βy ≥ δ is violated by (x, y) if and only if
∑

a∈ eF2

y(a) +
∑

e∈E2

x(e) <
p + 1

2
. (6.6)Sin
e y(δ+

eG
(W̃i)) = k, |F̃ 0

i | = k − 1 and y(a) = 1 for all a ∈ F̃ 0
i , we have that

y(δ+
eG
(W̃i) \ F̃ 0

i ) = 1 for i = 1, ..., p.Thus, p∑

i=1

y(δ+
eG
(W̃i) \ F̃ 0

i ) = 2
∑

a∈ eF2

y(a) +
∑

a∈ eF1

y(a) = p and hen
e,
∑

a∈ eF2

y(a) =
p

2
−

1

2

∑

a∈ eF1

y(a). (6.7)
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p −

∑

a∈ eF1

y(a) + 2
∑

e∈E2

x(e) < p + 1.and the result follows. �Lemma 6.3.2 Consider an inequality αx +
∑

{s,t}∈D

ystβst ≥ γ of type (5.33) indu
ed bya family of node sets Π = {W̃ s1t1
1 , ..., W̃ s1t1

p1
, ..., W̃

sqtq
1 , ..., W̃

sqtq
pq }, with pi ≥ 1, for i =

1, ..., q, and p =

q∑

i=1

pi ≥ 2, and ar
 subsets F̃ siti,0
j ⊆ δ+

eGsiti

(W̃ siti
j ) su
h that |F̃ siti,0

j | =

k − 1, j = 1, ..., pi, i = 1, ..., q. Let F̃ siti =

pi⋃

j=1

[δ+
eGsiti

(W̃ siti
j ) \ F̃ siti,0

j ], i = 1, ..., q. Alsolet F̃ siti,2 be the set of ar
s of Ãsiti whi
h appear twi
e in F̃ siti and F̃ siti,1 those whi
happear on
e in F̃ siti. Suppose that for all ar
 a ∈ F̃ siti,1, there exists a unique ar

a′ ∈ F̃ si′ ti′ ,1 for some i′ ∈ {1, ..., q} whi
h 
orresponds to the same edge of G as a. Let
E2 be the set of edges of G 
orresponding to these ar
s.If (x, ys1t1 , ..., ysdtd

) is a fra
tional solution of kHNDPCu(G, D) su
h that
ysiti

(δ+
eGsiti

(W̃siti)) = k and ysiti
(a) = 1, for all a ∈ F̃ siti,0, i = 1, ..., q, then

αx +
∑

{s,t}∈D

ystβst ≥ γ is violated by (x, ys1t1 , ..., ysdtd
) if and only if

2
∑

e∈E2

x(e) −

q∑

i=1

∑

a∈ eF siti

ysiti(a) < 1. (6.8)Proof. Similar to the proof of Lemma 6.3.1. �In the following, we are going to dis
uss the separation of the aggregated 
ut inequal-ities (5.29) for kHNDPAg. After that, we will des
ribe the separation pro
edure for theaggregated 
ut inequalities (5.33) related to kHNDPCu.We are going to introdu
e an undire
ted graph, denoted by H(x, y), obtained from
G̃ and de�ned with respe
t to (x, y). As we will see in the following, the main propertyof this graph is that there is a mat
hing between some parti
ular 
y
les of H(x, y) andinequalities of type (5.29), des
ribed as in Lemma 6.3.1. The graph H(x, y) is obtainedas follows.
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h ar
 of Ã having a fra
tional value with respe
t to y, we add a node in
H(x, y). For 
onvenien
e, we will denote by a the node of H(x, y) 
orresponding toan ar
 a of G̃. We add an edge in H(x, y) between two nodes a1 and a2 if one of the
onditions below is satis�ed.1. There exists an st-di
ut of G̃(y), say δ+

eG(y)
(W̃ ), for some {s, t} ∈ D, whi
h 
ontains

a1 and a2, and su
h that y(δ+
eG(y)

(W̃ )) = k, |δ+
eG(y)

(W̃ ) ∩ Ã1(y)| = k − 1 and
δ+

eG(y)
(W̃ ) ∩ Ãf(y) = {a1, a2}.2. The ar
s a1 and a2 
orrespond to the same edge of G.The edges added by Condition 1 will be said of type 1 and those added by Condition2 will be said of type 2. Figures 6.1 and 6.2 give respe
tively the support graph G̃(y) ofa fra
tional solution (x, y) of kHNDPAg(G, D) and the graph H(x, y) asso
iated withthat solution.
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Arc with value 1

Arc with value 0.5

12'1′

4'
3

21'3'2'15' 15�2�3�
21�4�12�
1�

2
4

1

Figure 6.1: The support graph G̃(y) of a fra
tional solution (x, y) for L = 3 and k = 3
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Edge of type 1
Edge of type 2

21�,2 15�,22',21� 3',15�
12',3� 21',2� 2',15�4',21�12',4� 15',2�

3,15'3,12'
12�,4 21�,43',12�

21',4�
4',12�

Figure 6.2: Graph H(x, y) obtained from G̃(y)
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ase where there is an edge of type 1 in H(x, y) between two nodes
a1 and a2, we have that y(a1) + y(a2) = 1. Also, if there is an edge of type 2 betweentwo nodes a1 and a2, then x(e) > 0 where e is the edge of G 
orresponding to a1 and
a2. Also it is not hard to see that, if in H(x, y) there are two edges of type 2 of theform a1a2 and a2a3, then there is also an edge of type 2 between a1 and a3 (a1, a2 and
a3 form a triangle).Now we give the main property of H(x, y).Lemma 6.3.3 Let C = {a1a2, a2a3, ..., a|C|a1} be a 
y
le of H(x, y) and {ai1aj1 , ..., aipajp

}the set of edges of C of type 1. Also, let V1 be the set of nodes of C in
ident to two
onse
utive edges of type 1. Suppose that p ≥ 2 and that C does not 
ontain two
onse
utive edges of type 2. Then, C yields an inequality of type (5.29) de�ned by
Π = {W̃1, ..., W̃p} and F̃ 0

r = δ eG(y)(W̃r) \ {air , ajr
}, r = 1, ..., p, where W̃r is the node setof G̃ asso
iated with the edge airajr

in the 
onstru
tion of H(x, y).Proof. First observe that the ar
s of Ã(y) whi
h appear twi
e in F̃ =

p⋃

i=1

[δ eG(y)(W̃r) \ F̃ 0
i ]are those of G̃(y) 
orresponding to the nodes of V1, while the ar
s whi
h appear on
ein F̃ are those of Ã(y) 
orresponding to the nodes of {a1, ..., a|C|} \ V1. Thus we let F̃2and F̃1 be these two sets of ar
s, respe
tively. Sin
e every node a ∈ {a1, ..., a|C|} \ V1is in
ident to one edge of C of type 2, say aa′, the ar
s a and a′ are in F̃1 and 
orre-spond to the same edge of G. Thus, the aggregated 
ut inequality asso
iated with this
on�guration 
an be written as

∑

a∈ eF2

y(a) +
∑

e∈E2

x(e) ≥
⌈p

2

⌉
,where E2 is the edge set of G 
orresponding to the ar
s of F̃1. �To illustrate that lemma, on Figure 6.2, the 
y
le

C = {(3, 15′)(3, 12′), (3, 12′)(21′′, 4), (21′′, 4)(4′, 21′′), (4′, 21′′)(3′, 15′′), (3′, 15′′)(3, 15′)}
ontains three edges of type 1, (3, 15′)(3, 12′), (3, 12′)(21′′, 4) and (4′, 21′′)(3′, 15′′), andtwo edges of type 2, (21′′, 4)(4′, 21′′) and (3′, 15′′)(3, 15′), that are not in
ident. One
an see on Figure 6.1 that the node sets W̃1 = {3}, W̃2 = {3, 2′, 15′, 21′′, 3′′, 2′′, 15′′, 2}and W̃3 = {1, 12′, 3′, 4′, 1′′, 12′′, 4′′, 3′′, 2′′, 4} indu
e two 3−4-di
uts and one 1−2-di
utof G̃(y), and that these di
uts 
ontain respe
tively the pairs of ar
s {(3, 15′), (3, 12′)},
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{(3, 12′), (21′′, 4)} and {(4′, 21′′), (3′, 15′′)}. Moreover, they are su
h that y(δ+

eG(y)
(W̃i)) =

k and |δ+
eG(y)

(W̃i) ∩ Ã1(y)| = k − 1, i ∈ {1, 2, 3}. Finally, it obviously follows that Π =

{W̃1, W̃2, W̃3} and F̃ 0
1 = {(3, 1′), (3, 2′)}, F̃ 0

2 = {(3, 1′), (2′′, 4)} and F̃ 0
3 = {(4′′, 2), (3′′, 2)}indu
e an aggregated 
ut inequality of type (5.29). Furthermore, this inequality is vi-olated by (x, y).Before des
ribing the 
onstru
tion pro
edure forH(x, y), we give the following lemma.Lemma 6.3.4 Let (x, y) be a fra
tional solution of kHNDPAg(G, D), and let a1 and

a2 be two ar
s of G̃ with fra
tional values and {s, t} ∈ D. If there exists a minimumweight st-di
ut of G̃(y), say δ+
eG(y)

(W̃ ), su
h that {a1, a2} ⊆ δ+
eG(y)

(W̃ ) and δ+
eG(y)

(W̃ ) \

{a1, a2} ⊆ Ã1(y), then δ+
eG(y)

(W̃ ) 
an be 
onsidered in su
h a way that every ar
 a ∈

δ+
eG(y)

(W̃ ) \ {a1, a2} is either in δ+
eG(y)

(s) or in δ−
eG(y)

(t) \ [t′, t] eG(y).Proof. Let δ+
eG(y)

