N° d’ordre : D.U. 1989
EDSPIC : 467

Université Blaise Pascal - Clermont 11

ECOLE DOCTORALE
SCIENCES POUR L'INGENIEUR DE CLERMONT-FERRAND

THESE

présentée par

Ibrahima DIARRASSOUBA

pour obtenir le grade de

DOCTEUR D’UNIVERSITE
Spécialité : INFORMATIQUE

Survivable Network Design Problems

with High Connectivity Requirement

Soutenue publiquement le 07 Décembre 2009 devant le jury :

A. Quilliot Président du jury
J.-F. Maurras Rapporteur

G. Oriolo Rapporteur

H. Yaman Rapporteur

M. Didi Biha Examinateur

J. Mailfert Examinateur

M. Haouari Invité

A.R. Mahjoub Directeur de thése

A ma mere, mon pére, ma sceur Aliman
et toute la famille Diarrassouba.

Remerciements

Je tiens a remercier Mr A. Ridha Mahjoub, Professeur a I’'Université Paris Dauphine de
Paris, de m’avoir permis d’effectuer cette these sous sa direction. Je lui suis profondé-
ment reconnaissant pour la confiance qu’il m’a accordé en me permettant d’effectuer
mon stage de D.E.A. puis une thése sous sa direction. Je le remercie pour sa constante
disponibilité, ses conseils et son soutien dans les moments difficiles. Grace a lui, j’ai dé-
couvert le monde passionnant de la recherche et de 'enseignement ainsi que la rigueur
scientifique qu’ils imposent. Je lui en serai toujours reconnaissant.

J’ai été trés honoré que Mr Jean-Francois Maurras, Professeur a I'Université de la
Méditérranée de Marseille, ait accepté de rapporter ma thése. Je lui exprime pour cela
mes plus sincéres remerciements et pour les commentaires qu’il a apporté.

Je remercie Mr Gianpaolo Oriolo, Professeur a I'Université de Rome Tor Vergata
(Italie), pour avoir accepté de rapporter ma thése et pour sa lecture approfondie de ce
manuscrit ainsi que pour 'intérét qu’il a porté a mes travaux.

Je remercie également Mme Hande Yaman, Professeur a I’Université de Bilkent,
Ankara (Turquie), de m’avoir fait ’honneur d’étre rapporteur sur ma thése et pour la
lecture rapide et précise qu’elle a effectuée.

Je voudrais également remercier Mr Mohamed Haouari, Professeur a 1’Ecole Poly-
technique de Tunisie, pour l'intérét qu’il a bien voulu porter a ma thése et d’avoir
accepté de participer a mon jury.

Mes remerciements vont également a Mr Alain Quilliot, Professeur a I’Université
Blaise Pascal de Clermont-Ferrand, pour avoir accepté de présider le jury de cette
these.

Je remercie aussi Mrs Mohamed Didi Biha et Jean Mailfert, respectivement Pro-
fesseur a I’Université de Caen et Maitre de Conférences a I’Université d’Auvergne de
Clermont-Ferrand, d’avoir bien voulu examiner mes travaux et participer au jury.

ii

Ces remerciements seraient incomplets sans une mention particuliére pour Fatiha
Bendali-Mailfert, Maitre de Conférences a I’Université Blaise Pascal de Clermont-
Ferrand, qui, avec Jean Mailfert, a participé a I’encadrement de mon stage de D.E.A.
et d’une partie de ma thése. Aussi, je tiens a les remercier tous les deux pour leur
écoute et les précieux conseils qu’ils m’ont prodigués, tant sur le plan de la recherche
et de 'enseignement que sur le plan personnel. Je remercie & nouveau Mohamed Didi
Biha pour l'intérét qu’il a porté a mon travail pendant toute la durée de ma theése et
son agréable contact.

Je tiens également a remercier tous les autres membres de ’équipe EPOC (Equipe
Polyédre et Optimisation Combinatoire) du laboratoire LIMOS de Clermont-Ferrand,
au sein de laquelle j’ai passé des années agréables. Merci donc & Sylvie Borne pour
sa bonne humeur, sa gentillesse et les discussions intéressantes que nous avons pu
avoir. Merci a Denis Cornaz et Mathieu Lacroix pour les discussions scientifiques que
nous avions dans notre bureau. Merci a Pierre Fouilhoux, David Huygens et Pierre
Pesneau que j’ai eu plaisir a cotoyer au sein de l’équipe. Je remercie également Herveé
Kerivin avec qui j’ai beaucoup apprécié de collaborer pour les enseignements. J'ai
particuliérement apprécié son sérieux et sa rigueur et aussi les qualités scientifiques
que je lui connais. J’adresse aussi mes plus sinceres remerciements a Lise Slama avec
qui j'ai aimé travailler et qui a toujours été pour moi une amie. Enfin, je remercie
Rawiya Taktak pour son amitié et son soutien, ainsi que Sebastien Martin. Je leur
souhaite a tous deux beaucoup de courage dans leurs théses respectives.

Mes remerciements vont aussi a toute la famille Diarrassouba qui, malgré la distance,
s’est toujours intéressée a mon travail. Je leur dédie a tous cette thése. Je dédie aussi
particuliérement & ma meére, qui est certainement fiére de ’aboutissement de ce travail,
et & mon pére et ma soeur Aliman qui ne sont malheureusement plus avec nous et qui
auraient été certainement fiérs de voir la fin de toutes ces années d’études. Je remercie
également mon épouse Awa pour sa patience et ses encouragements et qui, durant
toutes ses années, a su rester présente méme dans les moments difficiles. J’adresse
aussi un grand merci a Diaby Moussa AbdoulKader, son épouse Adjara et ses deux
adorables filles Fatim et Khadija qui m’ont hébergé durant mon année d’ATER a Paris
et grace a qui j’ai vécu des moments inoubliables.

Enfin, je termine ces remerciements en adressant ma plus profonde reconnaissance a
tous mes amis de Clermont-Ferrand, Aissata Coulibaly, Souleymane Diarra, Alassane
Drabo, Frangoise Lavadoux et tous les autres, pour leur amitié et leur soutien perma-
nent pendant et surtout a la fin de ma thése. Je leur souhaite beaucoup de courage
dans leurs études respectives.

Résumé

Cette thése s’inscrit dans le cadre d’une étude polyhédrale des problémes de conception
de réseaux fiables avec forte connexité. En particulier, nous considérons les problémes
dits du sous-graphe k-aréte-connexe et de conception de réseau k-aréte-connexe avec
contrainte de borne lorsque k£ > 3.

Dans un premier temps, nous étudions le probléme du sous-graphe k-aréte-connexe.
Etant donné un graphe non orienté et valué G = (V| F) et un entier positif k, le
probléme du sous-graphe k-aréte-connexe consiste a déterminer un sous-graphe de G
de poids minimum telle qu’il existe k chaines aréte-disjointes entre chaque paire de
sommets de V. Nous discutons du polytope associé a ce probléme lorsque £ > 3. Nous
introduisons une nouvelle famille d’inégalités valides pour le polytope et présentons
plusieurs familles d’inégalités valides. Pour chaque famille d’inégalités, nous étudions
les conditions sous lesquelles ces inégalités définissent des facettes. Nous discutons aussi
du probléme de séparation associé a chaque famille d’inégalités ainsi que d’opérations
de réduction de graphes. En utilisant ces résultats, nous développons un algorithme
de coupes et branchements pour le probléme et donnons des résultats exprérimentaux.

Ensuite, nous étudions le probléme de conception de réseaux k-aréte-connexe avec
contrainte de borne. Soient G = (V, E) un graphe valué non orienté, un ensemble de
demandes D C V x V et deux entiers positifs k et L. Le probléme de conception de
réseaux k-aréte-connexe avec contrainte de borne consiste a déterminer un sous-graphe
de G de poids minimum telle qu’entre chaque paire de sommets {s,t} € D, il existe k
chaines aréte-disjointes de longueur au plus L. Nous étudions ce probléme dans le cas
ou k >2et L € {2,3}. Nous examinons la structure du polytope associé et montrons
que, lorsque |D| = 1, ce polytope est complétement décrit par les inégalités dites de
st-coupe et de L-chemin-coupe avec les inégalités triviales. Ce résultat généralise ceux
de Huygens et al. [75] pour k =2, L € {2,3} et Dahl et al. [35] pour k > 2, L = 2.

Enfin, nous nous intéressons au probléme de conception de réseau k-aréte-connexe
avec contrainte de borne lorsque k& > 2, L € {2,3} et |D| > 2. Le probléme est

iv

NP-difficile dans ce cas. Nous introduisons quatre nouvelles formulations du probléme
sous la forme de programmes linéaires en nombres entiers. Celles-ci sont basées sur
la transformation du graphe G en graphes orientés appropriés. Nous discutons du
polytope associé a chaque formulation et introduisons plusieurs familles d’inégalités
valides. Pour chacune d’elles, nous décrivons des conditions pour que ces inégalités
définissent des facettes. En utilisant ces résultats, nous développons des algorithmes de
coupes et branchements et de coupes, generation de colonnes et branchements pour le
probléme. Nous donnons des résultats expérimentaux et menons une étude comparative
entre les différentes formulations.

Mots clés: Réseau fiable, graphe k-aréte-connexe, chaine de longueur bornée, poly-
tope, facette, séparation, génération de colonnes, algorithme de coupes et branche-
ments.

Abstract

This thesis presents a polyhedral study of survivable network design problems with
high connectivity requirement. In particular, the k-edge-connected subgraph and the k-
edge-connected hop-constrained network design problems when k£ > 3 are investigated.

We first consider the k-edge-connected subgraph problem. Given a weighted undi-
rected graph G = (V| E) and a positive integer k, the k-edge-connected subgraph
problem is to find a minimum weight subgraph of G which contains k-edge-disjoint
paths between every pair of nodes of V. We discuss the polytope associated with that
problem when £ > 3. We introduce a new class of valid inequalities and present several
other classes of valid inequalities. For each class we study the conditions under which
the concerned inequalities are facet defining. We also discuss the separation problem
associated with each class of inequalities and consider some graph reduction operations.
Using these results, we devise a Branch-and-Cut algorithm for the problem and give
some computational results.

We also study the k-edge-connected hop-constrained network design problem. Let
G = (V, E) be a weighted undirected graph, a demand set D C V x V', two positive
integers k and L. The k-edge-connected hop-constrained network design problem is
to find a minimum weight subgraph of G such that for every {s,t} € D there exist
at least k-edge-disjoint st-paths of length at most L. We investigate the structure of
the associated polytope when & > 2 and L € {2,3}. We show that, in the case where
|D| = 1, this polytope is completely described by the so-called st-cut and L-path-
cut inequalities toghether with the trivial inequalities. This result generalizes those
obtained by Huygens et al. |75] for k = 2, L € {2,3} and Dahl et al. [35] for k > 2,
L = 2. We show that this complete description yields a polynomial time algorithm for
the problem when |D| =1, k> 2 and L € {2, 3}.

We finally consider the k-edge-connected hop-constrained network design problem
when k£ > 2, L = 2,3 and |D| > 2. The problem is NP-hard in this case. We
introduce four new integer programming formulations based on the transformation of

vi

the graph G into appropriate directed graphs. We discuss the polytope associated with
each formulation and introduce several classes of inequalities that are valid for these
polytopes. We also study conditions for these inequalities to be facet defining. Using
these results, we devise Branch-and-Cut and Branch-and-Cut-and-Price algorithms for
the problem. We provide some computational results and a comparative study between
the different formulations we have introduced for the problem.

Keywords: Survivable network, k-edge-connected graph, hop-constrained path, poly-
tope, facet, separation, column generation, Branch-and-Cut algorithm.

Contents

Introduction

1 Preliminary Notions and State-of-the-Art

1.1

1.2

2 The
2.1
2.2

2.3

Preliminary notions
1.1.1 Combinatorial optimization
1.1.2 Computational and complexity theory
1.1.3 Polyhedral approach and Branch-and-Cut method
1.1.4 Polyhedral approach, Branch-and-Cut method
1.1.5 Column generation and Branch-and-Cut-and-Price methods

1.1.6 Graph theory: notations and definitions
State-of-the-art on survivable network design problems
1.2.1 The general survivable network design problem
1.2.2 The k-edge(node)-connected subgraph problem

1.2.3 The k-edge-connected hop-constrained network design problem .

k-Edge-Connected Subgraph Problem

Introduction
Facets of kECSP(G)
2.2.1 0Odd path inequalities
2.2.2 Lifting procedure for odd path inequalities
2.2.3 F-partition inequalities
2.2.4 SP-partition inequalities
2.2.5 Partition Inequalities
Reduction operations
2.3.1 Description

2.3.2 Reduction operations and valid inequalities

© =1 Ot R e R

viii

CONTENTS

3 Branch-and-Cut algorithm for the Ak ECSP 60
3.1 Branch-and-Cut algorithm 60
3.1.1 Description 60
3.1.2 Separation of cut inequalities 61
3.1.3 Separation of odd path inequalities 62
3.1.4 Separation of F-partition inequalities 64
3.1.5 Separation of S P-partition inequalities 65
3.1.6 Separation of partition inequalities 66
3.1.7 Implementation of reduction operations 66
3.1.8 Primal heuristic 72
3.2 Computational results 73
3.3 Concluding remarks Lo o 7
4 The k-Edge-Disjoint Hop-Constrained Paths Problem 82
4.1 Preliminary results Lo 83
4.1.1 Valid inequalities for the kHPP polytope 83
4.1.2 Formulation 84
4.1.3 Disjoint st-paths in directed graphs 85
4.2 Facets of KHPP(G) 87
4.3 Complete description of kHPP(G) 93
4.4 Concluding remarks Lo 101
5 The k-Edge-Connected Hop-Constrained Network Design Problem 103
5.1 Integer programming formulation for the tHNDP using the design vari-
ables L 103
5.2 Separated formulations for the kHNDP 104
5.2.1 Graph transformation o000 105
5.2.2 Cut formulation oo 107
5.2.3 Node-Arc formulation 108
5.2.4 Path-Arc formulation oL 110
5.3 Aggregated formulation for the ktHNDP 111
5.4 Separated and Aggregated formulations versus Natural formulation . . 116
5.4.1 Separated formulations versus Natural formulation 116
5.4.2 The linear relaxation of the Aggregated formulation 118
5.5 The kHNDP polytopes 120

5.5.1 The polytope kHNDP 4,(G,D) 120

CONTENTS ix
5.5.2 The polytope kHNDP¢, (G, D) 123
5.6 Valid inequalitieso o 125
5.6.1 Aggregated cut inequalities L. 125
5.6.2 Double cut inequalitieso 133
5.6.3 Triple path-cut inequalities 136
5.6.4 Steiner-partition inequalitieso 137
5.6.5 Steiner-SP-partition inequalities. 139
5.7 Facets 142
6 Branch-and-Cut and Branch-and-Cut-and-Price Algorithms for the
FHNDP 152
6.1 Branch-and-Cut algorithms for Aggregated, Cut and Node-Arc formu-
lations e 153
6.2 A Branch-and-Cut-and-Price algorithm for Path-Arc formulation 156
6.2.1 Column generation algorithm 156
6.2.2 Branch-and-Cut-and-Price algorithm 157
6.3 Separation procedures 158
6.3.1 Separation of st-dicut inequalities 158
6.3.2 Separation of aggregated cut inequalities 159
6.3.3 Separation of double cut inequalities 168
6.3.4 Separation of triple path-cut inequalities 170
6.3.5 Separation of Steiner-partition inequalities 171
6.3.6 Separation of Steiner-S P-partition inequalities 172
6.3.7 Primal heuristic 173
6.4 Computational results 174
6.5 Concluding remarks Lo o 188
Conclusion 190
Bibliography 191

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1

4.1
4.2
4.3

5.1
5.2
5.3
5.4
)

Relation between P, NP, NP-complete problems.
Aconvex hull

Valid inequality, facet and extreme points

A Branch-and-Cut tree. 12
Complete, bipartite, outerplanar, series-parallel and Halin graphs. . . . 17
An odd path configuration with k=3 and peven. 28
An F-partition configuration with k=5 39
A generalized odd-wheel configuration with k=4 43
A I-node-connected graph 0oL 45
A partition inducing a series-parallel but not outerplanar graph 46
Two partitions 7" and 7,5 47
The sets V; and V5 are b(;th adjacent to at least three elements of w7 . . 48
Partitions 70~ and 7. 50
An edge of e € [V, V%,]\ [V1, Va]. Here e € [V, V] with ¢ = 7 and ¢/ = 3. 51
An outerplanar configuration with k=3 52
Example of application of Operations 63 and 6, for k=3 72
Support graph of a 3-path-cut inequality. 84
Construction of G o 94
A 3-path-cut in G which does not induce an st-dicut in G ... 96

Construction of graphs ést with D = {{s1,t:1}, {s1,t2}, {s3,t3}} for L = 3105
Construction of graph G with D = {{s1,t1}, {s1, 2}, {55, ¢5}} and L = 2. 112
Construction of graph G with D = {{s1,t:}, {s1, %2}, {s3,¢3}} and L = 3. 113
A double cut with L=3and ig=0 135
A triple path-cut with L =2 138

LIST OF FIGURES xi

5.6 A set Wio containing two nodes of So L 145

6.1 The support graph G(7) of a fractional solution (Z,7) for L = 3 and k = 3162
6.2 Graph H(Z,7) obtained from G(§) 163
6.3 Graph H, obtained from a subgraph of H(Z,7) 167

Introduction

Telecommunications have a major importance in the functioning of modern societies.
They are particularly important as many transactions are done throughout telecom-
munication networks. The appearance of fiber optic technology in telecommunications
(1984) and the introduction of new generation network protocols (SONET /SDH, ATM,
[P, MPLS, GMPLS, etc.) have allowed networks to convey more and more data. As
a consequence, more complex applications such as video conference, Virtual Private
Networks (VPN) and mobile telephony, have been developed and are used in various
domains including finance, economy, medicine, scientific research and schooling.

Such an importance implies to have robust networks. Whatever the nature of a
network, it must survive after any equipment network failure. In case of an outage
of a network, the loss of money could reach several millions of euros. Survivable
networks must satisfy some connectivity requirements that is, there exist a certain
number of disjoint paths between some pair of nodes of the network. This condition
ensures that the traffic can still be routed between two nodes after the failure of a given
number of links or nodes, and that the network is still functional. One of the main
objectives when designing a telecommunication network is to provide a sufficient degree
of survivability, and this, with a minimum cost of construction and maintainance. Also,
the dimensionning problem is often considered, that is to give the appropriate capacities
to the links of the network in order to convey the traffic between some nodes and satisfy
a given quality of service.

A network can be represented by a graph G = (V, E) where V is the set of nodes
and F, the set of edges. Different topologies have been proposed to design survivable
networks. Each topology depends on the use of the network. However, as pointed
out in [83] (see also |80]), the topology that seems to be very efficient (and needed in
practice) is the uniform topology, that is to say that corresponding to networks that
survive after the failures of £k — 1 or fewer links, for some k£ > 2. The 2-connected
topology (k = 2) provides an adequate level of survivability since most failure usually
can be repaired relatively quickly. However, for many applications, a higher level of

2 CHAPTER 0. INTRODUCTION

connectivity may be necessary.

Another reliability condition concerns the length of the paths used to route the traffic.
In fact, the alternative paths could be too long to guarantee an effective routing. In
data networks, such as Internet, the elongation of the route of the information could
cause a strong loss in the transfert speed and decrease the quality of service. For other
networks, the signal itself could be degraded by a longer routing. In such cases, the
L-path requirement (paths of length at most L), with L > 2, guarantees exactly the
needed quality of the alternative routes.

Network design problems, as well as many combinatorial optimization problems, have
been studied using different methods. Among those methods, the polyhedral approach
has appeared to be very effective in solving difficult problems. This method, introduced
by Edmonds [45], consists in reducing the resolution of a combinatorial optimization
problem to that of a linear program. This is done thanks to the complete (or even
partial) description of the polyhedron associated with the problem. The polyhedral
approach is part of the exact methods used to solve combinatorial optimization prob-
lems.

The survivable network design problem has been widely studied when the connectiv-
ity requirement is low (k = 2). However, the high connectivity requirement case (k > 3)
has received a little attention. In this thesis, we study the survivable network design
problem with high connectivity requirement. In particular, we focus on two variants of
the problem: when k-edge-disjoint paths are required between every pair of nodes (the
k-edge-connected subgraph problem) and when k-edge-disjoint paths of length at most
L are required between certain pairs of nodes (the k-edge-connected hop-constrained
network design problem). The study is led using the polyhedral approach and provides
exact and efficient algorithms to solve these problems.

This thesis is organized as follows. In Chapter 1, we present the basic notions and
notations that will be used throughout this thesis. We also present a state-of-the-art on
survivable network design problems. Chapters 2 and 3 deal with the k-edge-connected
subgraph problem when k£ > 3. We study the polytope associated with this problem
and devise a Branch-and-Cut algorithm. Chapters 4, 5 and 6 are dedicated to the
k-edge-connected hop-constrained network design problem. In Chapter 4, we give a
complete description of the polytope associated with the problem in the case where
k-edge-disjoint L-paths are required between a single pair of nodes. We present a
polynomial time cutting plane algorithm to solve the problem in this case. Chapters 5
and 6 concern the general case where the k-edge-disjoint L-paths are required between
more than one pair of nodes of the network. We introduce new integer programming

formulations for this more general problem and study the associated polytopes. We
devise Branch-and-Cut and Branch-and-Cut-and-Price algorithms for the problem and
present, extensive computational results.

Chapter 1

Preliminary Notions and
State-of-the-Art

In this chapter we give some basic notions of combinatorial optimization, complexity
theory and polyhedra. We present cutting plane and column generation methods as
well as Branch-and-Cut and Branch-and-Cut-and-Price algorithms. We also present
the basic definitions of graph theory that will be used throughout this thesis. Finally
we give a state-of-the-art on the survivable network design problem.

1.1 Preliminary notions

1.1.1 Combinatorial optimization

Combinatorial Optimization is a branch of operations research and is related to com-
puter science and applied mathematics. It aims to study optimization problems where
the set of feasible solutions is discrete or can be represented as a discrete one. A
combinatorial optimization problem can be formulated in the following way. Let
E ={ey,...,e,} be afinite set called basic set where each element e; is associated with
a weight w(e;). Let F be a family of subset of E. If F' € F, then w(F) = Z w(e;) is

e, €F
the weight of F'. The problem consists in finding an element F* of F whose weight is

1.1. PRELIMINARY NOTIONS 5

minimum (or maximum).

Minimize (or Maximize)w(F')
s.t.
Fed.

J is the set of feasible solutions of the problem. The term optimization means that we
are looking for the best possible solution. The term combinatorial refers to the discrete
structure of F. Most of the time, this structure is represented by a graph. Also, the
number of feasible solutions is generally exponential, which makes diffuclt or even im-
possible to solve a combinatorial optimization problem with an enumerative procedure.
Different methods exist in the litterature to solve combinatorial optimization problems,
especially graph theory, linear and non-linear programming, integer programming and
polyhedral approach.

Many real-world problems can be formulated as combinatorial optimization ones
such as the Knapsack Problem, the Travelling Salesman Problem, telecommunication
network design problems, VLSI circuit design problems, machine sequencing problem,
etc. Some of them are directly applied in everyday life. For example Video On Demand
services (VOD) are studied as a combinatorial optimization problem. The objective is
to satisty the demand of every client (the end users) and such that the total bandwidth
allocated by the telecommunication operator for the service is minimum. This way,
the operator can evaluate the quality of the service he provides and the corresponding
cost. Another example is the GPS (GPS stands for Global Positioning System) which
helps a driver to find the best way (in terms of distance or in terms of time) to go from
one place to another. This is a direct application of the shortest path problem.

Combinatorial optimization is closely related to algorithm theory and computational
complexity theory. The next section introduces computational issues of combinatorial
optimization.

1.1.2 Computational and complexity theory

Computational and complexity theory is a branch of computer science whose objective
is to classify problems according to their inherent difficulty. We distinguish “easy” and
“difficult” problems. Computational and complexity theory is based on the works of
Cook [22], Edmonds [44] and Karp [77]. For more details on this topic, the reader is
referred to [56].

6 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ART

A problem is a question whose answer is unknown and depends on some input pa-
rameters. A problem is specified by describing its input parameters and the property
that these parameter must satisfy. An instance of a problem is obtained by giving a
specific value to all its input parameters. A resolution algorithm is a procedure, that is
a succession of elementary operations, which produces a solution for a given instance
of the problem. The number of input parameters necessary to describe an instance of
a problem is the size of that problem.

An algorithm is said to be polynomial when the number of elementary operations
necessary to solve an instance of size n is bounded by a polynomial function in n. A
problem 1is of class P if there exists a polynomial algorithm to solve it. We also say
that this problem is easy or can be solved quickly.

A decision problem is a problem whose answer is either “yes” of “no”. Let P be a
decision problem and J the set of instances of that problem for which the answer is
“yes”. P is said to be of class NP (where NP stands for Nondeterministic Polynomial) if
there exists a polynomial algorithm which can verify that the answer is “yes” for every
instance of J. Clearly, every problem of class P is also of class NP (see Figure 1.1).

NP

NP-complete

Figure 1.1: Relation between P, NP, NP-complete problems.

It is not known whether every problem in NP can be solved in polynomial time but
it has been conjectured that P = N P. If this conjecture is proved, its consequence will
be that every problem known as “difficult” can, in fact, be solved in polynomial time.

In the class NP, we distinguish a particular set of problems, the NP-complete prob-
lems. The notion of NP-completeness relies on the notion of polynomial reduction or
transformation. A decision problem P; can be polynomialy reduced (or transformed)

1.1. PRELIMINARY NOTIONS 7

into another decision problem P, if there exists a polynomial function f such that for
every instance I of Py, the answer is “yes” if and only if the answer of f(I) for Py is “yes”.
A problem P is NP-complete if every problem of class NP can be polynomialy reduced
into P. The 3-satisfiability problem is the first problem showen to be NP-complete (see
[22]).

Every combinatorial optimization problem can be associated with a decision problem.
A combinatorial optimization problem whose decision problem is NP-complete is said to
be NP-hard. Most of the combinatorial optimization problems are NP-hard. Among
the methods used to solve them, the polyhedral approach has appeared to be very
efficient.

1.1.3 Polyhedral approach and Branch-and-Cut method

Polyhedral theory has been introduced by Edmonds in 1965 [45]. He first developed
this method for the matching problem. Later, further works were done on this topic.
Polyhedral approach has appeared to be effective for solving many problems and slowly
becomes a must for the study of combinatorial optimization problems. Here we present
the basic notions of polyhedral theory. For more details, the reader is referred to
[90, 96]. We also present the applied aspect of polyhedra to combinatorial optimization
problems and describe the so-called Branch-and-Cut method.

1.1.3.1 Polyhedral theory

Let n € N be a positive integer and x € R". We say that x is a linear combination of

m m

1, ..., Ty, € R™ if there exist m scalar \q, ..., \,, such that = = Z N If Z)‘i =1,
i=1 i=1

then z is said to be an affine combination of xq,...,x,,. Moreover, if \; > 0 for all

i € {l,...,m}, we say that x is a convex combination of xy, ..., T,,.

Given a set S = {1, ...,z } € R™™ the conver hull of S is the set of point z € R”
which are convex combination of 1, ..., x,, (see Figure 1.2), that is

conv(S) = {x € R" | z is a convex combination of z1, ..., 2, }.

The points x1,...,x,, € R"™ are linearly independant if the unique solution of the

system Z Air; =0is \; =0,72=1,...,m. They are affinely independant if the unique

i=1

8 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ART

elements of S

\

conv(S)

Figure 1.2: A convex hull

solution of the system

Zm:)\ZIZ = 0,
i=1

> A=0,
i=1

is\=0,1=1,....m.

A polyhedron P is the set of solutions of a linear system Az < b, that is P = {x €
R™ | Ax < b}, where A is a m-lines n-column matrix and b € R™. A polytope is a
bounded polyhedron. A point x of P will be also called a solution of P.

A polyhedron P C R" is said of dimension p if the maximum number of solutions of
P that are affinely independant is p + 1. We denote it by dim(P) = p. We also have
that dim(P) = n — rank(A~) where A~ is the submatrix of A of inequalities that are
satisfied with equality by all the solutions of P (implicit equalities). The polyhedron
P is full dimensional if dim(P) = n.

An inequality ax < « is wvalid for a polyhedron P C R" if for every solution T € P,
aZ < «. This inequality is said to be tight for a solution Z € P if aT = a. The inequality
ar < « is violated by T € P if aT > a. The set F = {x € P | ar = o} is called a face
of P. We also say that F is the face induced by ax < . If F # () and F # P, we say
that F is a proper face of P. If F is a proper face and dim(F) = dim(P) — 1, then F is
called a facet of P. We also say that ax < « induces a facet of P or is a facet defining
inequality.

If P is full dimensional, then ax < « is a facet of P if and only if F is a proper face

1.1. PRELIMINARY NOTIONS 9

and there exists a facet bx < 3 of P and a scalar p # 0 such that F C {z € P | bx = [}
and b = pa.

An inequality ax < « is essential if it defines a facet of P. It is redundant if the
system A’z < b’ obtained by removing this inequality from Ax < b defines the same
polyhedron P. This is the case when az < « can be written as a linear combination
of the inequalities of the system A’z < V. A complete minimal linear description of a
polyhedron consists of the system given by its facet defining inequalities and its implicit
equalities.

A solution x is an extreme point of a polyhedron P if and only if it cannot be written
as the convex combination of two different solutions of P. It is equivalent to say that x
induces a face of dimension 0. The polyhedron P can also be described by its extreme
points. In fact, every solution of P can be written as a convex combination of some
extreme points of P. Figure 1.3 illustrates the main definitions given in this section.

~— Extreme points

Valid inequality

e

Proper face
but not facet

Non valid inequality

Figure 1.3: Valid inequality, facet and extreme points

1.1.4 Polyhedral approach, Branch-and-Cut method

Here we present the algorithmic aspect of polyhedra and its application to combi-
natorial optimization problems. Let P be a combinatorial optimization problem, F
its basic set, w(.) the weight function associated with the variables of P and § the
set of feasible solutions. Suppose that P consists in finding an element of § whose

10 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ART

weight is maximum. If F C E, then the 0-1 vector xf" € R¥ such that 2 (e) = 1 if
e € I and xf'(e) = 0 otherwise, is called the incidence vector of F. The polyhedron
P(8) = conv{z® | S € 8} is the polyhedron of the solutions of P or polyhedron asso-
ciated with P. P is thus equivalent to the linear program maz{wz | x € P(8)}. The
polyhedron P(8) can be described by a set of facet defining inequalities. When all the
inequalities of this set are known, then solving P reduces to solve a linear program.
The objective of the polyhedral approach for combinatorial optimization problems is
to reduce the resolution of P to that of a linear program. The efficiency of the method
thus relies on a deep study of the polyhedron associated with the problem.

However, a complete characterization of the polytope of a problem is difficult to
determine. In particular, when the problem is NP-hard there is a little hope to find such
a characterization. Moreover, the number of inequalities describing this polyhedron
is, in general, exponential. Therefore, even if we know the complete description of
that polyhedron, its resolution remains a hard task because of the large number of
inequalities.

Fortunately, as it has been shown by Grotschel, Lovasz and Schrijver [64], the dif-
ficulty for solving a linear program does not depend on the number of inequalities of
the program, but on which is called the separation problem associated with the in-
equality system of the program. Let Az < b be a system of inequalities in R™. The
separation problem associated with Ax < b is, given T € R", to determine whether
T satisfies Az < b and, if not, to find an inequality ax < a of Az < b violated by
Z. In 1981, Grotschel, Lovasz and Schrijver [64] showed that an optimization prob-
lem max{cz, Ax < b} can be solved in polynomial time if and only if the separation
problem associated with Az < b so is. The cutting plane method consists in solving
a linear program having a large number of inequalities by using the following steps.
Let LP = max{cz, Ax < b} be a linear program and LP’ a linear program obtained
by considering a small number of inequalities among Az < b. Let z* be its optimal
solution. We solve the separation problem associated with Az < b and x*. This phase
is called the separation phase. If every inequality of Ax < b is satisfied by x*, then z*
is also optimal for LP. If not, let ax < a be an inequality violated by x*. Then we add
ar < « it to LP" and repeat this process until an optimal solution is found. Algorithm
1 summarizes the different steps of a cutting plane algorithm.

1.1. PRELIMINARY NOTIONS 11

Algorithm 1: A cutting plane algorithm

Data: A linear program LP and Ax < b its system of inequalities
Result: Optimal solution z* of LP

begin

1 Consider a linear program LP’" with a small number of inequalities of LP
Solve LP’" and let 2* be an optimal solution
Solve the separation problem associated with Az < b and x*
if an inequality ax < o of LP is violated by x* then
Add ax < o to LP’
Repeat step 2

[= I NV M

else
7 x* is optimal for LP
8 return x*

end

The polyhedron P(8) is often not completely known because P may be NP-hard. In
this case, it would not be possible to solve P as a linear program. However, one may be
able to solve efficiently the linear relaxation of P(.S). In general, the solution obtained
from the linear relaxation of P(8) is fractional. The resolution of P can then be done
by combining the cutting plane method with a Branch-and-Bound algorithm. Such
algorithm is called a Branch-and-Cut algorithm. Each node of the Branch-and-Bound
tree (also called Branch-and-Cut tree) corresponds to a linear program. Suppose that P
is equivalent to max{wz | Az < b, x € {0,1}"} and that Az < b has a large number of
inequalities. A Branch-and-Cut algorithm starts by creating a Branch-and-Bound tree
whose root node corresponds to a linear program LFPy = maz{wx | Aoz < by, x € R"},
where Agz < by is a subsystem of Ar < b with a small number of inequalities. Then
we solve the linear relaxation of P that is LP = max{cr | Az < b, z € R"}, using a
cutting plane algorithm starting from the program LF,. Let zj, be its optimal solution
and Ajx < b the set of inequalities added to LF, at the end of the cutting plane phase.
If zj is integral, then it is optimal for P. If = is fractional, then we start the branching
phase. 'This consists in choosing a variable, say x', having a fractional value and
adding two nodes P, and P, in the Branch-and-Cut tree. The node P, corresponds
to the linear program LP; = maz{wz | Agx < by, Ajr < by, z' = 0,2 € R"} and
LP;, = maz{wz | Agx < by, Apx < by, z' = 1,2 € R"}. We solve the linear program
LP, = max{wzr | Az < b, 2 =0, 2 € R"} (LPy = max{wz | Ax <b, 2! =1, x €
R™}) by a cutting plane method starting from LP; (LP,). If the optimal solution of
LP, (LP,) is integral then, it is feasible for P. Its value is thus a lower bound of the
optimal solution of P and the node P; becomes a leaf of the Branch-and-Cut tree. If

12 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ART

this solution is fractional, then we select a variable with a fractional value and add two
children to the node P; (F,), and so on.

The linear program corresponding to a node of the Branch-and-Cut tree may be
infeasible, that is the addition of a constraint ' = 0 or ' = 1 makes the linear
program infeasible. Also, even if it is feasible, its optimal solution may be worse than
the best known lower bound of the problem. In both cases, we prune that node from
the Branch-and-Cut tree. The algorithm ends when all the nodes have been explored.
At the end of the algorithm, the optimal solution of P is the best feasible solution
among the solutions given by the Branch-and-Bound tree. Figure 1.4 illustrates the
algorithm.

xg is fractional

compornent x(l) is fractional

x1 is integral

becomes the best lower bound o is fractional

component x% is fractional

x4 is fractional
may improve the best lower bound

Figure 1.4: A Branch-and-Cut tree.

The algorithm can be improved by computing a good lower bound of the optimal
solution of the problem before it starts. This lower bound can be used by the algorithm
to prune the nodes which will not allow an improvement of this lower bound. This
would permit to reduce the number of nodes generated in the Branch-and-Cut tree and
hence reduce the time used by the algorithm. Also, this lower bound can be improved
by computing at each node of the Branch-and-Cut tree a feasible solution when the
solution obtained at a node is fractional. This is done by using a primal heuristic. It

1.1. PRELIMINARY NOTIONS 13

aims to produce a feasible solution for P from the solution obtained at a given node of
the Branch-and-Cut tree, when this later solution is fractional (and hence infeasible for
P). Moreover, the weight of this solution must be as best as possible. When the solution
computed is better than the best known lower bound, it can considerably reduce the
number of generated nodes as well as the CPU time. Moreover, this guarantees to
have an approximation of the optimal solution of P before visiting all the nodes of the
Branch-and-Cut tree, for example when a CPU time limit has been reached.

The Branch-and-Cut method is widely used to solve combinatorial optimization prob-
lems that are considered difficult to solve, such as the Travelling Salesman Problem
[4]. Its efficiency can be considerably increased by a good knowledge of the polyhedron
associated with the problem and by efficient separation algorithms. The cutting plane
method is effective when the number of variables is polynomial. However, when the
number of variables is large (for example exponential), other methods, such as the
column generation method, are more appropriate to use. In the following section we
briefly describe this method.