(W̃ ) be a minimum weight st-di
ut of G̃(y) 
ontaining a1 and a2and su
h that δ+
eG(y)

(W̃ ) \ {a1, a2} ⊆ Ã1(y). Suppose also that there is an ar
 a ∈

δ+
eG(y)

(W̃ ) \ {a1, a2} whi
h is not in δ+
eG(y)

(s) ∪ [δ−
eG(y)

(t) \ {(t′, t)}]. Hen
e, a is either ofthe form (u′, v′′), with u′ ∈ N ′, v′′ ∈ N ′′ and u and v may be the same, or of theform (t′, t). If a = (u′, v′′), then u′ ∈ W̃ and the node set W̃ ′ = W̃ \ {u′} indu
es an
st-di
ut. Sin
e δ+

eG(y)
(W̃ ) is a minimum weight st-di
ut, [s, u′] eG(y) 6= ∅ and therefore,

δ+
eG(y)

(W̃ ′) = (δ+
eG(y)

(W̃ ) \ {(u′, v′′)}) ∪ {(s, u′)}. Sin
e δ+
eG(y)

(W̃ ) is of minimum weightwith respe
t to y, we have that y(s, u′) ≥ y(u′, v′′). As y(u′, v′′) = 1, we also havethat y(s, u′) = 1 and that δ+
eG(y)

(W̃ ′) is a minimum weight st-di
ut. If a = (t′, t), thensin
e δ+
eG(y)

(W̃ ) is of minimum weight in G̃(y), there is an ar
 of the form (s, t′). Thus,
W̃ ′ = W̃ \ {t′} indu
es an st-di
ut of G̃(y). Moreover, as the weight of δ+

eG(y)
(W̃ ) isminimum with respe
t to y, we have that y(s, t′) ≥ y(t′, t) = 1. Hen
e, y(s, t′) = 1 and

δ+
eG(y)

(W̃ ′) is also of minimum weight.By repeating this operation until δ+
eG(y)

(W̃ ) does not 
ontain any ar
 of the form
(u′, v′′) or (t′, t), we obtain a minimum weight st-di
ut of G̃(y) whi
h 
ontains a1 and
a2, su
h that δ+

eG(y)
(W̃ ) \ {a1, a2} ⊆ Ã1(y) and su
h that every ar
 of δ+

eG(y)
(W̃ ) \ {a1, a2}is either in δ+

eG(y)
(s) or in δ−

eG(y)
(t) \ [t′, t] eG(y), whi
h ends the proof of the Lemma. �A 
onsequen
e of Lemma 6.3.4 is that an st-di
ut δ+

eG(y)
(W̃ ) of G̃(y) 
ontaining twoar
s a1 and a2 with fra
tional values, su
h that y(δ+

eG(y)
(W̃ )) = k and δ+

eG(y)
(W̃ )∩Ãf (y) =
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{a1, a2} 
an be obtained by 
omputing st-di
uts of G̃(y) 
ontaining a1 and a2 and su
hthat δ+

eG(y)
(W̃ ) \ {a1, a2} ⊆

[
δ+

eG(y)
(s) ∪ (δ−

eG(y)
(t) \ {(t′, t))}

].The 
onstru
tion of the graph H(x, y) is performed by 
omputing �rst the edges oftype 2. For every pair of ar
s (a, a′) ∈ Ã(y)× Ã(y), 
orresponding to the same edge of
E and having a fra
tional value, we add an edge of type 2 between the 
orrespondingnodes in H(x, y). To 
ompute the edges of type 1, we use a pro
edure based on Lemma6.3.4. The idea is to 
ompute a maximum �ow in G̃(y) with respe
t to appropriate
apa
ities separating s and t. Given two ar
s a1 and a2 su
h that y(a1) + y(a2) = 1and a pair {s, t} ∈ D, we �rst give 0 as 
apa
ity to a1 and a2. Then, we give an in�nit
apa
ity to every other ar
 of G̃(y) having a fra
tional value. This ensures that a1 and
a2 are the only ar
s of fra
tional values present in the st-di
ut we will obtain. We givean in�nit 
apa
ity to every ar
 of δ+

eG(y)
(s) and δ−

eG(y)
(t) indi
ent to a1 and a2 and havingvalue 1. We also give an in�nit 
apa
ity to every ar
 of [t′, t] eG(y). For all other ar


a, we give y(a) as 
apa
ity (note that for these ar
s, y(a) = 1). Then, we 
ompute amaximum �ow between s and t with respe
t to these 
apa
ities. Let δ+
eG(y)

(W̃ ) denotethe st-di
ut thus obtained. By Lemma 6.3.4, we have that δ+
eG(y)

\ {a1, a2} ⊆ Ã1(y).We then 
he
k if y(δ+
eG(y)

(W̃ )) = k and |δ+
eG(y)

(W̃ ) \ {a1, a2}| = k − 1. If this is the 
ase,then we add an edge of type 1 between the nodes of H(x, y) 
orresponding to a1 and
a2. We repeat this pro
edure for all pair of ar
s (a1, a2) having fra
tional value andsu
h that y(a1) + y(a2) = 1, and for all demand {s, t} ∈ D.Now we des
ribe the separation pro
edure of the aggregated 
ut inequalities. Thepro
edure is based on Lemma 6.3.1. Thus we generate inequalities of type (5.29) whi
hsatisfy the 
onditions of that lemma. First, we 
ompute H(x, y) as des
ribed above.Then we 
ompute one or more 
y
les of H(x, y) whi
h 
ontain an odd number of edgesof type 1 and whi
h does not 
ontain two 
onse
utive edges of type 2. By Lemma 6.3.3,every 
y
le satisfying these 
onditions yields an aggregated 
ut inequality of type (5.29).We then 
he
k if for ea
h inequality thus obtained, (x, y) satis�es inequality (6.5). Ifthis is the 
ase, then by Lemma 6.3.1, this inequality is violated by (x, y) and addedto the set of violated inequalities. If no 
y
le is found or if for every inequality of type(5.29) obtained, (x, y) does not satisfy inequality (6.5), then the pro
edure ends withfailure.To dete
t 
y
les of H(x, y) satisfying the 
onditions of Lemma 6.3.3, we use a pro
e-dure in whi
h we 
ompute shortest paths in an auxiliary graph obtained from H(x, y).Let Hb be the undire
ted graph obtained as follows. The node set of Hb is 
omposedof two 
opies, denoted by V ′

b and V ′′
b , of the node set of H(x, y). The 
opies of a node

a of H(x, y) are denoted by a′ and a′′ with a′ ∈ V ′
b and a′′ ∈ V ′′

b . For every edge a1a2



6.3. SEPARATION PROCEDURES 167of H(x, y) of type 1, we add in Hb two edges of the form a′
1a

′′
2 and a′

2a
′′
1 and give them1 as length. For every edge a1a2 of H(x, y) of type 2, we add in Hb two edges of theform a′

1a
′
2 and a′′

1a
′′
2 and give them a length M su�
iently large. Figure 6.3 shows anexample of graph Hb obtained from a subgraph of H(x, y) given in Figure 6.2. It is nothard to see that a path between two nodes a′ and a′′ of Hb 
orresponds to a 
y
le of

H(x, y) 
ontaining node a and an odd number of edges of type 1, and does not 
ontaintwo 
onse
utive edges of type 2, and vi
e versa.
Edge of type 1

Edge of type 2

1 1

1 1

1 1

∞

Graph Hb

∞
∞

∞

Subgraph of H(x, y)

(21�,4)(3',15�) (4',21�)�(3',15�)�(21�,4)�(3,12')�(21�,4)'(3',15�)'(4',21�)'
(3,12')'(3,15')'(3,12')(3,15')

(4',21�)
(3,15')�

Figure 6.3: Graph Hb obtained from a subgraph of H(x, y)For our separation pro
edure, we 
ompute the shortest paths between ea
h pair ofnodes (a′, a′′) of Hb, for every node a of H(x, y).Now we turn to the aggregated 
ut inequalities for the Cut formulation. The separa-tion pro
edure for these inequalities is similar to that des
ribed above for kHNDPAg.Given a fra
tional solution (x, ys1t1 , ..., ysdtd
) of kHNDPCu(G, D), we 
onstru
t thegraph H(x, ys1t1 , ..., ysdtd

) in a similar way as H(x, y), that is for all {s, t} ∈ D, andfor every ar
 a ∈ Ãf
st(yst) we asso
iate a node in H(x, ys1t1 , ..., ysdtd

). We add an edge,said of type 1, between two nodes a1 and a2 if they belong to the same graph G̃st,
yst(a1) + yst(a2) = 1 and there exists an st-di
ut δ+

eGst(yst)
(W̃ ) 
ontaining a1 and a2 andsu
h that δ+

eGst(yst)
(W̃ ) ∩ Ãf

st(yst) = {a1, a2} and |(δ+
eGst(yst)

(W̃ ) \ {a1, a2}) ∩ Ã1
st(yst)| =

k − 1. We also add an edge, said of type 2, between two nodes a1 ∈ Ãf
siti(ysiti) and

a2 ∈ Ãf
si′ ti′

(ysi′ ti′
) if the ar
s a1 and a2 
orrespond to the same edge of G.
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ut δ+
eGst(yst)

(W̃ ) used to set edges of type 1 
an be 
omputed with thepro
edure used for kHNDPAg. As before, every 
y
le of H(x, ys1t1 , ..., ysdtd
) whi
h
ontains an odd number of edges of type 1 and whi
h does not 
ontain two 
onse
utiveedges of type 2 yields an inequality of type (5.33). These 
y
les are 
omputed by lookingfor shortest paths in a graph Hb obtained in a similar way as for kHNDPAg. Finally,for ea
h 
y
le thus obtained, we 
he
k if (x, ys1t1 , ..., ysdtd

) satis�es or not inequality(6.8) with respe
t to the sets E2 and F̃ siti,1 obtained from that 
y
le. If this is the
ase, then by Lemma 6.3.2, the 
orresponding inequality of type (5.33) is violated by
(x, ys1t1 , ..., ysdtd

) and hen
e added to the set of violated inequalities.6.3.3 Separation of double 
ut inequalitiesThe separation of double 
ut inequalities is performed by looking for inequalities oftype (5.39) for L = 2 and of type (5.40) for L = 3 that are violated by the 
urrentsolution. We des
ribe the pro
edure for the kHNDPAg. We will present later how this
an be extended to the other formulations.The idea of the pro
edure is to �nd a partition π = (V0, ..., VL, VL+1), L ∈ {2, 3}, of Gand an edge set F ⊆ E, with |V0| = |V1| = 1 and [V0, V1] 6= ∅, whi
h indu
es a double
ut, with i0 = 0, and whose weight is minimum with respe
t to x. The pro
edureworks as follows. For all {s, t} ∈ D, we 
ompute the st-
ut δG(s). If x(δG(s)) = k,then for every terminal s′ ∈ RD su
h that x([s, s′]) > 0 and x(δG(s′)) = k, we 
omputean L-st-path-
ut T of G indu
ed by a partition π = (V0, ..., VL, VL+1) with V0 = {s}and V1 = {s′}. For this, we use the 
orrespondan
e between L-st-path-
uts in G and
st-di
uts in G̃, given by Lemma 5.4.1. Sin
e the desired partition π must be su
h that
V0 = {s} and V1 = {s′}, we must have T ∩ [s, s′] = ∅ and δG(s) \ [s, s′] ⊆ T . Thus,any st-di
ut of G̃ 
orresponding to T must 
ontain ar
s 
orresponding to the edges of
δG(s) \ [s, s′] and no ar
s 
orresponding to the edges of [s, s′]. Also remark that this
st-di
ut does not 
ontain any ar
 of the form (u′, u′′), u ∈ V and of the form (t′, t),
t ∈ TD. Therefore, to 
ompute an st-di
ut of G̃ 
orresponding to the desired L-st-path-
ut, we start by giving the ar
s 
orresponding to the edges of [s, s′] an in�nit 
apa
ityand removing all the ar
s 
orresponding to the edges of δG(s) \ [s, s′]. Then, we give toevery ar
 of the form (u′, u′′), u ∈ V and (t′, t), t ∈ TD, an in�nit 
apa
ity. Afterwards,we 
ompute a maximum �ow between s and t with respe
t to these 
apa
ities. Let
δ+

eG
(W̃ ) denote the st-di
ut thus obtained.To 
he
k that this di
ut 
orresponds to an L-st-path-
ut of G, we apply the followingpro
edure. We �rst remove from G all the edges 
orresponding to the ar
s of δ+

eG
(W̃ ).



6.3. SEPARATION PROCEDURES 169Then, we 
ompute the shortest paths between s and every node of V \{s} with respe
tto length 1 on the remaining edges. Let l(u) denotes the length of a shortest pathbetween s and u, u ∈ V \ {s}. If l(t) is �nite, then δ+
eG
(W̃ ) 
orresponds to an L-st-path-
ut of G. In this 
ase, we 
onstru
t the partition π su
h that V0 = {s}, V1 = {s′},

Vi = {u ∈ V \ {s, s′, t} | l(u) = i}, i = 2, ..., L, and VL+1 = V \ (
L⋃

i=0

Vi).Let Ê be the edge set [V1, V2] (resp. [V1 ∪ V4, V2]) if L = 2 (resp. L = 3) having apositive value with respe
t to x. We 
hoose the edges of F among those of Ê havingthe highest value and su
h that |F | and k have di�erent parities. If |Ê| ≥ k − 1, then
F 
onsists of the k − 1 edges having the highest value. If |Ê| < k − 1 and |Ê| has aparity di�erent from that of k, then we let F = Ê. If |Ê| < k−1 and |Ê| has the sameparity as k, then we let F = Ê \ {e0} where e0 is the edge of Ê having the smallestvalue.Finally, we 
he
k if the inequality (5.39) (resp. (5.40)) for L = 2 (resp. L = 3)indu
ed by π and F is violated or not.We repeat this pro
edure for every demand {s, t} ∈ D, and the violated inequalitiesfound are added to the 
onstraint pool. To 
ompute the maximum �ow in G̃ we usethe algorithm of Goldberd and Tarjan [58℄ whi
h runs in O(|Ã||Ṽ | log |eV |2

| eA|
) time. If Gis 
omplete and L = 3, we have that |Ṽ | = 2|V |+ |SD|+ |TD| and |Ã| = (|V |−1)(|V |+

|SD|+|TD|). Thus, the maximum �ow algorithm runs in O(|V |3 log (2|V |+|SD|+|TD|)2

(|V |−1)(|V |+|SD|+|TD|)
).To 
ompute the shortest paths in G between s and the other nodes of V , we use thealgorithm of Dijkstra [43℄ whi
h is implemented to run is O(|V ||E| log(|V |)) time. Asthe 
omputation of a 
ut in the graph G requires at most |E| iterations, our separationpro
edure runs in O(|V |3 log |V | (2|V |+|SD|+|TD|)2

(|V |−1)(|V |+|SD|+|TD|)
)) time, and hen
e is polynomial. If

L = 2, the algorithm is also polynomial.For the 
ase of the separated formulations (Cut, Path-Ar
 and Node-Ar
 formula-tions), the pro
edure is the same ex
ept that the 
omputation of the L-st-path-
ut,indu
ed by the partition π, is performed using the dire
ted graph G̃st asso
iated withthe demand {s, t}. We remove from G̃st all the ar
s 
orresponding to the edges of
δG(s) \ [s, s′], and those 
orresponding to the edges of [s, s′] are given an in�nit 
apa
-ity. In the same way, we give an in�nit 
apa
ity to every ar
 of the form (u, u′), with
u ∈ Ṽst. Then, we 
ompute a maximum �ow between s and t in G̃st. Also, for theseformulations, the algorithm remains polynomial.



170 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDP6.3.4 Separation of triple path-
ut inequalitiesTo separate triple path-
ut inequalities, we devise a heuristi
. This heuristi
 is basedon Theorem 5.7.3. The pro
edure is given for L = 3. It is similar for L = 2.The main idea is to 
ompute, given two demands {s, t1} and {s, t2}, a family Π =

{V0, V1, V2, V3, V
1
4 , V 2

4 , V 1
5 , V 2

5 } of node sets from a 3-st1-path-
ut T indu
ed by a par-tition of the form (V0, V1 ∪ V 1
4 ∪ V 2

4 , V2, V3 ∪ V 1
5 , V 2

5 ). In fa
t, from this latter partition,one 
an obtain a whole triple path-
ut by �xing the sets V 1
4 , V 2

4 , V 1
5 and V 2

5 . In ourpro
edure, we will look for those triple path-
uts su
h that V 1
4 = ∅, V 2

4 = {t2}, V 1
5 = ∅and V 2

5 = {t1}.The pro
edure works as follows. For ea
h sour
e s ∈ SD, we apply the followingsteps. Let {s, t1} and {s, t2} be two demands asso
iated with s. We �rst look for apartition π = (V ′
0 , V

′
1 , V

′
2 , V

′
3 , V

′
4) whi
h indu
es an L-st1-path-
ut of G, denoted by T ,and su
h that V ′

0 = {s} and t2 ∈ V ′
1 . For this, we use the 
orrespondan
e between the

L-st1-path-
uts in G and st1-di
uts in G̃. Sin
e t2 ∈ V ′
1 and V ′

0 = {s}, we have that
T ∩ [s, t2] = ∅ and any ar
 of G̃, 
orresponding to the edges of [s, t2], does not appearin an st1-di
ut of G̃ 
orresponding to T . Thus, 
omputing T redu
es to 
ompute aminimum weight st1-di
ut in G̃. To do this, we 
ompute a maximum �ow in G̃ between
s and t1 with respe
t to the following 
apa
ities:

• for every ar
 of Ã([s, t2]) or of the form (u′, u′′) or (t′, t), with u ∈ N and t ∈ TD,we give an in�nit 
apa
ity;
• for every ar
 of Ã(e), with e ∈ E \ [s, t2], we give the 
apa
ity x(e).Let δ+

eG
(W̃ ) denote the dire
ted 
ut thus obtained. We 
he
k if it 
orresponds to an

L-st1-path-
ut by performing the following steps. First, we remove from G all theedges 
orresponding to the ar
s of δ+
eG
(W̃ ) and 
ompute all the shortest paths between

s and the other nodes of G with respe
t to the length 1 on the remaining edges. Let
l(u) denote the length of the shortest path between s and u, for all u ∈ V \{s}. If l(t1)is �nite, then δ+

eG
(W̃ ) 
orresponds to an L-st1-path-
ut, denoted by T . In this 
ase, we
onstru
t the partition π su
h that V ′

0 = {s}, V ′
i = {u ∈ V | l(u) = i}, for i ∈ {1, 2, 3},and for all the nodes u ∈ V \ {t1} su
h that l(u) ≥ 4 or l(u) = +∞, we assign themalternatively to V ′

1 and V ′
3 . Finally, V ′

4 = V \ (

3⋃

i=0

V ′
i ). Note that t1 ∈ V ′

4 as l(t1) > 3and t2 ∈ V ′
1 . Now the family of node sets Π is su
h that V0 = V ′

0 = {s}, V1 = V ′
1 \ {t2},

V2 = V ′
2 , V3 = V ′

3 , V 1
4 = ∅, V 2

4 = {t2}, V 1
5 = ∅ and V 2

5 = {t1}.