1.1.5 Column generation and Branch-and-Cut-and-Price meth-
ods

The column generation method is used to solve linear programs with a large number of
variables. The method aims to solve the linear program by considering a small number
of variables. This method was introduced by Dantzig and Wolfe [36] in 1960 in order to
solve linear programs with large number of variables by using few ressources (CPU time
and memory consumption). The column generation method is used either for problems
which can be solved using Dantzig- Wolfe decomposition method or for problems with a
large number of variables.

The idea of a column generation algorithm is to solve a sequence of linear programs
having a reasonable number of variables (also called columns). The algorithm starts
by solving a linear program having a small number of variables and which forms a
feasible basis for the original program. At each iteration of the algorithm, we solve
the so-called pricing problem whose objective is to determine the variables which must
enter the current basis. These variables are those having a negative reduced cost. The
reduced cost associated with a variable is computed using the dual variables. We then
solve the linear program obtained by the addition of these variables and repeat the
procedure. The algorithm stops when the pricing algorithm does not generate new
column to add in the current basis. In this case, the solution obtained from the last
restricted program is optimal for the original one.

14 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ART

The column generation method can be seen as the dual of the cutting plane method
as it adds columns (variables) instead of rows (inequalities) in the linear program. The
pricing problem can be NP-hard. In this case, one can use heuristic procedures to
solve it. For more details on column generation algorithms, the reader is referred to
|85, 86, 102].

In order to solve integer linear programs, the column generation method can be
combined with a Branch-and-Bound algorithm. In this case, the algorithm is called
a Branch-and-Price algorithm. The branching phase happens when no variable can
be added into the current linear program and the solution given by that program is
fractional. Moreover, the algorithm can be combined with a cutting plane algorithm,
that looks for inequalities that are valid for the problem but violated by the current
fractional solution. These can be added to the current linear program. In this case, we
speak of Branch-and-Cut-and-Price algorithm. Barnhart et al. [9] use this technique
to solve large scale integer multicommodity flow problems. Barhnart et al. [10| present
huge problems which have been solved using Branch-and-Price method.

1.1.6 Graph theory: notations and definitions

In this section, we present some basic definitions and notations of graph theory which
will be frequently used in the subsequent chapters. For more details, the reader is
referred to [15].

The graphs we consider are either directed or undirected, finite, loopless and may
contain multiple arcs or edges.

An undirected graph is denoted by G' = (V, E) where V is the set of nodes and E
is the set of edges. If e € E is an edge with endnodes u and v, we also write uv to
denote e. For a node subset W C V, we denote by W the node set V' \ W. Given W
and W’ two disjoint subsets of V', [W,W'] denotes the set of edges of G having one
endnode in W and the other one in W’. If W/ = W, then [W, W] is called a cut of
G and denoted by 6(W). A cut §(W) is said to be proper if [W| > 2 and [W| > 2.
If = (Vi,...,V,), p > 2, is a partition of V, then we denote by é(m) the set of edges
having their endnodes in different sets. We may also write §(V4, ..., V,) for §(m). Note
that for W C V, §(W) = 6(W, W).

A directed graph is denoted by H = (U, A) where U is the node set and A the arc
set. An arc a with origin u and destination v is denoted by (u,v). Given two node
subsets W and W' of U, [W, W’] denotes the set of arcs whose origins are in W and

1.1. PRELIMINARY NOTIONS 15

destinations are in W’. As before, we write [u, W] for [{u}, W’] and W denotes the
node set U \ W. The set of arcs having their origin in W and destination in W is called
a directed cut or dicut of H. This arc set is denoted either by §T(W) or 6= (W). We
also write 07 (u) for 67 ({u}) and 0~ (u) for 0~ ({u}) with w € U. If s and ¢ are two
nodes of H such that s € W and t € W, then 6+(W) and 6~ (W) are called an st-dicuts

of H.

Let G' = (V', E') (resp. H' = (U', A")) with V' CV and E' C E (resp. U’ C U and
A" C A) be a subgraph of G (resp. H). If w(.) is a weight function which associates
with each edge (resp. arc) e € E (resp. a € A) the weight w(e) (resp. w(a)), then the
total weight of G’ (resp. H') is w(E') = Z w(e) (resp. w(A') = Z w(a)).

eck’ ecA’

In the notation, we will specify the graph as a subscript (that is, we will write d (1),
da(m), 0g(Vi, ..., Vi), (W), o5(W), [W,W'|g, [W,W’'|y) whenever the considered
graphs may not be clearly deduced from the context.

Given an undirected graph G = (V, E), for all FF C E, V(F) will denote the set of
nodes incident to the edges of F. For W C V, we denote by E(W) the set of edges
of G having both endnodes in W and G[W] the subgraph induced by W, that is the
graph (W, E(W)). Given an edge e = uv € E, contracting e consists in deleting e,
identifying the nodes v and v and in preserving all adjacencies. Contracting a node
subset W consists in identifying all the nodes of W and preserving the adjacencies.
Given a partition 7 = (V4,...,V,), p > 2, we will denote by G the subgraph induced
by =, that is, the graph obtained from G by contracting the sets V;, for i = 1,...;p.
Note that the edge set of G is the set 0(V1, ..., V}).

A Path P of an undirected graph G is an alternate sequence of nodes and edges
(U1, €1, Uz, €9, ..., Ug—1, €41, Uy) Where €; € [u;, u;r1] for i = 1,...,¢ — 1. We will denote
a path P either by its node sequence (uy, ..., u,) or its edge sequence (ey, ..., e,-1). The
nodes u; and u, are called the endnodes of P, while its other nodes are said to be
internal. A path is simple if it does not contain the same node twice. In the sequel,
we will always consider that the paths are simple. By opposition, a non-simple path is
called a walk. A path whose endnodes are s and ¢ will be called an st-path. A cycle in
G is a path whose endnodes coincide, that is u; = u,. Also, a cycle is simple if it does
not contain twice the same node, excepted u;. We call a chord an edge between two
non-adjacent nodes of a path.

Similarly, we call a dipath P a path in a directed graph, that is an alternate sequence
of arcs (uy, ay, ug, ag, ..., Ug—1, Gg—1,Uy) With a; € [u;, ui41], ¢ = 1,...,¢ — 1. A dipath is
denoted either by its node sequence (ug,...,u,) or its arc sequence (a,...,a4—1), and
the nodes u;, u, are the endnodes of that dipath. A dipath whose endnodes coincide

16 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ART

(uy = uy) is called a circuit. If u; = s and u, = t then P is called an st-dipath. A
dipath is simple if it does not contain twice the same node.

Given a fixed integer L > 1 and a pair of nodes {s,t} € V x V, an L-st-path in G
is a path between s and ¢ whose length is at most L, where the [ength is the number
of edges of that path. The number of edges of a path is also called hops and we also
speak of L-hop-constrained paths for paths whose length is at most L.

An undirected (resp. directed) graph is connected if for every pair of node (u, v) there
is at least one path (resp. dipath) between u and v. A connected graph which have
no cycle (resp. circuit) is called a spanning tree. A connected component of a graph G
(resp. H) is a connected subgraph of G' (resp. H) which is maximal, that is adding a
node or an edge (resp. arc) to that subgraph gives a non-connected graph.

Given an undirected (resp. directed) graph G = (V, E) (resp. H = (U, A)), two st-
paths (resp. st-dipaths) are edge-disjoint (resp. arc-disjoint) if they have no edge (resp.
arc) in common. They are node-disjoint if they have no internal node in common. A
graph is said to be k-edge-connected (resp. k-arc-connected) if it contains at least k
edge-disjoint (resp. arc-disjoint) st-paths (resp. st-dipaths) for all pair of node {s,t} €
V xV (resp. {s,t} € U x U). It is k-node-connected if it contains at least k& node-
disjoint st-paths or st-dipaths for all pair of node {s,t} € V xV (resp. {s,t} € UxU).
The largest integer k such that the graph G (resp. H) is k-edge-connected (resp. k-arc-
connected) is the edge-connectivity (resp. arc-connectivity) of G (resp. H). Similarly,
the largest integer k& such that the graph is k-node-connected is the node-connectivity of
the graph. We say that a graph is Steiner k-edge-connected (k-arc-connected) (k-node-
connected) if it is k-edge-connected (k-arc-connected) (k-node-connected) relatively to
a certain pair of privileged nodes. We ommit the qualificative Steiner when the required
connectivity is for every pair of nodes of the graph. The privileged nodes are called
terminal nodes while non-privileged ones are called Steiner nodes.

Given an undirected graph G = (V| E), a demand set D C'V x V' is a subset of pairs
of nodes, called demands. For a demand {s,t} € D, s is the source of the demand and
t is the destination of that demand. If several demands {s,t;}, ..., {s,t4} have the same
node s as source node, then these demands are rooted in s. A node involved in at least
one demand is said to be terminal. A node which does not belong to any demand is
called a Steiner node.

A complete graph is a graph in which there is an edge between each node and the
others. A complete graph with n nodes is denoted by K,,. A bipartite graph G = (V| E)
is an undirected graph such that V' = V; UV, with Vi NV, = () and for every pair of
nodes u,v € V; (resp. u,v € Vo), [u,v] = 0. A complete bipartite graph is a bipartite

1.1. PRELIMINARY NOTIONS 17

graph where there is an edge between each node of V; and the nodes of V,. A bipartite
complete graph is denoted K,,, where m = |V;| and n = |V5|.

An undirected graph is outerplanar when it can be drawn in the plane as a cycle with
non crossing chords. A graph is series-parallel if it can be obtained from a single edge
by iterative application of the two operations:

i) addition of a parallel edge;

ii) subdivision of an edge.

Observe that a graph is series-parallel (outerplanar) if and only if it is not contractible
to Ky (K4 and K35). Therefore, an outerplanar graph is also series-parallel.

A graph G is said to be a Halin graph it G = (C' U T, E) where the subgraph of G
induced by T is a tree whose leaves forms the cycle C'in G. Figure 1.5 gives an example
of each type of graphs described above.

% X

Complete graph on 5 nodes Bipartite graph
Outerplanar graph Series-parallel graph Halin graph

Figure 1.5: Complete, bipartite, outerplanar, series-parallel and Halin graphs.

18 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ART

1.2 State-of-the-art on survivable network design prob-

lems

Survivable network design problems have been intensively studied for several decades.
The first studies on the problems aimed to produce heuristics and approximation algo-
rithms for these problems. Since the begining of 90’s, studies starts focusing on exact
algorithms with, in particular, the use of the polyhedral approach.

This section is dedicated to the presentation of the previous works in the litterature
related to survivable network design problems. We first present the general survivable
network design problem, the related works and main results on this problem. Then we
discuss two variants of the problem, the k-edge-connected subgraph problem and the
k-edge-connected hop-constrained network design problem. These will be studied in
Chapters 2 and 3 for the first one and Chapters 4, 5 and 6 for the second one.

1.2.1 The general survivable network design problem

A network can be represented by a graph, directed or undirected, where each node of
the network corresponds to a node of the graph and a link between two nodes of the
network is represented by an edge or an arc of the graph.

Consider an undirected graph G = (V, E') representing a telecommunication network
and w(.) a weight function which associates the weight w(e) with an edge e € E. Each
node v € V' is associated with an integer, denoted by r(v) and called connectivity type
of v, which can be seen as the minimum number of edges connecting v to the rest of
the network. The vector (r(v) | v € V) is the connectivity type vector associated with
the nodes of G. We say that a subgraph H = (U, F), U C V and F C F, satisfies
the edge-connectivity (resp. node-connectivity) requirement if for every pair of nodes
(s,t) € V x V, there exist at least

r(s,t) = min{r(s),r(t)}

edge-disjoint (resp. node-disjoint) paths between s and ¢. This condition ensures that
the network will be still functional when certain equipment fails. In fact, the traffic
can still be routed between two nodes s and ¢ when at most r(s,t) — 1 links, in case
of edge-connectivity, and at most r(s,t) — 1 nodes, in case of node-connectivity, fails.
When r(u) = k, for every u € V, the subgraph H is k-edge-connected (resp. k-node-
connected).

1.2. STATE-OF-THE-ART ON SURVIVABLE NETWORK DESIGN PROBLEMS 19

Let rpmae = max{r(u) | v € V}. When r,., < 2 we speak of low connectivity
requirement and of high connectivity requirement when ., > 3.

Grotschel, Monma and Stoer [66] introduced the general survivable network design
problem which consists in finding a minimum weight subgraph of G which satisfies the
connectivity requirement. We will denote this problem by ESNDP (resp. NSNDP) for
edge-connectivity (resp. node-connectivity) requirement.

The ESNDP (NSNDP) is NP-hard as it contains the Steiner tree problem as a special
case (r(u) € {0,1} for all u € V') which is known to be NP-hard [56]. However, under
certain conditions the problem can be solved in polynomial time. When r(u) = 1 for
all v € V, the problem is equivalent to the minimum weight spanning tree problem.
Thus it is solvable in polynomial time using Kruskal [84] or Prim |95] algorithms. Also
when r(s) = r(t) = 1 for two nodes s,t € V and r(u) = 0 for all u € V'\ {s,t}, the
problem is nothing but the shortest st-path problem which can be solved in polynomial
time with the effecient algorithm of Dijkstra [43].

Menger |91] exhibited the relation between the number of edge-disjoint paths and
the cardinality of cuts in the graph G. This relation is given in the theorem below.

Theorem 1.2.1 [91, 96| Let G = (V, E) be an undirected graph and s,t two nodes of
G. Then, there exist at least k edge-disjoint paths between s and t if and only if every
st-cut of G contains at least k edges.

By Theorem 1.2.1, the ESNDP can be described as a linear integer program. To this
end let us introduce first some notations.

r(W) = max{r(u) |ue W} forall W CV,
con(W) = max{r(u,v) |uecW,v €W}
= min{r(W),r(W)} forall W CV, 0 £ W # V.

The ESNDP is equivalent to the following linear integer program.

ceE
x(6(W)) > con(W) forall WeV,0£W £V, (1.1)
z(e) >0 forall e € F, (1.2)
z(e) <1, forallee E (1.3)
z(e) € {0,1} (1.4)

20 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ART

Grotschel and Monma [65] study the polyhedral aspects of that model. They discuss
the dimension of the associated polytope as well as some basic facets. In [66], Grotschel
et al. study further polyhedral aspects of that model. They devise cutting plane
algorithms and give computational results.

In [57], Goemans and Bertsimas give an approximation algorithm based for the ES-
NDP based on a new analysis of a well-known algorithm for the Steiner tree problem.

A related problem is the so-called augmentation problem. Given an undirected graph
G = (V,E) and a connectivity vector (r(v) | v € V'), the augmentation problem is to
add as few edges as possible to G so that the resulting graph satisfies the connectivity
requirements given by r. This problem is equivalent to the general survivable network
design problem on a complete graph where the weight of the edges of F is 0 and that
of the edges that can be added is 1. Eswaran and Tarjan [47] studied that problem
in the cases where r(u) = 2 for all w € V. They gave polynomial time algorithms
for the cases where edge-disjoint and node-disjoint paths are required. Watanabe and
Nakamura [103] and Cai and Sun [18] studied the problem when r(u) = k for allu € V'
and k € 2. They [18, 103| gave polynomial time algorithms for the problem in that
case. Cai and Sun [18] also gave a min-max formula for the minimum number of edges
that must be added. Frank [53] considered the problem for an arbitrary connectivity
vector r € NV, Using the splitting theorem of Mader [87], he gave a min-max formula
for the minimum number of edges that must be added to the original graph and devise
a polynomial time algorithm for the problem. Its results generalize those obtained by
|47] and [18].

1.2.2 The k-edge(node)-connected subgraph problem

The k-edge-connected subgraph problem has been extensively studied, especially when
k = 2 (low connectivity requirement) |8, 49, 54, 80, 81, 83, 88, 89, 92|. However, it has
received a little attention in the case where k > 3.

In [21], Chopra studied the problem for k£ odd when multiple copies of an edge may
be used. In particular, he characterized the associated polyhedron for outerplanar
graphs. This polyhedron has been previously studied by Cornuéjols et al. [23|. They
characterized the associated polytope when the graph is series-parallel and k£ = 2. In
[40], Didi Biha and Mahjoub also studied the problem when the graph is series-parallel
and k& > 3, and gave a complete description of the polytope in that case. In [49],
Fonlupt and Mahjoub studied the fractional extreme points of the linear relaxation
of the 2-edge-connected subgraph polytope. They introduced an ordering on these

1.2. STATE-OF-THE-ART ON SURVIVABLE NETWORK DESIGN PROBLEMS 21

extreme points and characterized the minimal extreme points with respect to that
ordering. As a consequence, they obtained a characterization of the graphs for which
the linear relaxation of that problem is integral. Didi Biha and Mahjoub [39], extended
some of the results of Fonlupt and Mahjoub [49] to the case k > 3 and introduced some
graph reduction operations.

Much work has been done on the problem when k& = 2. In |7], Baiou and Mahjoub
study the Steiner 2-edge-connected subgraph polytope. This has been generalized by
Didi Biha and Mahjoub [41] to the Steiner k-edge-connected subgraph polytope for k
even. Mahjoub [88] introduces a general class of valid inequalities for the polytope of
the problem when k£ = 2. Boyd and Hao [17] describe a class of “comb inequalities”
which are valid for 2-edge-connected subgraph polytope. This class, as well as that
introduced by Mahjoub [88|, are special cases of a more general class of inequalities
given by Grotschel et al. [66] for the general survivable network polytope. In [§],
Barahona and Mahjoub characterize the 2-edge-connected subgraph polytope for the
class of Halin graphs. Kerivin et al. [81] describe a general class of valid inequalities for
the problem that generalizes the so-called F-partition inequalities introduced by |[88|.
They also develop a Branch-and-Cut algorithm for the problem. In |25, 26|, Coullard
et al. study the Steiner 2-node-connected subgraph problem. They devise in [25] a
linear time algorithm for this problem on some special classes of graphs. Moreover in
|26], they characterize the dominant of the polytope associated with this problem on
the graphs which do not have K, as a minor.

Monma et al. [92] described some structural properties of the optimal solution of
the k-edge-connected subgraph problem when the cost function satisfies the triangle
inequalities (i.e., c(e1) < c¢(e2)+c(e3) for every three edges e, es, e3 defining a triangle).
In particular, they showed that every node of a minimum weight k-edge-connected
subgraph has degree 2 or 3. They also showed that the cost of an optimal tour solution
of the TSP (Travelling Salesman Problem) is at most 3 times the cost of an optimal
solution of the 2-edge-connected subgraph problem. They |92] devised a heuristic based
on these properties. Bienstock et al. [14] extended the result obtained by [92] to the
case where k£ > 3 and showed that every node of a minimum cost k-edge-connected
subgraph has degree k or k£ + 1. This result also generalizes the result obtained by
Frederickson and Jaja [54]. In [82], Khuller and Raghavachari gave an approximation
algorithm for the smallest k-edge-connected subgraph problem (c(e) =1 for all e € FE).
They proved that the cost of a solution given by their algorithm is at most 1.85 of the
optimal solution for all £ > 2. Fernandes [48] showed that the ratio of the algorithm
of [82] is, in fact, 1.75 for all £ > 2. The algorithm is the first algorithm to achieve a
performance ratio less than 2. They [82] also gave an approximation algorithm for the
minimum cost k-node-connected subgraph problem with k£ > 2 in the case where the

22 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ART

cost function satisfies the triangle inequalities. The performance ratio of their algorithm
is 2+ @ where n is the number of nodes of the graph. In [19], Cheriyan et al. gave
an }—;—approximation algorithm for the 2-edge-connected subgraph problem. Cheriyan
and Thurimella [20] gave a (1 + k%l)—approximation algorithm for the smallest k-edge-
connected subgraph problem with & > 2. Karger |78| gave a randomized algorithm

for the smallest k-edge-connected subgraph problem. He proved that the performance

ratio of its algorithm is 1 + O(4/ 10%"). Gabow et al. [55] introduced a approximation
algorithm for the k-edge-connected subgraph problem based on LP-rounding. They
showed that for undirected graphs the ratio of the LP-rounding algorithm is 1 + %

when k is odd and 1 + % when £k is even.

The directed version of the Steiner k-edge-connected subgraph problem has also been
studied. This problem is described as follows. Let H = (U, A) be a directed graph,
D C U xU be a set of demands and a weight function w(.) which associates the weight
w(a) with each arc of H. Given an integer k > 2, the Survivable Directed Network
Design Problem (KDNDP for short) consists in finding a minimum cost subgraph of
H which contains k-arc-disjoint st-dipaths for all {s,t} € D. This problem has been
studied by Suurballe [100] and Soenoka et al. |98]. Suurballe [100| considered the
EDNDP when |D| = 1. The problem can be formulated in this case as a network flow
problem, and hence, can be solved using for example network simplex. Suurballe [100]
gave a polynomial combinatorial optimization algorithm for the problem in this case.
In |98, Soenoka et al. considered the problem of finding a directed k-arc-connected
graph with a minimal number of arcs and small diameter (the diamater is the largest
among all shortest path lengths, when all the arcs have length 1). Dahl [27, 28, 29] also
studied the problem from a polyhedral point of view. In [29], he described several valid
inequalities for the polytope of the problem and devised a cutting plane algorithm.

1.2.3 The k-edge-connected hop-constrained network design prob-
lem

Given an undirected graph G = (V,E), a weight function w(.), a set of demands
D CV xV and two integers k, L greater than 2, the k-edge-connected hop-constrained
network design problem consists in finding a subgraph of G of minimum weight such
that for every pair {s,t} € D, there exist at least k edge-disjoint paths of length at
most L between s and ¢.

This problem takes some importance since the connectivity requierement is often
insufficient regarding the reliability of a telecommunications network. In fact, the

1.2. STATE-OF-THE-ART ON SURVIVABLE NETWORK DESIGN PROBLEMS 23

alternative paths could be too long to guarantee an effective routing. In data networks,
such as Internet, the elongation of the route of the information could cause a strong
loss in the transfer speed. For other networks, the signal itself could be degraded by a
longer routing. In such cases, the L-path requirement guarantees exactly the needed
quality of the alternative routes.

The k-edge-connected hop-constrained network design problem is a generalization of
the k-edge-connected subgraph problem. In fact, this later problem corresponds to the
first one in the case where L = |V|—1and D =V x V.

The k-edge-connected hop-constrained network design problem has been studied in
some special cases. Huygens et al. |75] have investigated the case where k£ = 2
|D| = 1 and the bound L on the length of the paths is 2 or 3. They give an integer
programming formulation for the problem and show that the linear relaxation of this
formulation completely describes the polytope associated to the problem in this case.
From this, they obtain a minimal linear description of that polytope. They also show
that this formulation is no longer valid when L > 4. In [35|, Dahl et al. study the
problem when L = 2, k > 2 and |D| = 1. They give a complete description of the
associated polytope. There has been however a considerable amount of research on
many related problems.

In [31], Dahl considers the k-edge-connected hop-constrained path problem, that is
the problem of finding between two distinguished nodes s and ¢ a minimum cost path
with no more than L edges when L is fixed. He gives a complete description of the
dominant of the associated polytope when L < 3. Thus this hop-constrained path
problem corresponds to the special case k = 1 and |D| = 1 of the k-edge-connected
hop-contrained network design problem. Dahl and Gouveia [32] consider the directed
hop-constrained path problem. They describe valid inequalities and characterize the
associated polytope when L < 3. Huygens and Mahjoub |73] study the problem when
L >4 and |D| = 1. They also study the variant of the problem where k node-disjoint
paths of length at most L are requiered between two terminals s and ¢. They give an
integer programming formulation for these two problems in the case k = 2 and L = 4.

The case where several pairs (s, t) of terminals have to be linked by L-hop-constrained
paths has also been studied in the litterature. In [34], Dahl and Johannessen consider
the 2-path network design problem which consists in finding a minimum cost subgraph
connecting each pair of terminal nodes by at least one path of length at most 2. The
problem of finding a minimum cost spanning tree with hop-constraints is also considered
in [60], [61] and [63|. Here, the hop-constraints limit to a positive integer H the
number of links between the root and any terminal in the network. Dahl [30] studies

24 CHAPTER 1. PRELIMINARY NOTIONS AND STATE-OF-THE-ART

the problem where H = 2 from a polyhedral point of view and gives a complete
description of the associated polytope when the graph is a wheel. Finally, Huygens
et al. |76| consider the problem of finding a minimum cost subgraph with at least
two edge-disjoint L-hop-constrained paths between each given pair of terminal nodes.
They give an integer programming formulation of that problem for L = 2, 3 and present
several classes of valid inequalities. They also devise a Branch-and-Cut algorithm, and
discuss some computational results. In [24], Coullard et al. investigate the structure of
the polyhedron associated with the st-walks of length K of a graph, where a walk is a
path that may go through the same node more than once. They present an extended
formulation of the problem, and, using projection, they give a linear description of the
associated polyhedron. They also discuss classes facets of that polyhedron.

Besides hop-constraints, another reliability condition, which is used in order to limit
the length of the routing, requires that each link of the network belongs to a ring
(cycle) of bounded length. In [52], Fortz et al. consider the 2-node connected subgraph
problem with bounded rings. This problem consists in finding a minimum cost 2-node
connected subgraph (V, F') such that each edge of F' belongs to a cycle of length at most
L. They describe several classes of facet defining inequalities for the associated polytope
and devise a Branch-and-Cut algorithm for the problem. In [51], Fortz et al. study the
edge version of that problem. They give an integer programming formulation for the
problem in the space of the natural design variables and describe different classes of
valid inequalities. They study the separation problem of these inequalities and discuss
Branch-and-Cut algorithm.

Chapter 2

The k-Edge-Connected Subgraph
Problem

In this chapter we consider the k-edge-connected subgraph problem from a polyhedral
point of view. We first present an integer programming formulation for the problem.
We then introduce further classes of valid inequalities for the associated polytope, and
describe sufficient conditions for these inequalities to be facet defining. In Chapter 3
we discuss the algorithmic aspect of this study. We devise separation heuristics for
the valid inequalities and discuss some reduction operations that can be used in a
preprocessing phase for the separation. Then we develop a Branch-and-Cut algorithm
using these results and present some computational results. This work has led to an
article that will be published in Networks [12].

2.1 Introduction

Given an undirected graph G = (V, F), an integer k£ > 2 and a weight function w(.)

which associates with each edge e € E the weight w(e) € R, the k-edge-connected

subgraph problem (KECSP for short) is to find a subgraph H = (V, F') of G such that
w(e) is minimum.

el

Remind that, given an edge subset F C FE, the 0-1 vector ¥ € R such that
2f(e) =1ife € Fand 0ife € E\ F is called the incidence vector of F'. Let kECSP(G)
be the convex hull of the incidence vectors of the k-edge-connected subgraphs of G,

26 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEM

that is
EKECSP(G) = conv{z" ¢ R¥ | F C F and (V, F) is a k-edge-connected subgraph of G}.

If 2¥" is the incidence vector of the edge set F' of a k-edge-connected subgraph of G,
then ! satisfies the following inequalities:

z(e) >0 foralle € E, (2.1)
z(e) <1 foralle € E,
z(6(W)) >k foral W C V,W £V, W # (. (2.3)

Conversely, any integer solution of the system defined by inequalities (2.1)-(2.3) is the
incidence vector of the edge set of a k-edge-connected subgraph of G. Constraints (2.1)
and (2.2) are called trivial inequalities and constraints (2.3) are called cut inequalities.
We will denote by P(G, k) the polytope given by inequalities (2.1)-(2.3).

2.2 Facets of kECSP(G)

In this section we present three classes of valid inequalities for kFECSP(G). We describe
some conditions for these inequalities to be facet defining. But first, we give the
following lemmas, which will be frequently used in this section.

Lemma 2.2.1 If an inequality ax > « is different from the trivial inequalities and
defines a facet of kECSP(G), then a(e) > 0 for all e € E and « > 0.

Proof. Suppose that a(e) < 0 for some edge e € E. As ax > « is different from the
trivial inequality x(e) < 1, there must exist a solution F' C E of the kECSP which does
not contain e and such that az” = a. Let F’ = F U {e}. Obviously, F” also induces a
solution of the KECSP. However, since a(e) < 0, we have that az’ = az” + a(e) < a,
contradiction.

In consequence, a(e) > 0 for all e € E. Moreover, since ax > « is facet defining, one
should have a(f) > 0 for at least one edge f of E. As ax > « is different from z(f) > 0,
there exists a solution £ of the kECSP which contains f and such that azf = . This
yields a > 0. U

2.2. FACETS OF KECSP(G) 27

Lemma 2.2.2 Let G = (V, E) be a k-edge-connected graph and ey = ugvy be an edge
of G such that every cut §(U) of G containing eq, except eventually 6(ug), is such that
0(U)| > k+ 1. If G' is a graph obtained from G by deleting ey and adding an edge f
incident to ug, then G’ is k-edge-connected.

Proof. Let d¢/(U’) be a cut of G'. If dc/(U’) does not separate uy and vg, then,
as G is k-edge-connected, we have that |dg(U’)| > k. If this is not the case and
U" # {up}, then d5(U’) contains at least k + 1 edges and hence |d¢/ (U’)| > k. Finally,
it U" = {uo}, since G is k-edge-connected and d¢(ug) = (dc(uo) \ {eo}) U{f}, we have
that |5G/(UQ)| 2 k. U

2.2.1 0Odd path inequalities

Let G = (V,E) be a (k + 1)-edge connected graph and © = (Wi, Wy, Vi, ..., Va,) a
partition of V' with p > 2. Let [} = {4r,dr+ 1,7 =1, ..., ’—g-‘ —1}and I, ={2,...,2p—
1} \ I;. We say that 7 induces an odd path configuration if

L|[Vi, Wyl =k — 1 for (i,j) € (I x {1}) U (12 x {2}),
2. [Wi, W[<k —1,

3. 8(Vi) = [Viy Wil U[Vi, VUV, Via] (resp. 8(V) = [Vi, Wol ULV, Vi ULV, Vi)
ifi € I (resp. i € Ip),

4. 6(V1) = [Wi,Vi] U [V1, Vo] and 6(Va,) = [Wr, Vo] U [Vap—1, Vo] (resp. 6(Vap) =
[(Wa, Vap] U [Vap_1, Vap]) if p is even (resp. odd) (see Figure 2.1 for k = 3 and p
even).

Note that by conditions 3) and 4), we have that [V}, V] = 0 for all [,¢ € {1,...,2p} and
Il —t > 1.

2p—1
Let C = U [Vi, Viz1]. Thus C can be seen as an odd path of extremities V; and V5, in

i=1
the graph G,. With an odd path configuration we associate the inequality

2(C) > p. (2.4)

Inequalities of type (2.4) will be called odd path inequalities. We have the following.

28 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEM

Figure 2.1: An odd path configuration with £ = 3 and p even.

Theorem 2.2.1 Inequality (2.4) is valid for kECSP(Q).
Proof. As |[V;,W]| = k —1 and z(6(V;)) > k is valid for kECSP(G), for (i,j) €
(Iy x {1}) U (I3 x {2}), we have

o([Vas—1, Vas]) + 2([Vas, Vasa]) > 1 for s =1,...,p — 1, (2.5)
x([‘/ZS7 ‘/284-1]) + x([%s-ﬁ-l’ ‘/28-1-2]) Z 1 for s = 17 P 1. (26)

By multiplying each inequality (2.5) (resp. inequality (2.6)) corresponding to s €
{1,...,p—1} by ? (resp. i) and summing these inequalities, we obtain

S a(Vi Vi) + 3 P (Vi Vi) 2 - 1, 2.7)

iel iel p
where [= {2,4,6,....2p—2} and T = {1,....2p — 1} \ I.
By considering the cut inequality induced by W1UV1U(U Vi) (resp. W1UV1U(U Vi)u

i€l i€ly
Vap) if p is odd (resp. even) we have

x([Wr, Wa)) + Zx([w, Vi) > k.

As [[Wy, Wh]| < k — 1, it follows that

2.2. FACETS OF KECSP(G) 29

%Zx([%,mlb >1 (2.8)

SRR

By summing inequalities (2.7) and (2.8) and rounding up the right hand side, we get
inequality (2.4). O

In what follows, we describe necessary conditions for inequality (2.4) to be facet
defining. For this, we first give a technical lemma.

Lemma 2.2.3 Let 7 = (Wi, Wa, Vi, ..., Vo), p > 2, be a partition of V' which induces

an odd path configuration and F' a solution of the kKECSP. Let V,.,..., Vs, with 2 <r <

5—7’+1‘|

s < 2p — 1, be a sequence of node sets of m. Then F must contain at least [*=

edges from C.

Proof. As |[W,Vj]| = k—1foralli € {r,..,s} NI} and |[Wo, Vi]| = k — 1 for all
i€ {r, ..., s}N1ly, F must contain at least one edge from each set §(V;)NC, i € {r, ..

S}
Thus the statement follows. O

Theorem 2.2.2 Inequality (2.4) defines a facet for kECSP(G) only if

a) Vi, Wh| # 0 and [Vap, W1] # 0 (resp. [Vay, Wa] # 0) if p is even (resp. odd),

b) Vi Vil # 0 fori=1,...2p— 1.

Proof.

a) Suppose for instance that p is even and [V, W] = () (the proof is similar if either
[Vap, Wi] = 0 or p is odd and [V, Ws] = (). By contracting the sets V;, Vs, Wa, we
obtain a smaller odd path configuration with 2p elements. Let

z(C')y>p—1 (2.9)

be the corresponding odd path inequality. As 0(Va) = [Vi, Vo] U [Va, V3] U [Va, W] and
|[Va, Was]| = k — 1, by the cut constraint on V5, we have that

x([Vi, Va]) + o([Va, Va]) > 1 (2.10)

30 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEM

is valid for kFECSP(G). By adding (2.9) and (2.10), we get z(C') > p, which implies
that (2.4) cannot be facet defining.

b) Suppose that [V;, V;41] = 0 for some ¢ € {1,...,2p—1}. We will show in the followin-
ing that any solution F of the kECSP whose the incidence vector z” satisfies (2.4)
with equality, intersects [V;_, V;] in exactly one edge. To this end, we will distinguish
two cases.

Case 1. i,i+ 1 € I; (the proof is similar if i, + 1 € I5). By Lemma 2.2.3 the edge
set I/ = F N C must cover the node sets Vs, ..., Vi_y by at least [%1 edges and the

sets Vitr,...Vop—1 by at least [%1 edges. As i,i+ 1 € I, and then 7 is even, F’
must use, in consequence, at least (5 — 1)+ (p — 5) = p — 1 edges from C'\ [Vi_1, Vi].
Since 0(V;) = [Vi—1, Vi] U [Vi, W1] and |[Vi, Wi]| = k — 1, F contains at least one edge
from [V;_1,V;]. As 2% satisfies (2.4) with equality, it follows that F contains exactly

one edge from [V;_1, Vi].

Case 2. i € [} and i+1 € I, (the proofis similarifi € I, and i+1 € I;). First note that
in this case 7 is odd. By Lemma 2.2.3, ' must cover the node sets V5, ..., V;_5 by at least
[52] = 52 edges from C' and the node sets Vii1,...Va,_1 by at least [2—1] = 2221
edges from C. Hence F' uses at least % + % = p — 2 edges from C. Moreover,
observe that if exactly p — 2 edges of C' are used by F', then these edges should be

between consecutive node sets of the form [Vas, Vasy1], with s € {1,...,p — 1} \ {%}

However, in this case, in order to satisfy the cut inequality induced by the node set
Wi U (U,ep, V) U Vayp (resp. Wi U (U, V2)) if pis even (resp. odd), F' must contain
at least one more edge from C' \ [Vi_1,V;] between two consecutive sets of the form
[Vas—1, Vas], with s € {1,...,p — 1} \ {%} In consequence, F' contains at least p — 1
edges from C'\ [Vi_1,Vi]. As |FN[Vi_y,Vi]| > 1 and 2" satisfies (2.4) with equality, we
then have that |[FF'N[V,_1,Vj]| = L.

In consequence, for any solution /' C E of the kECSP, if 2% satisfies (2.4) with equal-
ity, it also satisfies the equation z(0(V;)) = k. Since kECSP(G) is full dimensionnal
and (2.4) is not a positive multiple of z(5(V;)) > k, (2.4) cannot define a facet. O

Now we give sufficient conditions for inequality (2.4) to be facet defining. For this, let
us denote by I" the set of edges of G which are not in C|, that is, I' = E'\ C'. Moreover,
if [Vi, Viga] # 0, we let e; denote a fixed edge of [V}, Viyq], for i =1,...,2p — 1.

2.2. FACETS OF KECSP(G) 31

Theorem 2.2.3 Inequality (2.4) defines a facet for kECSP(G) if the following hold.

i) Condition b) of Theorem 2.2.2 holds,
ii) The subgraphs GIW1|, G[Ws] and G[V;], fori =1, ...,2p, are (k+1)-edge connected,

i) |[[Wh, Wal| =k —1, |[[Vi, Whil| = k and |[Vap, Whl| =k (resp. |[Vap, Wal| = k) if p is
even (resp. odd).

Proof. We will show the result for p even (the proof is similar if p is odd).

P p—1
Let Ey = | J[Vase1, Vaul, Br = | J[Vas, Vassa], E = 6(m)\(EoUE)), E = E\(EUE, UE).
s=1 s=1

Inequality (2.4) can then be written as

Suppose that conditions 1) - 3) above hold. We first give a claim that will be useful in
the proof.

Claim. If D is a subset of edges which covers the node sets V5, ..., V5,1, contains at
least one edge of [Vi,, Vi, +1] for some ig € {1,3,...,2p — 1} and such that DNT = 0,
then D UT induces a k-edge-connected subgraph of G.

Proof. Let F = DUT. Let G be the graph induced by F and G the graph obtained
from G by contracting the node sets Wy, Wa, Vi, ..., Va,. Let wy, wq, vy, ..., vz, be the
nodes of G where w; (resp. v;) corresponding to W; (resp. V;) for j = 1,2 (resp.
i =1,...,2p). As by condition 2), the subgraphs of G induced by Wy, Wy, Vi, ..., Vap
are (k + 1)-edge connected, to show the claim, it suffices to show that G is k-edge-
connected. Let oz (W) be a cut of G

If, say, w; € W and wy € W, then [wy,wo] C 6(W). If 65(W) separates vy,
and v;,11, as D intersects [V, Vi,4+1], and by condition 3), |[Wy,Ws]| = k — 1, we
have that [05(W)| > k. If vy, vi041 € W, then [{vi, vigs1}, wa] € 0z (W). Since
|[{Wig» Vig1}, wo]| = k —1 > 1, this yields |dz (W)| > k.

Now if wy,wy € W (or wy, ws € W), then Oz (W) contains at least two edge sets of
the form [v;, w;] with (¢, 7) € ({3 x {1}) U (L2 x {2}). Since |[v;, w;]| = k — 1, we have
that |6z (W)| > k.

32 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEM

Let us denote inequality (2.11) by ax > « and F = {x € EECSP(G) | ax = «}.
Let S = I'U{ess—1, s = 1,...,p}. By the claim above, we can see that S induces a
k-edge-connected subgraph of G. Moreover, z° satisfies (2.11) with equality, which
implies that F is a proper face of kECSP(G). Now suppose that there exists a non
trivial facet defining inequality bx > 3 such that ¥ C {z € kECSP(G) | bx = 3}. By
Lemma 2.2.1, we have that § > 0, and hence we may suppose that § = a. As G is
(k+ 1)-edge connected and thus kECSP(G) is full dimensional, it suffices to show that
b=a.

Let e € [Vas_1, Vag] \ {€as—1} for some s € {1,...,p} and Sy = (S'\ {e2s—1}) U{e}. By
the claim above, S; induces a k-edge-connected subgraph of G. Moreover, az®' = a.
It then follows that bz®' = «, implying that

b(e) = pos—1 for all e € [Vo, 1, Vi, for s =1,...,p, for some pos 1 € R, pos_1 # 0.
(2.12)

Similarly, for an edge e € [Vag, Vasi1] \ {e2s} for some s € {1,....p — 1} one can
p—1

consider the edge sets So =1"U (U{egi}) U{e1} and S3 = (S \ {e2s}) U {e}. We can

i=1
see by the claim above that Sy and S3 induce k-edge-connected subgraphs of G. Since,
ax®? = ar™® = a, it follows that bz”? = b = o and then

b(€) = P2s for all e € [‘68) VY25+1]a for s = 1a P 1a for some P2s €]R> P2s 7& 0.
(2.13)

Consider the edge sets Sy = (92 \ {e1}) U {eas—1} and S5 = (53 \ {e1,e25}) U
{eas_1, €511} for some s € {1,...,p — 1}. By the claim above, S; and S5 induce k-

edge-connected subgraphs of G. Since az®* = ax” = a, bx** = br” = o and hence

b(er) = b(eas) = b(egsr1), for s=1,...,p— 1. (2.14)

From (2.12), (2.13) and (2.14), it follows that b(e) is the same for every edge e € EyUE}.
s
T

Since az® = br® = a, we get b(e) = 1 for all e € Ey U E.

Now we are going to show that b(e) = 0 for all e € EUE. For this, first consider an
edge f € E. From condition 2), Sy = 5\ {f} induces a k-edge-connected subgraph of

2.2. FACETS OF KECSP(G) 33

G. Moreover, z°f satisfies (2.11) with equality. Hence ax®/ = a = b/, This implies
that b(f) = ba® — bar = 0.

Now let e € [V;, W;] for (i,7) € (I; U{1,2p} x {1})U (1> x {2}) and Ss = (S2\ {e1}) U
{ei—1} (resp. Sg = (52 \ {e1}) U{e;}) if @ is even (resp. odd). From the claim above,
we have that Sg and S; = Sg \ {e} induce k-edge-connected subgraphs of G and that
their incidence vectors satisfy az > a with equality. Hence b(e) = b — br = 0.

For all e € [Wy,Ws], by the claim above, the edge set S; = S\ {e} induces a k-
edge-connected subgraph of G. Moreover, z°7 satisfies az > o with equality. Hence
az®" = o and bax¥" = br® = . Thus we obtain b(e) = 0 for all e € [Wy, Wy).

Consequently, b(e) = 0 for all e € E'\ C, which terminates the proof of the theorem.
[

2.2.2 Lifting procedure for odd path inequalities

In what follows we are going to describe a lifting procedure for the odd path inequalities.
This will permit to extend these inequalities to a more general class of valid inequalities.
But first we give the following lemma which easily follows from the general lifting
procedure presented in [93].

Lemma 2.2.4 Let G = (V, E) be a graph and ax > « a valid inequality for kECSP(G).
Let G' = (V, E') be a graph obtained from G by adding an edge e, that is E' = EU{e}.
Then the inequality

ar +ale)x(e) > « (2.15)

is valid for kECSP(G') where a(e) = a—~ withy = min{ax | x € kECSP(G') and x(e) =
1}. Moreover, if ax > « is facet defining for kECSP(G), then inequality (2.15) is also
facet defining for kECSP(G'). In addition, if edges ey, ...,ex_1, €k, ...,e; are added to
G in this order and a(ey) is the lifting coefficient of e with respect to this order, then
aler) < d'(ex) where a'(ey) is the lifting coefficient of ey in any order e;,, ...,e;_,, ..., €;
such that iy =1 forl=1,....k—1 and iy = k for some s > k.

Theorem 2.2.4 Let G = (V,E) be a graph and m = (W1, Wa, Vi, ..., Vo), 0 > 2, a
partition of V' which induces an odd path configuration. Let C, Iy and Iy be defined
as in Section 2.2.1. Let Uy = U Vi, Uy = U Vi and W = Uy U Vo, U Wy (resp.

i€l 1€ls
W = Uy, UWs) if pis odd (resp. even). Suppose that conditions 1) - 3) of Theorem

34 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEM

2.2.8 hold. If G' = (V, EUL) 1is a graph obtained from G by adding an edge set L, then
the following inequality

#(C) +) ale)z(e) > p, (2.16)
ecl
with
(1 ifee(U W, thute) uwi, wau (| Vi, Ui uth)]) or
CiS (f‘zlfvm U Wa] U [Vap, W1 U Ws]) mjgzi;?),
ale) = ¢ 2 ifeeVi,V;], 1,5 €{2,...,2p— 1} with j > i+ 1 and i even, j odd,

Aifee [V, V] withi,j€{2,....2p—1}, j>i+1 and i odd
or i and j have same parity,

0 otherwise,

where 1 < X\ < 2 is the lifting coefficient obtained using the lifting procedure of Lemma
2.2.4, is facet defining for kECSP(G').

Proof. Let us consider the following edge subsets of L:

Ly = (|J W, Ui uta)) U Wi, Wol U (| [V}, U1 U Ua])U

j=1,2 j=1,2p
(([Vi, Vap U W2] U [Vay, W1 U W]) 11 6(W)),
Ly =A{Vi,Vj], i, €{2,...,2p—1}, j>i+1, ieven, jodd},
Ly ={[Vi,Vj], i,j €{2,...,2p— 1}, j>1i+1, i odd or, i and j have the same parity},
Li=L\ (L ULy U Ly).

We will first show that the lifting coefficient of the edges of L, is equal to 0, inde-
pendently of the order in which they are added to GG. Let e be an edge of L4 and let
us denote by a’z > o the lifted inequality obtained on G’. As, by our assumptions,
(2.4) defines a facet of kECSP(G), a’z > o also defines a facet of kECSP(G’). Since
a'r > o is different from the trivial inequality xz(e) > 0, there must exist a solution
F" C E' of the kECSP on G’ such that e € F’ and whose the incidence vector satisfies

2.2. FACETS OF KECSP(G) 35

a’x > o with equality. Let hq,..., h; be the edges of F between V; and W;. Note that
a'(hy) = ... = d'(h) = 0. We will distinguish two cases.

Case 1. |[F'N{hy,....,h}]] < k —1. Let h; be an edge not contained in F’. Let
F" = (F'"\ {e}) U {h;}. Since F’ induces a k-edge-connected subgraph of G’, F” so
is. Hence we have that o’z = a/2"" — a/(e) + a/(h;) > . This yields d'(e) < d'(h;).
Since a'(h;) = 0, and by Lemma 2.2.1, a’(e) > 0, we get a/(e) = 0.

Case 2. {hy,....,h;} C F’. Here we also have that F” = F’ \ {e} induces a k-edge-
connected subgraph of G'. As '™ = d’z"" —d'(e) > «, and thus d/(e) < 0, it follows,

by Lemma 2.2.1, that a'(e) = 0.

Therefore a(e) = 0 for all e € Ly, and this, independently of the order in which e is
added to G.

Now we consider the edges of L\ Ly. For this, we give the following claim.
Claim. a(e) > life € Ly U L3, and a(e) > 2 if e € L.

Proof. We will show first that if we add one edge e € L; (resp. e € L) (resp.
e € L) to G, the lifting coefficient of e in the new graph is 1 (resp. 2) (resp. 1). For
this, let us denote by G = (V, E) the graph obtained by adding the edge e, that is,

E=FEU {e}. Suppose first that e € Ly and assume that, for instance, e € [W;,, Vj,],

with g € {2,...,2p — 1} and even, and j, € {1,2} (if ¢ is odd, it suffices to consider
the path Vi, ..., V5, in the opposite way). Note that any solution F C F of the kECSP
on G must cover the node sets Vo, ooty Vip—1 and Vi1, ..., Vop—1 by edges from C. By
Lemma 2.2.3, F' must use at least [-2] + [2=2=17 = p — 1 edges from C. Thus
v > p — 1 where v is as defined in Lemma 2.2.4. Moreover, because the conditions of
Theorem 2.2.3 are satisfied, by the claim given in the proof of that theorem, the edge
set F| = {ea, 4, ..., €10 2} U{€ig+15 Cigt3y --» €ap—1} UT'U{e} induces a k-edge-connected
subgraph of G. Since F} contains e and uses exactly p — 1 edges from C, we have that
v=p—1. By Lemma 2.2.4, it then follows that the lifting coefficient of e is equal to
1.

36 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEM

Consider now an edge e € Ly and suppose that e € [V, Vj,] with do, jo € {2,...,2p—1},
Jo > ip+1, and i is even and jg odd. If F is a solution of the kECSP on G then F must
cover the node sets Vo, ..., Vi 1, Vijs1,..., Vjo—1 and Vj 41, ..., Vop—1. Thus by Lemma
2.2.3, F must use [©32] 4 [L2=o=1] 4 (2217 = 2 edges from C. Thus, v > p—2.
Now let Fy = {ea, eq, ..., eio_g}u{ei0+1, Cio+3y - Ejo—2 U{€jot1, €jotay - egp_g}UFU{e}.
We can see as before that F; induces a k-edge-connected subgraph of G' and contains

exactly p — 2 edges from C. Since e € F), we obtain that v = p — 2, and therefore the
lifting coefficient of e equals 2.

Finally, suppose that e is an edge of L3 between two non consecutive node sets
Vie, Viol with 4,750 € {2,....2p — 1}, jo > o + 1, and , say, i is odd and jo is
even (the proof is similar if iy and j, have the same parity). Here observe that
any solution F' C E of the kECSP on G must cover by edges from C' the node sets
Va, . Vie—=1, Vig41, oo, Vjg—1 and Vj 41, ..., Vop—1. By Lemma 2.2.3, F must then use at
least [©27 4 WO;;O_IW + [0 = p — 1 edges from C. Thus v > p — 1. Moreover,
as the edge set F3 = {eq,e3,...,€i5—2} U {€ip41, Cigt1, - €2p—2} U U {e} induces a k-
edge-connected subgraph of G and contains exactly p — 1 edges from C, we have that

v = p — 1. Hence the lifting coefficient of e in G is equal to 1.

Consequently the lifting coefficient of e equals 1 (resp. 2) (resp. 1) if e € L; (resp.
e € Ly) (resp. e € L3). By Lemma 2.2.4, we then have that a(e) > 1 ife € Ly U L
and a(e) > 2 if e € Ly, which ends the proof of the claim. ¢

In what follows, we are going to show that we also have a(e) < 1 (resp. a(e) < 2)
(resp. 1 < a(e) <2)ife € L; (resp. e € Ly) (resp. e € Ls). For this, let us consider
a sequence fi,..., fy, t > 1, of edges of L, and suppose that fi,..., f; are the edges that
are added to G before e.

Suppose first that e € L; and let us assume as before that e € [W;,, V] with
ip € {2,...,2p — 1} and even, and jo € {1,2}. Let G = (V, E) be the graph where
E =EU{f1,.... fi,e}. Any solution F' C E of the kECSP on G must cover the node
sets Vg, vy Vig—1 and Vi 41, ..., Vg by edges from (C U {fi,..., fi}) \ Ls. By Lemma
2.2.3, F must use at least [f27 4 (22001 = p — 1 edges from (C'U{fi,..., fi})\ La.
Since, by the claim above, a(f) > 1 for every edge f € (CU{f1,..., ft}) \ L, we have
that v > p — 1 and hence by Lemma 2.2.4, we have that a(e) < 1. As, by the claim
above a(e) > 1, this implies that a(e) = 1. Moreover, this holds independently on the
order in which e is added to G.

2.2. FACETS OF KECSP(G) 37

Now consider an edge e € Ly and suppose that e € [V;,, V], with i, jo € {2,...,2p —
1}, jo > io + 1, ip even and jo odd. Any solution F C FE of the kECSP on G
must cover the node sets Va, ..., Vi _1, Vig41, ..., Vjy—1 and Vj 41, ..., Vo1 by edges from
(CU{fr,-, [i})\Ls. By Lemma 2.2.3, F' must use [052] 4 [Loo=d] 4 [22odo=l] —
edges of (C'U{f1,..., ft}) \ Ls. Thus v > p — 2 and therefore a(e) < 2. Since, by the
claim above, a(e) > 2, we get a(e) = 2.

If e is an edge of L3, we show along the same line that 1 < a(e) < 2.

In consequence, a(e) = 1if e € Ly, a(e) =2 if e € Ly, 1 < a(e) < 2, which ends the
proof of the theorem.

Observe that the lifting coefficients of the edges other than those between two subsets
V; and Vj such that i,j € {2,...,2p— 1}, j > i+ 1, i is odd or 7 and j have the same
parity do not depend on the order of their addition in G. Inequalities (2.16) will be
called lifted odd path inequalities. As it will turn out, these inequalities are very useful
for our Branch-and-Cut algorithm.

2.2.3 F-partition inequalities

In [88], Mahjoub introduced a class of valid inequalities for 2ECSP(G) as follows. Let
(Vo, Vi, .., V), p > 2, be a partition of V and F C §(Vp) with |F| odd. By adding the
inequalities

z(0(V;))>2 fori=1,..,p, (2.17)
—xz(e) > —1 fore€F, (2.18)
z(e) >0 fore € §(Vp) \ I, (2.19)

we obtain 2x(A) > 2p—|F| where A = §(Vp, V4, ..., V,) \ F'. Dividing by 2 and rounding
up the right hand side lead to
£ -1

r(A)zp——5— (2.20)

38 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEM

Inequalities (2.20) are called F-partition inequalities. Didi Biha [38] extended these
inequalities for all £ > 2. He showed that, given a partition (Vp, Vi,...,V,), p > 2, of V
and F C 6(Vp) with F = (), the inequality

(2.21)

26V, Vay o V) \ F) [M} |

2

is valid for kLECSP(G). Note here that |F| can be either odd or even. Also note that
if kp and |F| have the same parity, then the corresponding inequality (2.21) is implied
by the cut and the trivial inequalities.

In what follows, we describe sufficient conditions for inequalities (2.21) to be facet
defining. Theorems 2.2.5 and 2.2.6 describe these conditions for £ odd and £ even,
respectively. Note that all the indices we will consider here will be modulo 2] + 1.

Theorem 2.2.5 Let G = (V,E) be a graph and k > 3 an odd integer. Let m =
(W Vi, o, Varga,
Uiy .oy Ugiy), with [> %, be a partition of V' such that

i) GIW], GIVi], G|Uj], i =1,...,2L + 1, are (k + 1)-edge connected,
i) |[W,Vi]| > k=2 fori=1,..,2l+1,
iti) Ui, Upa]] > 552 fori=1,..,2041,

w) |[Vi,Vigl]| > 1 fori=1,...,2l+ 1,

v) ViUl > 1 and |[Vi,U;—1]| > 1 fori=1,..,2l+1
(see Figure 2.2 for an illustration with k =5 and | = 2).

Let F; be an edge subset of [W,Vi] such that |F;| = k—2, 1 =1,...,2l + 1 and let
2041

= U F;. Then the F-partition inequality
i=1

z(0(m)\ F) > l(k+2)+ [gw +1, (2.22)

induced by ™ and F, defines a facet of kECSP(G).

2.2. FACETS OF KECSP(G) 39

edge of 6(w) \ F

edge of F

Figure 2.2: An F-partition configuration with k =5

Proof. First observe that, by conditions 1) - 5), G is (k + 1)-edge connected and
hence kECSP(G) is full dimensional. Let us denote inequality (2.22) by ax > « and
let F = {x € kECSP(G) | axr = a}. Clearly, ¥ is a proper face of kECSP(G). Now
suppose that there exists a facet defining inequality bx > « such that F C {x €
EECSP(G) | bx = a}. We will show that b = a.

Let e; be an edge of [V;,Viy1], i = 1,...,2l + 1, and f; and f/ be edges of [V}, U;_4]
and [V;, U], respectively, for i = 1,...,20 + 1. Let T; be an edge subset of [U;, U;11] of
% edges, fori=1,....2[+ 1.

Let Ey be the set of edges not in F' and having both endnodes in the same element
of m. First we will show that b(e) = 0 for all e € Ey U F. Let ig € {1,...,2l + 1} and
consider the edge sets

20+1
By ={ejppar, =0, JU{f, i=1.20+1}U (| Ty,

i=1
by = E,UF UE,.

Claim. F, induces a k-edge-connected subgraph of G.

Proof. Let G5 be the subgraph of G induced by E,. Since by condition 1) the graphs
induced by the node sets W and V;, U;, 1 = 1,...,2l + 1, are (k + 1)-edge connected, it
suffices to show that the graph obtained by contracting W and V;,U;, v = 1, ..., 2l +1, is

40 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEM

k-edge-connected. Let Gy = (V, E5) be that graph and w vy, ..., voy11, U1, ..., Ug 11 the
nodes of G5 where w corresponds to W, v; to V; and u; to U;, fori = 1, ..., 21+1. Let §(U)
be a cut of Gy and let @/2 = (V;,E;) the subgraph of G induced by {w, vy, ..., vy41}
and @/2/ = (V;’,E;’) the graph obtained from Gy by contracting {w, vy, ..., vy 1 }. Note
that B, N Ey = 0 and Ey = E, U E,. Also note that G, is (k — 1)-edge connected and
that @/2, is a k-edge-connected wheel. Thus if U does not intersect {w, vy, ..., 941},
then §(U) is a cut of Gy and hence |6(U)| > k. If U intersects {w, vy, ..., va11}, then
0(U) contains at least k — 1 edges from E/z However, in this case 6(U) also contains at
least one edge from E;’ Thus we have that [0(U)| > k, and the statement follows. ¢

Note that there are k + 1 edges incident to V;, in the graph induced by E,. Now,
observe that for any edge e € [, one can show in a similar way as in the claim above
that E) = F, \ {e} also induces a k-edge-connected subgraph of G. As 2”2 and 2™
belong to F, it follows that bz™ = bz’ = o, implying that b(e) = 0 for all e € F},.
As ig is arbitrarily chosen, we obtain that b(e) = 0 for all e € F. Moreover, as the
subgraphs induced by W, Vi, ..., Vo1, Uy, ..., Uy 41 are all (k + 1)-edge connected, the
subgraph induced by Es \ {e}, for all e € Ey, is also k-edge-connected. This yields as
before b(e) = 0 for all e € Ey. Thus b(e) = 0 for all e € F'U E,.

Next, we will show that b(e) = a(e) for all e € §(m) \ F. Let g; be a fixed edge of T;
and let 7] = T; \ {g:}, for i = 1,...,21 + 1. Consider the edge sets

l -1
Ey={fi,fj,i=1,..,2l+1} U (U T5i) U Ty1 U (U Toii1),

1=1 =0
Ey=EsUF U E),

Ey = (Ey\ gai41) U{g1}-

Note that g; ¢ T} and thus ¢g; ¢ Ej, and that g1 € Ey. The edge sets Fy and E) can
be obtained from F5 using recursively the edge-swapping operation of Lemma 2.2.2.
Hence both E; and E) induce k-edge-connected subgraphs of G. Moreover, we have
that 27 and 2" belong to F. Thus bz = br” = a and therefore b(gy 1) = b(g1). As
g1 and g9y 41 are arbitrary edges of T} and Ty, respectively, it follows that b(e) = b(e’)
for all e € Ty and €’ € Ty, 1. Moreover, we have that T} and Ty, are arbitrary subsets
of [Uy, Us] and [Ug 41, Uy], respectively. This implies that b(e) = b(e’) for all e € [Uy, Us]
and e’ € [Ugq, Us]. Consequently, by symmetry, we get

b(e) =pforall e € [UZ, Ui—i—l]a 1=1,..,2l+1, (223)
for some p € R.

2.2. FACETS OF KECSP(G) 41

Now let,

Es = (Es\ {f1}) U{eas1}.

Using Lemma 2.2.2 and the fact that F, induces a k-edge-connected subgraph of G,
we have that Es induces a k-edge-connected subgraph of G. Moreover, 25 belongs
to F, implying that bx® = bx® = a. Hence b(f1) = b(eyy1). In a similar way,
we can show that b(f5,,) = b(ear1). As fi, f3., and ey are arbitrary edges of
[Usi1, Vi, [Vaig1, Uzig1] and [Vo41, V1], respectively, we obtain that b(e) is the same for
all e € [Uyt1, Vi]U[Vat1, Ugyg1| U [Vargr, Vi]. By exchanging the roles of Va1, Vi, Ugy
and V;, Vi1, U;, for @ =1, ..., 2], we obtain by symmetry that

b(e) = p; for all e € [U;, Vi] U [Vi, Vigr| U [Vigr, Ui, (2.24)
i=1,..,2l+ 1, for some p. € R.

Consider the edge set

By = (B \ {/i}) U{er}.

Similarly, we can show that EZ induces a k-edge-connected subgraph of G. As 24 and
2% belong to F, it follows in a similar way that b(e;) = b(f,). From (2.24), we have
that p} = py . By symmetry, it then follows that p} = p’ for i, j =1,..,2l + 1, i # j,
and therefore

b(e) = p' for all e € (U, Vi| U [Vi, Viea] U [Vig1, Ui, (2.25)
fori=1,...,2l+ 1, for some p' € R.

Let e € ([Varp1, W]\ For1) U [Vaig1, V], j € {2,...,20 — 1}. As before, we can observe
that s = (E4\{f4.1})U{e} induces a k-edge-connected subgraph of G. Since 2 € F,
this implies that bz™ = ba" = o and hence b(e) = b(f},,,). By (2.25), we then obtain
that b(e) = p for all e € ([Varp1, W]\ Forg1) U [Varyr, V5] for @ € {2,...,2l — 1}. By
exchanging the roles of V5,1 and V;, ¢ = 1, ..., 2[, we obtain by symmetry that b(e) = p
foralle e ([Vi, WI\F)U[V;,V;],i=1,...,2l4+1and j € {1,...,20+1}\ {i—1,2,i+1}.

For any edge e between Uy and either W, U;, j € {1,...,20+1}\ {1,2{,2[+ 1}, or
Vi, t € {1,...,20+ 1} \ {1,2] + 1}, we can show, using Lemma 2.2.2 and the fact that
E, induces a k-edge-connected subgraph of GG, that

Er = (Ex\ {fy1, 1}) U{e, earin}

also induces a k-edge-connected subgraph of G. Since z¥* and 27 belong to F, we
have that bz®" = bz™ = a and b(f5,,,) + b(f1) = ble) + beay41). As by (2.25),

42 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEM

b(fy1) = b(f1) = bleay1) = o/, we get b(e) = p'. Here again, by exchanging the roles
of Uyy1 and Uy, @ = 1, ..., 2, we obtain that b(e) = p' for all e € [U;, W]U[U;, U;]U[U;, Vi,
i=1,.,20+ 1, je{l,..,2+1}\{i,i+1}and t € {1,...., 20+ 1}\ {i — L, 4,5+ 1}.

As P2 and 2P belong to F, we have that bz = br¥* = «. Thus from (2.23) and
(2.25), we obtain that p = p/, and in consequence, the edges of E \ (Ey U F') have all
the same coefficient in bz > a. Since az®* = brf2 = q, this yields b(e) = 1 for all
e€c E\(EyUF).

Thus we obtain that b = a, which ends the proof of the theorem. 0

We now describe special cases in which inequalities (2.21) define facets when £ is even.
Consider a graph G = (V, E) and an even integer k = 2¢q with ¢ > 1, a generalized odd-
wheel configuration is given by an integer [> 1, a set of positive integers {p1, ..., pa+1}
and a partition 7 = (Vp, V5, i =1,...,2l+ 1,5 = 0, ..., p;) of V such that

G[Vo] and G[V;®] are (k + 1)-edge connected, for s =1,...,p; and i = 1,...,2[+ 1,
VO, Ve >2¢ fori=1,...,20+ 1,
[V, VEH)| > 2 for s =0,...,p;and i = 1,...,20 + 1,

(Vs VEH =0 for s,t € {1,...,pi}, |s —t| > 1 and (s,t) # (0,p; + 1), and i =
1,20 +1,

v) [VE V] =0forse{l,..,p}, t€{l,....p}, i, t €{1,...,20+ 1}, i # t (see Figure
2.3).

Let F? be an edge subset of [Vy, V] of ¢ (resp. ¢ — 1) edges if ¢ is odd (resp. even)
2041

and ' = U Fio.

With a generalized odd-wheel configuration with ¢ odd (resp. even) we associate the
following F'-partition inequality induced by the partition 7 and F',

dSWNF) 2 a)opikal s ()

311 (2.26)

(resp. z(6(m) \ F) > quz (¢g+1) l—l—qj2L—2)

2.2. FACETS OF KECSP(G) 43

edges of §(m) \ F

edges of F

Figure 2.3: A generalized odd-wheel configuration with & =4

Inequalities of type (2.26) will be called generalized odd-wheel inequalities. We have
the following theorem given without proof, since it follows the same line as that of
Theorem 2.2.5

Theorem 2.2.6 Inequalities (2.26) define facets of kKECSP(G).

2.2.4 SP-partition inequalities

In [21], Chopra introduces a class of valid inequalities for the kECSP when the graph
G is outerplanar, k is odd, and each edge can be used more than once. Let G = (V, E)
be an outerplanar graph and k£ > 1 an odd integer. He showed that if 7 = (V4,...,V}),
p > 2, is a partition of V', then the inequality

2(6(Vi, .., V,)) > H p—1, (2.27)

is valid for kECSP(G).

Didi Biha and Mahjoub [40] extended this result for general graphs and when each
edge can be used at most once. They showed that if G is a graph and 7 = (V4,...,V}),
p > 2, is a partition of V' such that G is series-parallel and k is odd, then inequality

44 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEM

(2.27) is valid for kECSP(G). They called inequalities (2.27) SP-partition inequalities
(SP stands for series-parallel). They also described necessary conditions for inequality
(2.27) to be facet defining, and showed that if G is series-parallel and & is odd, then
EECSP(G) is defined by the trivial, cut and SP-partition inequalities. Further con-
ditions for inequalities (2.27) to be facet defining are given in the following theorems.
But before, we give the next two lemmas which describe structural properties of the
solutions of the kECSP which satisfy inequalities (2.27) with equality. Note that, in
the following results, the indices are taken modulo p.

Lemma 2.2.5 [40]| Let T € P(G,k) and 7 = (V4,...,V,), p > 2, a partition of V' which
induces a series-parallel graph. If the SP-partition inequality induced by m is tight for
T, then

(Vi Vi) < [Q for all i j € {1,.p}, i £ (2.28)

Moreover, if (2.28) is tight for x for a given i and j with i < j, then the partition 7’
obtained by contracting V; and V; is also tight for x.

Lemma 2.2.6 Let T be an integer solution of P(G,k) and 7 = (V4,...,V},), p > 2, be
a partition of V' such that G is series-parallel. Let also t € {1,...,p}, such that the
set Vi is adjacent to exactly two elements of m, say V;_1 and Viy1. Then T satisifies at
least one of these inequalities

2([Vi, Vj]) > Ew with jo € {t — 1,t + 1}. (2.29)

Moreover, if T satisifies with equality the inequality (2.27) induced by 7, then

(Vi Vi = |5

Proof. Let T € R¥ be an integer solution of P(G,k). Suppose, w.l.o.g., that

Z([Vi, Vica]) = Z([Vi, Vigq]) and that jo =t — 1. As T € P(G, k), we have that
z(6(Vy)) = Z([Vi, Via]) + T([Vi, Vi) > k.

As 7 is integer, this yields Z([V;, Vi_1]) > [£].

2

Now if T satisfies with equality the S P-partition inequality induced by 7, then, by
Lemma 2.2.5, Z([V;, Vi1]) < ’—g-‘, implying, together with the previous result, that

ViV = |5

2.2. FACETS OF KECSP(G) 45

Theorem 2.2.7 Let G = (V, E) be a (k+ 1)-edge connected graph and k > 3 an odd
integer. Let m = (V4,...,V,,), p > 2, be a partition of V' such that G is series-parallel.
The SP-partition inequality induced by 7 defines a facet of kECSP(G), different from
the trivial inequalities, only if

i) Gr is 2-node-connected,
ii) G is outerplanar,

iii) |[Vi, Viga]] = [£] fori=1,..,p.

Proof.

i) First observe that G is k-node-connected with 1 < k& < 2. In fact, since G, is
series-parallel, it contains a node which is adjacent to exactly two other nodes. This
implies that the node-connectivity of G is at most 2. Moreover, as GG is connected,
G is also connected. Thus k£ > 1. We will show in the following that in fact £ = 2.
Suppose, on the contrary, that £ = 1, that is G; is 1-node-connected. Thus there exists
a node v;, € V. and two node sets Wy and W; of V. such that ({v;,}, W7, Ws) forms a
partition of V. and [y, W] = () (see Figure 2.4).

W1 W2

Figure 2.4: A 1-node-connected graph

Let p; = |W;|, i = 1,2, and 7 (resp. m) be the partition obtained by contracting
the sets of m which correspond to the nodes of Wy (resp. Wp) toghether with those
corresponding to v;,. Clearly, G ,, ¢ = 1,2, is series-parallel. Thus, the following
inequalities are valid for kECSP(G)

z(0(m;)) > {g—‘ (pi+1)—1, fori=1,2. (2.30)

46 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEM

As [Wy, W] = 0, by summing the inequalities (2.30), we get

2(8(m)) > @ (pr+pa+2)—2= g p—1+ g ~ 1 (2.31)

As k > 3, we have that [£] — 1 > 0, implying that the inequality (2.27) induced by
7 is dominated by those induced by 7 and w5, and hence, cannot define a facet.

ii) Suppose that G is series-parallel but not outerplanar, that is one cannot draw G,
in the plane as a cycle with non crossing chords. Thus, there exist two consecutive
sets of 7, say V; and Vii, such that there exist two sets, W', W2, of elements of 7
satisfying the following conditions (see Figure 2.5)

a) (W, W72 =0,

b) (W], Vil # 0 # W/, Vi for j = 1,2.

Figure 2.5: A partition inducing a series-parallel but not outerplanar graph

Let I ={ic{1,...p} | Vi, Viy1 € m and there exist W}, W? C V satisfying
Conditions a) and b)}. Hence, I # (). Let 7’ be the partition obtained by contracting

2.2. FACETS OF KECSP(G) a7

together the sets V;, Vi y, W}, W2, for every i € I. Clearly, G, is outerplanar. Let
pi (resp. p?) be the number of elements of 7 that are included in W} (resp. W?), and

pi = pr + p?. Also let r = Zpi and w5, 1 € I, j € {1,2}, be the partition obtained
icl

from 7 by contracting together every set of m which is not in W (see Figure 2.6).

partition 7/ partition Ty

Figure 2.6: Two partitions 7" and 7,

Obviously, the graph G . is series-parallel. Thus, the following inequalities are valid
w;
for kECSP(G),

z(d(n")) > [g-‘ (p—r—|I|) = 1 (inequality (2.27) induced by 7'), (2.32)
z(6(myr)) > _g_ (p; +1) =1, for all i € I (inequality (2.27) induced by 7y1),
(2.33)
z(0(myz)) > _g_ (p? +1) —1, for all i € I (inequality (2.27) induced by Tz,
(2.34)
x([Vi, Viza]) > 0 (trivial inequalities). (2.35)

By summing these inequalities, we get
k k
z((m)) > [5-‘ p—1+1|([5—‘ —2). (2.36)
If £ = 3, the right hand side of (2.36) is the same as that of (2.27) induced by

7. Therefore inequality (2.27) is redundant with respect to (2.32), (2.33), (2.34) and
(2.35), and hence cannot define a facet.

48 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEM

If k> 4, since |I| > 1, the right hand side of (2.36) is greater than that of (2.27).
Therefore, (2.27) is dominated by (2.32), (2.33), (2.34) and (2.35), and hence cannot
define a facet.

iii) Let ax > « denotes the S P-partition inequality induced by 7 and suppose that this
inequality defines a facet of kECSP(G) different from the trivial inequalities. Suppose
that there exists an integer i € {1,...,p} such that [[V;, Vis1]] < 551, Let e; be a fixed
edge of [V;,Vii1]. As ax > « is different from inequality x(e;) < 1, there exists a
solution T € kECSP(G) such that a7 = « and T(e;) = 0. We distinguish two cases.

Case 1. The set V; or V;, is exactly adjacent to two elements of 7. W.l.o.g. we will
suppose that V; is adjacent to V;_; and V41 only. As |[V}, Visi]| < % and T(e;) = 0,
we have Z([V;, Vi1]) < 51 — 1 and Z([Vi_1, Vi]) > £ + 1, which contradicts Lemma
2.2.5.

Case 2. The sets V; and V1 are both adjacent to at least three elements of 7 (see
Figure 2.7).

Figure 2.7: The sets V; and V5 are both adjacent to at least three elements of 7

Observe that, as GG, is outerplanar and hence series-parallel, one can obtain from 7 a

two-size partition by applying repeatidly the following operation. Let 7/ = (V7 ..., V;fj)

be a SP-partition of G’ and an element sz) incident to exactly two elements V;f) _, and

Vif;ﬂ of ;. By Lemma 2.2.6, we have either f([VZé, V;f)_l]) = % or f([VZf), VZf)H]) =
k1

%. W.l.o.g., we will suppose that f([VZf), Vlf)_l]) = =5~ since ip — 1 and 7o + 1 play

the same role. Then, the operation consists in contracting the sets Vg_l and Vlf) and

2.2. FACETS OF KECSP(G) 49

s ot it 41 (y/I9+! Jj+1
considering the partition 7/ = (V{™, ..., V/ 1) where

i1 i . .

Vit =/ fori=1,...,ip — 2,
g+l /i J

‘/ji()—l - ‘/io—l U ‘/;'()7
Vit S O S

Vim =V for i =1g,...,p; — 1.

We will say that sz) is merged with Viﬁ—r Note that each partition 7/ induces an
outerplanar subgraph of G and that we apply p — 2 times the operation to obtain a
two-size partition from 7. Also note that, by Lemma 2.2.5, the S P-partition inequality

induced by each partition 77 is tight for 7.