6.3. SEPARATION PROCEDURES 171Let Ê be the set of edges of [V 2
3 , V1 ∪ V 1

4 ] ∪ [V 1
3 , V 2

4 ] having a positive value withrespe
t to x. We 
hoose the edges of F among those of Ê having the highest value andsu
h that |F | and k have di�erent parities. If |Ê| ≥ k − 1, then F 
onsists of the k− 1edges having the highest value. If |Ê| < k − 1 and |Ê| has a parity di�erent from thatof k, then we let F = Ê. If |Ê| < k − 1 and |Ê| has the same parity as k, then we let
F = Ê \ {e0} where e0 is the edge of Ê having the smallest value.Finally, we 
he
k if the triple path 
ut inquality indu
ed by Π and F is violated ornot.Our algorithm runs in polynomial time, as it 
onsists, for every pair {{s, t1},{s, t2}}of demands, in 
omputing a maximum �ow and shortest paths between s and theother nodes of G. In our implementation, we use the algorithm of Goldberg andTarjan [58℄ for the maximum �ow and the algorithm of Dijkstra [43℄ for the shortestpaths whi
h run repes
tively in O(|V |3 log (2|V |+|SD|+|TD|)2

(|V |−1)(|V |+|SD|+|TD|)
) and O(|V |3 log |V |) time,respe
tively. Thus, the pro
edure runs in O(|D|2(|V |3 log |V | (2|V |+|SD|+|TD|)2

(|V |−1)(|V |+|SD|+|TD|)
)) time,and thus, is polynomial.For the 
ase of the separated formulations, the pro
edure is the same ex
ept thatthe 
omputation of the L-st-path-
ut indu
ing the partition π is performed using thedire
ted graph G̃st1 asso
iated with the demand {s, t1}. All the ar
s 
orresponding tothe edges of [s, t2] are given an in�nit 
apa
ity. In the same way, we give an in�nit
apa
ity to every ar
 of the form (u, u′), with u ∈ Ṽst and all the ar
s 
orresponding toan edge e ∈ E \ [s, t2] is given the 
apa
ity x(e). Then, we 
ompute a maximum �owbetween s and t1 in G̃st1.6.3.5 Separation of Steiner-partition inequalitiesNow we dis
uss the separation of Steiner-partition inequalities. The separation problemof inequalities (5.43) is NP-hard (see [99℄). To separate them, we devise the followingheuristi
. Note that we look for Steiner-partition inequalities when k is odd. The ideaof the pro
edure is to �nd a partition π = (V0, V1, ..., Vp), p ≥ 3 and odd, su
h that

V0 ⊆ V \ RD and x(δ(V0, ..., Vp)) is minimum.Our heuristi
 begins by 
ontra
ting every pair of nodes t and u, where t is a terminalnode and u a Steiner node, and x(δG(x)(u) \ {ut}) ≤ x(ut). The node resulting fromthat 
ontra
tion will 
onsidered as a terminal. Let G(x)′ = (V ′, E ′) be the redu
edgraph thus obtained and let {u′
1, ..., u

′
p} be the set of terminals of G(x)′. If p is odd,we let π′ = (V ′

0 , V
′
1 , ..., V

′
p), where V ′

i = {u′
i}, i = 1, ..., p, and V ′

0 = V ′ \ {u′
1, ..., u

′
p}.



172 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPThen, we let Vi, i = 0, ..., p, be the node sets of G(x) 
orresponding to the node sets
V ′

i , i = 0, ..., p, of G(x)′.If p is even, we look for two nodes u′
i0 and u′

j0, i0, j0 ∈ {1, ..., p}, of G(x)′ su
hthat x([u′
i0
, u′

j0
]) is maximum and there is a demand between u′

i0
and u′

j0
, that is

|δGD
({u′

i0
, u′

j0
})| ≥ 1. This later 
ondition ensures that the partition we will obtain isadmissible. We let

V ′
i = {u′

i}, i = 1, ..., i0 − 1,

V ′
i0

= {u′
i0
, u′

j0
},

V ′
i = {u′

i}, i = i0 + 1, ..., j0 − 1,

V ′
i−1 = {u′

i}, i = j0 + 1, ..., p,

V ′
0 = V ′ \ {u′

1, ..., u
′
p}.Then, we let Vi be the node set of G(x) 
orresponding to the node set V ′

i , i = 0, ..., p−1,of G(x)′. After that, we 
he
k if the Steiner-partition inequality indu
ed by π is violatedby x or not.The 
omputation of the graph G(x)′ runs in O(|V ||E|) while the 
omputation of thenodes u′
i0, u

′
j0, when p is even, requires O(|RD|

2(|E ′| + |D|)) operations. Thus, ourseparation algorithm runs, in the worst 
ase, in O(|V ||E|+ |RD|
2(|E ′|+ |D|)) time andthus, is polynomial.6.3.6 Separation of Steiner-SP -partition inequalitiesNow we turn our attention to the separation of the Steiner-SP -partition inequalities.We devise the following heuristi
 to separate inequalities (5.44). The main idea is todetermine a Steiner-partition π = (V1, ..., Vp), p ≥ 3, of V whi
h indu
es an outerplanarsubgraph of G(x) and su
h that the subgraph of GD (the demand graph) indu
ed by

π is 
onne
ted. By Theorem 5.6.8, su
h a partition is a Steiner-SP -partition. Also,the partitions we are looking for are su
h that |[Vi, Vi+1]| ≥
⌈

k
2

⌉, i = 1, ..., p, (modulo
p) and for every 
onse
utive sets Vi and Vj , the edge set [Vi, Vj] 
ontains at least oneedge with fra
tional value.The heuristi
 works as follows. We �rst 
ontra
t every pair of nodes t and u, where
t is a terminal node, u is a steiner node and x(δG(x)(u) \ {ut}) ≤ x(ut). The noderesulting from that 
ontra
tion is said to be terminal. Let G(x)′ = (V ′, E ′) be theredu
ed graph thus obtained.We look in G(x)′ for a path Γ = {v′

1v
′
2, v

′
2v

′
3, ..., v

′
p−2v

′
p−1}, p ≥ 3, su
h that v′

1, ..., v
′
p−1are terminal nodes, |[v′

i, v
′
i+1]| ≥

⌈
k
2

⌉ and [v′
i, v

′
i+1] 
ontains one edge or more with fra
-



6.3. SEPARATION PROCEDURES 173tional value, for i = 1, ..., p−2. The partition π = (V1, ..., Vp), p ≥ 3, is 
onstru
ted su
hthat Vi is the node set of G 
orresponding to v′
i, i = 1, ..., p − 1, and Vp = V \ (

p−1⋃

i=1

Vi).Afterwards, we 
he
k by a simple heuristi
 if the graph Gπ(x)′ is outerplanar andif the subgraph of GD indu
ed by π is 
onne
ted. If it is 
onne
ted, then, we 
he
kif the Steiner-SP -partition inequality indu
ed by π is violated. If this subgraph isnot 
onne
ted, we 
ompute from π new partitions πi = (Vi, Vi+1, V \ (Vi ∪ Vi+1)),
i = 1, ..., p − 2. Clearly, these new partitions are Steiner-partitions and sin
e they areof size 3, they indu
e Steiner-SP -partitions. We then 
he
k if the Steiner-SP -partitioninequality indu
ed by πi is violated, for i = 1, ..., p − 2.If none of these inequalities is violated by x, we apply again the pro
edure by lookingfor another path. In order to avoid the dete
tion of the same path, we label the nodeswe met during the sear
h of the previous ones, so that they won't be 
onsidered inthe sear
h of the new path. This pro
ess is iterated until either we �nd a violatedSteiner-SP -partition inequality or all the nodes of V ′ are labeled. The heuristi
 
anbe implemented to run in O(|E ′||V ′| + |D|) time.To store the generated inequalities, we 
reate a pool whose size in
reases dynami
ally.All the generated inequalities are put in the pool and are dynami
, that is, they areremoved from the 
urrent LP when they are not a
tive. We �rst separate inequalitiesfrom the pool. If all the inequalities in the pool are satis�ed by the 
urrent LP-solution,we separate the 
lasses of inequalities in the order given before.6.3.7 Primal heuristi
An important issue in the e�
ien
y of the Bran
h-and-Cut and Bran
h-and-Cut-and-Pri
e algorithms is to 
ompute a good upper bound at ea
h node of the Bran
h-and-Cuttree. To do this, when the separation pro
edures do not generate any violated inequalityand the 
urrent solution is still fra
tional, we transform it into a feasible one. Wedes
ribe the pro
edure we have devised for kHNDPAg with a fra
tional solution (x, y).It is similar for kHNDPCu, kHNDPPA and kHNDPNA. The main idea is to 
onstru
ta graph obtained by removing from G̃(y) every ar
 
orresponding to an edge of G(x)having a fra
tional value and add ar
s in that graph until the number of ar
-disjoint
st-dipaths rea
hes k, for all {s, t} ∈ D. Note that sin
e (x, y) is fra
tional and is anoptimal solution for the 
urrent LP, the restri
tion of G̃(y) to Ã1(y) 
annot 
ontain kar
-disjoint st-dipaths for all {s, t} ∈ D. Otherwise, (x, y) would be integral or wouldnot be optimal for the 
urrent LP.
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edure relies on the 
omputation of a maximum �ow between s and t forevery pair {s, t} ∈ D. The 
apa
ities of the ar
s of G̃(y) are updated at ea
h iterationof the pro
edure. At the end of the pro
edure, we remove from G̃(y) every ar
 whose
apa
ity is null.Let Ci = (Ci(a))a∈ eA(y) be a 
apa
ity ve
tor obtained at the end of the ith iteration,
i = 0, ..., d, with C0 = (C0(a))a∈ eA(y), where C0(a) = 1 for all a ∈ Ã1(y) and C0(a) = 0otherwise. Note that the 
apa
ity ve
tor Ci, i ∈ {1, ..., d}, is asso
iated with demand
{si, ti}. For a demand {si, ti}, i ∈ {1, ..., d}, we �rst 
ompute a maximum siti-�owwith respe
t to 
apa
ity ve
tor Ci−1. Let f = (f(a))a∈ eA(y) be the 
orresponding �owve
tor and f0 the value of this �ow. If f0 ≥ k, then there is nothing to do for thisdemand. Thus we let Ci(a) = Ci−1(a) for all a ∈ Ã(y) and go to the next demand
{si+1, ti+1}. If f0 < k, then we 
ompute k − f0 ar
-disjoint augmenting siti-paths withrespe
t to 
apa
ity 1 on every ar
 of G̃(y) and f(a) as initial �ow value. Remark thatthe �ow is null for all ar
 a having Ci−1(a) = 0. Then, we set to 1 the �ow on everyar
 involved in the k− f0 augmenting paths 
omputed before and update the 
apa
ityve
tor Ci in the following way:

• Ci(a) = 1, for all a ∈ Ã(y) su
h that Ci−1(a) = 1;
• Ci(a) = 1, if Ci−1(a) = 0 and a is involved in an augmenting path 
omputedbefore;
• Ci(a) = 0 otherwise.We repeat this operation for every demand {si, ti}, i = 1, ..., d. At the end of thepro
edure, we remove from G̃(y) every ar
 su
h that Cd(a) = 0. Afterwards, we
onstru
t the graph Ĝ = (V, Ê), where Ê is the set of edges asso
iated with an ar
remaing in G̃(y), that is having Cd(a) = 1. Sin
e the remaining graph G̃(y) 
ontains kar
-disjoint st-paths for all {s, t} ∈ D, the graph Ĝ 
ontains k edge-disjoint L-st-paths,for all {s, t} ∈ D, and hen
e, indu
es a feasible solution of the kHNDP.If the weight of this solution is lower than best known upper bound, then we updatethis upper bound with the weight of the solution we have just 
omputed.6.4 Computational resultsThe Bran
h-and-Cut and Bran
h-and-Cut-and-Pri
e algorithms des
ribed in the pre-vious se
tions have been implemented in C++, using ABACUS 3.0 [1, 101℄ to manage
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h-and-Cut tree, and CPLEX 11.0 [2℄ as LP-solver. It was tested using a ma-
hine equiped with a pro
essor Intel Centrino Duo and 2 Go of RAM, running underLinux. The maximum CPU time has been �xed to 5 hours. The test problems we have
onsidered are 
omplete eu
lidian graphs from TSPLIB library [3℄. The demands usedin these tests are randomly generated. Ea
h set of demand is either rooted in a node
s, or is su
h that there is no demand having the same destination node as anotherdemand. The tests have been performed for L = 2, 3 and k = 3, 4, 5.Ea
h instan
e is given by the number of nodes of the graph pre
eded by the type ofdemand, indi
ated by 'r' for rooted demands and 'a' for arbitrary demands. The otherentries of the various tables are:
|V | : number of nodes of the graph;
|D| : number of demands,NC : number of generated 
ut inequalities;NAC : number of generated aggregated 
ut inequalities;NDC : number of generated double 
ut inequalities;NTC : number of generated triple path-
ut inequalities;NP : number of generated Steiner-partition inequalities;NSP : number of generated Steiner-SP -partition inequalities;COpt : weight of the best upper bound obtained;Gap : the relative error between the best upper bound(the optimal solution if the problem has been solvedto optimality) and the lower bound obtained at theroot node of the Bran
h-and-Cut tree;NSub : number of subproblems in the Bran
h-and-Cut tree;TT : total CPU time in hours:min:se
.The instan
es indi
ated with "*" are those for whi
h the algorithm has not �nishedthe 
omputation of the root node of the Bran
h-and-Cut tree after the CPU time limit.The entries in the tables for these instan
es are given in itali
. Also, for some instan
es,the algorithm runs out of ressour
es (la
k memory). For these instan
es, we give theresults we have obtained during the time the algorithm runned. These instan
es areindi
ated with "**".The main obje
tive of these experiments is to 
he
k the e�e
ien
y of the di�erentformulations introdu
ed before for solving the kHNDP. It also aims to 
ompare ea
hformulation with the others and 
ompare the algorithms depending on the 
onne
tivityrequirement. Obviously, we have used the same test problems with ea
h formulationand ea
h value of L.



176 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPOur �rst series of experiments 
on
erns kHNDPAg with k = 3 and L = 2, 3. Theinstan
es we have 
onsidered have graphs with 21 up to 52 nodes and a number ofdemands up to 50. The results are summurized in Tables 6.1 and 6.2.
|V | |D| NC NAC NDC NTC NP NSP COpt Gap NSub TTr 21 15 1963 0 0 24 0 0 7138 9.5 151 0:00:15r 21 17 2463 2 0 25 0 0 7790 9.34 359 0:00:35r 21 20 4076 12 0 73 0 0 8762 11.6 2195 0:06:10a 21 10 358 51 87 0 0 0 8313 3.19 57 0:00:08r 30 15 3482 15 0 11 0 0 12512 5.56 435 0:01:22r 30 20 7084 138 0 31 0 0 14215 6.84 4567 0:26:55r 30 25 8379 27 0 70 0 0 15610 8.57 3845 0:34:07a 30 10 518 566 0 0 0 0 12124 4.96 375 0:01:16a 30 15 862 1141 0 0 0 0 15868 3.36 1193 0:13:54r 48 20 12780 0 0 38 0 0 21586 8.16 267 0:08:23r 48 30 46392 0 0 5 0 0 34144 27.18 1581 5:00:00r 48 40 42461 0 0 6 0 0 49698 37.23 1131 5:00:00a 48 15 3514 365 2562 0 0 0 32097 2.68 891 0:28:42a 48 20 11990 640 3754 0 0 0 46967 8.9 3993 5:00:00a 48 24 12417 210 820 0 0 0 57865 12.59 3453 5:00:00r 52 20 22656 19 0 2 0 0 14093 6.21 2283 0:35:50r 52 30 67301 7 0 304 0 0 18957 16.9 3289 5:00:00r 52 40 51484 12 0 91 0 0 24780 26.04 1703 5:00:00r 52 50 38633 0 0 49 0 0 31541 32.36 1981 5:00:00a 52 20 2168 1434 0 0 0 0 18480 3.24 5281 2:33:47a 52 26 5054 780 265 0 0 0 24131 3.37 5699 5:00:00Table 6.1: Results for Aggregated formulation with L = 2 and k = 3.It appears from that 6.1 that for L = 2, 14 instan
es over 22 have been solved tooptimality within the time limit. The CPU time for these instan
es, ex
ept the lastone, is less than 35 minutes. All the instan
es of the table have required a bran
hingphase and, for most of them, the relative error between the lower bound at the rootnode of the Bran
h-and-Cut tree and the best upper bound (Gap) is less than 10%.We also observe that our separation pro
edures have dete
ted a large enough numberof aggregated 
ut inequalities and a fewer number of double 
ut and triple path-
utinequalities. We observe from Table 6.2 that for L = 3 only 2 instan
es over 22 havebeen solved to optimality within the time limit. They have been solved respe
tivelyin 49mn and 2h34mn. Ex
ept for the previous instan
es, the gap between the lower
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|V | |D| NC NAC NDC NTC NP NSP COpt Gap NSub TTr 21 15 23423 45 0 24 0 7 5472 8.33 975 0:49:54r 21 17 35364 32 0 61 0 5 5864 8.24 1745 2:34:13r 21 20 33934 5 0 58 0 0 8874 34.08 2389 5:00:00a 21 10 51099 0 142 0 0 0 9934 38.58 347 5:00:00a 21 11 43858 0 121 0 2 0 11390 44.6 333 5:00:00r 30 15 55589 144 0 4 0 22 10901 13.56 2009 5:00:00r 30 20 51627 24 0 1 0 18 15944 35.45 1835 5:00:00r 30 25 45492 3 0 11 0 6 20379 45.53 917 5:00:00a 30 10 39785 0 3 0 0 2 12365 21.82 1127 5:00:00a 30 15 44901 12 43 0 0 0 23481 47.64 353 5:00:00r 48 20 61029 0 0 11 0 19 25605 41.22 387 5:00:00r 48 30 68969 0 0 12 0 2 40871 55.61 205 5:00:00r 48 40 67303 0 0 0 0 1 59513 62.81 133 5:00:00a 48 15 72110 0 22 0 0 1 62557 66.8 29 5:02:34a 48 20 75449 0 3 0 0 0 90253 70.32 11 5:00:00a 48 24 101539 0 3 0 0 0 121740 74.18 3 5:00:00r 52 20 63033 0 0 0 0 15 17474 41.9 543 5:00:00r 52 30 79985 0 0 0 0 3 23345 48.06 263 5:00:00r 52 40 86116 0 0 0 0 4 28743 51.28 143 5:00:00r 52 50 80976 0 0 0 0 0 37051 57.46 125 5:00:00a 52 20 76055 0 32 0 0 2 30939 53.26 19 5:00:00a 52 26 116481 0 20 0 0 0 51870 65.45 9 5:00:00Table 6.2: Results for Aggregated formulation with L = 3 and k = 3.