Let 770 be the first partition obtained by the application of this procedure and such
that there exists a node set V7 of 77 which is adjacent to exactly two elements, say
V7, and V2, and such that either V; C V% or V;;; C V%o, W.lo.g., we will suppose
that V; C V% and Vi1 C V/,. Remark that 7% is obtained by the application of
the procedure to 70~! and VJ°~! for some s € {1,...,p;,—1}, with V7~ adjacent to

exactly two elements of 770!,

Since 7% is the first partition that we have meet during the successive applica-
tions of the procedure and which satisfies the above condition, the partition 770~ =
(V7o ng%j) is necessarily such that

1. V/o~! is adjacent to exactly two elements V7°7" and V77",

jo—1 jo—1
2. V; Q V;ng and V;-‘,—l - V]—i?2)

— s

3. V/°, ! is adjacent to exactly three elements and Vsjjﬂ;l is adjacent to at least three
elements.

One can suppose, w.l.o.g., that V7°~" has been merged with V7°7" to obtain 77 (see
Figure 2.8).

50 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEM

yio—1 _ ydo

Jjo—1
Vit

Jjo—1 _ y/Jo
Vist = v,

Jjo—1 _ y/Jdo
Vs+4 —Vr+3

vier)
—~ ——

Jjo _ y/Jdo—1 Jjo—1
Vi =Vs? T uVE

Figure 2.8: Partitions 70~ and 7.

Now, since by assumption V; C V7% and Viy; C V7,, we have that |[V70, V7] >
|[Vi, Vit1]|. We are going to show that in fact |[V7, Vﬂilﬂ = |[Vi, Vis1]|. Suppose the
contrary, that is to say that there exists an edge e € [V7°, V’?,]\[Vi, Vis1]. Clearly, there
exist two elements V; and Vi of such that e € [V, Vy] and V; C V0 and Vy, C Vfil.
Since G is outerplanar, and hence its nodes can be drawn on a cycle with no crossing
chords, and since V; and V;,; are consecutive on this cycle, the node set V; comes before
V; and Vy comes after V;,; on this cycle (see Figure 2.9 for an illustration).

2.2. FACETS OF KECSP(G) 51

Jjo _— y/do—1 Jjo—1
Ve, =V SR 7N

Figure 2.9: An edge of e € [V, V7]\ [Vi, Va]. Here e € [V;, Vi with ¢ = 7 and ¢ = 3.

However, in this situation, any edge e € [V}, Vy/] is a chord which necessarily crosses
the edges of §(V; U V1) (see Figure 2.9), contradicting the fact that G is outerplanar.
Thus |[V7°, V]| = |[Vi, Viya]|. Therefore, as |[Vi, Visi]| < b1 and Z(e;) = 0, we have
that Z([V70, V2,]) < 52 — 1 and Z([V7, V°,]) > &2 + 1, which contradicts Lemma
2.2.5 and ends the proof. (]

The following theorem gives some sufficient conditions for inequalities (2.27) to be
facet defining.

Theorem 2.2.8 Let G = (V, E) be a graph and k > 3 an odd integer. Let m =
(Vi, ... Vi), p > 2, be a partition of V' such that G is outerplanar and 2-node-connected.
Then the SP-partition inequality induced by w is facet defining for kECSP(G), if the
following conditions hold

i) G[Vi] is (k+ 1)-edge connected for i =1, ...,p,

i) (Vo Vill = [E], i = 1,
(see Figure 2.10 for an illustration with k = 3).

52 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEM

TN

NS

Figure 2.10: An outerplanar configuration with & = 3

Proof. Note that since G, is outerplanar and Conditions 1) and 2) hold, G is
(k + 1)-edge connected. It then follows that kECSP(G) is full dimensional. Let
us denote by ar > « the SP-partition inequality induced by 7 and let F = {z €
EECSP(G) | ax = a}. Clearly, F is a proper face of kECSP(G). Now suppose that
there exists a facet defining inequality bx > « different from the trivial inequalities
such that F C {x € kECSP(G) | bx = a}. We will show as before that b = a.

Let T; be an edge subset of [V, Vi11], i =1,...,p, of % edges and let T = T; \ {g:},
where g; is a fixed edge of T;. Consider

p
Fo = J BV,
=1

p

Ey = (| JT) \ {gi,} for some iy € {1, .., p},
i=1

E2 = E1 U Eo.

Note that g;, ¢ Es and g;,11 € Es. Since by Condition 1) the subgraphs induced by
the node sets V1, ..., V, are (k + 1)-edge connected, it is not hard to see that Ey and
EY = (Fy \ {giy+1}) U {9, } induce k-edge-connected subgraphs of G. Since x¥* and
2% belong to F, we have that bx™ = br®> = a and hence b(g;,) = b(gi,+1). As gi, and
Jio+1 are arbitrary edges of Tj, and T; 41, respectively, it follows that b(e) = b(e’) for all
e € T;, and €' € T, 1. Moreover, since T;, and T}, are arbitrary subsets of [V, , Vi, 1]
and [Vi 41, Viy+2), respectively, we obtain that b(e) = b(¢') for all e € [V;,, Viy+1] and

2.2. FACETS OF KECSP(G) 53

e € [Vigr1, Vigral, 10 = 1, ..., p. Consequently, by symmetry, we get

p
b(e) = b(e) for all e, ¢’ € | J[Vi, Visl. (2.37)

i=1

Now let e € [Vi,,Vjol, 40,50 € {1,....,p} with |ig — jo| > 1. Note that Ty = T,
T =T, 1 and Ty = T. Consider the edge sets

Ey = (B2 \ {gi;—1}) U{e},

Ey = (Es\ {e}) U{gi}-
Using Lemma 2.2.2 and the fact that Fy induces a k-edge-connected subgraph of G,
we can see that F; and) induce k-edge-connected subgraphs of G. Since z%* and

21 belong to F, it follows that bx! = bx™ = «a, and hence b(e) = b(g;,). By (2.37)
this yields

b(e) = b(e) for all e, ¢’ € o(m).

Since ax® = brP2 = «, we obtain that b(e) = 1 for all e € (7).

Next, we will show that b(e) = 0 for all e € E,. Consider the edge set
E5 = E, \ {e} for some e € Ey.

Since G[V;], i = 1,...,p, are (k + 1)-edge connected, Fs induces a k-edge-connected
subgraph of G. As 22 and 2 belong to F, we have that bz"? = bx® = «, and thus
b(e) =0 for all e € E.

In consequence we get b = a and the proof is complete. (]

Chopra [21] described a lifting procedure for inequalities (2.27) which can be pre-
sented as follows. Let G = (V,E) be a graph and £ > 3 an odd integer. Let
G’ = (V, EUL) be a graph obtained from G by adding an edge set L. Let 7 = (V4,...,V})
be a partition of V' such that GG is series-parallel. Then the following inequality is valid
for kECSP(G)

2(6a(Va, .., V,)) + > a(e)z(e) > mp— 1, (2.38)

e€LNSe (Vi,..., Vi)

54 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEM

where a(e) is the length (in terms of edges) of a shortest path in G, between the
endnodes of e, for all e € L N g (V4 ..., V}).

We will call inequalities of type (2.38) lifted S P-partition inequalities. Chopra [21]
also showed that, when G is outerplanar, inequality (2.38) defines a facet of kECSP(G’)
if G is maximal outerplanar, that is to say G is outerplanar and if we add a new edge
in GG the new graph is not outerplanar. In the following we show that under the same
conditions, an inequality of type (2.38) also defines a facet of kECSP(G).

Before this, we give the following lemma whose proof can be found in [21].

Lemma 2.2.7 [21]| Let G = (V, E) be a mazimal outerplanar graph which is 2-node
connected. Let u,v be two nodes of G and Py, and P, two node-disjoint paths between
uw and v. Also let U = {ug,...,up, }, 11 > 2 and W = {wq, ..., wy, }, 72 > 2, the node
sets of Py and Py respectively, with ug = wy = u and u,, = u,, = v. Remark that
UNW =A{u,v} and V. =UUW. Ifl > 2 is the length of a shortest path between u
and v in G, then there exists at least | — 1 egdes e = wyw; such that u; € U\ {u,v} and
w; € W\ {u,v}.

Theorem 2.2.9 Let G = (V. E) be a graph and m = (V4,...,V,), p > 2, be a partition
of V such that G, = (Vi, E,) is outerplanar. Let G = (V,E) be a graph such that

E = EU{ey,...,e}, | > 1. The lifted SP-partition inequality induced by ™ on G
defines a facet of kECSP(G) if the following conditions holds.

1. G is 2-node-connected and mazimal outerplanar,
2. H‘/Zu‘/l—i-l]‘ Z [g—‘7 L= 1;"';p; (mOdUZO p);

3. G[Vi] is (k + 1)-edge connected for all i =1,...,p.

Proof. Note that if Conditions 1)-3) hold, then G and G are both (k + 1)-edge

connected. It then follows that Kk ECSP(G) is full dimensional.

Let us denote by ar > «, the lifted SP-partition inequality induced by 7 on G and

F = {x € kECSP(G) | ax = a}. By Conditions 1)-3), the restriction of ax > a to G

defines a facet of kECSP(G). Thus, F #) and is a proper face of kECSP(G). Now
suppose that there exists a facet defining inequality bz > « different from the trivial

inequalities such that F C {x € kECSP(G) | bx = a}. We will show that b = a.

2.2. FACETS OF KECSP(G) 55

Let V; = {v1,...,v,}, where v; corresponds to the set V;, i = 1,...,p, and let G, =
(Vy, Ex) be the subgraph of G induced by 7. Note that E, C E,. Since Conditions
1)-3) hold, by Theorem 2.2.8, the S P-partition inequality induced by m on G defines a
facet of kECSP(G). Using a proof similar to that of Theorem 2.2.8, one can show that

ble) =0, for all e € UE), and b(e) = 1, for all e € E,. In the following, we are

going to show that b() a(e) for all e € {ey,...,e;}. Recall that for all e € E; \ Ey,
a(e) is the length of a shortest path in G, between the endnodes of e.

Let T; be an edge subset of [V;, Vii1], i = 1,...,p, of % edges and T} = T; \ {gi},
where g; is a fixed edge of T;. Let € = uv € {ey,...,e;} and P, and P, be two paths
in G, between u and v. Also let r be the length of a shortest path between u and
vin G,. Let U and W denote the node sets of P, and P, respectively. By Lemma
2.2.7, there exist r — 1 edges f; € E,, i € {1,...,r — 1}, whose endnodes are in U and
W, respectively. We let w;, = w and wj,, ..., w;,+,—1 be the endnodes of the edges f;,
1=1,..,r—1,in W.

Let

io—1 p

By ={fi, frr} U(U UT U) U (()EW).

i=ig+r i=1
Obviously, E; induces a solution of the kECSP on G and its incidence vector, ==
satisfies ar > o with equality. Let g; € T;, for i € {1,...,p} \ {i0,..., 750 + 7 — 1}, and
consider the edge set

Fg = (El U {E}) \ {927 1= 7:0 -, ...,7:0 — 1}

It is not hard to see that Es induces a solution of the kECSP on G. Moreover, 2B
satisfies ax > o with equality. This implies that bz”! = bx¥? = 3. Thus,

b2 = bz + b(e) Zbgl

Since g; € Er, i = ig — 1,...ip — 1, and hence b(g;) = 1, we have that b(e) = r.
Therefore, for an edge e € {ey, ..., e}, b(e) = a(e).

From this, we get b(e) = a(e), for all e € E and hence, we have b = a, which ends
the proof of the theorem. O

56 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEM

2.2.5 Partition Inequalities

In this section we present a further class of inequalities, valid for tECSP(G), introduced
by Grotschel et al. in [66], that generalizes the cut inequalities. These inequalities,
called partition inequalities, are defined as follows.

Let 7 = (V4,...,V,), p > 3, be a partition of V. The partition inequality induced by
7 is given by

2(6(Vi, .., V))) > [% . (2.39)

If kp is even, then inequality (2.39) is redundant with respect to the cut inequalities.
Grotschel et al. [66] gave sufficient conditions for the partition inequalities (2.39) to
be facet defining.

Note that the partition inequalities are not a special case of the F-partition in-
equalities. In fact, if we consider a partition 7 = (V, V4, ..., V},), p > 2, the partition
inequality induced by 7 is

k 1
z(0(Vo, Vi, .., Vp)) = [#w : (2.40)
However the F-partition inequality induced by 7 and F = () is given by
k
z(0(Vo, Vi, ..., V) > %ﬂ : (2.41)

One can remark that inequality (2.40) dominates inequality (2.41).

2.3 Reduction operations

In this section, we are going to describe some graph reduction operations which will be
utile for our Branch-and-Cut algorithm. These operations are based on the concept of
critical extreme points of P(G, k) introduced by Fonlupt and Mahjoub [49] for k£ = 2
and extended by Didi Biha and Mahjoub [39] for £ > 3.

2.3.1 Description

Before describing these operations, we shall first introduce some notation and definition.
Let G = (V, E) be a graph and k > 2 an integer. If 7 is a solution of P(G, k), we will

2.3. REDUCTION OPERATIONS 57

denote by Ey(T), E1(T) and E¢(T) the sets of edges e € E such that T(e) =0, T(e) =1
and 0 < T(e) < 1, respectively. We also denote by Cy(7) the set of degree tight cuts
d(u) such that 6(u) N E¢(T) # 0, and by C,(T) the set of proper tight cuts (W) with
S(W)N E¢(T) # 0. Let T be an extreme point of P(G, k). Thus there is a set of cuts
Cy(T) € Cp(T) such that 7 is the unique solution of the system

z(e) =0 for all e € Ey(T);
() z(e) =1 for all e € Ey(T);
Y 26w) =k for all 5(u) € Cy(@);
z(6(W)) =k forall 6(W) € C(T).

Note that the system S(T) cannot contain an equation z(d(WW)) = k such that 6(W) N
E¢(T) = 0. Such an equation is redundant with respect to xz(e) = 0, e € Ey(T), and
z(e) =1, e € By (T).

Suppose that T is fractional. Let T’ be a solution obtained by replacing some (but at
least one) fractional components of T by 0 or 1 (and keeping all the other components
of T unchanged). If ' is a point of P(G,k), then it can be written as a convex
combination of extreme points of P(G, k). If 7 is such an extreme point, then 7 is said
to be dominated by T, and we write T > 7. Note that if T dominates 7, then {e €
Elo<gle)<l}c{ecE|0<T(e) <1}, {ec E|T(e) =0} C{eec E|7yle) =0}
and {e € E'|Z(e) =1} C {e € E | y(e) = 1}. The relation > defines a partial ordering
on the extreme points of P(G, k). The minimal elements of this ordering (i.e., the
extreme points = for which there is no extreme point y such that = > y) correspond
to the integer extreme points of P(G, k). The minimal extreme points of P(G, k) are
called extreme points of rank 0. An extreme point x is said to be of rank p, if = only
dominates extreme points of rank < p—1 and if it dominates at least one extreme point
of rank p — 1. We notice that if T is an extreme point of rank 1 and if we replace one
fractional component of T by 1, keeping unchanged the other integral components, we
obtain a feasible solution 7’ of P(G, k) which can be written as a convex combination
of integer extreme points of P(G, k).

Didi Biha and Mahjoub [39] introduced the following reduction operations with re-
spect to a solution T of P(G, k).

0,: delete an edge e € E such that Z(e) = 0;

0y: contract a node subset W C V such that G[W] is k-edge-connected and T(e) = 1
for all e € E(W);

58 CHAPTER 2. THE K-EDGE-CONNECTED SUBGRAPH PROBLEM

f3: contract a node subset W C V such that |W| > 2, [W| > 2, [§(W)| = k and

E(W) contains at least one edge with fractional value;

f4: contract a node subset W C V such that [W| > 2, [W| > 2, GIW] is [£]-edge
connected, |6(W)| =k + 1 and T(e) = 1 for all e € E(W).

Starting from a graph G and a solution T € P(G, k) and applying 0y, 0, 63, 0,, we
obtain a reduced graph G’ and a solution 7' € P(G’, k). Didi Biha and Mahjoub [39]
showed that 7’ is an extreme point of P(G’, k) if and only if T is an extreme point of
P(G, k). Moreover, they showed the following results.

Lemma 2.3.1 [39] @ is an extreme point of rank 1 of P(G', k) if and only if T is an
extreme point of rank 1 of P(G, k).

Lemma 2.3.2 [39] If C;(z) = 0, then the graph induced by Ef(T) is an odd cycle
C C FE such that

=

i)
ii) T(6(uw)) =k for allu e V(C).

(e)=1 forallec C,

An extreme point T of P(G, k) will be said critical if it is of rank 1 and none of the
operations 6y, 05, 03, 0, can be applied to it. If such an extreme point satisfies the
assumption of Lemma 2.3.2, then it violates the following F-partition inequality

|IC] +1
> x(e) > 5

ecC

Hence the critical extreme points of P(G, k) that satisfy the assumption of Lemma
2.3.2 can be separated in polynomial time.

We will use operations 6y, 0, 65, 6,4 in our Branch-and-Cut algorithm for the kECSP.
As we will see, we use them as a preprocessing for the separation procedures.

2.3.2 Reduction operations and valid inequalities

Given a fractional solution T of P(G, k), we let G' = (V', E') and T’ be obtained by
repeated applications of operations 6y, 05, 63, 64 with respect to 7.

As pointed out above, T is an extreme point of P(G’, k) if and only if T is an extreme
point of P(G, k). Moreover, we have the following lemmas which can be easily seen.

2.3. REDUCTION OPERATIONS 59

Lemma 2.3.3 Let a'z > « be an F-partition inequality (resp. partition inequality)
valid for kECSP(G') induced by a partition 7' = (Vg,V{,...,V)), p > 2, (resp. 7' =
(Vi V), p>3) of V. Let m= (Vo, Vi, .., Vp), p > 2, (resp. m= (Vi, .., V,), p > 3)
be the partition of V' obtained by expanding the subsets V! of ©'. Let ax > « be an
inequality such that

a'(e) forallee E',
ale) =< 1 foralle € (E'\ E') Nog(m),

0 otherwise.

Then ax > « is valid for kKECSP(G). Moreover, if a'v > « is violated by T', then
ax > « 1s violated by .

Lemma 2.3.4 Let 'z > « be an odd path inequality (resp. SP-partition inequality)
valid for kECSP(G') induced by a partition ©' = (Wi, Wy, V{,...V5), p > 2 (resp.
m=WV,..V)), p>3) Let m = (Wy,Wy,Vi,... Vo), p > 2 (resp. ©= (V1,...,V}),
p > 3), be the partition of V' obtained by expanding the elements of '. Let ax > «
be the corresponding lifted odd path inequality (resp. lifted SP-partition inequality)
obtained from a’x > « by application of the lifting procedure described in Section 2.2.2
(resp. Section 2.2.4) for the edges of E\ E'. Then ax > « is violated by T, if a'z > «
is violated by T'.

Lemmas 2.3.3 and 2.3.4 show that looking for an odd path, F-partition, S P-partition
or a partition inequality violated by T reduces to looking for such inequality violated by
7' on G'. Note that this procedure can be applied for any solution of P(G, k) and may, in
consequence, permit to separate fractional solutions which are not necessarily extreme
points of P(G, k). In consequence, for more efficiency, our separation procedures will
be performed on the reduced graph G’. The violated inequalities generated in G’ with
respect to T’ are lifted to violated inequalities in G with respect to T using Lemmas
2.3.3 and 2.3.4.

Chapter 3

Branch-and-Cut algorithm for the
EECSP

In this chapter, we describe a Branch-and-Cut algorithm for the kECSP. Our aim is to
address the algorithmic applications of the theoritical results presented in the previous
sections and describe some strategic choices made in order to solve that problem. So,
let us assume that we are given a graph G = (V, E) and a weight vector w € RF
associated with the edges of G. Let k > 3 be the connectivity requirement for each

node of V.

3.1 Branch-and-Cut algorithm

3.1.1 Description

We describe the framework of our algorithm. To start the optimization we consider
the following linear program given by the degree cuts associated with the vertices of
the graph G together with the trivial inequalities, that is

eclR
r(0(u) > k for all u € V,
0<z(e) <1 foralle € E.

The optimal solution 77 € R¥ of this relaxation of the kECSP is feasible for the problem
if 7 is an integer vector that satisfies all the cut inequalities. Usually, the solution 7 is

3.1. BRANCH-AND-CUT ALGORITHM 61

not feasible for the kECSP, and thus in each iteration of the Branch-and-Cut algorithm,
it is necessary to generate further inequalities that are valid for the kECSP but violated
by the current solution 7. For this, one has to solve the so-called separation problem.
This consists, given a class of inequalities, in deciding whether the current solution
y statisfies all the inequalities of this class, and if not, in finding an inequality that
is violated by y. An algorithm solving this problem is called a separation algorithm.
The Branch-and-Cut algorithm uses the inequalities previously described and their
separations are performed in the following order

1. cut inequalities,

2. S P-partition inequalities,
3. odd path inequalities,

4. F-partition inequalities,

5. partition inequalities.

We remark that all inequalities are global (i.e., valid for all the Branch-and-Cut
tree) and several inequalities may be added at each iteration. Moreover, we go to
the next class of inequalities only if we haven’t found any violated inequalities in the
current class. Our strategy is to try to detect violated inequalities at each node of the
Branch-and-Cut tree in order to obtain the best possible lower bound and thus limit
the number of generated nodes. Generated inequalities are added by sets of 200 or
fewer at a time.

Now we describe the separation procedures used in our Branch-and-Cut algorithm.
These are all heuristic procedures except that for the cut inequalities which is performed
using an exact polynomial-time algorithm. The procedures are applied on G’ with
weights (7'(e),e € E') associated with its edges where 7/ is the restriction on E’ of the
current LP-solution 7 (G" and ¥ are obtained by repeated applications of operations
01, 6y, 05, 64).

3.1.2 Separation of cut inequalities

The separation of the cut inequalities (2.3) can be performed by computing minimum
cuts in G'. This can be done in polynomial time using Gusfield algorithm |68]. This
algorithm produces the so-called Gomory-Hu tree with the property that for all pairs

62 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE KECSP

of nodes s, t € V', the minimum (s, ¢)-cut in the tree is also a minimum (s, t)-cut in the
graph G’. The algorithm requires |V’| — 1 maximum flow computations. The maximum
flow computations are handled by the efficient Goldberg and Tarjan algorithm |58] that
runs in O(m/'n’log %) time where m’ and n’ are the number of edges and nodes of G,
respectively. Thus our separation algorithm for the cut inequalities is exact and runs
in O(m'nlog ™) time.

3.1.3 Separation of odd path inequalities

In what follows, we consider the separation of the odd path inequalities (2.4). For this,
we need the following lemma.

Lemma 3.1.1 Letz € R be a fractional solution of P(G, k) and m = (W1, Wy, Vi, ..., Vo),
p > 2, a partition of V', which induces an odd path configuration. If each edge set
Vi, Visal, i = 1,...,2p — 1, contains an edge with fractional value and

o([Vier, VII) + 2([Vi, Vi) <1 fori=2,...,2p— 1,

then the odd path inequality induced by m is violated by x.

Proof. As z([Vi_1,Vi]) + 2([V;, Visa]) < 1,i=2,...,2p — 1, we have that

x([‘/QS—la ‘/25]) + I([Vésa ‘68-‘1—1]) S 1 fOI" s = 1a P — 1a (31)
x([‘/Zsa ‘/284-1]) + z([%s-ﬁ-b ‘/28-‘1-2]) S 1 for s = 1a e P = 1. (32)

By multiplying inequality (3.1) by £ and inequality (3.2) by > and summing the
resulting inequalities, we obtain

EZﬂW@wHD+§jp;1an;mﬂpsp—l, (3.3)

el icl

where I = {2,4,6,....,2p—2} and T = {1,2,...,2p — 1} \ I. Because each set [V}, Vi, 1],
i=1,...,2p — 1, contains an edge with fractional value, we have that x([V;, Vi11]) <1
for all € I. Hence

> a([Vi, Vie]) < p. (3.4)

3.1. BRANCH-AND-CUT ALGORITHM 63

By multiplying inequality (3.4) by % and summing the resulting inequality and inequal-
ity (3.3), we obtain

2p—1
Z x([‘/’l? ‘/H-l]) < p,
i=1
and the result follows. O

Our separation heuristic is based on Lemma 3.1.1. The idea is to find a partition
= (Wi, W3, V{,...,V3,), p = 2, which induces an odd path configuration that satisfies
the conditions of Lemma 3.1.1. The procedure works as follows. We first look, using
a greedy method, for a path I' = {ey,...,e91}, p > 2, in G’ such that the edges
ey, ..., eap—1 have fractional values and ¥'(e;—1) +¥'(e;) < 1, for i = 2,...,2p — 1. If
v, ..., Uy, are the nodes of T' taken in this order when going through I', we let V' = {v;},
i=1,.2p, and T} = (U VYUV, (resp. T} = (U VYUV UV, if pis odd (resp.

S S
even), and Ty = U VYUV, (resp. Th = (U V/)) if p is odd (resp. even) where I

i€lq 1€ls
and I, are as defined in Section 2.2.1. In order to determine W7 and W, we compute

a minimum cut separating 77 and Ty. If §(W) is such a cut with 77 C W, we let
Wi =WN\T and Wy = V' \ (W UT3). If the partition 7 = (W, W5, V{, ..., V5) thus
obtained induces an odd path configuration, then, by Lemma 3.1.1, the corresponding
odd path inequality is violated by 7. If not, we apply again that procedure by looking
for an other path. In order to avoid the detection of the same path, we label the edges
of the detected paths so that they won’t appear again when searching for a new path.
This procedure is iterated until either a violated odd path inequality is found or all the
edges, having fractional values, are labeled. The routine that permits to look for an
odd path runs in O(m/n’) time. To compute the minimum cut separating 7} and 75,
we use Goldberg and Tarjan algorithm [58]. Since this algorithm runs in O(m’n’log"ﬁ)
time, our procedure is implemented to run in O(m*n’log %) time.

In the lifting procedure for inequalities (2.4) given in Section 2.2.2 we have to compute
a coefficient A for some edges e € '\ E’. Since the computation of this coefficient is
itself a hard problem, and A < 2, we consider 2 as lifting coefficient for those edges
rather than A.

64 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE KECSP

3.1.4 Separation of F-partition inequalities

Now we discuss our separation procedure for the F-partition inequalities (2.21). These
inequalities can be separated in polynomial time using the algorithm of Baiou et al.
[6] when k is even and the edge set F' is fixed. For the general case, we devised three
heuristics to separate them.

Our first heuristic is based on Lemma 2.3.2. As pointed out by that lemma, if T is a
critical extreme point of P(G, k) such that C5(7) = (), then the edges having fractional
values with respect to 7 have all a value equal to % and form an odd cycle C'. Moreover,
Z(0(u)) = k for all w € V(C') and

|IC| +1
> ale) 2 =5 —,

ecC

is an F-partition inequality violated by . The heuristic works as follows. It starts
by determining an odd cycle in G’ whose edges have fractional value and nodes are
tight. Let v{,...,v;, p > 3, be the nodes involved in this cycle. Then we let V;/ = {v;},
fori=1,..,p, and Vj = V' \ {v],...,v,}. We choose the edges of F' among those of

6(V{) having values greater than 1 and in such a way that |F| and kp have different
parities (if such an edge set F' is empty then we look for an other partition). The cycle

is obtained by a direct labeling procedure. Hence the heuristic runs in a linear time.

Before introducing our second heuristic, we first give the following lemma.

Lemma 3.1.2 Let x € R” be a fractional solution of P(G,k) and m = (Vo, Vi, ..., V,),
p > 2, a partition of V' such that ©(6(V;)) = k for i = 1,....p. Then an F-partition
inequality, induced by m and an edge set F C 0(Vy) such that |F| and kp have different
parities 1s violated by x if the following inequality holds

|F| — 2(F) + 2(6(Vy) \ F) < 1. (3.5)

Proof. As 2(6(V;)) =k, i=1,...,p, we have that

bS]

2(0(Vi)) = 20(0(V1, ., V) + 2(6(Vo)) = kp.

1=1

This together with (3.5) yield

— 22(F) + 22(5(Vo)) + 22(6(V4, ..., V,)) < kp — |F| + 1,

3.1. BRANCH-AND-CUT ALGORITHM 65

and thus the statement follows. O

The heuristic is based on Lemma 3.1.2. It starts by determining all the nodes u of V'
such that 7'(d(u)) = k and d(u) contains at least one edge with fractional value. Let
{v], v}, p = 2, be the set of such nodes. We consider the partition (Vg, V/,...,V})
such that V/ = {v/}, fori =1, ..., p, and Vj = V'\{v1, ..., v, }, and choose the edges of F’
in a similar way as in the first heuristic. If inequality (3.5) holds with respect to F' and

o, then by Lemma 3.1.2 the F-partition inequality corresponding to (Vg,V{,..., V)
and F' is violated by 7.

Before presenting our last heuristic for the F-partition inequalities, let us first remark
that a partition (Vg,V/,...,V;) and an edge set F' C 0(V{) may induce a violated F-
partition inequality if 7'(6(Vy)) is high and the edges of F' are among those of 6(V})
with high values. Our heuristic tries to find such a partition. For this, we first compute
a Gomory-Hu tree in G’ with the weights (1 —7'(e), e € E’) associated with its edges.
Then from each proper cut §(W) with V' \ W = {v},...,v,}, p > 2, obtained from the
Gomory-Hu tree, we consider the partition 7 = (Vg, V/,...,V)) such that V| = {v}},
for i = 1,...,p, and Vj = W. The edge set F' is chosen in a similar way as in the
previous heuristics. Since the computation of the Gomory-Hu tree can be done in

O(m'n"*log %?) time, the heuristic runs in O(m/n’?log %?)

These three heuristics are applied in the Branch-and-Cut algorithm in that order.

3.1.5 Separation of SP-partition inequalities

Now we turn our attention to the separation of the SP-partition inequalities (2.27).
These inequalities can be separated in polynomial time using the algorithm of Baou
et al. [6] when G’ is series-parallel. That algorithm uses a reduction of the separation
problem to the minimization of a submodular function. Recently, Didi Biha et al. [42]
devised a pure combinatorial algorithm for the separation of the S P-partition inequali-
ties when the graph is series-parallel. For our purpose, we devised a heuristic to separate
inequalities (2.27) in the general case. This heuristic is based on Theorems 2.2.7 and
2.2.8. The main idea of the heuristic is to determine a partition 7 = (V/, ..., Vp'), p =3,
of V' which induces an outerplanar graph such that |[V/,V/]| > %L i =1,....p,
(modulo p) (see Figure 2.10), and for every consecutive sets V;' and V, the edge set
[V, V] contains at least one edge with fractional value. To this end, we look in G’ for a

66 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE KECSP

path I' = {v{v}, vhv}, ..., v)_yv,_1}, p > 3, such that |[v},v},]| > [%] and [v],v],,] con-
tains one edge or more with fractional value, for i = 1,...,p—2. We then let V' = {v]},
i=1,..,p—1,and V) = V'\ {v},...,v, ;}. Afterwards, we check by a simple heuristic
if the graph G’ is outerplanar. Finally, we check if the SP-partition inequality induced
by 7 is violated by ¥ or not. If either the graph G’ is not outerplanar or the SP-
partition inequality, induced by 7, is not violated by 7/, we apply again this procedure
by looking for an other path. In order to avoid the detection of the same path, we
label the nodes we met during the search of the previous ones, so that they won’t be
considered in the search of a new path. This process is iterated until either we find a
violated S P-partition inequality or all the nodes of V’ are labeled. The heuristic can
be implemented to run in O(m'n’) time.

3.1.6 Separation of partition inequalities

Now we discuss the separation of the partition inequalities (2.39). First observe that
if 7= (V/,...,V)) is a partition of V', with p > 3 and odd, such that 7' (6(V})) = &,
for i = 1,...,p, then the partition inequality induced by = is violated by 7. Thus
one can devise a heuristic to separate inequalities (2.39) which consists in finding a
partition 7 = (V/,..., V), with p > 3 and odd, such that 7'(6(V})) is as small as
possible for ¢ = 1,...,p. To do this, we compute a Gomory-Hu tree, say T, in G’
with the weights (7'(e),e € E’) associated with its edges. After that, we contract the
disjoint node subsets that induce proper tight cuts in T. Let V{, ..., V/ be these sets and
t

{veg1, s 0 = VI\ (U V). We then consider the partition (V{, ..., V/, {vis1}, ...y {0p})
i=1
and check whether or not the corresponding partition inequality is violated by 7’. This

algorithm leads to an O(m'n"?log %?) time complexity.

To store the generated inequalities, we create a pool whose size increases dynamically.
All the generated inequalities are put in the pool and are dynamic, ¢.e., they are
removed from the current LP when they are not active. We first separate inequalities
from the pool. If all the inequalities in the pool are satisfied by the current LP-solution,
we separate the classes of inequalities in the order given above.

3.1.7 Implementation of reduction operations

As mentioned before, the reduction operations 6y, 65, 05, 6, are applied before the sepa-
ration procedures. Here we describe the implementation of these reduction operations.

3.1. BRANCH-AND-CUT ALGORITHM 67

We give only the algorithms for Operations 6, 65 and 6. That of 8, is trivial since it
consists in deleting every edge e € E with 7(e) = 0. Note that Operations 6, 65 and
0, are applied on the support graph G(7).

3.1.7.1 Implementation of Operation 6,

Operation 6, consists in contracting a node set W C V' such that the subgraph G[W]
induces a k-edge-connected subgraph and 7(e) = 1 for all e € E(W).

We apply the following heuristic for Operation ;. First, we consider the graph
(1 obtained by deleting from G(7) all the edges with a fractional value and compute
the connected components of G;. Let (V1,....,V,), p > 1, be the set of the connected
components. Note that G; may be connected. Then, we apply the following procedure
to every connected component of G;. Consider a stack @) of node sets, initialized with
the sets V;, i = 1,...,p. Remind that to push a node set W in @ is to put W on the
top of (). Also to pop an element from () is to remove from () the node set which is
on the top (). We apply the following algorithm on the sets in () until) is empty.

Algorithm 2: Operation 6,

Data: Q ={V4,...,V,}, G(y) = (V. E(W))
Result: Reduced graph G, = (V,, E,)
begin

while @) is not empty do

Let W be the top of @) and pop W;

if [W|>2 and |V \W|> 2 then

if the subgraph induced by W in G(y) does not contain edges with

fractional value then
Check if G;[W] is k-edge-connected or not by computing the

minimum capacity cut of G;[W];
if ¢true then
| contract W;
else
Let [W;, W3] denote the minimum capacity cut of G;[W];
L Push Wy and W5 on Q;

end

To compute the minimum capacity cut of G1[W], we use Hao and Orlin’s algorithm
[69] which runs in O(nmlog %2) times. Note that given a set V;, ¢ = 1,..., p, the main

68 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE KECSP

loop of Algorithm 2 contains a number of iterations in O(log(|V;|)). Each iteration
consists at most in checking if the graph induced by W contains edges with fractional
value and computating of a minimum capacity cut. Thus, the algorithm for Operation
6 runs in O(log (n)(nmlog (%) + m)). Hence, this procedure is polynomial.

3.1.7.2 Implementation of Operation 63

Operation 3 consists in contracting a node set W such that |W| > 2, [V \ W| > 2,
[0(W)| =k and E(V\W) contains edges with fractional values. We devise the following
heuristic for this operation. First we give 1 as capacity for every edge of G(y) and
compute a Gomory-Hu tree on it. Let 7" be the tree obtained. Observe that every
edge of T" with weight k& induces a cut 6(W) of exactly k edges in G(7). We apply the
procedure described below on every k-capacity cut 6(W) obtained from 7" until we find
a candidate node set to contract or we explore all the k-capacity cuts obtained from
T. The procedure is described as follows. If [W| > 2 and |V \ W| > 2, then we check
if the subgraph induced by V'\ W in G(7) contains edges with fractional values or not.
If this is the case, then we contract W. If not, then we check if the graph induced by
W in G(7) contains edges with fractional values. If this is the case, then we contract
V' \ W and terminate the procedure.

We repeat this procedure until no contraction is possible by the algorithm.

The implementation for Operation €5 is summarized by Algorithm 3.

3.1. BRANCH-AND-CUT ALGORITHM 69

Algorithm 3: Operation 03

Data: G(7) = (V. E(9))

Result: Reduced graph G, = (V,, E,)
begin

repeat
Give 1 as capacity on the edges of G(7);

Compute a Gomory-Hu tree T
foreach d(W) obtained from T such that |§(W)| = k do
if |W|>2 and |V \W|> 2 then

if G(y)[V \ W] contains edges with fractional values then
Contract W,

| Break;
else

if G(y)[W] contains edges with fractional values then
L Contract V' \ W;

Break;

until no contraction is possible;
end

This algorithm contains at most O(log (n)) iterations. Each iteration is composed of
the computation of a Gomory-Hu tree and, for every cut §(1W') obtained in 7', the check
that G(7)[V\W] or G(7)[W] contains edges with fractional values. As the computation
of the Gomory-Hu tree runs in O(mn? log %2), each iteration runs in O(mn? log %2 +m).
Thus, the whole algorithm runs in O(log (n)(mn?log %2 +m)) and is polynomial.