178 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPbound at the root node of the Bran
h-and-Cut tree and the best upper bound is morethan 10%. It even rea
hes in some 
ases 70%. We also have that our separationpro
edures have dete
ted a few number of aggregated 
ut, double 
ut, triple path-
utand Steiner-SP -partition inequalities.Our se
ond series of experiments 
on
erns kHNDPCu with k = 3 and L = 2, 3. Theresults are given in Tables 6.3 and 6.4 for L = 2 and L = 3 respe
tively.
|V | |D| NC NAC NDC NTC NP NSP COpt Gap NSub TTr 21 15 22047 0 0 24 0 0 7138 9.5 151 1:18:44r 21 17 42621 22208 0 6 0 0 8584 17.73 63 5:00:00r 21 20 49283 0 0 0 0 0 10444 25.84 31 5:00:00a 21 10 231 150 70 0 0 0 8313 3.22 71 0:00:05a 21 11 330 163 14 0 1 0 8677 3.11 99 0:00:06r 30 15 11437 35413 0 0 0 0 13114 9.89 43 5:00:00r 30 20 47879 0 0 0 0 0 16488 19.68 31 5:00:00* r 30 25 61391 0 0 0 0 0 - - 1 5:00:00a 30 10 450 2074 0 0 0 0 12124 4.96 359 0:02:38a 30 15 698 2527 0 0 0 0 15868 3.33 947 0:17:20r 48 20 34042 0 0 0 0 0 25112 21.06 27 5:00:00* r 48 30 75649 0 0 0 0 0 - - 1 5:00:00* r 48 40 25240 0 0 0 0 0 - - 1 5:00:00a 48 15 1604 1402 830 0 0 0 32097 2.7 491 0:30:03a 48 20 3284 3641 887 0 0 0 47449 9.95 2793 5:00:00a 48 24 3567 2134 404 0 0 0 57308 11.48 3019 5:00:00r 52 20 56127 0 0 0 0 0 17039 22.43 3 5:00:00* r 52 30 38286 0 0 0 0 0 - - 1 5:00:00* r 52 40 24510 0 0 0 0 0 - - 1 5:00:00* r 52 50 24644 0 0 0 0 0 - - 1 5:00:00a 52 20 1474 4513 0 0 0 0 18480 3.24 3185 4:13:36a 52 26 2656 2894 142 0 0 0 24416 4.51 3669 5:00:00Table 6.3: Results for Cut formulation with L = 2 and k = 3.We observe that for L = 2 (Table 6.3), 6 instan
es over 22 have been solved tooptimality within the time limit. Also, for 6 instan
es, the algorithm has not been ableto �nish within 5 hours the resolution of the root node of the Bran
h-and-Cut tree. Alarge enough number of aggregated 
ut inequalities has been dete
ted. However onlya few number of double 
ut inequalities has been used. For L = 3 (Table 6.4), no
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|V | |D| NC NAC NDC NTC NP NSP COpt Gap NSub TTr 21 15 20526 1344 0 12 0 3 7801 35.7 287 5:00:00r 21 17 20852 95 0 1 0 1 7688 30.01 169 5:00:00r 21 20 15636 0 0 11 0 0 10183 42.55 407 5:00:00a 21 10 24143 0 0 0 0 0 10808 43.55 395 5:00:00a 21 11 23988 0 1 0 1 0 9970 36.71 317 5:00:00r 30 15 6854 0 0 0 0 7 18349 48.65 21 5:00:00r 30 20 11332 0 0 0 0 2 21552 52.25 21 5:00:00r 30 25 14842 0 0 0 0 0 22829 51.38 7 5:00:00a 30 10 17955 0 0 0 0 1 12365 21.82 567 5:00:00a 30 15 14218 66 1 0 0 0 24360 49.53 171 5:00:00* r 48 20 2729 0 0 0 0 0 - - 1 5:00:00* r 48 30 3833 0 0 0 0 0 - - 1 5:00:00r 48 40 5772 0 0 0 0 0 67381 67.15 3 5:00:00* a 48 15 3600 0 0 0 0 0 - - 1 5:00:00* a 48 20 2700 0 0 0 0 0 - - 1 5:00:00* a 48 24 2928 0 0 0 0 0 - - 1 5:00:00* r 52 20 2338 0 0 0 0 0 - - 1 5:00:00* r 52 30 3358 0 0 0 0 0 - - 1 5:00:00* r 52 40 3743 0 0 0 0 0 - - 1 5:00:00* r 52 50 5332 0 0 0 0 0 - - 1 5:00:00* a 52 20 3657 0 0 0 0 0 - - 1 5:00:00a 52 26 7437 0 0 0 0 0 52501 65.93 3 5:00:00Table 6.4: Results for Cut formulation with L = 3 and k = 3.



180 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPinstan
e has been solved to optimality within the time limit and for 9 instan
es over22, the root node of the Bran
h-and-Cut tree has been solved after 5 hours. The gapbetween the lower bound at the root node of Bran
h-and-Cut tree and the best upperbound, when they exist, is between 30% and 50% in general. However, in some 
asesit rea
hes 67%.The third series of experiments 
on
erns the kHNDPPA with k = 3 and L = 2, 3.The results are given in Tables 6.5 for L = 2 and 6.6 for L = 3. Re
all that forthis formulation, we have used a Bran
h-and-Cut-and-Pri
e algorithm and that theaggregated 
ut inequalities are not valid. Thus, they don't appear in Tables 6.5 and6.6.
|V | |D| NDC NTC NP NSP COpt Gap NSub TTr 21 15 0 24 0 0 7138 9.5 151 0:00:10r 21 17 0 19 0 0 7790 9.34 309 0:01:13r 21 20 0 91 0 0 8762 11.6 2491 0:04:07a 21 10 74 0 0 0 8313 3.43 85 0:00:03a 21 11 14 0 0 0 8677 3.38 103 0:00:06r 30 15 0 3 0 0 12512 5.56 303 0:00:49r 30 20 0 24 0 0 14215 6.84 4731 0:28:50** r 30 25 0 94 0 0 15896 10.22 8226 3:12:00a 30 10 0 0 0 0 12124 5.2 335 0:00:31a 30 15 0 0 0 0 15868 3.68 943 0:02:27r 48 20 0 46 0 0 21586 8.16 265 0:07:17** r 48 30 0 100 0 0 32284 22.99 6779 4:37:00r 48 40 0 29 0 0 47331 34.09 7167 5:00:00a 48 15 0 2 0 0 17626 6.15 215 0:01:27** a 48 20 1762 0 0 0 46446 8.10 8599 3:57:00** a 48 24 776 0 0 0 55877 8.51 7583 3:52:00r 52 20 0 3 0 0 14093 6.21 2807 0:43:36** r 52 30 0 501 0 0 18497 14.84 5431 4:48:00r 52 40 0 207 0 0 24626 25.58 6145 5:00:00r 52 50 0 79 0 0 31541 32.36 3931 5:00:00a 52 20 0 0 0 0 18480 3.43 6547 3:02:08a 52 26 231 0 0 0 24125 4.11 9825 5:00:00Table 6.5: Results for Path-Ar
 formulation with L = 2 and k = 3.When L = 2, we 
an see that 13 instan
es over 22 have been solved to optimalitywithin a CPU time whi
h does not ex
eed 43 minutes ex
ept for the last one whi
h
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|V | |D| NDC NTC NP NSP COpt Gap NSub TTr 21 15 0 65 0 10 5472 8.33 867 0:36:25r 21 17 0 92 0 9 5864 8.24 1855 1:53:37r 21 20 0 130 0 0 8445 30.73 3627 5:00:00a 21 10 138 0 0 0 - - - 3:35:00a 21 11 38 0 1 0 6770 6.8 4155 1:46:36r 30 15 0 45 0 23 10114 6.68 2185 5:00:00r 30 20 0 13 0 14 15767 34.73 1553 5:00:00r 30 25 0 21 0 5 20511 45.88 675 5:00:00a 30 10 0 0 0 15 10254 5.73 4833 5:00:00a 30 15 18 0 0 0 19420 36.7 2853 5:00:00r 48 20 0 22 0 34 26721 43.68 69 5:00:00r 48 30 0 44 0 8 40197 54.87 49 5:00:00r 48 40 0 38 0 1 59762 62.97 19 5:00:00a 48 15 2 0 0 0 49102 57.73 101 5:00:00a 48 20 2 0 0 0 70272 61.88 55 5:00:00a 48 24 2 0 0 0 85625 63.29 13 5:00:00r 52 20 0 6 0 12 17894 43.27 83 5:00:00r 52 30 0 12 0 4 24970 51.44 49 5:00:00r 52 40 0 12 0 5 28530 50.92 19 5:00:00r 52 50 0 46 0 0 38734 59.31 1 5:00:00a 52 20 27 0 0 2 27739 47.89 45 5:00:00a 52 26 15 0 0 0 41535 56.92 13 5:00:00Table 6.6: Results for Path-Ar
 formulation with L = 3 and k = 3.



182 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPhas been solved in 3 hours. For most of the instan
es, the gap between the lowerbound at the root node of the Bran
h-and-Cut tree and the best upper bound is lessthan 32%. The separation pro
edures have dete
ted a few number of double 
ut andtriple path-
ut inequalities. Also we have observed that in most 
ases, after the rootnode of the Bran
h-and-Cut tree, the 
olumn generation algorithm has not added newvariables in the 
urrent basis. When L = 3, 3 instan
es over 22 have been solved tooptimality. The CPU time used to solve them is between 36 minutes and near 2 hours.A few number of double 
ut, triple path-
ut and Steiner-SP -partition inequalities havebeen dete
ted. The gap between the best lower and upper bounds is less than 62%.Our next series of experiments 
on
erns the kHNDPNA with k = 3 and L = 2 (Table6.7) and for L = 3 (Table 6.8). Here also, the aggregated 
ut inequalities are not validfor kHNDPNA and do not appear in the table.
|V | |D| NDC NTC NP NSP COpt Gap NSub TTr 21 15 0 21 0 0 7138 9.5 203 0:00:11r 21 17 0 19 0 0 7790 9.34 333 0:00:27r 21 20 0 88 0 0 8762 11.6 2621 0:03:38a 21 10 74 0 0 0 8313 3.43 85 0:00:02a 21 11 12 0 1 0 8677 3.11 107 0:00:05r 30 15 0 9 0 0 12512 5.56 337 0:00:54r 30 20 0 20 0 0 14215 6.84 4993 0:32:46r 30 25 0 84 0 0 15610 8.57 5087 1:07:49a 30 10 0 0 0 0 12124 5.2 335 0:00:26a 30 15 0 0 0 0 15868 3.68 947 0:02:30r 48 20 0 38 0 0 21586 8.16 259 0:06:37** r 48 30 0 0 0 0 33114 24.92 3147 3:38:00** r 48 40 0 0 0 0 47464 34.28 2399 4:14:00a 48 15 867 0 0 0 32097 2.85 351 0:08:23** a 48 20 1508 0 0 0 46118 7.53 4409 2:43:00** a 48 24 603 0 0 0 55623 9.19 3817 2:44:00r 52 50 0 67 0 0 31541 32.36 3149 5:00:00r 52 10 0 0 0 0 8299 2.35 15 0:00:02r 52 20 0 1 0 0 14093 6.21 1541 0:40:35a 52 20 0 0 0 0 18480 3.43 5969 2:41:04** a 52 26 193 0 0 0 24364 5.06 3231 3:19:00Table 6.7: Results for Node-Ar
 formulation with L = 2 and k = 3.From Table 6.7 we 
an see that, for L = 2, 14 instan
es over 22 have been solved to
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|V | |D| NDC NTC NP NSP COpt Gap NSub TTr 21 12 0 0 11 7 4658 3.53 107 0:02:45r 21 15 0 28 0 5 5472 8.33 1033 0:29:01r 21 17 0 53 0 7 5864 8.24 1885 1:27:58** a 21 10 83 0 0 0 6886 11.40 5041 3:35:00a 21 11 22 0 1 0 6770 6.8 4269 1:18:48r 30 15 0 10 0 24 10142 7.1 2857 5:24:33r 30 20 0 1 0 11 16157 36.3 1377 5:09:22r 30 25 0 6 0 2 21330 47.96 439 5:00:00a 30 10 0 0 0 13 10254 5.73 4937 4:35:04** a 30 15 10 0 0 0 - - - 3:35:00r 48 20 0 1 0 9 27126 44.52 71 5:00:00r 48 30 0 0 0 0 41350 56.12 27 5:00:00r 48 40 0 0 0 1 60165 63.21 11 5:00:00a 48 15 0 0 0 0 67328 69.17 107 5:00:00a 48 20 0 0 0 0 86553 69.05 51 5:00:00a 48 24 0 0 0 0 113754 72.37 33 5:00:00r 52 20 0 0 0 7 19713 48.5 45 5:00:00r 52 30 0 0 0 0 25870 53.13 17 5:00:00r 52 40 0 0 0 0 28530 50.92 9 5:00:00r 52 50 0 0 0 0 37933 58.45 7 5:00:00a 52 20 13 0 0 2 27870 48.14 35 5:00:00a 52 26 2 0 0 0 45709 60.85 13 5:00:00Table 6.8: Results for Node-Ar
 formulation with L = 3 and k = 3.



184 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPoptimality. The maximum CPU time for these instan
es is 2h41mn and most of themare solved in less than 6 minutes. The gap between the best lower and upper boundsis, in general, less than 10%. The separation algorithms have generated a few numberof double 
ut and triple path-
ut inequalities. For L = 3 (Table 6.8), 7 instan
es havebeen solved to optimality. For most of the instan
es, the gap between the best lowerand upper bounds is less than 60% but rea
hes in some 
ases 72%. We 
an see that afew number of double 
ut, triple path-
ut and Steiner SP -Partition have been dete
tedduring the resolution.When 
omparing, for ea
h table, the results obtained for L = 2 and L = 3 when
k = 3, we observe that the number of instan
es solved to optimality when L = 2 isgreater than that when L = 3. Also the gap between the best lower and upper bounds,is in most 
ases, better when L = 2 than when L = 3. This let us believe that the
kHNDP is easier when L = 2 than when L = 3.Also, when 
omparing Tables 6.1, 6.3, 6.5 and 6.7 for L = 2, and Tables 6.2, 6.4, 6.6and 6.8 for L = 3, we observe that the e�e
ien
y of the di�erent algorithms for solvingthe problem is not the same. We observe that the results for kHNDPAg, kHNDPPAand kHNDPNA are better than those of kHNDPCu for both L = 2 and L = 3. In fa
tthe number of instan
es solved to optimality for this later formulation is less than thatof the others and, in most 
ases, the gaps between the best lower and upper boundsare greater for this formulation than those of the other formulations. Moreover, for6 instan
es for L = 2 and 9 instan
es for L = 3, the algorithm for kHNDPCu hasnot been able to �nish the resolution of the root node of the Bran
h-and-Cut treewhereas the other algorithms have solved the problem for the same instan
es with abran
hing phase. Hen
e, for these instan
es, the algorithm for kHNDPCu does notprodu
e an upper bound of the optimal solution. Comparing Tables 6.1 to 6.5 for
L = 2, and Tables 6.2 and 6.6 for L = 3, we observe that the number of instan
essolved to optimality is quite the same for the two formulations, and the CPU timesare generally 
loser. However, for L = 2, the gap between the best lower and upperbounds is, in most 
ases, better for the Aggregated formulation than for those of thePath-Ar
 formulation. Also, for L = 3, we noti
e that the gap is in general better forthe Path-Ar
 formulation. In fa
t, for this latter formulation, the gap is up to 63.29%whereas it rea
hes 74.18% for the Aggregated formulation. The 
omparison betweenTables 6.7 and 6.8 on the one hand and Tables 6.1, 6.2, 6.5 and 6.6 on the other handshows that more instan
es have been solved to optimality by the Node-Ar
 formulationfor both L = 2 and L = 3. The CPU time is slightly better with this formulation andthe gaps between the best lower and upper bounds are better in some 
ases than thoseobtained for the Aggregated and Path-Ar
 formulation.
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on
lusion, these observations show that the Aggregated, Path-Ar
 and Node-Ar
 formulations are more e�
ient than the Cut formulation. Also, the Node-Ar
formulation solves more instan
es to optimality while the Aggregated formulation pro-du
es better upper bounds when L = 2 and the Path-Ar
 formulation gives better oneswhen L = 3. Also, the problem is easier to solve when L = 2.Our last series of experiments 
on
erns the kHNDP with k = 4, 5 and L = 3 (Tables6.9 and 6.10). It aims to observe the easiness of the problem when the 
onne
tivityrequirement in
reases. The instan
es used have graphs with 48 and 52 nodes and upto 50 demands. Note that when k = 4 the Steiner-partition and Steiner-SP -partitioninequalities are redundant with respe
t to the st-
ut inequalities. Thus, they do notappear in Table 6.9.



186 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPAggregated formulation
|V | |D| NC NAC NDC NTC COpt Gap NSub TTr 48 30 56483 0 0 0 48899 49.32 249 5:00:00r 48 40 60857 0 0 0 60090 49.87 123 5:00:00a 48 20 57931 0 1 0 112414 68.11 11 5:00:00a 48 24 79543 0 1 0 157063 73.26 3 5:00:00r 52 40 74438 0 0 0 34100 44.03 131 5:00:00r 52 50 75463 0 0 0 41894 48.00 91 5:00:00a 52 20 64736 0 32 0 39863 50.35 21 5:00:00a 52 26 77734 0 11 0 66306 63.02 9 5:00:00Cut formulation
|V | |D| NC NAC NDC NTC COpt Gap NSub TT* r 48 30 3684 0 0 0 - - 1 5:00:0048 40 5788 0 0 0 69349 56.56 3 5:00:00* a 48 20 2760 0 0 0 - - 1 5:00:00* a 48 24 3408 0 0 0 - - 1 5:00:00* r 52 40 3995 0 0 0 - - 1 5:00:00r 52 50 6619 0 0 0 45587 52.21 3 5:00:00* a 52 20 5832 0 0 0 - - 1 5:00:00a 52 26 10303 0 0 0 59807 59.01 3 5:00:00Path-Ar
 formulation

|V | |D| NDC NTC COpt Gap NSub TTr 48 30 0 0 49758 50.2 47 5:00:00r 48 40 0 0 64253 53.12 19 5:00:00a 48 20 1 0 92597 61.29 53 5:00:00a 48 24 0 0 111039 62.18 15 5:00:00r 52 40 0 0 32552 41.37 15 5:00:00* r 52 50 0 0 - - 1 5:00:00a 52 20 32 0 34525 42.67 39 5:00:00a 52 26 9 0 54694 55.17 13 5:00:00Node-Ar
 formulation
|V | |D| NDC NTC COpt Gap NSub TTr 48 30 0 0 50894 51.31 25 5:00:00r 48 40 0 0 64495 53.29 11 5:00:00a 48 20 0 0 111168 67.75 51 5:00:00a 48 24 0 0 135650 69.04 31 5:00:00r 52 40 0 0 35724 46.57 9 5:00:00r 52 50 0 0 45536 52.16 5 5:00:00a 52 20 1 0 39347 49.71 35 5:00:00a 52 26 0 0 57370 57.26 13 5:00:00Table 6.9: Results for Aggregated formulation with L = 3 and k = 4.
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|V | |D| NC NAC NDC NTC NP NSP COpt Gap NSub TTr 48 30 57487 0 0 21 0 0 54677 41.45 259 5:00:00r 48 40 51981 0 0 13 0 0 67290 42.72 157 5:00:00a 48 20 46889 0 0 0 0 0 140927 68.02 15 5:00:00a 48 24 64629 0 0 0 0 0 207928 74.64 3 5:00:00r 52 40 62674 0 0 0 0 0 38257 36.11 163 5:00:00r 52 50 75568 0 0 9 0 0 48095 41.52 93 5:00:00a 52 20 55999 0 28 0 0 0 46728 45.57 25 5:00:00a 52 26 63377 0 2 0 0 0 83433 62.1 11 5:00:00Cut formulation
|V | |D| NC NAC NDC NTC NP NSP COpt Gap NSub TT* r 48 30 3789 0 0 0 0 0 - - 1 5:00:00r 48 40 5073 0 0 0 0 0 76132 49.37 3 5:00:00* a 48 20 2619 0 0 0 0 0 - - 1 5:00:00* a 48 24 4824 0 0 0 0 0 - - 1 5:00:00* r 52 40 3868 0 0 0 0 0 - - 1 5:00:00r 52 50 8412 0 0 0 0 0 53997 47.91 3 5:00:00a 52 20 7292 0 0 0 0 0 47687 46.67 3 5:00:00a 52 26 9314 0 0 0 0 0 84578 62.61 3 5:00:00Path-Ar
 formulation