3.1.7.3 Implementation of operation 6,

Operation 60, consists in contracting a node set W such that [W| > 2, [V \ W| > 2,
6(W)] = k+ 1, GIW] is [%]-edge-connected and g(e) = 1 for all e € E(W). We
propose two heuristics for this operation.

The first heuristic is as follows. We give 1 as capacity for every edge of G(y) and
compute a Gomory-Hu tree on G(7) with these capacities. If 7" denotes this tree, one
can observe that every edge of 7" with weight k& + 1 induces in G(7) a cut (W) of
exactly k£ + 1 edges. For every cut 6(W) such that [6(W)| = k + 1 obtained from T,
we check if the subgraph G(7)[W] does not contain any edge with fractional value.
If this is the case, then we check if G(7)[W] is [£]-edge-connected by computing its

70 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE KECSP

minimum cut. If G(y)[W] is [£]-edge-connected, then we contract W. If G(y)[W] is
not (%W -edge-connected or it contains edges with fractional values, then we perform the
same checks on W. If G()[W] does not contain edges with fractional value and is [£]-
edge-connected, then we contract . We repeat this algorithm until no contraction is

possible.

In the second heuristic, we look for cliques W of G(¥) with ([£] +1) nodes such that
y(e) =1 for all E(y)(W) and such that [6(W)| = k + 1. It is not hard to see that if W
is a clique of ([%£] + 1) nodes, then the subgraph induced by W is [£]-edge-connected.
If such clique exists in G(7) with [§(W)| = k+1and g(e) = 1 foralle € E(7)(W), then
we contract W. One can use a greedy algorithm to compute a clique W of ([g-‘ +1)
nodes and such that the subgraph induced by W does not contain edges with fractional
value. As for the previous heuristic, we repeat this algorithm until no contraction is

possible.

These two algorithms are summurized in Algorithms 4 and 5.

Algorithm 4: Operation 0, — 1
Data: G(7) — (V, E®))

Result: Reduced graph G, = (V,, E,)
begin

repeat
Give 1 as capacity on the edges of G(7);
Compute a Gomory-Hu tree T
foreach d(WW) obtained from T such that |§(W)| =k +1 do
if [W] > 2 and [V\ W] > 2 then
if G(y)[W] does not contain edges with fractional value then
Compute the minimum cut of G(7)[W7;
if G(y)[W] is [£]-edge-connected then
Contract W;
L Break;

until no contraction is possible;
end

3.1. BRANCH-AND-CUT ALGORITHM 71

Algorithm 5: Operation 0, — 2
Data: G(y) = (V, E(y))
Result: Reduced graph G, = (V,, E,)
begin

repeat
Search a clique W of G(7) on ([£] + 1) nodes and such that y(e) = 1 for all
e € E(m)(W);
if W exists and |W| > 2 and |V \ W| > 2 then
if |5g@)(W)| =k + 1 then
Contract W;
L Break;

until no contraction is done;

end

The minimum cut of a subgraph G[W] is computed using Hao and Orlin’s algorithm
[69]. As for Operation 6, the first heuristic runs in O(log (n)(mn?log %2 +m)). It is
thus polynomial. For the second algorithm, the greedy algorithm used to find cliques
of G(¥) runs in O("22Ka) where K = maxz{|dc@)(u)|, for all w € V'}. Remark that in
most cases, |dg(y) (u)| < 2k, for every u € V. We will thus consider that K < 2k. This

implies that the heuristic runs in O(n?k?) in most cases, and is polynomial.

Figure 3.1 gives an example of application of Operations f3 and 6, on a fractional
extreme point of P(G, k). The dashed edges have value 0.5 and the plain edges have

value 1.

72 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE KECSP

edges with value 1

—————— edges with value 0.5

3
3 4
2 ! 2
—— A
£:6128 18,9,1011~—9® 2
{1,8,9,10,11} 13 7 "

Figure 3.1: Example of application of Operations #3 and 6, for k = 3

On Figure 3.1, we can easily see that the partitions
m = ({1,8,9,10,11},{2},{13},{3,4,5,6,7,12,14}) and
m = ({5,6,12},{4},{7},{1,2,3,8,9,10,11, 13, 14}) induce two S P-partition inequali-
ties that are violated by the underlying fractional solution of the example.

3.1.8 Primal heuristic

Another important issue in the effectiveness of the Branch-and-Cut algorithm is the
computation of a good upper bound at each node of the Branch-and-Cut tree. To
do this, if the separation procedures do not generate any violated inequality and the
current solution 7 is still fractional, then we transform 7 into a feasible solution of
the kECSP, say ¥, by rounding up to 1 all the fractional components of 7. We then
try to reduce the weight of the solution thus obtained by removing from the subgraph

3.2. COMPUTATIONAL RESULTS 73

H = (V, E) induced by ¥ some unecessary edges, that is to say edges which do not
affect the k-edge-connectedness of H. To this end, we remove from E each edge e = uv
such that [6(u)NE| > k41 and |§(v)NE| > k+1. We then check if the resulting edge
set, say E’, induces a k-edge-connected subgraph of G by computing a Gomory-Hu
tree. If there exists in £ a cut (W), W C V, containing less than k edges, then we
add in E' edges of [W,V \ W]\ 6(W) that have been previously removed from E as
many as necessary in order to satisfy the cut §(1W). We do this until the graph (V, £)
becomes k-edge-connected. Note that we add to each violated cut the edges having
the smallest weights.

3.2 Computational results

The Branch-and-Cut algorithm described in the previous section has been implemented
in C++, using ABACUS 2.4 alpha [1, 101] to manage the Branch-and-Cut tree, and
CPLEX 9.0 2] as LP-solver. It was tested on a Pentium IV 3.4 Ghz with 1 Gb of
RAM, running under Linux. We fixed the maximum CPU time to 5 hours. The test
problems were obtained by taking TSP test problems from the TSPLIB library [3].
The test set consists in complete graphs whose edge weights are the rounded euclidian
distance between the edge’s vertices. The tests were performed for £ = 3,4,5. In
all our experiments, we have used the reduction operations described in the previous
sections, unless otherwise specified. Each instance is given by its name followed by
an extension representing the number of nodes of the graph. The other entries of the
various tables are:

74 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE KECSP

NCut : number of generated cut inequalities;

NSP : number of generated SP-partition inequalities;
NOP : number of generated odd path inequalities;
NFP . number of generated F-partition inequalities;
NP : number of generated partition inequalities;

COpt : weight of the optimal solution obtained;

Gapl : the relative error between the best upper bound
(the optimal solution if the problem has been solved
to optimality) and the lower bound obtained at the
root node of the Branch-and-Cut tree using only the
cut and the trivial inequalities;

Gap2 : the relative error between the best upper bound
(the optimal solution if the problem has been solved
to optimality) and the lower bound obtained at the
root node of the Branch-and-Cut tree;

NSub : number of subproblems in the Branch-and-Cut tree;

TT . total CPU time in hours:min:sec.

The instances indicated with "*" are those whose CPU time exceeded 5 hours. For
these instances, the gap is indicated in italic.

Our first series of experiments concerns the kECSP for £ = 3. The instances we
have considered have graphs with 14 up to 318 nodes. The results are summarized
in Table 3.1. It appears from Table 3.1 that all the instances have been solved to
optimality within the time limit except the last five instances. Also we have that
four instances (burmald, gr21, fri26, brazil58) have been solved in the cutting plane
phase (i.e., no branching is needed). For most of the other instances, the relative error
between the lower bound at the root node of the Branch-and-Cut tree and the best
upper bound (Gap2) is less than 1%. We also observe that our separation procedures
detect a large enough number of SP-partition and F-partition inequalities and seem
to be quite efficient.

Our second series of experiments concerns the kECSP with & = 4,5. The results
are given in Table 3.2 for £ = 4 and Table 3.3 for £ = 5. The instances considered
have graphs with 52 up to 561 nodes. Note that for £k = 4, the SP-partition and
partition inequalities are redundant with respect to the cut inequalities (2.3). Thus
these inequalities are not considered in the resolution process for k = 4, and therefore
do not appear in Table 3.2.

3.2. COMPUTATIONAL RESULTS 75
Instance NCut NSP NOP NFP NP COpt Gapl Gap2 NSub TT
burmal4 4 3 0 0 4 5530 4.67 0.00 1 0:00:01
ulysses16 5 7 1 15 7 11412 1.17 0.39 3 0:00:11
gr2l 5 6 1 0 2 4740 1.65 0.00 1 0:00:01
fri26 9 5 0 0 0 1543 1.30 0.00 1 0:00:01
bayg29 14 16 2 33 2 2639 1.76 0.19 7 0:00:01
dantzig4?2 41 31 6 90 18 1210 2.27 0.68 71 0:00:07
att48 34 34 5 60 17499 1.83 0.56 61 0:00:06
berlin52 36 31 12 97 6 12601 1.66 0.45 33 0:00:03
brazil58 46 42 36 29 42527 2.67 0.00 1 0:00:05
eil76 9 12 3 298 2 876 0.63 0.06 7 0:00:03
pr76 130 207 72 2231 54 187283 3.9 150 6767 0:35:32
rat99 41 26 13 341 23 2029 1.26 0.38 41 0:00:47
kroA100 170 197 31 1207 57 36337 4.64 0.97 4201 0:54:06
kroB100 130 114 37 830 47 37179 2.61 0.73 723 0:08:00
rd100 101 74 11 418 18 13284 191 0.43 171 0:03:37
eil101 86 72 21 3604 15 1016 1.06 0.55 1109 0:17:41
lin105 179 198 47 829 68 25530 3.66 0.69 1031 0:22:39
prl07 201 190 34 674 114 70852 2.48 0.84 2071 1:26:49
gr120 50 45 6 588 17 11442 1.12 0.19 99 0:11:15
bier127 46 59 4 276 13 198184 1.50 0.15 11 0:01:55
ch130 121 132 30 1355 40 10400 2.27 0.55 1693 1:05:05
ch150 92 93 19 588 22 11027 2.04 041 193 0:20:31
kroA150 155 143 41 845 47 44718 2.27 0.53 1205 1:16:35
kroB150 130 110 16 952 48 43980 2.26 0.31 437 0:38:43
rat195 24 19 3 514 1 3934 0.48 0.06 7 0:08:21
d198 171 105 23 617 59 25624 2.00 0.21 159 1:04:19
gr202 7 69 14 558 22 65729 1.02 0.11 69 0:13:16
*pr226 364 248 35 162 41 - 11.05 9.02 261 5:00:00
*o1229 179 245 23 1568 94 - 2483 1.00 1219 5:00:00
*pr264 275 181 145 668 62 - 12,56 12.29 69 5:00:00
*a280 142 84 56 2539 59 - 373 2.69 459 5:00:00
*1in318 189 147 15 610 58 - 6.5 4.94 25 5:00:00

Table 3.1: Results for £ = 3 with reduction operations.

76 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE KECSP

First observe that for £ = 4, the CPU time for all the instances is relatively small and
most of the instances have been solved in less than 1 minute. We can also observe that
23 instances over 27 are solved in the cutting plane phase. Moreover, a few number
of odd path inequalities are generated. However a large enough number of F-partition
inequalities is detected. Thus these latter inequalities seem to be very effective for
solving the KECSP when k is even. This also shows that the KECSP is easier to solve
when £ is even, what is also confirmed by the results of Table 3.3 for £ = 5. In fact, the
instance pr264 has been solved for k£ = 4 in 1 second, whereas it could not be solved to
optimality for k = 5 after 5 hours. The same observation can be done for pr439. Also,
we can remark that the CPU time for all the instances when k = 5 is higher than that
when k& = 4. For instance, the test problem d198 has been solved in 1h 50mn when
k =5, whereas only 16 seconds were needed to solve it for k£ = 4.

Compared to Table 3.1, Tables 3.2 and 3.3 also show that, for the same parity of k,
the kECSP becomes easier to solve when k increases. In fact, with £ = 3, we could not
solve to optimality instances with more than 202 nodes, whereas for £ = 5, we could
solve larger instances.

The results for £ = 3,4,5 can also be compared to those obtained by Kerivin et al.
[81] for the 2ECSP. It turns out that for the same instances, the problem has been
easier to solve for £ = 2 than for £ = 3. However, for £k = 4 the problem appeared
to be easier to solve than for £ = 2. This shows again that the case when k is odd is
harder to solve than that when k is even and that the problem becomes easier when &
increases with the same parity.

In order to evaluate the impact of the reduction operations 6, 6y, 05, 6, on the
separation procedures, we tried to solve the kECSP, for £ = 3, without using them.
The results are given in Table 3.4.

As it appears from Tables 3.1 and 3.4, the CPU time increased for the majority of the
instances when the reduction operations are not used. In particular, for the instance
prl07, without the reduction operations, we could not reach the optimal solution after
5 hours, whereas with the reduction operations, it has been solved to optimality after
1h 26mn. Also, the CPU time for the instances ch130 and d198 increased from 1 hour
to more than 4 hours. Moreover, we remark that when using the reduction operations,
we generate more S P-partition, F-partition and partition inequalities and fewer nodes
in the Branch-and-Cut tree. This implies that our separation heuristics are less efficient
without the reduction operations. It seems then that the reduction operations play an
important role in the resolution of the problem. They permit to strengthen much more
the linear relaxation of the problem and accelerate its resolution.

3.3. CONCLUDING REMARKS 77

We also tried to measure the effect of the different non-basic classes of inequalities
(i.e., inequalities other than cut and trivial inequalities). For this, we have first con-
sidered a Branch-and-Cut algorithm for the kECSP with & = 3 using only the cut
constraints in addition to the trivial ones. As it appears from Table 3.1, for all the
instances we have that Gapl is greater than Gap2. For example, for the instances
KroA100 and rat195, the gap is increased by almost 3%.

Furthermore, in this case, we could not solve any of the instances with more than
52 nodes. Even more, after less than 10 minutes of CPU time, the Branch-and-Cut
tree got a very big size and the resolution process stops. To illustrate this, take for
example the instance brazil58. For this instance, the Branch-and-Cut tree contained
11769 nodes after 10 minutes when the Branch-and-Cut algorithm used only the cut
and trivial inequalities, whereas it has been solved without branching when using the
other classes of inequalities.

Finally, we tried to evaluate separately the efficiency of each class of the non-basic
inequalities. For this, we also considered the case when & = 3. We have seen that
all the classes of inequalities have a big effect on the resolution of the problem. In
particular, the S P-partition inequalities seem to play a central role. This can be seen
by considering the instance d198. This instance has been solved in 1h 04mn using all
the constraints. However, without the SP-partition inequalities, we could not reach
the optimal solution after 5 hours. We also remarked that the gap2 increased when
one of these classes of inequalities is not used in the Branch-and-Cut algorithm.

3.3 Concluding remarks

In this chapter, we have studied the k-edge-connected subgraph problem with high
connectivity requirement, that is, when & > 3. We have presented some classes of valid
inequalities and described some conditions for these inequalities to be facet defining for
the associated polytope. We also discussed separation heuristics for these inequalities.
Using these results, we have devised a Branch-and-Cut algorithm for the problem. This
algorithm uses some reduction operations.

Our computational results have shown that the odd path, the F-partition, the SP-
partition and the partition inequalities are very effective for the problem when k is
odd. They have also shown the importance of the F'-partition inequalities for the even
case. We could also see the importance of our separation heuristics. In particular,
our heuristics to separate the S P-partition and F-partition inequalities have appeared

78 CHAPTER 3. BRANCH-AND-CUT ALGORITHM FOR THE KECSP

to be very efficient. In addition, the reduction operations have been essential for
having a good performance of the Branch-and-Cut algorithm. In fact, they permitted
to considerably reduce the size of the graph supporting a fractional solution and to
accelerate the separation process.

These experiments also showed that the kECSP is easier to solve when k is even and
that, for the same parity of k, the problem becomes easier to solve when k increases.

One of the separation heuristic devised for the F-partition inequalities is based on
a partial characterization of the critical extreme points of the linear relaxation of the
k-edge-connected subgraph polytope. It would be very interesting to have a complete
characterization of these points. This may yield the identification of new facet defining
inequalities for the problem. It may also permit to devise more appropriate separation
heuristics for the inequalities given in this chapter.

In many real instances, we may consider node-connectivity instead of edge-connectivity.
The study presented in this chapter may be very usefull for the k-node-connected sub-
graph problem for which we require k£ node-disjoint paths between every pair of nodes.

In addition to the survivability aspect, one can consider the capacity dimensioning
of the network. These issues have been mostly treated separately in the literature. It
would be interesting to extend the study developed in this chapter to the more general
capacitated survivable network design model.

3.3. CONCLUDING REMARKS

79

Instance NCut NOP NFP COpt Gap2 NSub TT
berlin52 5 0 2 18295 0.00 1 0:00:01
pr76 3 0 4 266395 0.00 1 0:00:01
kroA100 10 0 11 51221 0.00 1 0:00:47
kroB100 9 5 123 53597 0.08 21 0:00:09
rd100 10 1 91 19130 0.00 1 0:00:05
eil101 0 0 60 1453 0.00 1 0:00:02
lin105 20 1 5 36353 0.00 1 0:00:01
prl07 29 0 0 98381 0.00 1 0:00:01
gr120 6 0 36 16400 0.00 1 0:00:02
bier127 16 0 0 282207 0.00 1 0:00:01
ch130 12 0 132 14854 0.00 1 0:00:05
ch150 12 2 70 15854 0.00 1 0:00:02
kroA150 13 0 27 64249 0.00 1 0:00:02
kroB150 20 0 4 62710 0.00 1 0:00:01
rat195 0 0 37 5750 0.00 1 0:00:13
d198 43 0 71 35404 0.01 3 0:00:16
gr202 13 3 220 94841 0.02 3 0:01:28
pr226 91 0 6 183537 0.00 1 0:00:04
gr229 24 2 15 318565 0.00 1 0:00:03
pr264 59 1 7 122941 0.00 1 0:00:06
a280 3 0 180 6317 0.00 1 0:01:00
pr299 30 0 427 117559 0.00 1 0:00:20
lin318 28 0 2 105000 0.00 1 0:00:06
rd400 21 2 232 36676 0.00 1 0:07:39
pr439 78 3 61 264975 0.02 19 0:02:52
1535 0 0 4 53604 0.00 1 0:00:39
pab6l 10 1 306 6724 0.00 1 0:08:37

Table 3.2: Results for £ = 4.

80

CHAPTER 3.

BRANCH-AND-CUT ALGORITHM FOR THE KECSP

Instance NCut NSP NOP NFP NP COpt Gap2 NSub TT
berlin52 5 2 2 26 2 24845 0.00 1 0:00:01
pr76 2 0 0 52 1 372392 0.00 1 0:00:01
kroA100 5 1 5 76 6 71422 0.04 11 0:00:06
kroB100 6 1 2 83 5 74241 0.01 3 0:00:06
rd100 6 2 6 193 5 26168 0.01 5 0:00:24
eil101 1 0 0 309 0 1938 0.00 0:01:10
lin105 9 1 3 119 3 50711 0.00 0:00:26
prl07 92 40 57 680 33 132870 0.41 381 0:14:45
gr120 2 0 3 93 3 22024 0.11 27 0:00:17
bier127 22 2 12 450 8 383165 0.09 25 0:04:25
ch130 1 0 0 45 0 20508 0.01 3 0:00:05
ch150 5 0 7 58 1 21791 0.01 37 0:00:50
kroA150 9 0 5 141 3 87950 0.07 11 0:00:19
kroB150 14 1 7 462 6 85583 0.02 11 0:15:39
rat195 1 0 0 508 0 7773 0.00 1 0:20:54
d198 56 9 6 1093 32 47614 0.15 337 1:50:40
gr202 0 0 0 64 0 128990 0.00 1 0:00:31
pr226 142 34 20 661 50 260878 0.58 103 2:38:50
gr229 18 1 11 679 9 434422 0.06 43 0:31:58
*pr264 105 12 38 1327 28 - 178 43 5:00:00
a280 2 0 2 302 0 8643 0.02 7 0:05:05
pr299 11 3 2 637 1 161576 0.00 1 0:05:12
lin318 24 3 11 1548 11 144341 0.02 7 4:34:39
rd400 11 1 15 691 6 49893 0.01 17 1:29:09
*pra39 46 2 8 746 0 - 346 5:00:00
1535 0 0 0 0 0 79115 0.00 0:00:19
pab61 1 0 2 286 1 9161 0.00 3:26:58

Table 3.3: Results for k = 5.

3.3. CONCLUDING REMARKS

81

Instance NCut NSP NOP NFP NP COpt Gap2 NSub TT
berlin52 31 28 19 44 4 12601 0.44 15 0:00:04
brazil58 50 27 1 28 31 42527 0.22 3 0:00:07
eil76 9 6 102 2 876 0.00 1 0:00:01
pr76 103 168 65 1378 37 187283 1.60 3483 0:38:46
rat99 41 19 10 223 17 2029 0.32 61 0:01:29
kroA100 193 234 47 1765 70 36337 142 7575 4:13:38
kroB100 141 142 36 899 38 37179 0.98 1337 0:45:34
rd100 103 84 15 445 21 13284 0.40 233 0:11:40
eil101 7 58 26 2527 12 1016 0.38 801 0:18:50
lin105 161 158 50 569 53 25530 0.61 547 0:34:25
*pr107 218 221 136 1101 104 - 0.81 4447 5:00:00
gr120 42 38 6 252 15 11442 0.18 93 0:05:38
bier127 58 56 9 240 12 198184 0.16 17 0:04:43
ch130 141 147 38 1590 45 10400 0.52 2459 4:10:31
ch150 90 76 15 391 23 11027 0.39 107 0:21:07
kroA150 155 135 23 705 56 44718 0.55 1107 3:08:37
kroB150 150 141 22 1006 43 43980 0.31 535 1:55:20
rat195 23 18 7 898 1 3934 0.01 19 0:19:23
d198 192 118 25 720 50 25624 0.27 585 5:03:16
gr202 73 62 13 278 23 65729 0.05 37 0:37:31

Table 3.4: Results for £ = 3 without reduction operations.

Chapter 4

The k-Edge-Disjoint Hop-Constrained
Paths Problem

Given a graph G = (V, F) and two nodes s,t € V, and a positive integer L > 2, an
L-st-path in G is a path between s and ¢ of length at most L, where the length is the
number of its edges. Given a function ¢ : E — R which associates a cost c(e) to each
edge e € F and an integer k > 2, the k-FEdge-Disjoint Hop-Constrained Paths problem
(kHPP for short) is to find a minimum cost subgraph such that between s and ¢ there
exist at least k edge-disjoint L-st-paths.

In this chapter, we consider the kHPP from a polyhedral point of view. In particular,
we give a complete description of the associated polytope in the case L = 3. We give
an integer programming formulation for the problem in this case. In particular, we
show that for L = 3, the kHPP polytope is given by the so-called st-cut and L-
path-cut inequalities together with the trivial inequalities. We also describe necessary
and sufficient conditions for these inequalities to be facet defining and show that the
kKHPP polytope is completely described by the st-cut and L-path-cut toghether with
the trivial inequalities. These results generalize those obtained by |75] who give a
complete description of the kHPP polytope in the case k = 2 and L = 2,3 and by [35]
who completely characterize the kHPP polytope when £ > 2 and L = 2. This work has
led to a technical report submitted for possible publication in Discrete Optimization
[13].

The chapter is organized as follows. In next section, we give some preliminary results
we will use along this chapter. In Section 4.2, we describe necessary and sufficient
conditions for the so-called st-cut and L-path-cut inequalities to be facet defining.

4.1. PRELIMINARY RESULTS 83

Our main result, which is a complete description of the kHPP polytope for L = 3, is
presented in Section 4.3. In Section 4.4, we give some concluding remarks.

4.1 Preliminary results

4.1.1 Valid inequalities for the tHPP polytope

Given a graph G = (V| E), two nodes s,t of V and a positive integer k > 2, we will
denote by kHPP(G) the kHPP polytope that is the convex hull of the incidence vectors
of the solutions of the kHPP on G.

If 2F is the incidence vector of the edge set I of a solution of the kHPP, then clearly
o statisfies the following inequalities:

z(6(W))

k, for all st — cut §(W), (4.1)
0<z(e) <1,

>
< for all e € E.

Inequalities (4.1) will be called st-cut inequalities and inequalities (4.2) trivial inequal-
ities.

In [31], Dahl considers the problem of finding a minimum cost path between two given
terminal nodes s and ¢ of length at most L. He describes a class of valid inequalities for
the problem and gives a complete characterization of the associated L-path polyhedron
when L < 3. In particular he introduces a class of valid inequalities as follows.

Let Vp, Vi, ..., Vi41 be a partition of V such that s € Vy and t € V7,1, and V; # () for
alli=1,..., L. Let T be the set of edges e = uv, where u € V;, v € V}, and |i — j| > 1.
Then the inequality

z(T)>1

is valid for the L-path polyhedron.

Using the same partition, this inequality can be generalized in a straightforward way
to the kHPP polytope as

2(T) > k. (4.3)

S4dHAPTER 4. THE K-EDGE-DISJOINT HOP-CONSTRAINED PATHS PROBLEM

Vo Va

Figure 4.1: Support graph of a 3-path-cut inequality.

The set T is called an L-path-cut, and a constraint of type (4.3) is called an L-path-cut
inequality. See Figure 4.1 for an example of a 3-path-cut inequality with V; = {s} and
Vi, = {t}. Note that T intersects every 3-st-path in at least one edge and each st-cut
d(W) intersects every st-path. We denote by P,(G) the polytope given by inequalities
(4.1)-(4.3).

4.1.2 Formulation

In this subsection, we give an integer programming formulation for the kFHPP. We will
show that the st-cut, 3-path-cut and trivial inequalities, together with the integrality
constraints suffice to formulate the kHPP as a 0-1 linear program. To this end, we first
give a lemma. Its proof can be found in [75].

Lemma 4.1.1 [75] Let G = (V, E) be an undirected graph and s and t two nodes of
V. Suppose that there do not exist k edge-disjoint 3-st-paths in G, with k > 2. Then
there exists a set of at most k — 1 edges that intersects every 3-st-path.

Theorem 4.1.1 Let G = (V, E) be a graph and k > 2. Then the kHPP is equivalent
to the integer program

Min {cz; = € Py(G), z € {0,1}7}.

Proof. To prove the theorem, it is sufficient to show that every 0-1 solution z of Py(G)
induces a solution of the kHPP. Let us assume the contrary and suppose that x does
not induce a solution of the kHPP but satsifies the st-cut and trivial inequalities. We

4.1. PRELIMINARY RESULTS 85

will show that = necessarily violates at least one 3-path-cut inequality. Let G(z) be
the subgraph of GG induced by z, that is the graph obtained from G by deleting every
edge e € E such that x(e) = 0. As x is not a solution of the problem, G(z) does not
contain k edge-disjoint 3-st-paths. By Lemma 4.1.1, it follows that there exist at most
k — 1 edges in G(z) that intersect every 3-st-path. Consider the graph G’(x) obtained
from G(z) by deleting these edges. Obviously, G'(x) does not contain any 3-st-path.

We claim that G’(z) contains at least one st-path of length at least 4. In fact, as x is
a 0-1 solution and satisfies the st-cut inequalities, G(x) contains at least k edge-disjoint
st-paths. Since at most k — 1 edges were removed from G(z), at least one path remains
between s and t. However, since G’(x) does not contain a 3-st-path, that st-path must
be of length at least 4.

Now consider the partition (Vp, ..., Vy) of V' with Vi = {s}, V; the set of nodes at
3

distance ¢ from s in G'(z) for i = 1,2,3, and V; = V' \ (U Vi), where the distance

between two nodes is the length of a shortest path between (’)chese nodes. Since there
does not exist a 3-st-path in G'(z), it is clear that ¢ € V;. Moreover, as by the
claim above, G’(x) contains an st-path of length at least 4, the sets V;, V5 and V3
are nonempty. Futhermore, no edge of G’(z) is a chord of the partition (that is an
edge between two sets V; an V; where |i — j| > 1). In fact, if there exists an edge
e =wv; € [V;,V;] with |i — j| > 1 and i < j, then v; is at distance i +1 < j, from s, a
contradiction.

Thus, the edges deleted from G'(x) are the only edges that may be chords of the
partition G(z). In consequence, if T is the set of chords of the partition in G, then

x(T) < k—1. But this implies that the corresponding 3-path-cut inequality is violated
by . 0

4.1.3 Disjoint st-paths in directed graphs

Here we will introduce known results related to disjoint st-paths in directed graphs
which will be very useful in the following sections.

Given a directed graph D = (V, A), two nodes s,t € V, an integer £ > 2 and a
weight function ¢(.) on the arcs of D, the k arc-disjoint st-paths problem (kADPP for
short) consists in finding a minimum weight subgraph of D which contains at least k

SSHAPTER 4. THE K-EDGE-DISJOINT HOP-CONSTRAINED PATHS PROBLEM

arc-disjoint paths from s to t. Let kADPP(D) be the convex hull of the solutions of
the KADPP on D.

If B is an arc subset of A which induces a solution of the KADPP, then its incidence
vector o satisfies the following inequalities:

2(0T(W)) >k, foral W CV,s€ W and t € W, (4.4)
0<z(a) <1, forallaec A

Conversely, any integral solution of the system given by inequalities (4.4) and (4.5)
induces a solution of the kADPP. Inequalities (4.4) are called st-dicut inequalities and
constraints (4.5) are called trivial inequalities. Thus, the kADPP is equivalent to

min{cx | z satisfies (4.4), (4.5), = € {0,1}}.

Theorem 4.1.2 [96]
The polytope kADPP(D) is full dimensional if and only if every st-dicut 6T (W) of D
contains at least k + 1 arcs.

Theorem 4.1.3 An inequality (4.4), induced by a node set W C V', defines a facet
of kKADPP(D) if and only if the corresponding st-dicut is minimal inclusionwise and
contains at least k + 1 arcs.

The following theorem shows that the st-dicut and the trivial inequalities suffice to
describe the polytope kADPP(G).

Theorem 4.1.4 [96]
The polytope kADPP(G) is completely described by inequalities (4.4) and (4.5).

The following theorem indicates that two node subsets W; and W5 of V' that induce
tight st-dicut inequalities for a solution y € KADPP(D), can be seen as embedded
node sets. This comes from the fact that the sets inducing st-dicuts in a graph form a
laminar family.

Theorem 4.1.5 [96]

Let W1 and Wy be two node subsets of V' that induce st-dicuts of D such that WiNWs £
0 #£ (V\Wy) N Wy, If the st-dicut inequalities, induced by Wy and Wa, are tight for
a solution x of kADPP(G), then there exists a node set different from Wi and Wy
contained either in Wi or in Wi U Wy which induces a tigh st-dicut inequality for x.

4.2. FACETS OF KHPP(G) 87

These results will be utile in the rest of the chapter for exhibiting some facets of the
EHPP polytope, and for proving our main result.

4.2 Facets of kHPP(G)

In this section, we give necessary and sufficient conditions for inequalities (4.1)-(4.3)
to define facets. These will be useful in the sequel.

Let G = (V, E) be an undirected graph, s and ¢t two nodes of G and k a positive
integer > 2. An edge e € E is said to be 3-st-essential if e belongs to an st-cut or a
3-path-cut of cardinality k. Let E* be the set of the 3-st-essential edges. We have the
following results that can be easily seen to be true.

Theorem 4.2.1 dim(kHPP(G)) = |E| — |E*|.
An immediate consequence of Theorem 4.2.1 is the following.

Corollary 4.2.1 If G = (V,E) is a complete graph such that |V| > k + 2, then
kHPP(G) is full dimensional.

In the rest of the chapter, we will consider that G = (V| F) is a complete graph
with |V| > k + 2, and which may contain multiple edges. Thus, by Corollary 4.2.1,
EHPP(G) is full dimensional.

Lemma 4.2.1 Let ax > « be an inequality which defines a facet of kHPP(QG), different
from (4.2). Then a(e) >0 for alle € E.

Proof. Let f € E. As ax > «is different from facets induced by the trivial inequalities,
it is different from z(f) < 1. Thus, there exists a solution © € kHPP(G) such that
aT = a and T(f) = 0. Let T’ be the solution defined by

.\ | @(e), forallee E\{f},
x(e)_{1 if e = f.

Clearly, 7’ is a solution of kHPP(G). Hence, a7’ = aT+a(f) > a, yielding a(f) > 0. O

The following theorems show when inequalities (4.1)-(4.3) define facets for kHPP(G).

SSHAPTER 4. THE K-EDGE-DISJOINT HOP-CONSTRAINED PATHS PROBLEM

Theorem 4.2.2 1. Inequality x(e) < 1 defines a facet of kHPP(G) for all e € E.

2. Inequality x(e) > 0 defines a facet of kHPP(G) if and only if either |V| >k + 3
or |V = k+ 2 and e does not belong neither to an st-cut nor to a 3-path-cut
containing exactly k + 1 edges.

Proof. 1) As |[V| > k +2 and G is complete, the edge set Ef = E '\ {f} is a solution
of kHPP, for all f € E'\ {e}. Hence, the sets £ and Ey, for all f € E'\ {e}, constitute
a set of |E| solutions of the kHPP. Moreover, their incidence vectors satisfy z(e) = 1
and are affinelly independant.

2) Suppose that |V| > k+3. Then G contains k+2 node-disjoint st-paths (an edge of
[s,t] and k+1 paths of the form (s,u,t), u € V'\ {s,t}). Hence any edge set E\{f, g},
f,g € E, contains k edge-disjoint 3-st-paths among these 3-st-paths.

Consider the |E| edge sets £\ {e} and Ey = E \ {e, f} for all f € E'\ {e}. There-
fore, these sets induce solutions of the kHPP. Moreover the incidence vectors of these
solutions satisfy x(e) = 0 and are affinelly independant.

Now suppose that |V| = k+ 2. If e belongs to an st-cut §(WW) (resp. a 3-path-cut T')
with k& + 1 edges, then x(e) > 0 is redundant with respect to the inequalities

(V) > & (resp. o(T) > k),
—a(f)>—1 forall fed(W)\{e}(resp. f €T\ {e}),

and cannot hence be facet defining. If e does not belong neither to an st-cut nor to a
3-path-cut with £+ 1 edges, then the edge sets E'\ {e} and Ey, f € E\ {e}, introduced
above, are still solutions of kHPP. Moreover, their incidence vectors satisfy z(e) = 0
and are affinelly independant. O

Theorem 4.2.3 Every st-cut inequality defines a facet of kHPP(G).

Proof. Let W C V such that s € W and ¢t € W. Observe that [s,] C §(W). Let us de-
note by ax > « the st-cut inequality induced by W and let &, = {z € kHPP(G) | ax =
a}. We first show that JF, is a proper face of kHPP(G). As |V| > k + 2, there exist
W, C W\ {s} and W, € W \ {t} such that |[W;| + |Ws| = k. Note that W, and W,

4.2. FACETS OF KHPP(G) 89

may be empty but not both. Let Fy = {sv, v € Wo}U{ut, v € Wi} and E; = F1UE,
where Ey = E(W) U E(W). It is not hard to see that E) is a solution of the kHPP
whose incidence vector satisfies ax > « with equality. Hence, F, # () and, therefore, is

a proper face of kHPP(G).

Now suppose that there exists a facet defining inequality bz > [such that F, C {z €
EHPP(G) | bx = f}. We will show that there exists a scalar p such that b = pa.

Consider an edge e € Fy. Clearly, the edge set By = (E; \ {e}) U {st} is a solution
of the kHPP and its incidence vector satisfies ax > « with equality. It then follows
that baf2 = baP' — b(e) + b(st). Since 2P € F,, we obtain that b(e) = b(st). As e is
arbitrary in Fi, this implies that

b(e) = b(st) = p for all e € Fj. (4.6)

Now let f = uv € (W) \ Fy, with u € W\ {s} and v € W\ {t}. If u € W
and v € Wy, then let By = (B \ {sv,ut}) U {f,st}. Clearly, E3 is a solution of the
EHPP and its incidence vector satisfies ax > o with equality. Hence, we have that
bz®s = br®'. This implies that b(sv) + b(ut) = b(f) + b(st). From (4.6), it follows that
b(f) = p. _

If u e WyU{s} (resp. u € W\ (W1U{s})) and v € W\ (WoU{t}) (resp. v € WoU{t}),
by considering the edge set £y = (Ey \ {ut}) U{f} (resp. E4 = (E1 \ {sv})U{f}), we
similarly obtain that b(f) = p.

If u ¢ Wy and v ¢ Wy, then one can consider the solution Es = (E; \ {e})U{f}, where
e is an edge of F, and obtain along the same lines that b(f) = p.

Thus, toghether with (4.6), this yields

b(e) = p for all e € §(WW).

Now let e € Ej, and suppose, w.l.o.g., that e € E(W). If e does not belong to a
3-st-path of Ey, then the edge set Eg = F; \ {e} also induces a solution of the kHPP
and satisfies az > a with equality. We then have that bx®s = bz®' implying b(e) = 0.

If e belongs to a 3-st-path of Ey, say (su,ut), then the edge set By = (B \ {su,ut})U
{st} induces a solution of the kHPP and its incidence vector satisfies ax > « with
equality. It then follows that bx®" = bx®' and hence b(st) = b(su)+b(ut). As by (4.6),
b(ut) = b(st), we get b(e) = 0.

JOHAPTER 4. THE K-EDGE-DISJOINT HOP-CONSTRAINED PATHS PROBLEM

Consequently, we have that

[p foralleeo(W),
ole) = { 0 if not.

Thus, b = pa with p € R, and the result follows. O

The next theorem describes necessary and sufficient conditions for L-path-cut in-
equalities to define facets. But before, we give the following lemma.

Lemma 4.2.2 Let T be an L-path-cut induced by a partition m = (Vg,...,Vy) with
s € Vyandt € Vy. If an edge set F C E induces a solution of the kHPP such that
2¥(T) =k, then F 0 ([s, V1] U [V3,t] U [s,t]) > k. Moreover, if F N[V, V3] # 0, then
Fn([s,Vi]U[V5,t]U[s,t]) > k+ 1.

Proof. Let A = [s,Vi] U [V5,¢] U [s,t]. Since each 3-st-path of I intersects T at
least once and |F' NT| = k, F necessarily contains exactly k edge-disjoint 3-st-paths.
Moreover, each of these paths intersects 1" only once. This implies that every 3-st-path
of F'is of the form

1) (sul,u1u2,u2t), (SUQ,UQUg,Uglf), (sul,ult), (SUg,U3t>, (St) or

i) (suy,ujus,ust).

If P is one of these st-paths, then |P N A| =1 (resp. |P N A| = 2) if P is of type i)
(resp. ii)). Thus, |[F N A| > k.

Now if F'N [V, V3] # 0, then F contains at least one path of type ii) and therefore
|[FNAl >k+1. O

Theorem 4.2.4 An inequality (4.3), induced by a partition = = (V, ..., Vi) with s € V;
and t € Vy, defines a facet of kHPP(G), different from a trivial inequality, if and only

if

1 Vo = [Vl = 1;

2. s, il + 1[Vs,]| + |[s, 8] = k + 1.

4.2. FACETS OF KHPP(G) 91

Proof. Let T be the 3-path-cut induced by 7. Let ax > a denote the 3-path-cut
inequality produced by 7" and F = {z € kHPP(G) | az = a}.

Necessity.
1) We will show that if |[V5| > 2, inequality z(7") > k does not define a facet. The case
where |V;| > 2 follows by symmetry. Suppose that |V5| > 2 and consider the partition
' = (Vy,....,V{) given by

Vo ={s},

Vi=Viu(Vo\{s}h),
VI=V;, i=234.

The partition 7’ produces a 3-path-cut inequality 2 (7") > k, where 7" = T\ [Vo\{s}, V2].
Since G is complete, [Vo\ {s}, V2] # 0 and T" is strictly contained in 7. Thus, z(T) > k
is redundant with respect to the inequalities

z(T') > k,
z(e) >0 for all e € [Vi \ {s}, V4],

and hence cannot define a facet of kHPP(G).

2) Suppose that condition 1) holds. Let A = [s, V1] U [V5,t] U s, t] and let u; be a fixed
node of V;, i = 1,2,3. Let us suppose that F is a facet of kFHPP(G) different from a
trivial inequality. Thus there exists a solution F' of the kHPP such that " € F and
FNI[Vi, V5] # 0. If this is not the case, then F would be equivalent to a facet defined by
any of the inequalities z(e) > 0, e € [Vi, V3]. Hence, as F' N [Vi, V3] # 0, from Lemma
4.2.2, we have that |[FNA| > k+ 1.

Sufficiency.

Suppose that conditions 1) and 2) hold. First we show that F # 0. As |[s, V;]U[V3,t]U
[s,t]| > k+1, there exist node sets Uy C Vy, Us C V3, and an edge set Ey C [s,]\ {st}
such that |Uy| + |Us| + |Eo| = k. Cousider the st-paths (su,ut), u € Uy U Us and (e),
e € Fy. Clearly, these st-paths form a set of k£ edge-disjoint 3-st-paths. Moreover,
each of these paths intersects T only once. Thus they induce a solution, say E, of the
EHPP whose incidence vector belongs to F. Therefore F # ().

Now suppose that there exists a facet defining inequality bz > [such that F C {z €
EHPP(G) | bz = }. As before, we will show that there exists a scalar p # 0 such that
b = pa.

Let e € EyNT (where Ej is the solution introduced above). Let Ey = (E;\{e})U{st}.
Since FEs is a solution of the kHPP whose incidence vector belongs to F, we have

R2HAPTER 4. THE K-EDGE-DISJOINT HOP-CONSTRAINED PATHS PROBLEM

ba?? = bxP' = 3, implying that b(e) = b(st). As e is an arbitrary edge, we then obtain
that
ble) =pforalle e (EyNT)U{st}, for some p € R. (4.7)

Now let e € E\T. If e ¢ Ey, then let E3 = E; U {e} is a solution of the kHPP.
Moreover, its incidence vector belongs to F. Hence, b(e) = bx® — ba¥' = 0. If
e € By \ T, then e is either of the form su, u € Uy, or vt, v € V3. Suppose, w.l.o.g.,
that e = su, the case where e = vt is similar. Note that, by the definition of E, ut also
belongs to Ey. Let Ef = (Ey \ {su,ut})U{st}. We have that E} induces of the kHPP
and 2 € F. Hence, bz® = bz®' = 3 and, in consequence, b(su) + b(ut) = b(st). As,
by (4.7), b(ut) = b(st), we have that b(su) = 0. Thus, we obtain that

ble)=0foralleec E\T. (4.8)

Consider now an edge e € T\ E;. If e € [s,t] \ {st}, then clearly, the edge set

(E1\ {g}) U{e} induces a solution of the kHPP and its incidence vector belongs to F
where ¢ is an edge of Ey. Hence, as before, b(e) = b(g) = p.
Now if e = sv (resp. e = vt) with v € V4, then the edge set £, = (Ey \ {sus})U{e, vus}
(resp. Ey = (E1 \ {wit}) U {ujv,e}) induces a solution of the kHPP. Moreover, its
incidence vector belongs to F. Thus, bz — bxft = b(e) + b(vuz) — b(suz) = 0 (resp.
brPs — bxP' = b(uyv) + b(e) — b(ust) = 0). From (4.7) and (4.8) we get b(e) = p.

Let e = sv with v € V5. The case where e € [V4, 1] is similar. If v € Us, then the edge set
Es; = (E1\{f})U{e}, where f is the edge of E; between s and v, induces a solution of
the kHPP whose incidence vector belongs to F. Hence bz — bzt = b(e) — b(su3) = 0.
By (4.7), we get b(e) = p. If v ¢ Us, then we have that EL = (Ey \ {f'}) U {e, vt},
where ' € Ey N [s, Us], also induces a solution of the kHPP and its incidence vector
belongs to F. Thus, bz — bt = b(e) + b(ust) — b(f) = 0. By (4.7) and (4.8), we get
b(e) = p.

Now suppose that e = uv € [V, V5]. If uw € Uy and v € Us, then by considering the
edge set Eg = (Ey \ {ut,sv}) U {e, st}, we get b(e) + b(st) = b(sv) + b(ut). From (4.7)
and (4.8), we have that b(e) = p. If u ¢ U; and v € Us, then by considering the
edge set F; = (Ey \ {g}) U {su, e}, where g is the edge of E; between s and v, we get
b(e) + b(su) = b(g). By (4.7) and (4.8), we have b(e) = p. If u € U; and v ¢ Us, then
we show in a similar way that b(e) = p. If uw ¢ U, and v ¢ Us, then by considering the
edge set Es = (Ey \ {st}) U {su,e,vt}, we get b(e) = p. Thus, we obtain

ble) =pforalle e T\ (E; U{st}). (4.9)

4.3. COMPLETE DESCRIPTION OF KHPP(G) 93

From (4.7), (4.8) and (4.9), we have

_J p foralleeT,
oe) = { 0 if not.

Therefore, b = pa. Moreover p # 0 since bz > [defines a facet which ends the proof
of the theorem. U

As it will turn out in the next section, the conditions given for inequalities (4.1)-(4.3)
to define facets will be useful for characterizing the kHPP polytope.

4.3 Complete description of kHPP(G)

In this section, we will present our main result, that is the polytope Py (G), given by
the st-cut, the 3-path-cut and the trivial inequalities, is integral, which implies that
EHPP(G) is completely described by these inequalities.

To this end, consider an undirected graph G = (V, E). Let N = V' \ {s,t}, N’ be a
copy of N and V=NUNU {s,t}. The copy in N’ of a node v € N will be denoted
by . Let G = (V, A) be the directed graph such that V = N U N’ U {s,t} and Ais
obtained from as follows. To each edge e € [s,], we associate an arc from s to ¢ in G.
To each edge su € E (resp. vt € E), we associate in G the arc (s,u), u € N (resp.
(v',t), v" € N'). To each edge uv € E, with u,v ¢ {s,t}, we associate two arcs (u,v’)
and (v,u’), with u,v € N and «/,v" € N’. Finally, to each node v € V' \ {s,t}, we
associate in G k arcs (u,v) (see Figure 4.2 for an illustration for k = 3).

Remark that any st-dipath in G is of length no more than 3. Also note that each
3-st-path in G corresponds to an st-path in G and vice-versa. In fact, a 3-st-path
= (s,u,v,t), with u # v, u,v ¢ {s,t}, corresponds to an st-path in G of the form
(s,u,v',t) withu € N and v' € N’ and a 3-st-path L = (s,u,t), u ¢ {s,t} corresponds
to an st-path in G of the form (s,u,ut).

The main idea of the proof is to show that each solution of P (G) corresponds to a
solution of KADPP(G) and vice versa. We will use this correspondance together with
Theorem 4.1.4 to achieve the proof.

Given a solution # of R¥, we let 7 be the solution of R4 obtained from 7 as follows.

9A@HAPTER 4. THE K-EDGE-DISJOINT HOP-CONSTRAINED PATHS PROBLEM

~

Z(su) ifa=(s,u), u € N,
Z(vt) ifa= (v, t), v €N/,
yla) =< T(ww) ifa € {(u,v), (W, u)}, u,v € N, v, v € N', u#v, u#,
Z(st) ifa=(s,1),
[1 if a=(u,u), ue N, v € N

We will say that the solutions ¥ and ¥ are associated.

In what follows we will show that any st-cut and 3-path-cut of G corresponds to
an st-dicut in G. Indeed, let us consider an edge set C' C E and an arc set C' C A
obtained from C' as follows.

i) For an edge st € C, add (s,t) in C;
ii) for an edge su € C, add (s, u) in C,u€N;
iii) for an edge vt € C, add (v/,) in C, v € N,
iv) for an edge uv € C, u # v, u,v € N,

iv.1) if su € C or vt € C, then add (v,u) in C, with v € N and v/ € N';

4.3. COMPLETE DESCRIPTION OF KHPP(G) 95

iv.2) if su ¢ C and vt & C, then add (u,v') in C.

Observe that C' does not contain any arc of the form (u, ') with v € N and v/ € N,
Also note that C' does not contain at the same time two arcs (u,v’) and (v,u’), for an
edge uwv € E with u,v € V'\ {s,t}.

Conversly, an arc subset C of A can be obtained from an edge set C' C E if C does
not contain simultaneously two arcs (u,v’) and (v,u’), u,v € N, v';v" € N’, and does
not contain any arc of the form (u,u’) with u € N, v’ € N'.

As each arc of C' corresponds to a single arc of C and vice versa, both sets have the
same weight, that is 7(C') = y(C).

Lemma 4.3.1 Let C C E be an edge set of G which is an st-cut or a 3-path-cut
induced by a partition (Vy, ..., Vy) such that |Vo| = |V4| = 1. Then the arc set obtained
from C' by the procedure given above is an st-dicut of G. Moreover, z(C) = y(C’)

Proof. Suppose first that C'is an st-cut (W) for some W C V with s € W and ¢ € w.
Let W C V such that W = W U {u/ | u € W\ {s}}. We will show that C = 6 (W).
We first show that C' C 5+(W) Observe that any arc f of C is of the form (s, t), (s, u),
u#t, (1), (u,v') or (v,2), u,v € N, o, v’ € N'. In fact, if f = (s,u) € C, with
we N U{t}, then su € C. Thus, u € W and therefore, (s,u) € 6 (W).

If f = (v,1) for o' € N’, this implies that vt € C. Thus, v € W and hence (v',¢) €
dt(W).

If f=(v,u)forve N, u € N'| then by step iv.a) of the construction of C, we
should have su and vt in C. Hence, v € W and u € W. Therefore, v € W and
u' € V\W. Hence (v,u) € 5+(). If f = (u,0"), it similarly follows that f € §H(W).
Consequeltly, we have that C' C 6 (W).

Next, we show that §+(W) C C. Let g be an arc of §+(W). If g = (s,u) for u € N,
then w € V' \ W and hence su € d(W)(= C). This implies that (s,u) € C.

If g = (v/,¢t) for v/ € N’, then v’ and hence v belongs to W. Thus, vt € §(W) and
therefore (v',t) € C. 1If g = (v,u') with v € N and v/ € N’, then v € W, and
u,u’ € 1% \ W. This implies that v € W and v € W. In consequence, su € §(W) and
ot € §(W), and thus (v,u/) € C.

If g = (u,v") with u € N and v' € N’, we similarly show that g € C.

96HAPTER 4. THE K-EDGE-DISJOINT HOP-CONSTRAINED PATHS PROBLEM

We thus obtain that 67(W) C C, and hence 6+ (W) = C.

Now suppose that C' is a 3-path-cut induced by a partition (Vy, Vi, Vs, V3, Vy) such
that Vo = {s} and V; = {¢}. By considering W =V, U{u' | u € V; UV,}, we can show
as before that C'= 0*(W). O

Note that for an edge set C' which is a 3-path-cut of G, induced by a partition
(Vo, ..., Va) such that [Vo| > 2 or |V4] > 2, the corresponding arc set C' may not be
an st-dicut of G. In fact, C' may simultaneously contain two arcs (s, u), (u,v') or
(u, '), (v/,t). In the example of Figure 4.3, C simultaneously contains the arcs (s, us)
and (ug,uf). If there exists a node subset W C V such that C' = 5+(W), we would

have uy € W and uy € 1% \ W, a contradiction.

Also note that by Theorem 4.2.4, the L-path-cut inequalities induced by such parti-
tions do not define facets of kHPP(G).

VO Vz V3 V4

’
u2 Uy

Figure 4.3: A 3-path-cut in G which does not induce an st-dicut in G.

The following lemma shows that an st-dicut in G which does not contain any arc of
the form (u,u’), u € V '\ {s,t} corresponds to either an st-cut or a 3-path-cut in G
with a lower weight.

Lemma 4.3.2 Let C be an st-dicut of G such that C does not contain an arc of the

4.3. COMPLETE DESCRIPTION OF KHPP(G) 97

form (u,u'), w € V\ {s,t}. Then there exists an st-cut or a 3-path-cut C C E in G
such that T(C) < g(C).

Proof. Let C' = §+H(W) with W C V. Since C does not contain any arc of the form
(u,u'), u € N, C' may contain arcs of the form either (u,v’) or (v,u’) or none of them
but not both.

If C' contains an arc of the form (u,v') with u € N, v’ € N’, since C is an st-dicut in
G, the arcs (s,u) and (v/,t) are not in C. If C contains an arc (v, /), as C' does not
contain arcs of the form (z,2'), z € N, we should have u € V' \ W and v' € W. Hence
(s,u) and (v/,t) are in C. Therefore C' can be obtained from an edge set C' C E of G.

Moreover Z(C') = 5(C).

Futhermore, C' intersects all the 3-st-paths of G. In fact, if there exists a 3-st-path
I' = (su, uv, vt) which does not intersect C, then the arcs (s, u), (u,v"), (v,u') and (v',t)
of G are not in C. Thus, the st-path ((s,u), (u,v’), (v, t)) of G does not intersect C,
contradicting the fact that C is an st-dicut of G. Thus C intersects all the 3-st-paths
of G.

If C' is an st-cut then the result holds. If this is not the case, then we will show that
there exists a 3-path-cut 7' such that 7" C C'. Consider the graph G’ obtained from
G by deleting all the edges of C'. G’ does not contain any 3-st-path since C' intersets
all these paths. Let m = (14, ..., V4) be a partition of V in G’ such that Vj = {s}, V;,
for i = 1,2,3, is the set of nodes of G’ at distance (in terms of edges) i from s and

3

Vi=V\ (U V;). As C intersects all the 3-st-paths of G, all the st-paths in G’ are of
i=0

length at least 4 and hence, ¢t € V;. Moreover, the subgraph G’ induced by 7 in G’

does not contain any chord, that is an edge uwv with u € V;, v € V;, and [i — j| > 1. In
fact, if uv is a chord, then v is at distance ¢ +1 < j of s, a contradiction. Therefore,
if T is the 3-path-cut induced by m, we have that 7" C C. As T(e) > 0, for all e € E,
this implies Z(T) < 7(C) = 7(C). O

In what follows, we will show that P.(G) is integral. To this end, we give some
lemmas.

Lemma 4.3.3 Let T € Py(G) and y be its associated solution. Then y € kADPP(G).

9BHAPTER 4. THE K-EDGE-DISJOINT HOP-CONSTRAINED PATHS PROBLEM

Proof. Clearly, 7 satisfies inequalities 0 < y(a) < 1, for all a € - A. Now suppose
that there exists an st-dicut inequality, say y(6T(W)) > k with W C V, such that
(5+(W)) < k.

First note that 0 (W) does not contain any arc of the form (u, '), u € N. In fact,
if (u,u') € 6+(W), for some u € N, then one would have that [u,u'] C §*+(W). Since
|[u, /]| = k and F(a) = 1 for all a € [u,u], one would have y(5+(f/[7)) > k, a contra-
diction. Hence, from Lemma 4.3.2, there exists either an st-cut or a 3-path-cut C C F
of G such that Z(C) < (67 (W)) and therefore Z(C') < k. But this is impossible since

Lemma 4.3.4 Let e = uv be an edge of G such that u,v € V \ {s,t}, andy eRA ¢

solution of kADPP(G) If there exists an st-dicut C ofG which does not contain any

arc of the form (z,2'), = € V'\ {s,t}, and such that (u,v') € C and §(C) = k, then
7(C") > k for all st-dicut C" of G containing the arc (v,u').

Proof. Suppose that there exists an st-dicut C' = 67 (W) of G which does not contain
arcs of the form (2, 2'), z € V'\ {s, ¢} and such that (u,v') € C and 7(C) = k. Suppose
also, on the contrary, that there exists an st-dicut ¢’ = 5+(W’) containing the arc
(v,u') and such that y(C”) = k. From Theorem 4.1.5, W and W’ can be chosen so
that either W’ C W or W C W’. As (u,v') € C, we have that u € W and v € V\W
Since (z,2/) ¢ C, for all z € V' \ {s,t}, it follows that u,u’ € W, and v,v' € V \ W.
Similarly, as (v, u/) € C’, we have that v, € W' and u,u' € V \ w'.

I/f:WV’ gj?, then one would have v € W. But this contradicts the fact that v € V\W
If W C W’ then we would obtain that w € W’. Aswu € V\W’, this is a contradiction. [

Now we are ready to state our main result.

Theorem 4.3.1 The polytope kHPP(G) is completely described by inequalities (4.1)-

(4-3)-

Proof. We will show that the polytope Px(G) is integral. For this, let us suppose, on
the contrary, that there exists a fractional extreme point T of P,(G). Then there exists
a set of st-cuts C*(T) and a set of 3-path-cuts 7*(Z) such that T is the unique solution
of the system

4.3. COMPLETE DESCRIPTION OF KHPP(G) 99

x(e) = for all e € Ey(7),
) z(e) = for all e € F1(7),
@ () =k, forall C € C*(3),
x(T) = for all T € T*(7),
where Ey(T) (resp. F1(T)) is the set of edges such that Z(e) = 0 (resp. T(e) = 1) and

|Eo(T)] + [Er(T)] + [C*(@)| + |T"(7)| = |E].

We will show that there exists a solution 7} of P,(G) different from T which is also
a solution of S(Z), yielding a contradiction.

Clearly, the solution 7, associated with 7, is fractional and, by Lemma 4.3.3, is a
solution of kADPP(G). Let Ay(y) = {(u,v) € A | Z(w) = 0} and A (7) = {(u,v) €
A zZ(w) =1} U {(u,v), we N, v € N'}. By Lemma 4.3.1, each st-cut C' € C*(7)
and 3-path-cut 7' € T*(T) corresponds to an st-dicut Cof G having the same weight,
that is 7(C) = k. We denote by C*(7) the set of the corresponding st-dicuts. It then
follows that 7 is solution (not necessarily unique) of the system S(7) given by

y(a) =0, forall a € Ay(7),
S(y) y(a) =1, forall a € A(7),
y(C) =k, forall C e C*(y).

Since ¥ is fractional and hence, by Theorem 4.1.4, cannot be an extreme point of
l{:ADPP(é), 7y can be written as a convexe combination of integral extreme points of
l{:ADPP(é). Let 7, be one of these extreme points. Clearly, 7, is also a solution of S(7).
In the following, we show that there exists an integer solution 7, of KADPP(G) which
is a solution of S(¥) and such that ¥, (u,v") = ¥ (v, ') for all pair of arcs ((u, '), (v,u’))
of G, corresponding to an edge wv € E with u,v € V' \ {s,t} and v # v. If such a
solution exists, then 7} can be associated with a solution T} € P,(G) satisfying S(7)
and different from 7.

If for all pair of arcs ((u,v'), (v,u))) of G, with u,v € N, o/, v’ € N', y,(u,v') =
7y (v,u’), then we can take ¥, = 7,. So suppose that there exist two nodes u,v €
V' \{s,t}, such that uv € E and 7, (u,v’) # y,(v,u’). As 7, is integral, we can suppose,
w.lo.g., that 7, (u,v") = 1 and 7, (v,u) = 0. It follows that y(u,v’), y(v,u’), T(uv)
are fractional. Note that T(uv) = Y(u,v") = g(v,u’). Also note that any st-dicut of
G inducing a tight st-dicut inequality for 7 or 7; does not contain arcs of the form
(2,7), z € V\ {s,t}. If there is an st-dicut C' of G which contains (u,v’), and such
that 7,(C) = k, then, by Lemma 4.3.4, every st-dicut containing (v, u') is not tight for

I0BIAPTER 4. THE K-EDGE-DISJOINT HOP-CONSTRAINED PATHS PROBLEM

7. Let 7} be the solution given by

. Ui(a), forallae A\ {(v,u)},
Y1 (a) = _ /
1, for a = (v,).
Clearly, 7, is a solution of KADPP(G) with 7, (u,v') = 7,(¢/,u) = 1, and satisfies with
equality every st-dicut inequality which is tight for 7,. In particular, the st-dicuts
inequalities of C*(y) are also tight for 7,. Hence, 7] is a solution of S(7).

If there is an st-dicut C' which contains (v,u’) and such that 7,(C) = k, then, by
Lemma 4.3.4, every st-dicut R C A containing (u,v’) is such that g;(R) > k + 1.
Hence, the solution 7} given by

0, for a = (u,),

(@) = { 7.(a), forallae A\ {(u,0)},

is a solution of kADPP(G) such that 7} (u,v") = 7, (v',u) = 0, and every st-dicut in-
equality which is tight for 7, is also tight for 7}. Thus 7] is also a solution of S(7).

Consequently, there exists an integer solution 7, € KADPP(G) which is a solution
of () and such that 7 (u,v') = 7, («/, v) for all arcs (u,v’), (v,u) € A corresponding
to an edge uv € E. Thus, 7} can be associated with a solution 7} of Py(G). As 7
is integral, 7| is also integral. Moreover, T is a solution of S(Z). In fact, it is not
hard to see that, as 7) is a solution of S(¥), and 7\ (a) = 0 for all a € Ao(y) and
7,(a) = 1 for all @ € A;(7). Hence T (e) = 0 for all ¢ € Ey(z) and T (e) = 1 for
all e € E(T). Suppose that there is an st-cut (resp. 3-path-cut) inequality in C*(T)
(resp. T*(7)) which is not tight for 7, say 7} (Cy) > k. Then by Lemma 4.3.2, we have
that T, (Cy) < 7,(Cp), where Cp is the st-dicut of C*(7) corresponding to Cy. We thus
obtain that y’l(éo) > k. Hence ¥ is not a solution of S(¥), a contradiction. Thus, 7}
is a solution of S(T). Since T} is integral and T is fractional,) # 7. In consequence,
7 is not the unique solution of S(Z), contradicting the fact that T is an extreme point
of Py(G). Therefore, T cannot be fractional, which ends the proof of the theorem. [

A direct consequence of Theorems 4.2.2, 4.2.3, 4.2.4 and 4.3.1 is the following.

Corollary 4.3.1 If G = (V,E) is a complete graph and |V| > k + 2, a minimal

4.4. CONCLUDING REMARKS 101

complete linear description of kHPP(G) is given by

x(6(W)) >k for all st — cut 6(W),

x(T) >k for all 3-path-cut T induced by a partition satisfying
conditions 1) and 2) of Theorem 4.2.4,

z(e) >0 foralle € E,

z(e) <1 foralle e E.

As mentionned in Section 4.1.1, the separation problem for the st-cut and 3-path-
cut inequalities can be solved in polynomial time. Thus, the kHPP can be solved in
polynomial time using a cutting plane algorithm.

4.4 Concluding remarks

In this chapter we have given a complete description of the polytope associated with the
k edge-disjoint hop-constrained paths problem when L = 3 and k£ > 2. We have pre-
sented valid inequalites for the problem and given an integer programming formulation.
We have also described necessary and sufficient conditions for the trivial inequalities,
the st-cut and L-path-cut inequalities to define facets of the polytope. Using these
results together with a transformation of the kHPP in G into the kADPP in a di-
rected graph G, we have shown that the polytope kHPP(G) is completely described
by the trivial, st-cut and 3-path cut inequalities. As the separation problem for these
inequalities can be solved in polynomial time, this yields a polynomial time cutting
plane algorithm to solve the problem.

These results generalize those obtained by Huygens et al. |75] and Dahl et al. [35]
for k = 2 and L = 2,3 and for £ > 2 and L = 2, respectively. Unfortunately the
linear description of the kHPP is no longer valid when L > 4. As shown by Huygens
and Mahjoub 73|, further inequalities are even needed for an integer programming
formulation of the problem when k = 2 and L = 4.

The EHPP can also be seen as a minimum cost flow problem in the graph G by
associated with its arcs unit capacities and appropriate weights. In fact, an arc of
G which corresponds to an edge of G takes the same weight as this edge while the
arcs of the form (u,u’), u € V' \ {s,t} (which do not correspond to any edge in G)
are given the weight 0. By the correspondance between the 3-st-paths of G' and the

I0OMAPTER 4. THE K-EDGE-DISJOINT HOP-CONSTRAINED PATHS PROBLEM

st-paths in é, a minimum weight subgraph of G which contains k& edge-disjoint 3-st-
paths corresponds to a subgraph of G containing k arc-disjoint st-paths of the same
weight. Moreover, the weight of this subgraph is minimum. The kHPP is thus equiva-
lent to finding a minimum cost flow from s to ¢ of value £ in G. This implies that the
problem can also be solved in polynomial time using any minimum cost flow algorithm.

The integer programming formulation for the kHPP can be easily extended to the
more general case where more than pair of terminals are considered. However, as
pointed out in |74], the cut inequalities toghether with the L-path-cut and trivial in-
equalities do not suffice to completely describe the kHPP polytope even when only two
pair of terminals are considered L > 3 and k£ = 2.

The results of this chapter can be exploited in a Branch-and-Cut algorithm for that
general case. Also the transformation of the kHPP into the kADPP in an appropriate
directed graph introduced and exploited here, can be used to give based flow formula-
tions. It would also be interesting to investigate this type of approach for L > 4. This
is our aim in the next chapter.

Chapter 5

The k-Edge-Connected
Hop-Constrained Network Design
Problem

Let G = (V, E) be an undirected graph, a set of demands D C V' x V| a cost function
¢ : E — R, which associates the cost c(e) with each edge e € E. The k-Edge-
Connected Hop-Constrained Network Design Problem (KHNDP for short) consists in
finding a minimum cost subgraph of G such that there exist k edge-disjoint L-st-paths
between the terminals of each demand {s, ¢} of D.

In this chapter, we consider the kHNDP with L = 2,3 and £ > 2 and introduce
four new integer programming formulations for the problem. In Section 5.1, we give
a formulation of the FHNDP using the design variables. In Sections 5.2 and 5.3,
we introduced four new integer programming formulations. These formulations use
transformations of the initial undirected graph into directed graphs.

5.1 Integer programming formulation for the tHNDP
using the design variables

Let G = (V, E) be an undirected graph, L > 2 and D = {{s1,t1}, ..., {84, ta}},d > 2, be
the set of demands. We will denote by Rp the set of terminal nodes of GG, that is those
nodes of GG which are involved in at least one demand. It is clear that the incidence

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
104 DESIGN PROBLEM

vector " of any solution (V, F) of the kHNDP satisfies the following inequalities.
>

z(6(W)) > k for all st-cut, {s,t} € D, (5.1)
x(T) >k for all L-st-path-cut, {s,t} € D, (5.2)
xz(e) >0 foralle e F, (5.3)
z(e) <1 foralle € E, (5.4)

Conversely, any integer solution of the system defined by inequalities (5.1)-(5.4) is
the incidence vector of a solution of the tHNDP when L = 2, 3.

Recall that inequalities (5.1), (5.2) and (5.3)-(5.4) are called respectively st-cut in-
equalities, L-st-path-cut inequalities and trivial inequalities.

It is not hard to see that the ktHNDP can be formulated as a linear integer program
similarly to the case of a single demand (Chapter 4). The following lemma and theorem
give this result. Their proof are similar to those of Lemma 4.1.1 and Theorem 4.1.1.

Lemma 5.1.1 Let G = (V, E) be an undirected graph and s and t two nodes of V.
Suppose that there do not exist k edge-disjoint L-st-paths in G, with k > 2. Then there
exists a set of at most k — 1 edges that intersects every L-st-path.

Theorem 5.1.1 Let G = (V, E) be a graph, k > 2 and L € {2,3}. Then the kHNDP
s equivalent to the following inter program

min{cx; subject to (5.1) — (5.4), = € Z*}. (5.5)

Formulation (5.5) will be called Natural formulation. We will denote it by KHNDP y4;.
It only uses the design variables.

In the next sections, we give new integer programming formulations for the KHNDP
in the case where £k > 2 and L = 2, 3.

5.2 Separated formulations for the KtHNDP

In this section we introduce three integer programming formulations for the KHNDP.
Let G = (V, E) be an undirected graph, L € {2,3}, k > 2, two integers, and D a set
of demands. Before giving these formulations, we introduce a graph transformation
which produces |D| directed graphs from the graph G.

5.2. SEPARATED FORMULATIONS FOR THE KHNDP 105

5.2.1 Graph transformation

Let {s,t} € D and ést = (XZt,ZSt) be the directed graph obtained from G using the
following procedure.

Let Ny =V \ {s,t}, N}, be a copy of Ny and Vi = Ny U NI, U{s,t}. The copy in
N!, of a node u € N will be denoted by u'. To each edge e = st € E, we associate an
arc (s,t) in Gy with capacity 1. With each edge su € E (resp. vt € E), we associate
in Gy the arc (s,u), u € Ny (resp. (v',t), v/ € N/,) with capacity 1. With each node
u e V\ {s,t}, we associate in Gy one arc (u,u’) with an infinit capacity. Finally, if
L = 3 we associate with each edge uwv € E \ {s,t}, two arcs (u,v’) and (v,u’), with
u,v € Ng and v/,v" € N, with capacity 1 (see Figure 5.1 for an illustration with

L=3).

51 ty

83 ta

Graph G

51 t

Graph 551,t2 Graph C:'sl,t2 Graph 553,t3

Figure 5.1: Construction of graphs G with D = {{s1,t1}, {s1,t2}, {s3,t3}} for L =3

Note that each graph Gy contains |Vi,| = 2|V|—2 (= |NyUN/,U{s,t}|) nodes and
|Agt] = 16(s)|+10(t)| — |[s,]| + |V| — 2 arcs if L =2 and |Ag| = 2|E| —|0(s)| — [0(¢)| +
|[s,t]| + |V| — 2 arcs if L = 3, for all {s,t} € D.

Given a demand {s,t}, the associated graph Gy = (lzt, gst), and an edge e € F, we
denote by Ag(e) the set of arcs of G corresponding to the edge e.

It is not hard to see that Gy does not contain any circuit. Also, observe that any
st-dipath in G is of length no more than 3. Moreover each L-st-path in G corresponds
to an st-dipath in G and conversely. In fact, if L € {2,3}, every 3-st-path (s, u,v,1),

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
106 DESIGN PROBLEM

with u # v, u,v € V'\ {s,t}, corresponds to an st-dipath in Gy, of the form (s,u, v/, t)
with u € Ny and v' € N.,. Every 2-st-path (s,u,t), u € V' \ {s,t}, corresponds to an
st-dipath in G of the form (s,u,u',t).

We have the following lemma.

Lemma 5.2.1 Let L € {2,3} and {s,t} € D.

i) If two L-st-paths of G are edge-disjoint, then the corresponding st-dipaths in ést
are arc-disjoint.

i) If two st-dipaths of ést are arc-disjoint, then the corresponding st-paths in G
contain two edge-disjoint L-st-paths.

Proof. We will suppose, w.l.o.g., that . = 3. The proof is similar for L = 2.

i) Let P, and P, be two edge-disjoint 3-st-paths of G. Let P1 and P2 be the two st-
dipaths of Gst corresponding to P; and P, respectively. We will show that P1 and P2
are arc-disjoint. Let us assume that this is not the case. Then they intersect on an arc
a of the form either (s,t), (s,u), (v',t), (u,v") or (u,u'), with u € Ng and v € N.,.
If a is of the form (s,t), (s,u), (v/,t) or (u,v’), then it corresponds to an edge e of
G of the form either st, su, vt or uv. This implies that P, and P, contain both the
edge e, a contradiction. Thus, P1 and P, intersect on an arc of the form (u,u), with
u € Ng. As the st-dipaths of G st contain at most 3 arcs, P1 and P2 are of the form
(s,u,u/,t). But this implies that P; and P, contain simulataneously the edges su and
ut, a contradiction.

ii) Now consider two arc-disjoint st-dipaths ﬁl and ﬁg of ést and let P, and P» be the
corresponding 3-st-paths of G. Suppose that P, N P, # (). If P, and P, intersect on an
edge e = st, then P, and P, also contain the arc (s,t), a contradiction. If P; and P,
intersect on an edge of the form su, u € V '\ {s,t} (resp. vt, v € V '\ {s,t}), then, as
before, both P, and P, contain the arc (s, u) (resp. (v/,t)), yielding a contradiction.
Now if P, and P, intersect on an edge of the form wv, u,v € V' \ {s,t}, then P1 and
P, contain the arcs (u,v") and (v, ') of G.. Since P, and P, are arc- disjoint, P, con-
tains say (u,v’) and b, (v,u). Thus they are respectively of the form (s, u,v’,t) and
(s,v,u/,t). This implies that P, = (su,uv,vt) and Py, = (sv,vu,ut). Let P = (su, ut)
and Py = (sv,vt). Clearly P/ and Pj are edge-disjoint and of length 2. Thus, we
associate ﬁl and]52 with them, which ends the proof of the lemma. O

5.2. SEPARATED FORMULATIONS FOR THE KHNDP 107

As a consequence of Lemma 5.2.1, for L € {2,3} and every demand {s,t} € D, a set
of k edge-disjoint L-st-paths of G corresponds to a set of k arc-disjoint st-dipaths of
Gst, and k arc-disjoint st-dipaths of Gst correspond to k edge-disjoint L-st-paths of G.
Therefore we have the following corollary.

Corollary 5.2.1 Let H be a subgraph of G and flst, {s,t} € D, the subgraph of Gy
obtained by considering all the arcs ofést corresponding to an edge of H, plus the arcs of
the form (u,u), w € V\{s,t}. Then H induces a solution of the k HNDP if Hy, contains
k arc-disjoint st-dipaths, for every {s,t} € D. Conversly, given a set of subgraphs H,
of ést, {s,t} € D, if H is the subgraph of G obtained by considering all the edges of
G assoctated with at least one arc in a subgraph f]st, then H induces a solution of the
kHNDP only if fISt contains k arc-disjoint st-dipaths, for every {s,t} € D.

Remark that a graph G will contain k arc-disjoint st-dipaths if and only if every
st-dicut contains at least k arcs. This implies, by the Max flow - Min cut Theorem,
that Gy, contains k arc- disjoint st-dipaths if and only if there exists a feasible flow of
value > k where every arc of Gst has capacity 1. Given a demand {s t} and a feasible
flow f of value > k on Gst, we will denote by Hsft the set of arcs of Gst having a positive
value of flow with respect to f.