|V | |D| NDC NTC NP NSP COpt Gap NSub TTr 48 30 0 37 0 0 56700 43.54 41 5:00:00r 48 40 0 19 0 0 70057 44.98 15 5:00:00a 48 20 3 0 0 0 106719 57.77 49 5:00:00a 48 24 2 0 0 0 130029 59.45 7 5:00:00r 52 40 0 3 0 0 39933 38.79 15 5:00:00* r 52 50 0 12 0 0 - - 1 5:00:00a 52 20 8 0 0 0 42615 40.33 39 5:00:00a 52 26 5 0 0 0 63315 50.06 9 5:00:00Node-Ar
 formulation
|V | |D| NDC NTC NP NSP COpt Gap NSub TTr 48 30 0 3 0 0 58514 45.29 25 5:00:00r 48 40 0 0 0 0 72125 46.56 13 5:00:00a 48 20 0 0 0 0 133820 66.32 47 5:00:00a 48 24 0 0 0 0 170278 69.03 33 5:00:00r 52 40 0 0 0 0 40081 39.02 9 5:00:00r 52 50 0 0 0 0 53997 47.91 5 5:00:00a 52 20 0 0 0 0 46318 45.09 35 5:00:00a 52 26 0 0 0 0 70195 54.96 15 5:00:00Table 6.10: Results for Aggregated formulation with L = 3 and k = 5.



188 CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICEALGORITHMS FOR THE KHNDPFirst, we remark that for k = 4 and k = 5, the instan
es in Tables 6.9 and 6.10have not been solved to optimality after 5 hours. The Cut formulation has not beenable to solve after 5 hours the linear relaxation of the problem at the root node of theBran
h-and-Cut tree for 5 (resp. 4) instan
es when k = 4 (resp. k = 5).We noti
e that for the Aggregated formulation, the gap between the best lower andupper bound is better when k = 4 than when k = 5. For example, when k = 4, thegaps are between 44.03% and 73.26% while for k = 5 the gaps are between 36.11% and74.64%. Also, ex
ept one instan
e, the gap is better when k = 4 than when k = 5. Thisshows that the kHNDP is easier when k = 4 than when k = 5. The same observation
an be done for the other formulations. In parti
ular, for the Cut formulation, we seethat the instan
e r 52 with |D| = 20 has not rea
hed the bran
hing phase for k = 4while 3 nodes have been generated in the Bran
h-and-Cut tree for k = 5. Moreover,for k = 4 the primal heuristi
 does not produ
e a feasible, and hen
e no upper boundfor the optimal solution, while for k = 5 the algorithm produ
es an upper bound anda gap of 46.67%.Also these results 
an be 
ompared to those obtained for k = 3 and L = 3. We 
anremark that, for every formulation, the gaps between the best lower and upper boundsare better when k = 4, 5 than when k = 3. From these observations, we 
onje
turethat the kHNDP be
omes easier when the 
onne
tivity requirement k in
reases.6.5 Con
luding remarksIn this 
hapter, we have studied the k-edge-
onne
ted hop-
onstrained network designproblem when k ≥ 3 and L = 2, 3. We have presented four integer programming for-mulations based on the transformation of the initial graph into appropriated dire
tedgraphs. We have also introdu
ed some 
lasses of valid inequalities and given 
onditionsunder whi
h these inequalities de�ne fa
et of the asso
iated polytope. We have also dis-
ussed separation pro
edures for these inequalities and a 
olumn generation algorithm.Using these results, we have devised Bran
h-and-Cut and Bran
h-and-Cut-and-Pri
ealgorithms to solve the problem.The 
omputational results have shown that the Aggregated, Path-Ar
 and Node-Ar
formulations are e�e
tive in solving the problem and produ
ing good upper bound forthe problem and that the Cut formulation is less e�
ient. Also, it has been shown thatthe Node-Ar
 formulation is more e�
ient in solving the problem to optimality andthat Aggregated and Path-Ar
 formulation produ
es good upper bound when L = 2and when L = 3, respe
tively.



189Also our heuristi
s to separate the aggregated, double 
ut and triple path-
ut in-equalities have appeared to be very e�
ient.These experiments showed that the kHNDP is easier when L = 2 than when L = 3.It also showed that the problem be
omes easier when the 
onne
tivity requirementin
reases.In some 
ases, we may 
onsider that L ≥ 4. Few works have been done for this
ase in the literature. In parti
ular, Huygens and Mahjoub [73℄ studied this 
ase andshowed that st-
ut inequalities (5.1) and L-st-path-
ut inequalities (5.2) toghetherwith integrality 
onstraints are no more su�
ient to formulate the problem as aninteger program. They [73℄ introdu
ed new 
lasses of inequalities and showed thatthese inequalities toghether with integrity 
onstraints and inequalities (5.1) and (5.2)formulate the problem in the spa
e of the design variables. One 
an try to extendthe approa
h developed in the previous 
hapters to study the problem when L ≥ 4and devise e�
ient Bran
h-and-Cut or Bran
h-and-Cut-and-Pri
e algorithms for theproblem in this 
ase.



Con
lusion
In this thesis, we have studied, within a polyhedral 
ontext, two survivable networkdesign problems, the k-edge-
onne
ted subgraph (kECSP) and the k-edge-
onne
tedhop-
onstrained network design (kHNDP) problems. In parti
ular, we have 
onsideredthese problems in the 
ase where a high level of 
onne
tivity is required, that is when
k ≥ 3. These two problems are NP-hard when k ≥ 2.First, we have dis
ussed the polytope of the kECSP. We have introdu
ed a new 
lassof valid inequalities and given 
onditions for these inequalities to be fa
et de�ning. Wehave also studied further valid inequalities and given 
onditions under whi
h they de�nefa
ets. Moreover, we have studied the redu
tion operations introdu
ed by Didi Bihaand Mahjoub [39℄ (see also [38℄). These allow to perform the separation of the validinequalities in a redu
ed graph. Using these results, we have devised a Bran
h-and-Cutalgorithm for the problem and given 
omputational results for k = 3, 4, 5.We have also studied the kHNDP when k ≥ 3 and L ∈ {2, 3}. We have �rstinvestigated the problem when a single demand is 
onsidered and shown that theasso
iated polytope is 
ompletely des
ribed by the st-
ut and L-path-
ut inequalitiestoghether with the trivial inequalities. We showed that this 
omplete des
ription yieldsa polynomial 
utting plane algorithm for the problem, generalizing at the same timethe results of Huygens et al. [75℄ and Dahl et al. [35℄.Finally, we have 
onsidered the kHNDP when more than one demand are 
onsidered.We have introdu
ed four new integer programming formulations for the problem in this
ase. These formulations rely on the transformation of the initial undire
ted graph Ginto appropriate dire
ted graphs and the equivalen
e between edge-disjoint L-st-pathsin G and ar
-disjoint paths in these dire
ted graphs. We have introdu
ed several
lasses of valid inequalities for the polytopes asso
iated with ea
h formulation andstudied 
onditions under whi
h these inequalities de�ne fa
ets. Using this, we havedevised Bran
h-and-Cut and Bran
h-and-Cut-and-Pri
e algorithms for the problem.Computational results have been given for k = 3, 4, 5 and L = 2, 3, and a 
omparative



191study has been done in order to 
ompare the e�
ien
y of the di�erent formulations wehave introdu
ed.The experimental studies presented throughout this thesis have shown that the twoproblems are easier to solve when the 
onne
tivity requirement k in
reases. It alsoappeared that the problems are more di�
ult to solve when k is odd. Our experi-ments for the kECSP also showed that redu
tion operations, when properly designedand implemented, 
an signi�
antly improve a Bran
h-and-Cut algorithm. It would beinteresting to extend the use of su
h operations for other 
ombinatorial optimizationproblems.The experiments we have performed for the kHNDP for k = 3, 4, 5 and L = 2, 3gave gaps (relative error between the best lower and upper bounds) relativety high, inparti
ular when a large number of demand is 
onsidered. It would be interesting topursue the approa
h used here for the kHNDP when L ∈ {2, 3}. One may lead a deeperinvestigation of the polytope of the problem by using the appropriate dire
ted graphsand exploiting the known results on ar
-disjoint paths problems in dire
ted graphs.This may help to provide new fa
et de�ning inequalities. It would also be interesting,from an algorithmi
 point of view, to improve the separation pro
edures provided forthe various inequalities we have introdu
ed in this work, espe
ially for the aggregated
ut inequalities.The same kind of study 
an also be used for the kHNDP when L ≥ 4. If possible,this may provide an integer programming formulation for the problem as well as aBran
h-and-Cut algorithm for all L ≥ 4 and k ≥ 2.
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