In what follows, we will give three integer programming formulations for the tHNDP
using graphs G, {s,t} € D. These formulations will be called separated formulations.

5.2.2 Cut formulation

The first formulation is based on cuts in the graphs Gst; {s t} € D. Given a subgraph

Hg of Gst, we let y; Hi ¢ RAst be the incidence vector of Hst, that is to say y2*(a) = 1
if « € Hy, and yHt(a) = 0 if not. By Corollary 5.2.1, if a subgraph H of G induces
a solution of the kFHNDP, then the subgraph fISt contains at least k arc-disjoint st-
dipaths, for all {s,¢} € D, and conversely. Thus, for any solution H of the kHNDP,
the following inequalities are satisfied by yg“, for all {s,t} € D,

Yst (T (W) > k, for all st-dicut 67 (W) of G, (5.6)
ysi(a) < x(), forall a € Ay(e), e € E, (5.7)
(5.8)
(5.9)

yse(a) >0, for all a € Ay,
z(e) <1, for alle € E.

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
108 DESIGN PROBLEM

where yq € RA for all {s,t} € D and z € RE.

Inequalities (5.6) will be called directed st-cut inequalities or st-dicut inequalities and
inequalities (5.7) linking inequalities. Inequalities (5.7) indicate that an arc a € Ay
corresponding to an edge e is not in H, if e is not taken in H. Inequalities (5.8) and
(5.9) are called trivial inequalities.

We have the following result which is given without proof since it easily follows from
the above results.

Theorem 5.2.1 The kHNDP for L = 2,3 is equivalent to the following integer pro-
gram

min{cz; subject to (5.6) — (5.9), x € Z¥, yy € Zfst,
for all {s,t} € D}. (5.10)

This formulation is called Cut formulation and denoted by kHNDP¢,. It contains
Bl+ Y 1Aal =Bl +dn—-2)+ Y [6(s)+ D 160 = > s
{s,t}eD {s,t}eD {s,t}eD {s,t}eD

variables if L = 2 and
Bl + Y [Aul = B[+ 2d|E|+d(n—2)— Y [6(s)] = > 6@+ D 1]
{s,t}eD {s,t}eD {s,t}eD {s,t}eD
variables if L = 3 (remind that d = |D|).
However, the number of constraints is exponential since the directed st-cuts are in

exponential number in Gy, for all {s,t} € D. As it will turn out in Chapter 6, its
linear relaxation can be solved in polynomial time using a cutting plane algorithm.

5.2.3 Node-Arc formulation

Let H C E be a subgraph of G and xf its incidence vector. Given a demand {s,t},
we let f** € R4t be an integer flow vector on G of value k. Then f* satisfies the
flow conservation constraints, given by

5.2. SEPARATED FORMULATIONS FOR THE KHNDP 109

k ifu=s,
Soopt= Y =X 0 ifueVy\{st} ¢,
a€dt (u) a€é~ (u) —k ifu=t,
for all u € V. (5.11)

Also ™ and (f*")¢snep satisfy the following inequalities

fit < x(e), foralla € Ay(e), {s,t} € D, e € E, (5.12)
>0, for every a € A, and {s,t} € D, (5.13)
z(e) <1, for all edge e € E. (5.14)

Inequalities (5.12) are also called linking inequalities. They indicate that if an edge
e € F is not in the solution, then the flow on every arc corresponding to e is 0.
Inequalities (5.13)-(5.14) are called trivial inequalities.

We have the following theorem which will be given without proof.

Theorem 5.2.2 The KHNDP for L = 2,3 is equivalent to the following integer pro-
gram
min{cz; subject to (5.11) — (5.14), z € Z%, f* € Zﬁ“,
for all {s,t} € D}. (5.15)

This formulation will be called Node-Arc formulation and denoted by kKHNDP y 4. It
contains

El+ > [Adl = |El+dn—2)+ > 16(s)|+ D> 16— > st
{s,t}eD {s,t}eD {s,t}eD {s,t}eD
variables if L = 2 and
El+ > |Aul = |E|+2d|E|+d(n—2)— > [6(s)| = > 160+ > st
{s,t}eD {s,t}eD {s,t}eD {s,t}eD

variables if L = 3.

The number of constraints is

dVIi+ D 16+ Yo 18— Y st

{s,t}eD {s,t}eD {s,t}eD

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
110 DESIGN PROBLEM

if L =2 and
diVI+2dE] = Y 16(s) = > 1601+ D ls.t]

{s,t}eD {s,t}eD {s,t}eD

if L =3.

Clearly the number of variables and the number of constraints are both polynomial.
Hence, the linear relaxation of Formulation (5.15) can be solved in polynomial time
using a linear programming method.

5.2.4 Path-Arc formulation

The kHNDP can also be formulated using a path-based model. Every solution of the
problem is represented by a collection of directed st-paths in graphs G, {s,t} € D.

Let {s,t} € D and P be the set of st-dipaths in ést. Given a directed path Pec P,

we denote by ij = (7§a)aeﬁst the incidence vector of P that is the vector given by
75, = 1lifa € P and 7%, = 0 otherwise. Given a subgraph [of G and a set
of subgraphs f]st of ést, {s,t} € D, we let u%t € R”st be the 0-1 vector such that

M%ﬁ(ﬁ) —1if Pe P, isin Hy and M;it(P) = 0 otherwise.

If H induces a solution of the k(HNDP, then 2 and (,u% t){s’t}ED satisfy the following
inequalities.

> pt(P) >k, (5.16)

PPy
Z vgau“(ﬁ) < z(e), for all a € Ayle), {s,t} € D, e € E, (5.17)
ﬁeipst
z(e) <1, for all edge e € E, (5.18)
1t (P) > 0, for every P € Py, {s,t} € D, (5.19)

where %t € R¥* and = € RF.

Inequalities (5.16) express the fact that the subgraph ést must contain at least k
st-dipaths. Inequalities (5.17) indicate that the st-dipaths are arc-disjoint.

The following theorem gives an integer programming formulation for the kHNDP
using the path-based model described above.

5.3. AGGREGATED FORMULATION FOR THE KHNDP 111

Theorem 5.2.3 The KHNDP for L = 2,3 is equivalent to the following inter program

min{cx; subject to (5.17) — (5.19), x € ZE, u** € 77+,
for all {s,t} € D}. (5.20)

Formulation (5.20) is called Path-Arc formulation and denoted by kHNDPp,4. Re-
mark that this formulation contains an exponential number of variables while the num-
ber of non trivial inequalities is

Yo 8+ D 160l = Y sl —dn—3)

{s,t}eD {s,t}eD {s,t}eD
if L =2 and
24| B[= Y 16(s) = D 160+ D st —d(n—3)
{s,t}eD {s,t}eD {s,t}eD

if L = 3, which is polynomial. To solve the linear relaxation of Formulation (5.20), it
is necessary to use appropriate method such as column generation.

In the next section we introduce a further formulation for the kHNDP also based
on directed graphs. However, unlike the separated formulations, this formulation is
supported by only one directed graph.

5.3 Aggregated formulation for the FHNDP

Let G = (V, E) be an undirected graph, L € {2,3}, k£ > 2 be two integers, and D
be the demand set. We denote by Sp and Tp respectively the sets of source and
destination nodes of D. In the case where two demands {s1,¢;} and {sq,t2} are such
that s; = t, = s, we keep a copy of s in both Sp and T'p.

In this section, we will introduce a new formulation for the tHNDP which is supported
by a directed graph G = (V, A) obtained from G as follows. Let N’ and N” be two
copies of V. We denote by " and u” the nodes of N’ and N” corresponding to a node
weV. Let V=S, UN'UN"UTp. For every node u € V, we add in G an arc (u/,u”).
For each {s,t} € D, with s € Sp and t € Tp, we apply the following procedure.

i) For an edge e = st, we add in G an arc (s,#') and an arc (¢, t);

ii) For an edge su € E, u € V \ {s,t}, we add an arc (s,u’) in G;

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
112 DESIGN PROBLEM

iii) For an edge vt € E, v € V' \ {s,t}, we add an arc (v",t).

If L = 3, for each edge e = uv € E, we also add two arcs (u/,v"”) and (v',u”) (see
Figures 5.2 and 5.3 for examples with L = 2 and L = 3).

S1 tl

s3 2}

Graph G

ty ty

Graph G

Figure 5.2: Construction of graph G with D = {{s1,t1}, {s1, 22}, {53, #3}} and L = 2.

5.3. AGGREGATED FORMULATION FOR THE KHNDP 113

S1 ty

S3 to

Graph G

Graph G

Figure 5.3: Construction of graph G with D = {{s1,t1}, {s1, 2}, {53, ¢5}} and L = 3.

G contains V| = 2|V| +|S| + |T| nodes and |A] = |V| + Z 16(s)| + Z |6(t)| arcs if
seS teT
L=2and |A] = 2|E|+ V[+) _|6(s)| + > [6(t)] arcs if L = 3.

ses teT

IfG = (17, 2[) is the graph associated with G, then for an edge e € E, we denote by
A(e) the set of arcs of G corresponding to e.

Observe that G is circuitless. Also note that for a given demand {s,t} € D, every
st-dipath in G contains at most 3 arcs. An L-st-path P = (s,u,v,t) of G, where u
and v may be the same, corresponds to an st-dipath P = (s,u/,v" 1) in G. Conversely,
every st-dipath P = (s,u/,v”,t) of G, where «/ and v” may correspond to the same
node of V', correponds to an L-st-path P = (s,u,v,t), where u and v may be the same.
Moreover (7 does not contain any arc of the form (s, s') and (¢”,t), for every s € Sp
and ¢t € Tp. If anode t € T appears in exactly one demand {s,t}, then [s",t] = (. In
the remain of this chapter we will suppose w.l.o.g. that each node of T is involved,
as destination, in only one demand. In fact, in general, if a node ¢ € T} is involved, as
destination, in more than one demand, say {si,t}, ..., {sp, t}, with p > 2, then one may
replace in Tp ¢ by p nodes 4, ..., t, and in D each demand {s;,t} by {s;,t;},i=1,...,p.

We have the following result.

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
114 DESIGN PROBLEM

Lemma 5.3.1 Let L € {2,3}. If each node t € Tp appears in exacly one demand,
then for every {s,t} € D,

i) if two L-st-paths of G are edge-disjoint, then the corresponding st-dipaths of G
are arc-disjoint.

i) if two st-dipaths ofé are arc-disjoint, then the corresponding st-paths in G con-
tain two edge-disjoint L-st-paths.

Proof. The proof will be given for L = 3. It follows the same lines for L = 2.

i) Let {s,t} € D and let P, and P, be two edge-disjoint 3-st-paths and Pl and P2 be
the two st-dipaths of G corresponding to P1 and P2 We will show that P1 and P2 are
arc-disjoint. Suppose the contrary that is P, and P, intersect on an arc a € A of the
form either (s,t'), (s,u’), (v",t), (v/,v") or (v, "), with v’ € N and v" € N”. If a is
of the form (s,t'), (s,u'), (v",t) or (v/,v”), then it corresponds to an edge e of G of
the form either st, su, vt or uv. It then follows that P; and P, both contain edge e,
a contradiction. If P, and P, intersect on an arc of the form (u/,u”), then they also
contain arcs of the form (s, ') and (u”,t). Thus, P; and P, also contain simultaneously
the edges su and ut, a contradiction. Thus, ﬁl and ﬁg are arc-disjoint.

ii) Let 151 and ﬁg be two arc-disjoint st-dipaths of G and suppose that P, and P, the
3-st-paths of G' corresponding to P; and P,, are not edge-disjoint. Thus P, and P
intersect on edges of the form either st, su, vt or uv, with u, v # s, t.

If P, and P, intersect edge st, then each path Pl and P2 contains at least one arc
among those corresponding to st in G, that is (s,¢), (s',¢") or (¢,s"). If P, and
P, contain (s',t"), then they should also contain arc (s,s’). Since [s,s] = 0, this is
1mposs1ble In a similar way, we show that P1 and P2 cannot contain (¢',s”). Hence,
P, and P, both contain arc (s, '), a contradiction.

If Py and P, intersect on su, then each path P, and P, contains either (s,), (s',u") or
(u/,s"). Since [s, s'] = 0 = [s”,], P, and P, should both use arc (s, '), a contradiction.

If P, and P, intersect on vt, then P, and P, contain either (v/), (1, 0") or (v, t). As
[t",t] =0, P, and P, cannot use arc (v, t"). Moreover, if P, or P, contains (¢, v"), then

it also contains arc (v”,t). Hence, P, and P, both contain arc (v,t), a contradiction.

In consequence, Py N P, = {uv}, u,v # s,t. This implies that P, and P, are re-
spectively of the form (su/,u'v”,v"t) and (sv',v'u”, u"t), and P; = (su,uv,vt) and
Py, = (su,vu,ut). Let P] = (su,ut) and Py = (sv,vt). Clearly P/ and P, are edge-
disjoint. Since they are of length 2, we simply associate ﬁl and 152 with them, which

5.3. AGGREGATED FORMULATION FOR THE KHNDP 115

ends the proof of the lemma. (]

As a consequence of Lemma 5.3.1, the graph G contains k edge-disjoint L-st-paths
for a demand {s,t} if and only if G contains at least k arc-disjoint st-dipaths. Thus
we have the following corrollary.

Corollary 5.3.1 Let H be a subgraph of G and H the subgraph of G obtained by
considering all the arcs of G corresponding to the edges of H toghether with the arcs
of the form (u/, u”), u €V, and (t',t), for everyt € Tp. Then H induces a solution
of the kKHNDP if H is a solution of the Survivable Directed Network Design Problem
(kDNDP). Conversely, if H is a subgraph of G and H is the subgmph of G obtained
by considering all the edges which correspond to at least one arc of H, then H induces
a solution of the kKHNDP only zfﬁ[15 a solution of the KDNDP.

By Menger s Theorem, G contains k arc- disjoint st-dipaths if and only if every st-
dicut of G contains at least k arcs. Let € RE and Yy € RA. If H is a solution of the
EDNDP and H is the subgraph of G whose edges correspond to the arcs of H, then
2z and yﬁ , the incidence vectors of H and H , satisfy the following inequalities

y(6T(W)) > k, for all st-dicut 6" (W), {s,t} € D, (5.21)
y(a) < z(e), forallac Afe), e € E, (5.22)
y(a) >0, for all a € A, (5.23)
z(e) <1, forall e € . (5.24)

We have the following theorem, which easily follows from Corollary 5.3.1.

Theorem 5.3.1 The KHNDP for L = 2,3 is equivalent to the following integer pro-
gram

min{cx; subject to (5.21) — (5.24), x € Z%,y € 7 } (5.25)

Formulation (5.25) will be called Aggregated formulation and denoted by kHNDP 4,.
Inequalities (5.21) will be called directed st-cut inequalities or st-dicut inequalities and
(5.22) will be called linking inequalities. The latter inequalities indicate that an arc a,
corresponding to an edge e, is not in H if ¢ is not taken in H. Inequalities (5.23) and
(5.24) are called trivial inequalities.

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
116 DESIGN PROBLEM

This formulation contains |E| + |A| = |E| + |[V] + Z 10(s)| + Z |6(t)| variables

seESp teTp
if L =2and |E| + |A] = 3|E|+[V|+) [d(s)| + > _ |6(t)| variables if L = 3. The
seSp teTp

number of constraints is exponential since the st-dicuts are in exponential number.
But, as it will turn out, the separation problem of inequalities (5.21) can be solved in
polynomial time and hence, the linear relaxation of (5.25) so is.

In the next section, we present a comparitive study of different formulations presented
in the last section. In particular, we will show that the values of the linear relaxations
of the separated and Aggregated formulations are greater than that of the Natural
formulation and thus, these formulations are as strong as the Natural formulation.

5.4 Separated and Aggregated formulations versus Nat-
ural formulation

Here we show that the values of the linear relaxations of Formulations (5.10)-(5.25),
are greater than that of the Natural formulation of the KHNDP. For this, we show that
a solution 7 of the linear relaxation of any of these four formulations is also a solution
of the linear relaxation of Formulation (5.5).

5.4.1 Separated formulations versus Natural formulation

We first consider the Cut, Node-Arc and Path-Arc formulations. We will examine
the Node-Arc formulation, the proof for the Cut and Path-Arc formulations is along
the same lines. We will show that, if a vector T € R¥ and |D| flow vectors ?St €
R4t {s,t} € D, induce a solution of the linear relaxation of (5.15), then Z also
satisfies inequalities (5.1)-(5.4). To this end, we first associate with each digraph G
a solution 7y, € R4« obtained from Z. Then we introduce a procedure which permits
to associate with every st-cut and L-st-path-cut of G an st-dicut of ést with the same
value regarding 7.

For all {s,t} € D, let 7, € R4 be the vector given by

5.4. SEPARATED AND AGGREGATED FORMULATIONS VERSUS NATURAL
FORMULATION 117

(T(su) if ais of the form (s,u), u € Ny,
if a is of the form (v',t), v € N,
_ (uv) if a is of the form (u,v’) or (v/,u),
Ua(a) = u,v € Ng, u/,v" € N.,, uw#v, v #,
if a is of the form (s, 1),

if a is of the form (u,u), u € Ng, u' € N.,.

s 8l 8l
[t
<+
SN—

—
e

[VA)

S~
&t

\

Note that, since ?St is of value > k;, for all {s,t} € D, by inequalities (5.12), it follows

that 7, (67 (W)) > k for all st-dicut 67 (W) of Gg.

Now we introduce a procedure, called Procedure A, which, for a demand {s,¢} and
an edge set C' C E, produces an arc subset C of G.

i) For an edge st € C, add the arc (s,t) in 6’;

ii) for an edge su € C, add the arc (s,u) in 5, u € Ny

1)
iii) for an edge vt € C, add the arc (¢v/,t) in C, v/ € N/,;
iv) for an edge uv € C, u # v, u,v € V\ {s,t},

iv.1) if su € C or vt € C, then add (v,v) in C, with v € N, and v/ € N/,;
iv.2) if su ¢ C and vt ¢ C, then add the arc (u,v') in C.

Observe that C' does not contain any arc of the form (u, ') with u € Ny and o’ € N/,.
Also note that C' does not contain at the same time two arcs (u,v") and (v, u’), for an
edge uwv € E with u,v € V'\ {s,t}.

Conversely, an arc subset C of Ay can be obtained from an edge set C' C F, using
Procedure A, if C' does not contain simultaneously two arcs (u,v’) and (v, '), u,v € Ng,
u',v" € N, and does not contain any arc of the form (u,u) with u € Ny, v’ € N.,.

As each arc of C' corresponds to a single arc of C and vice versa, C' and C have the
same weight with respect to T and 7, that is T(C') = 7, (C).

Lemma 5.4.1 Let (f,?sltl, ...,Tsdtd) be a solution of the linear relazation of Formu-

lation (5.15). Let C C E be an edge set of G which is an st-cut or a L-st-path-cut
induced by a partition (Vo, ..., Vi1) such that |Vo| = |Via| =1, with L € {2,3}. Also
let 7, € R4t be the solution obtained from T and Gy:. Then the arc set C obtained
from C by Procedure A is an st-dicut of Gy. Moreover, T(C) =7, (C).

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
118 DESIGN PROBLEM

Proof. Similar to that of Lemma 4.3.1. O

By Lemma 5.4.1, every st-cut and L-st-path-cut C' of G, induced by a partition
(Vo, ..y Via1) such that [Vy| = |Vpi1| = 1, corresponds to an st-dicut C' of G of the

same weight, that is T(C) = y,(C). As by the remark above, 5 ,(C) > k, for every
st-dicut of G, we have that T(C) > k. Therefore, T satisfies inequalities (5.1)-(5.4).

This result implies that if a vector T and a set of flow vectors (TSt){s7t}€D inducing
an optimal solution of the linear relaxation of Formulation (5.15), then 7 is a solution
of the linear relaxation of (5.5). This yields the theorem below.

Theorem 5.4.1 If Z3, 4 (resp. Zt.,.) (resp. Z54) is the value of the linear relazation
of Formulation (5.15) (resp. (5.10)) (resp. (5.20)) and Z? ., is that of Formulation
(5.5), then Z} ., < Zy 4 (resp. Zy < ZEas) (resp. Zk < Zp4)-

nat nat

In the next section we show that this result also holds for the Aggregated formulation.

5.4.2 The linear relaxation of the Aggregated formulation

Consider the Aggregated formulation (5.25) and let G = (17, Z) be the directed graph
associated with G. Let also (Z,7) € R¥ x R4 be a pair of vectors which induces a
solution of the linear relaxation of Formulation (5.25). As for the Node-Arc formulation,
we are going to associate with every edge set C' C E and demand {s,t} € D, an arc
set C' of é, and show that if C' is an st-cut or an L-st-path-cut induced by a partition
(Vo oy V1) with [Vo| = [V41| = 1, then C is an st-dicut of G.

For this, we give the following procedure called Procedure B. Let C' C E and {s,t} €
D, and let C' be the arc set of G obtained as follows.

i) For an edge st € C, add the arc (s,t') in C;

ii) for an edge su € C, add the arc (s,u’) in C,u € N;

)
)
iii) for an edge vt € C, add the arc (v",t) in C,v" € N,
iv) for an edge uv € C, u # v, u,v € V '\ {s,t},

iv.1) if su € C or vt € C, then add (v/,u”) in C, with ' € N’ and u” € N";

5.4. SEPARATED AND AGGREGATED FORMULATIONS VERSUS NATURAL
FORMULATION 119

iv.2) if su ¢ C and vt ¢ C, then add the arc (v/,v”) in C.

Observe that C' does not contain any arc neither of the form (u/,v”) with v/ € N’
and u” € N”, nor of the form (¢,t) for t € Tp. Also note that C' does not contain at
the same time two arcs (u/,v"”) and (v’,u”), for an edge wv € E.

Conversely, an arc subset C of A can be obtained by Procedure B from an edge set
C C F if C does not contain simultaneously two arcs (v',v”) and (v',u"), v',v" € N,
u”,v" € N”, and any arc of the form (u/,u”) with ' € N’, " € N” and (t';t), t € Tp.

As each arc of C' corresponds to an arc of C and vice versa, and (7,7) satisfies

inequalities (5.22), we have that Z(C') > 5(C'). We then have the following result given
without proof since its proof is similar to that of Lemma 4.3.1.

Lemma 5.4.2 Let (Z,7) be a solution of the linear relazation of Formulation (5.25).
Let C C E be an edge set of G which is an st-cut or a L-st-path-cut induced by a
partition (Vy, ..., Vi1) such that |Vy| = Vo] = 1, with L € {2,3}. Then the arc set

obtained from C and {s,t} by Procedure B is an st-dicut of G. Moreover, T(C') > y(C).

Proof. The proof is similar to that of Lemma 4.3.1. 0

By Lemma 5.4.2, every st-cut and L-st-path-cut C' of G corresponds to an st-dicut
C of G such that Z(C) > y(C). As (T,7), induces a solution of the linear relaxation

of Formulation (5.25), and hence, 5(C) > k, for every st-dicut C of é, we have that
Z(C) > k. Therefore, T satisfies inequalities (5.1)-(5.4), yielding the theorem below.

Theorem 5.4.2 If 7} is the optimal solution of Formulation (5.25) and Z, is the
optimal solution of Formulation (5.5), then Z,, < Z},.

The next section is devoted to a polyhedral study of the different formulations in-
troduced before. For the polytope associated with each formulation we describe some
classes of valid inequalities and give some conditions under which these inequalities
define facets.

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
120 DESIGN PROBLEM

5.5 The FHNDP polytopes

Let G = (V,E) be an undirected graph, L € {2,3} and k£ > 2 two integers, and
D = {{s1,t1}, ..., {Sa, ta}}, d > 2, the set of demands.

We will denote by kHNDP 4,(G, D) (resp. kHNDP¢, (G, D)) (resp. kHNDPy (G, D))
(resp. KHNDPp(G, D)) the polytope associated with the Aggregated formulation
(resp. Cut formulation), (resp. Node-Arc formulation), (resp. Path-Arc formulation).

5.5.1 The polytope kFHNDP 4,(G, D)

We first consider the polytope kHNDP 4,(G, D). Let G = (V, A) be the directed graph
associated with G and D in the case of the Aggregated formulation. Let E* be the
set of edges e € E such that there exists a demand {s,t} € D such that G \ {e}
does not contain k edge-disjoint L-st-paths. Such an edge is said to be L-st-essential.
Also consider an arc a € A such that there exists a demand {s,t} € D such that the
graph G \ {a} does not contain k arc-disjoint st-dipaths. Such an arc a is said to be
st-essential. We will denote by A* the set of st-essential arcs of G.

The following theorem characterizes the dimension of kHNDP 4,(G, D).
Theorem 5.5.1 dim(kHNDP4,(G, D)) = |E| + |A| — | E*| — | A%].

Proof. Obviously, we have that dim(kHNDP 4,(G, D)) < |E|+|A| — | E*| — | A*|. Now
we show that dim(kHNDP 4,(G, D)) > |E| + |A| — | E*| — | A*|. For this, we show that
the maximum number of affinely independant solutions of kHNDP 4,(G, D) is greater
than or equal to |E| 4 |A| — |E*| — |A*| + 1. Recall that a solution of kHNDP 4,(G, D)
is described by a pair (I:;, F) where F C Aand F C E is the associated edge set.
Also note that an edge set F' induces a solution of the kHNDP if and only if the
associated arc set F induces a subgraph of G containing k arc-disjoint st-dipaths for
every {s,t} € D.

Consider the pairs (/T\ {a},E), for all a € A\ A* Asa ¢ A*, these pairs induce
solutions of kHNDP 4, (G, D).

For every edge e € E\ E*, consider the pair (A \ A(e), E \ {e}). Remind that,
for all e € E, A(e) is the set of arcs of A corresponding to e. As e € E\ E*, the
subgraph induced by E \ {e} contains k edge-disjoint L-st-paths for every {s,t} € D

5.5. THE KHNDP POLYTOPES 121

and the subgraph of G induced A\ A(e) also contains k arc-disjoint st-dipaths for every
{s,t} € D. Hence this pair induces a solution of kHNDP 4,(G, D).

One can easily observe that these solutions, toghether with the solution given by the
pair (A, E), form a family of |E \ E*| + |A\ A*| 4+ 1 solutions of the EHNDP 4, that
are affinely independant. Therefore, dim(kHNDP 4,(G, D)) > |E| + |A| — |E*| — | A%,
which ends the proof of the theorem. (]

Consequently, kHNDP 4,(G, D) is full dimensional if and only if E* = () = A*,

The next theorem shows that if G is complete and |V| > k + 2, then E* = () = /T*,
implying that kHNDP 4,(G, D) is full dimensional. But before, we give the following
lemma.

Lemma 5.5.1 If G is complete, then for every {s,t} € D, there exist at least |V | — 1
arc-disjoint st-dipaths in G.

Proof. Suppose that G is complete. Consider a demand {s,t} € D and the arc set
H=[s,N]UIN', N"|U[N"t]U[t',t]. Clearly, since G is complete, |[s, N']| = |V — 1,
[N”,#]] = |[V|—2. Moreover, by the construction of G, |[N’, N”]| = |V| and |[t’,#]| > 1.
Thus, the subgraph induced by H contains |V — 1 arc-disjoint st-dipaths in G. U

A consequence of Lemma 5.5.1 is that for a complete graph G with |V| > k + 2,
the graph G contains at least k + 1 arc-disjoint st-dipaths for every {s,t} € D. This
implies that E* = () = A*. We thus have the following.

Corollary 5.5.1 If G is complete and |V| > k + 2, then kHNDP4,(G, D) is full di-
mensional.

In what follows, we give necessary and sufficient conditions for the trivial inequalities
to define facets of kHNDP4,(G, D). Remark that the inequalities y(a) < 1, for all
a € A, and x(e) > 0, for all e € E, are redundant with respect to the inequalities

y(a)>0 forallae A,
z(e) <1 forallee F,

y(a) < z(e) for all arc a € Afe),

and hence, do not define facets.

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
122 DESIGN PROBLEM

Theorem 5.5.2 If G is complete and |V| > k + 2, then the following hold.

i) Every inequality x(e) <1 defines a facet of kHNDP4,(G, D);

i) An inequality y(a) > 0 defines a facet of kHNDPa,(G, D) if and only either |V| >
k+3 or|V|=k+2 and a does not belong to an st-dicut of G of cardinality k+ 1.

Proof. First note that, as G is complete and |V| > k + 2, by Corollary 5.5.1,
EHNDP 4,(G, D) is full dimensional.

i) Let a € A. Since @ is complete and [V| > k + 2, the subgraph induced by A \ {a}
contains k arc-disjoint st-dipaths for every {s,t} € D. Thus, the pair (A \ {a}, £)
induces a solution of kHNDP 4,(G, D). Moreover, its incidence vector satisfies z(e) = 1.

Now let f € E\ {e}. As before, the subgraph induced by E \ {f} contains k edge-
disjoint L-st-paths, for every {s,t} € D. Thus, the pair (A\ A(f), £\ {f}) induces
a solution of kHNDP 4,(G, D), whose incidence vector satisfies z(e) = 1. Recall that
Z(f) denotes the set of arcs of G corresponding to f.

It is not hard to see that these two families of solutions, toghether with the so-
lution induced by the pair (A, E), form |E| + |A] solutions whose incidence vectors
satisfy z(e) = 1 and are affinely independant. This yields z(e) < 1 defines a facet of
KHNDP 4, (G, D).

ii) Consider an arc a € A and suppose that |V| > k+3. By Lemma 5.5.1, G contains at
least k+2 arc-disjoint st-dipaths for every {s,t} € D, and G contains at least k+2 edge-
disjoint L-st-paths. Thus for an edge e € E, the pair (A\ ({a} UA(e)), E\{e}) induces
a solution of kHNDP 4,(G, D). Also, for an arc a’ € A\ {a}, the pair (A\ {a,a'}, E)
induces a solution of kHNDP 4,(G, D). These solution toghether with the solution
(A\{a}, E) form a family of | A|+ | E| solutions whose incidence vectors satisfy y(a) = 0
and are affinely independant. Thus, y(a) > 0 defines a facet.

Now suppose that |V| =k + 2. If a belongs to an st-dicut 67 (W) of k+ 1 arcs, then
y(a) > 0 is redundant with respect to the inequalities

y(6" (W) = k,
—y(a') > —1, for every arc a’ € §7(W)\ {al,

and hence cannot define a facet. If a does not belong to an st-dicut of k + 1 arcs,
then, the pairs (A \ ({a} U A(e)), E \ {e}), for all e € E, and (A \ {a,d'}, E), for

5.5. THE KHNDP POLYTOPES 123

all @ € A\ {a} induce solutions of KHNDP 4,(G, D). These solutions toghether with
the solution (A \ {a}, E) form a family of |A| 4+ |E| solutions whose incidence vec-

tors satisfy y(a) = 0 and are affinely independant. Thus y(a) > 0 defines a facet of
KHNDP 4, (G, D). O

The next theorem gives necessary and sufficient conditions for the directed st-cut
inequalities to define facets of kHNDP 4,(G, D).

Theorem 5.5.3 Suppose that G is complete and |V'| > k+2 and let W CV be a node
set such that there is a demand {s,t} € D with s € SpNW and t € TpN(V\W) (Recall
that Sp (resp. Tp) is the set of terminals of G that are source (resp. destination) in
at least one demand). Then the st-dicut inequality y(5+(W)) > k defines a facet of
kHNDP 4,(G, D) only if the following conditions hold

i) WNSp={s} and (V\W)NTp = {t};
ii) 5’617\/1/[7, s" €W and t" € W.

Proof. We will only show the first condition of i). The proof for ii) follows the same
lines. Suppose on the contrary that there exists another node s; # s in W N Sp. Since
s € Sp, we have that [s,s1] = (0. Thus, §TH(W\ {s1}) = §T(W)\ 6*(s1). Note that
the edges of G associated with those of 07 (s1) are those of d(s1). As G is complete,
0% (s1) # (0. Therefore, the st-dicut inequality induced by W is redundant with respect
to the inequalities

y(6* W\ {s1}) > k.
y(a) >0 for all a € 57 (sy),

and hence, cannot define a facet. O

5.5.2 The polytope FHNDP,(G, D)

Now we consider the Cut formulation. The results of this section will be given without
proof. In fact their proofs are similar to those of the previous section.

As before, we denote by E* the set of L-st-essential edges of G' and *’Z[:t the set of
st-essential arcs of G, for every {s,t} € D. The following theorem gives the dimension
of ktHNDP¢, (G, D).

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
124 DESIGN PROBLEM

Theorem 5.5.4 dim(kHNDP¢, (G, D)) = |E|+ > |Ay|—|E"|— Y |A3].

{s,t}eD {s,t}eD

Proof. Similar to proof of Theorem 5.5.1. 0

Lemma 5.5.2 If G is complete, then for every demand {s,t} € D, there exists at least
V| — 1 arc-disjoint st-dipaths in Gg.

Proof. Similar to proof of Lemma 5.5.1. U

As a consequence, we have the following corollary.

Corollary 5.5.2 If G is complete and |V| > k + 2, then kHNDP¢,(G, D) is full
dimensional.

Note that the inequalities yg(a) < 1 and x(e) > 0 are redundant with respect to
yse(a) >0, z(e) < 1 and yy(a) <

x(e). The next theorem gives necessary and sufficient
conditions for inequalities (5.8) and

e).
(5.9) to define facets.

Theorem 5.5.5 If G is complete and |V| > k + 2, then the following hold.

i) Fvery inequality x(e) <1 defines a facet of kHNDP¢, (G, D).

ii) An inequality y(a) > 0 defines a facet of kHNDP¢, (G, D) if and only if either
V| > k+3 or |V]| =k+2 and a does not belong to an st-cut of cardinality k + 1.

Proof. Similar to proof of Theorem 5.5.2. U

In the next section, we describe further classes of valid inequalities for the polytopes
discussed above. We also give for some of them necessary and sufficient conditions for
these inequalities to be facet defining.

5.6. VALID INEQUALITIES 125

5.6 Valid inequalities

Here we describe various classes of inequalities that are valid for the polytopes ktHNDP 4,(G, D),
EHNDP¢, (G, D), kKHNDP N 4(G, D) or kHNDPp4 (G, D) when L € {2,3}. But before,
we give the following lemma.

Lemma 5.6.1 The following inequalities are valid for kHNDP4,(G, D), kHNDP¢,, (G, D),
KHNDPy4(G, D), kHNDPp (G, D):

z(6(W)) >k, for every st-cut 6(W) and every {s,t} € D,
x(T) >k, for every L-st-path-cut T and every {s,t} € D.

Proof. Easy. U

5.6.1 Aggregated cut inequalities

Here we introduce a class of inequalities that are valid for tHNDP 4,(G, D) and kHNDP¢, (G, D).
This class of inequalities are inspired from those introduced by Dahl [29] for the poly-

tope of the Survivable Directed Network Design Problem (xDNDP). The kDNDP con-

sists, given a directed graph f], a set of demands D and an integer £ > 2, in finding

a minimum weight subgraph of H which contains k arc-disjoint st-dipaths for every
demand {s,t} € D. We will first describe these inequalities for kHNDP 4,(G, D) and

then extend it to kHNDP¢, (G, D).

5.6.1.1 Aggregated cut inequalities for fHNDP 4,(G, D)

Let {Wl, W, b}, p > 2, be a family of node sets of V such that each set W; induces an

st-dicut of G, for some {s,t} € D, and F? C 5+(W) Let F = U 5+ \FO] and,
i=1
for an arc a € A, let r(a) be the number of sets 5+()\ F° which contain the arc a.

Note that if a € A does not belong to any set 5+()\ FP, then r(a) = 0. For an edge
e € E and an arc subset U C A, we let

(e, U) = Z r(a), forall e € E.

a€A(e)nU

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
126 DESIGN PROBLEM

The inequalities below are valid for FHNDP 4,

y(6L(Wi)) > k for i =1,...,p,
—y(a) > -1 forallace EO, i1=1,...,p.

By summing these inequalities, we obtain

S (@@ > kp — YO IFY)

a€l

If y (resp. F) denotes the set of arcs a € F such that 7(a) is odd (resp. even), then
the previous inequality can be written as

Y rla)y(a)+) r(a)y(a) = kp - Z 7). (5.26)

a6ﬁ1 aeﬁz

Let F2 C F} such that, for every edge e € E corresponding to an arc of Fy, r'(e, F2)
is even. Let E, be the set of edges corresponding to the arcs of F2. By summing
inequality (5.26) with the inequalities

r(a)z(e) > r(a)y(a), for all a € F2 and e corresponding to a,
we get

D_re F)ee)+ Y rlayla)+ Yo r(ayla) = kp = IF (5:27)

ecky aeﬁl\ﬁf aEﬁQ

By dividing by 2 and rounding up the right hand side of inequality (5.27), we obtain
the following inequality

(e, F?) (a) +1 (a) kp =3 ||
ZH’TIWH > %y(aHZ%y(a)z — =L | (5.28)

—_ ~ 2
e€ky a€Fy\F} acly

Inequalities of type (5.28) will be called aggregated cut inequalities. We give the
following result which directly comes from the above description.

5.6. VALID INEQUALITIES 127

Theorem 5.6.1 Inequalities of type (5.28) are valid for kKHNDP4,(G, D) when L €
{2,3}.

Inequalities (5.28) are produced by families of st-dicuts of G which may have different
forms of configurations for the node sets Wl, . Wp, p > 2, and the arc sets F0
5§(Wi), 1 =1,...,p. In the following, we discuss a special case of these inequalities.

Let {Wl,.. W} p > 2, be a family of node sets of V such that each set Wi,
i =1,...,p, induces an st-dicut, for some {s,t} € D, and let F° C 5+(W) be arc sets
such that 0 < r(a) < 2 for all a € A. Let Fy (resp. F}) be the set of arcs such that
r(a) = 2 (resp. r(a) =1). Let 1512 be the set of arcs a € Fy for which there is another
arc a € 151 which corresponds to the same edge of E, and let Es be the set of the
corresponding edges. The inequality of type (5.28) associated with this configuration
can be written as

kp— Y |F)
S v+ Y0+ Y vz ||, (529)

a€lh ecky aeﬁﬂﬁf

As it will turn out, inequalities (5.29) may define facets under certain conditions and
will be useful for solving the kHNDP using a Branch-and-Cut algorithm (Chapter 6).

5.6.1.2 Aggregated cut inequalities for tHNDP, (G, D)

The aggregated cut 1nequal1t1es can be defined for the polytope kHNDP¢, (G, D) in
a similar way. Let Gy = (Vi, Ay), {s.t} € D, be the directed graphs associated
with G and {s,t} € D in Formulation (5.10). Let {{s1,#1},.. {sq, q}} be a subset

of demands. Consider a family of node sets {V[/Slt1 V[/sllt1 Wfq o Wt with
q
pi > 1, foralli e {1,...q} and p = Zpi > 2, where W;it¢7 j =1,...,p;, induces an
i=1
pi
; s rsiti,0 117 siti Tsiti _ T/ siti 7siti,0
siti-dicut in Gg. Let F; C 5JG£Siti(Wj %), Let FSiti = U[(SJGE i (WJ f)\ F7 for

i=1

every i € {1,...,q}, and for a given arc a € Ay, © = 1,...,q, we let ry, (a) be the

number of sets 5;5 (W) \ Fjsiti’0 containing arc a. If a does not belong to any of
sty

these sets, then 7., (a) = 0. Given an edge ¢ € F and an arc subset U; C A, , , we let

reU)= > 1)

aeﬁsiti (e)nT;

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
128 DESIGN PROBLEM

The inequalities below are valid for tHNDP¢, (G, D)

Your (07 (W) 2 kfor j=1,.,piy i = 1,4,

iti

- ysiti(a) > —1 for a € ﬁ’;itia] -]-7 -y Pis L= 1a ey 4,
By adding the inequalities, we get
q

qa Pi
Z Z TSiti(a)ySiti (CL) > kp — Z Z |ﬁ1]$iti,0

=1 aeﬁsiti i=1]:1

Let Fsitid (resp. F*i'i2) be the set of arcs a € F*' having r,,(a) odd (resp. even).
The inequality above can then be written as

q

Z Z Tsiti(a')ysiti(a) + Z Tsiti(a')ysiti(a') > kp - Z ZZ |ﬁ’;iti70|' (530)

=1 aeﬁsiti'l aeﬁsiti,Q =1 j5=1

Now we let f;tl C Fsitsl j = 1,...,q, be the arc sets such that, for every edge
q

e € E associated with an arc of Fji!, Z 1 (e, F5™') is even. If F, denotes the set of
i=1

ti,1
Y

edges corresponding to the arcs of 1:;25’ i =1,...,q, then by adding inequality (5.30)

and the inequalities
Tst,(a)z(e) > 1g(a)ys,;, (a) for all a € ﬁ;it“l where e corresponds to a,

we get

Q

1 Y @@t D ra(@y(e) |+

i=1 aeﬁsitivl\ﬁ;iti’l aeﬁsiti’2
q q pi
- i i,l R 2 ivO
S v Bt ale) 2 ko= DD IEL (5.31)
e€Fy i=1 =1 j=1

Finally, by dividing inequality (5.31) by 2 and rounding up the right hand side of the

5.6. VALID INEQUALITIES 129

resulting inequality, we obtain

q

Z Z M;Hysiti(a)+ Z %@ysiti(a) "

i=1 aEF“ 1\F51tl 1 aeﬁsitia

= :)3(6) > == . (5.32)

We then have the following result.
Theorem 5.6.2 Inequality (5.32) is valid for kHNDPc, (G, D).

Inequalities (5.32) will be also called aggregated cut inequalities.

We are also going to specify a special case for inequalities (5.32). These inequali-
ties will be util in the Branch-and-Cut algorithm based on the Cut formulation (see

Chapter 6). Let {Wfltl,...,W;;tl,...,Wfqtq, S“} with p; > 1, for i = 1,...,q,
q
and p = Zpi > 2, be a family of node sets such that VVjsiti induces s;t;-dicut of G,
i=1
p
. Sltl,o Nsiti Nsi i Nsiti ’Vsiti,O
i=1,..,q. Let F;""" C 5;;” (W) be arc sets and F*"" = U[égst (W) \ F7l.
i=1

Suppose that 0 < 7y, (a) < 2 for all a € Avs@-tu 1=1,...,q. Let Fsiti2 be the set of arcs
of Fsiti having ryy (a) = 2 and F**! the set of arcs of F*' having r,,,(a) = 1. Let
I:;;it“l be the subset of arcs a € F*! such that there exists another arc a’ € Fti:!
which corresponds to the same edge of E, and let E5 be the set of the corresponding
edges.

Then the inequality (5.32) induced by this configuration can be written as

q Dpi
Z Z Ys,t, (@) + Z Ys,t, (4 Z i=1 2]21

=1 aeﬁsiti’z (IEFS 1\F51t1 1 ecFEy

Q

(5.33)

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
130 DESIGN PROBLEM

5.6.1.3 Lifting procedure for aggregated cut inequalities

In what follows we define a lifting procedure for the aggregated cut inequalities for
both Aggregated and Cut formulations, (5.29) and (5.33). This will permit to extend
these inequalities to a more general class of valid inequalities.

Consider first the polytope kHNDP 4,(G, D). The lifting procedure is given in the
following theorem.

Theorem 5.6.3 Let G = (V, E) be an undirected graph, D CV x V and G= (\7,2)
be the directed graph associated with G in the Aggregated formulation. Let

> ale)z(e) +) Blayy(a) >~

eck acA
be an inequality of type (5.29) induced by a family of node sets 11 = {Wl, ...,Wp} and
arc sets FY C &Y, p > 2, which is valid for kHNDPA,(G, D). Let G' = (V,E U E')
be a graph obtained by adding to G an edge set E and let G' = (V,AU A") be the
directed graph associated with G' in the Aggregated formulation (A’ is the set of arcs
corresponding to the edges of E'). Then, the inequality

DUCECED SLOMOED M S FOES! (5.30)
ecE acA ac Al

is valid for KHNDP 4,(G', D), where q(a) is the number of dicuts 5;5,(1/[/1-) containing
the arc a, for all a € A

Proof. W.l.o.g., we will suppose that £/ = {eq}. The proof is similar in the case where
more than one edge are added to G. Also, for more clarity, we will consider that only
one arc, say ay, is associated with ey in G’, that we will consider that A" = {ag}.

We are going to show that for every solution (7,7) € kHNDP 4,(G, D),
_ o

(e kp— Y ||

— _ gl\a _ i=

> a(efete) + 0 samta) + | 152 gt = | —5—

eck acA

First, let A(x,y) = ax + Py, that is

Alz,y) =Y yla)+ Y @)+ > yla),

a€lh ecky aeﬁﬂﬁf

5.6. VALID INEQUALITIES 131

where ﬁg, ﬁl, ﬁ’f and Es are the arc and edge sets involved in ax 4+ By > . The lifted
inequality can hence be written as

Ify(ag) = 0, then obviously the restriction of (Z,y) to E and Aisin EHNDP 4,(G, D).

P

kp— Z |f’i0|

— i=1
Thus, A(Z,7) > | —=——|, and hence

Now suppose that 7(ag) = 1. We have that

Zw INFD) = Zy ~5(F)
~ 2Y ¥la Z @+ Y 9l

a€l, acF2 aeﬁl\ﬁf
< 2) gla)+2) w(e)+ D, wla)
aEFQ eckr aeﬁl\ﬁf
= 2A@Z.7) - Y la)
aEﬁl\ﬁlz
Thus we get
1 [p P _
Azy) = 5 S FEEW)) = > wE)+ D> ula)
i=1 =1 a6ﬁ1\F2

V4
DO =
<
S
o
=
Sl
m
°

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
132 DESIGN PROBLEM

P

> GOL)) - Z 7|

Ay = |2

5 (5.35)

Wi i=1,.., q(ag), are the node sets of II such that the dicut 55(/1/17,) contains ag,
then we have that

TOLT) = 905
TOLT) = T4

) —Y(ao), i=1,..,q(ao),
), i=qlao) +1,..,p.

As (7,7) induces a solution of kHNDP 4, on G’, we have that y(ég, (W) >k, i =
1,...,p. Moreover, since J(ag) = 1, we have that

@(5;5(1/1/,)) >k—1,1=1,..,q(ap). (5.36)

Thus, from (5.35) and (5.36), we obtain
_ p
k(p = alao)) + (k = 1alao) = Y ||

AT, 7) > =1
(7,79) > 5 ,

r P
kp — Z ‘Fi0| —q(ao)
i=1

A7) 2 : ,
kp—>_ |F|
AF,7) > i2:1 _ [Q(go)-‘

5.6. VALID INEQUALITIES 133

which ends the proof of the theorem. (]

Now we give a lifting procedure for aggregated cut inequalities (5.33) when the Cut
formulation is considered. This procedure is similar to that introduced for inequalities
(5.29) for the Aggregated formulation. It is given in the theorem below.

Theorem 5.6.4 Let G = (V, E) be an undirected graph, D C V XV and Gy be the
directed graph associated with G and a demand {s,t} € D in the cut formulation, for
all {s,t} € D. Let

Z + Z Z ﬁsztl ysztl) =7,

ecll =1 aEAs ¢

be an inequality of type (5.33) induced by a demand set {{s1, 11}, ..., {sq,tq}}, a family
of node sets {Wfltl, Wslltl, Wfqtq qtq} with p; > 1, for all i € {1,...,q}

q
and p = Zpi > 2, and arc sets Fjsiti’o C 5(~;Siti(W;"ti), j=1,..,p;,i=1,...q. Let
=1

&' = (V,EUE") and G, = (Viy, Ay U AL,) be the directed graph associated with G' in
the Cut formulation, for all {s,t} € D(A , 15 the set of arcs corresponding to the edges

of E').
The inequality

Z +Z Z Fsiti(@)Ysi; (@ +Z Z {q“ w Ysi; (@) > (5.37)

eckE =1 qed,,, =1 aedl

is valid for kHNDP¢c,(G', D), where qs.t.(a) is the number of dicuts 5%, (/stiti) con-

Sitq

taining the arc a, for every a € As 4o t=1,..p.

Proof. Similar to that of Theorem 5.6.3.]

The next classes of inequalities apply only on the variable z € R¥ and are valid for
KHNDP 4,(G, D), kHNDP ¢, (G, D), kHNDP y4(G, D) and kHNDP p4(G, D).

5.6.2 Double cut inequalities

In the following we introduce a class of inequalities that are valid for the kHNDP
polytopes for L > 2 and k > 2. They are given by the following theorem.

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
134 DESIGN PROBLEM

Theorem 5.6.5 Let {s,t} be a demand, iy € {0, ..., L} and
0= {Vy, ... Vig_1, VL, V2 Vi i1, .o, Vier } a family of node sets of V' such that

07 10
= Vo, .., V;O_l, Vlé, VZO U Vig+1s Vigt2s -y Vis1) induces a partition of V. Suppose that

1. VI U V2 induces an s, t;,-cut of G with {sj,,t;} € D and s;, € V! ort; €V,
(note that s;, and t;, cannot be simultaneously in V., and are not in V2. Also
note that V;2 may be empty);

2. Vig+1 induces an sj,t;,-cut of G with {sj,,t;,} € D (note that j; and j, may be

equal);

3. m induces an L-st-path-cut of G with s € Vi (resp. t € Vi) and t € Vi1 (resp.
S € VL+1).

Let E = [Vig_1, ViU [Vigs2, VU Vi 1] U U Vi, Vil | and F CE such

k,l%{io,io+1},‘k—l‘>l
that |F| and k have different parities.

i0—2 L
Let also E = (U Vi, Viga]) U (U Vi, Viga]) U F. Then, the inequality
i=0 i=ig+2
- k—|F
(0w \ £) > | 2], (5:9)

is valid for kHNDP 4, (G, D), kHNDP¢, (G, D), kHNDPy 4(G, D) and kHNDPp4(G, D)
(recall that 6(7) is the set of edges of the E having their endnodes in different elements

of).

Proof. Let T be the L-st-path-cut of GG induced by the partition 7. As T is an L-st-
path-cut, and V;} UV;2 and Vj 41 induce st-cut with {s,t} € {{s;,.t;,},{sj,t;}}, by
Lemma 5.6.1, the inequalities below are valid for the ktHNDP polytopes

a(T) =
z(6(V,h U V2)) k,
2(6(Vig+1)) 2
—z(e) -1 foralle € F,
x(e) > foralle € E\ F.

5.6. VALID INEQUALITIES 135

By summing these inequalities, dividing by 2 and rounding up the right hand side,
we obtain inequality (5.38). O

Inequalities of type (5.38) are called double cut inequalities. They generalize those
introduced by Huygens and Mahjoub |73] for the tHNDP when k& = 2. We discuss in the
following special cases for these inequalities. This concerns the case where L € {2,3}
and ’io =0.

The set of edges having a positive coefficient in inequality (5.38) plus the edges of F’
is called a double cut. Figure 5.4 gives an example for L = 3 and ig = 0.

edges of the double cut not in F

...... edge not in the double cut

possible edge of I

Va

Figure 5.4: A double cut with L = 3 and 7y =0

Let L =2, {s,t} € D and Il = {V;', V2, V1, V3, V3} be a family of node sets of V such
that = = (Vj}, V@ U V4, Vi, V3) induces a 2-st-path-cut, and V; induces a valid s;t;-cut
in G, for some {sy,t,} € D. If F C [VZ U V;, V5] is chosen such that |F| and &k have
different parities, then the double cut inequality induced by II and F' in this case can
be written as

2([Vo, Vi UVa U V3]) + (V5 Vi U V3]) + (V2 Va))

(5.39)

raqrpuvi\)z | 2]

Now let L = 3, {s,t} € D and Il = {V},VZ, Vi, V5, V3, V4} be a family of node sets
of V such that 7 = (V!, VZ U V4, Vi, V3, Vy) induces a 3-st-path-cut, and V; induces a
valid st;-cut in G. If F C [VZUV; UV}, Vo] is chosen such that |F| and k have different

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
136 DESIGN PROBLEM

parities, then the double cut inequality induced by II and F' can be written as
2([Vo, Vi U Ve U V3 UVA)) + (V5" Vi U V3 U VA]) + a([Va, V3 U Vi)

+a((VF U ViUV, Vo] \ F) > W‘T'FW (5.40)

As it will turn out, inequalities (5.39) and (5.40) are very effective in the Branch-
and-Cut algorithms we developed for the problem.

5.6.3 Triple path-cut inequalities

Here is a further class of valid inequalities. They also generalizes inequalities given by
Huygens and Mahjoub [73]. We distinguish the cases where L = 2 and L = 3. We
have the following theorem.

Theorem 5.6.6 i) Let L =2 and {Vy, Vi, Vo, VL, V2 VL VEY be a family of node sets
of V' such that (Vo, Vi, Vo, VLUVZ VEUVE) induces a partition of V' and there exist two
demands {s1,t1} and {sq,ta} with sy,s0 € Vo, t1 € V2 and ty € V2. The sets Vi and
V! may be empty and s, and sy may be the same. Let also V3 = V] UVE, V, = VUV
and F C [V2, ViUV UV, V2] such that |F| and k have different parities. Then, the
inequality

2a([Vo, Va]) + &([Vo, Vs U VA]) + a([VE, Vi U V) +

(5.41)

o((V Vi UVTU IV, VDA) = [UW

2
is valid for kHNDP 4, (G, D), kHNDP¢, (G, D), kHNDPy 4(G, D) and kHNDPp4(G, D).

i) Let L = 3 and (Vy, ..., V3, VL, V2 VL V2) be a family of node sets of V' such that
(Vo, oo, V3, VEU V2 VYU V2) induces a partition of V' and there exist two demands
{s1,t1} and {sq,t2} with s1,s9 € Vi, t; € V2 and ty € V2. The sets V! and Vi' may
be empty and sy and sy may be the same. Let also V, = V} UVE Vi = V2 U V2
and F C [Vo, V2 U [V3, Vi U V] such that |F| and k have different parities. Then, the
inequality

22([Vo, Va]) + 22([Vo, Vi) + 22([V1, Va]) + 2([Vo U Vi, Vi U V5]) + (Vi V5])+

3k — | F|
2

o([Va, V2)) + 2(([Va, V2 U [Va, Vi UVR]) \ F) [(5.42)

is valid for kHNDP o,(G, D), kHNDP¢o(G, D), kHNDPy 4(G, D) and kHNDPp (G, D).

5.6. VALID INEQUALITIES 137

Proof.

i) Let T} be the 2-s1t;-path-cut induced by the partition (V, V3 U Vy, Vo U VS V2) and
T, and Ty the 2-syty-path-cuts induced by the partitions (Vy, Vi U Vs, Vo UV V2) and
(Vo, Vi, Vo U V3 U V1 V2), respectively. By Lemma 5.6.1, the following inequalities are
valid for the kHNDP polytopes

—x(e) > —1, foralle € F,
z(e) >0, forall e € (V2 Vi UVTU [V, V) \ F

By adding these inequalities, dividing by 2 and rounding up the right hand side, we
get inequality (5.41).

ii) Let T} be the 3-s1t;-path-cut induced by the partition (Vg, V3 U Vi, Vo, Vs U VL V2),
and Ty and T3 be the 3-soto-path-cuts induced by the partitions (Vg, V3 U Vi, Vo, V3 U
VA V2) and (Vo, Vi, Vo, Vs U V3 U VAL V), respectively. By Lemma 5.6.1, the following
inequalities are valid for the ktHNDP polytopes
z(Th) > k,
z(Ty) > k,
z(T3) =
—z(e) for all e € F,
z(e) >0, for all e € ([Va, VAU [Va, VAU VE)) \ F.
By adding these inequalities, dividing by 2 and rounding up the right hand side, we
get inequality (5.42). O

Inequalities of type (5.41) and (5.42) will be called triple path-cut inequalities. The
set of edges having a positive coefficient in inequality (5.41) ((5.42)) plus the edges of
F will be called a triple path-cut (see Figure 5.5 for an example with L = 2).

In the next two sections, we describe two more classes of inequalities.

5.6.4 Steiner-partition inequalities

Let (Vo, Vi,...,V,), p > 2, be a partition of V' such that Vi, C V' \ Rp, where Rp is the
set of terminal nodes of G, and for all i € {1,...,p} there is a demand {s,t} € D such

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
138 DESIGN PROBLEM

edge of the triple path cut not in F

----- edge not in the double cut

- possible edge of F

Figure 5.5: A triple path-cut with L = 2

that V; induces an st-cut of G. Note that Vj may be empty. Such a partition is called
a Steiner-partition. With a Steiner-partition, we associate the inequality

x(6(Vo, Vi, ..., V) > [%-‘ . (5.43)

Inequalities of type (5.43) will be called Steiner-partition inequalities. We have the
following result.

Theorem 5.6.7 Inequality (5.43) is valid for kHNDP,(G, D), kHNDP¢, (G, D), kHNDPy (G, D)
and kHNDPpA(G, D).

Proof. By Lemma 5.6.1, the inequalities below are valid for the tHNDP polytopes

ZE'((;(‘/Z)) >k, fori=1,..,p,
z(e) > 0, for all e € §(V%).
By adding them, we obtain
20(8(Va, . Vi) = kp.
By dividing by 2 and rounding up the right hand side, we get inequality (5.43). O

Inequality (5.43) expresses the fact that, in a solution of the kHNDP, the multicut
induced by a Steiner-partition (Vp, Vi, ..., V,), p > 2, must contain at least]_%p-‘ edges,
since there must exist k edge-disjoint paths between every pair of nodes {s,t} € D.

5.6. VALID INEQUALITIES 139

5.6.5 Steiner-SP-partition inequalities

Let 7 = (V4,...,V},), p > 3, be a partition of V' such that the graph G, = (V,, E,) is
series-parallel (G is the subgraph of G induced by 7). Suppose that V; = {vy,...,v,}
where v; is the node of G, corresponding to the set V;, ¢ = 1, ..., p. The partition 7 is
said to be a Steiner-S P-partition if and only if 7 is a Steiner-partition and either

l.p=3or

2. p > 4 and there exists a node v;, € V; incident to exactly two nodes v;,_; and v;, 11
such that the partitions m; and m obtained from 7 by contracting respectively
the sets V;,, Vi,—1 and V,, V;, 41 are themselves Steiner-S P-partitions.

The procedure to check if a partition is a Steiner-S P-partition is recursive. It stops
when the partition obtained after the different contractions is either a Steiner-partition
and of size three or it is not a Steiner-partition.

In the following theorem, we give necessary and sufficient condition for a Steiner-
partition to be a Steiner-S P-partition. Remind that the demand graph is denoted by
Gp = (Rp, Ep), where Rp is the set of terminal nodes of G. The edge set Ep is
obtained by adding an edge between two nodes of Rp if and only if {u,v} € D.

Theorem 5.6.8 Let m = (Vi,...,V,), p > 3, be a partition of V such that G, is series-
parallel. The partition m is a Steiner-SP-partition of G if and only if the subgraph of
Gp induced by m is connected.

Proof. First observe that, as 7 is a S P-partition of GG, one can obtain from 7 a two-
size partition by applying repeatidly the following operation. Let 7/ = (Vlj, e V;fj) be
a S P-partition of G. Suppose that V;f), for some 1y, is incident to exactly two elements
Vi_y and V;) . Then, the operation consists in contracting the sets V;) _, and V;! and

consider the partition 7/+! = (V/™', .., VZ*1) where
1

. . _ _

Vi =V fori=1,.. i — 2,
J+L v J

‘/;o—l _‘/;0—1U‘/;0’

Vit =V, for i =ig,..,p; — L.

Note that the new partition 777! induces a S P-partition of G’ and that we have p — 2
iterations to obtained a two-size partition from 7.

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
140 DESIGN PROBLEM

Now, we have that 7 is not a Steiner-S P-partition if and only if there exists an in-
teger ¢ < p — 2 such that the partition 77 = (V/, ... V;,‘{Z), obtained by application of
the above operation, is not a Steiner-partition, that is the node set Vzg of 77 obtained
by the contraction procedure to the partition 79! is such that 5GD(V¢Z) = (). Thus, if
Viiy -y Vi, 7 > 2, are the node sets of 7 that have been reduced to V;! during the differ-

T

ent steps of the contraction procedure, then we have that 5GD(U Vi) = (0. Therefore,

i=1
the subgraph of GG; induced by 7 is not connected, which ends the proof. 0

As a consequence of Theorem 5.6.8, if the demand graph is connected (this is the case
when, for instance, all the demands are rooted in the same node), then every Steiner-

partition of V' inducing a series-parallel subgraph of G is a Steiner-SP-partition of
V.

With a Steiner-S P-partition (V4, ..., V,), p > 3, we associate the following inequality

2(6(Vi, . V) > m p—1. (5.44)

Inequalities of type (5.44) will be called Steiner-S P-partition inequalities. We have
the following.

Theorem 5.6.9 Inequality (5.44) is valid for kHNDP,(G, D), kHNDP¢, (G, D), kHNDPy (G, D)
and kHNDPpA(G, D).

Proof. Let 7 = (V4,...,V,), p > 3 be a Steiner-S P-partition. The proofis by induction
on p. If p=3, then, as 7 is a Steiner-partition, the inequality

x(6(Vi, Vo, V3)) > [%w =3 m 1

is valid.

Now suppose that every inequality (5.44) induced by a Steiner-SP-partition of p
elements, p > 3, is valid for the tHNDP polytopes and consider a Steiner-S P-partition
7= (Vi,..,V,, Vy11). As G, is series-parallel, there exists a node set V;, of 7 which is
incident to exactly two elements of m, say Vi, and Vj ;. We let F} = [V}, Vi,_1] and
Fy = [Viy, Vig+1]. Since 7 is a Steiner-S P-partition and hence is a Steiner-partition, by

5.6. VALID INEQUALITIES 141

Lemma 5.6.1, V;, induces a valid st-cut inequality, for some {s,t} € D. Hence we have
that

W.l.o.g., we will suppose that

k

2(Fy) > H . (5.45)

Consider the partition 7’ = (Vi, ..., Vi,—a, Vig—1 U Vi, Vig41s -y Vpr1). As 7 is a Steiner-
S P-partition containing more than three elements, 7’ is also a Steiner-S P-partition
which contains p elements. Thus, by the induction hypothesis, the Steiner-S P-partition
inequality induced by 7', that is

k
$(5(‘/1a teey ‘/;o—Za ‘/i()—l U ‘/;oa ‘/i()—i—la ceey ‘/;H-l)) 2 ’75—‘ p—= 1 (546)
is valid. By summing the inequalities (5.45) and (5.46), we get

L0 Vo) = 5] 4 1) - 1,

which ends the proof of the theorem. O

Inequality (5.44) expresses the fact that in a solution of the kHNDP the multicut
induced by a Steiner-S P-partition contains at least [%W p — 1 edges, since this solution
contains k edge-disjoint paths between every pair of nodes {s,t} € D.

Chopra [21] described a lifting procedure for inequalities (2.27) for the kECSP. This
procedure can be easily extended, for the kHNDP, to inequalities of type (5.44). It
is described as follows. Let G = (V, E) be a graph and k& > 3 an odd integer. Let
G' = (V,E U E') be a graph obtained from G by adding an edge set E’. Let m =
(Vi,...,V,,) be a Steiner-SP-partition of G. Then the following inequality is valid for
KHNDP 4, (G, D), KHNDP ¢, (G, D), KHNDP y4(G, D) and KHNDP p (G, D)
z(0g(Va, ..., Vp)) + Z a(e)z(e) > [g—‘p -1, (5.47)

e€ENS g1 (Vi Vp)

where a(e) is the length (in terms of edges) of a shortest path in G, between the
endnodes of e, for all e € E' N g (V4 ..., V).

We will call inequalities of type (5.47) lifted Steiner-SP-partition inequalities.

In the next section, we investigate conditions under which aggregated cut, double
cut and triple path-cut inequalities define facets of the KHNDP polytopes.

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
142 DESIGN PROBLEM

5.7 Facets

Throughout this section, we consider a complete graph G = (V, E) and suppose that
V| >k+2.

The first result concerns necessary conditions for the aggregated cut inequalities
(5.29) to define facets for kHNDP 4,(G, D). To this end, we first give the following
lemma.

Lemma 5.7.1 Consider an inequality of type (5. 29) induced by a family of node sets

= {Wl,.. W} p > 2, and arc subsets F0 C 5+(WZ~), i=1,..,p. Let Fy, Fy, F
and E5 be the arc and edge sets involved in this mequality. Then (5.29) can be written
as

ZW N+23 w(e) = Y yla)+ S(E —yE) + Y yla@) 2 kp+1.

e€ by aeﬁf i=1 aeﬁﬂﬁf

(5.48)

Moreover, (5.29) is tight for a solution (xq,yo) € kKHNDP,(G, D) if and only if one
of the following conditions holds

and yo(57(W;)) = k, for i =1,....p;

2 wole) = Y wla Z (IF N =wE)+ > wola)=0 (5.50)

ecks acF? =1 a€Fy\F2

and there exists io € {1,...,p} such that y0(5+(/ﬂ7i)) =k, fori e {1,...p}\ {io}
and yo(0t(Wy,)) =k + 1.

5.7. FACETS 143

p
Proof. First we show that ax + By > 7 is equivalent to (5.48). As kp and Z |F|

i=1
have different parities, ax + Sy > v is equivalent to

2> w(e)+2> yla)+2 > yla)=kp— Y |FP|+1. (5.51)

e€Ey aEF, aeﬁﬂff =1

From the st-dicuts induced by the sets /VIZ, we have that

ZM* INF) =2 yla)+ Y y@+ Y. yla),

a€lh aeﬁf aeﬁﬂﬁf
oY w2 Y a2 Y a0+ o+ Y e
aEFQ ecFEo ecFo aeﬁf aeﬁl\ﬁf

Toghether with (5.51), we get

p
ZM* INED) 42> wle) =Yyl + Y yla)=kp—> [F|+1.
ecky acF2 a€Fy\F2 =1

(5.52)

By combining (5.52) and y(6T (W) \ FO) = y(6T(W,)) — y(ED), i = 1,...,p, we get
(5.48).

Now consider a solution (zg,v0) € kHNDP 4,(G, D) satisfying (5.29) with equality.
By the previous result, we have that

Zyo5+ +Z|F0\—yoF0 —|—22x0 Zyo(a)—l— Z yo(a) = kp+ 1.

e€ by aeﬁf aeﬁ\ff

(5.53)

As (o, yo) induces a solution of the tHNDP, we have that y0(5+(W)) >k,i=1,..,p.
Therefore, Zyo (6% (W) > kp, and hence,
i=1

p

Z(‘on‘ —yo(E)) +2 Z zo(e) — Z yola) + Z Yola) < 1. (5.54)

i=1 c€E acF2 acFy\F?

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
144 DESIGN PROBLEM

If (5.54) is satisfied with equality, then, clearly yo(0™" (WZ)) k, i =1,..,p. If
not, then, as yo(6*(W;)) > k, i = 1,...,p, this yields yo(6*(W;,)) = k + 1 for some
io € {1, ..., p} and yo (07 (W3)) = k, for i € {1,...,p} \ {io}.

Conversely, if (5.54) is tight for (zo, o) and y0(5+(/ﬂ7i)) =k forall7 € {1,...,p}, then
clearly, (5.48) is tight for (x¢,yo) and hence ax + By > ~ is tight for (xo,yo). If (5.54)
is not tight for (z¢,yo), that is

P

Z(‘}”ﬁzo‘ — yo(FY)) +2 Z o(e) — Z yo(a) + Z yo(a) =0,

i=1 c€EB ac P2 a€Fy\F2

and y0(5+(/V[7iO)) = k + 1 for some ig € {1,...,p} and y0(5+(/V[7io)) = k for i €
{1,..,p} \ {io}, then clearly, (5.48) is also tight for (zo,y0). Thus, az + By > ~v is
tight for (zo, yo). O

Corollary 5.7.1 Consider an inequality of type (5 29) induced by a famzly of node
sets {Wl, W, b}, D> 2, and arc subsets ' C 5+(W) i=1,..,p. Let Fy, Fy, F? and
E5 be the arc and edge sets involved in this mequalzty If (5.29) is tight for a solution
(x0,y0) of kHNDP4,(G, D) then,

2 wole) = > wola) + D (I —yo(F))+ D wola) < 1. (5.55)

ecky aeﬁf i=1 aeﬁl\ﬁf

Theorem 5.7.1 Let II = {Wl,.. W} p > 2, bea family of node sets of V. such
that each set W;, © = 1,....p, induces an s;t;-dicut of G for some {s;, t;} € . D, and
FP C 5§(WZ) Suppose that every arc of A belongs to at most two sets 67 ()\ FO.

Then, the aggregated cut inequality (5.29) induced by 11 and FZO, 1 =1,....p, defines
a facet of KHNDP 44(G, D) different from the trivial and s;t;-dicut inequalities, only if
for alli € {1,...,p}, one of the following conditions holds

L [WinSp| = |(V\ W) NTp| =1;

2. Wi Sp| > 2 and for all s € (W; \ {s:}) N Sp, [s,V \ Wi] = 0;

3. |((V\W) NTp| >2 and for all t € [(V\ Wi) \ {t:}] N Tp, (Wi, t] = 0.

5.7. FACETS 145

Proof. Let us denote by azx + Sy > v the inequality (5.29) induced by II and f’io,
i =1,...,p, and suppose that it defines a facet of kHNDP 4,(G, D). We will show that
|W NSp| =1, fori =1,...,p. The proof follows the same lines for |(V\W) NTp| = 1.
Also the proof for 2) and 3) is similar.

Suppose on the contrary that there exists ig € {1,...,p} such t/}\l_é/it /V[Z-O induces an
st-dicut of G and that (W;, \ {s}) N Sp # 0. Let s’ be a node of (W;, \ {s}) N Sp and
suppose that [s',V \ W;,] # 0 (see Figure 5.6).

@

Wio ‘7 \ VVZ

Figure 5.6: A set 17[//2-0 containing two nodes of S

First observe that 5§(Wi’0) = 55(Wi’0) \ [/, V' \ W;,] and that two arcs of [s, V' \ W;,]
do not correspond to the same edge of F.

Let Hy = F, N[,V \ W] and H, = (F, \ F2) n[s,V\ W,]. Also let Hy =
FEn s,V \ W,], Hs be the set of arcs of F} corresponding to the same edges as the
arcs of Hy. Let Ey be edge set correspondingAtJo thejrcs of Hy and Hs. Consider
now the aggregated cut inequality induced by {W7,..., W/} and FY,i=1,..,p, where
W) =W, FY = F?, fori € {1,...p}\{io}, and W, = W, \{s'}, F' = FP\[s', V\Wj,].
Let F}, FI, F? and Ej be the set of arcs and edges involved in this inequality. By
the above observation, as the arcs of Hj3 correspond to those of Hy, we have that

Hj N s, v \ WO] = (). Also, by the same observation, no arc of H, may correspond to

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
146 DESIGN PROBLEM

an arc of fI2 and fI3. Thus, we have that
Fy = F,\ H,,
ﬁlzl = ﬁlz \ (ﬁz U ff:a),
FI\NF? = [(R\ F2)\ H|U Hy U H;.
Ey = Ey\ Ey.

Therefore, the inequality (5.29) induced by {W{, s WIQ} and 152-0/, i=1,...,p, can be
written as

kp =D 1]
Y ov@r 3 a0t Y+ 3w+ Y v |

a€Fy\Hy e€E2\Eo ac(FI\F2)\H, acHy acHs
(5.56)
By summing up inequality (5.56) and the inequalities
z(e) > y(a), for all a € Hs,
where e is the edge of Ejy corresponding to a. (5.57)
y(a) >0, for all a € Hy, (5.58)

we get

kp— Y |F|
Z y(a) + Z z(e) + Z y(a) > %1 : (5.59)

a€lh ecky aeﬁﬂﬁf

Clearly if Fj, N [s/,V \ /VIZO] = (), then E’O — F}, and inequality (5.59) is the same as
ax + [y > . Thus ax + By > v is redundant with respect to (5.56)-(5.58), and hence
cannot define a facet of kHNDP 4,(G, D). If F,,N[s, V\ W] # 0, then the right hand
side of inequality (5.59) is greater than that of ax + By > ~. Thus, az + fy > v is
dominated by (5.56)-(5.58), and hence cannot define a facet of ktHNDP 4,(G, D). O

The next theorems give necessary conditions for the double cut and triple path-cut
inequalities to define facets of the kHNDP polytopes. Before each theorem, we will
give a technical lemma which will be useful to prove the theorem.

5.7. FACETS 147

Lemma 5.7.2 Let ax > v be a double cut inequality induced by a family of node sets
= (V) Vg, Vi, ... Vi) of V, F C E and {s,t} € D with s € Vil andt € V41 (here
iop =0). Then, ax >~ can be written as

o(T) +2(0(Vg UVE) +x(6(V1)) + 2(E\ F) + |F| — x(F) > 3k + 1, (5.60)
where T is the L-st-path-cut induced by the partition (Vi VEU VL, Vo, .., Vi),
Moreover, ax > -y is tight for a solution xo of KHNDP gy, KHNDPcy:, kHNDPy g4,
kHNDPp 4, where zg € RE, if and only if one of the following conditions holds.
i) 2o(E\ F)+ |F| — 20(F) =1 and 2o(T) = x0(§(V3 UVR)) = 20(V1) = k;
i) 2o(E\ F)+|F| — 29(F) =0 and

a) vo(T) =k + 1, 2o(8(Vy UVR)) = k and xo(Vy) = k;
b) 2o(T) =k, zo(6(Vy UVE)) =k + 1 and zo(V1) = k;
c) 2o(T) =k, zo(6(Vy UVE)) =k and 7o(V}) = k + 1;

Proof. W.Lo.g., we will consider the polytope kHNDP 4,(G, D). The proof is similar
for The proof is similar for ktHNDP ¢, (G, D), kHNDPy4(G, D) and kHNDPp4 (G, D).

Let H denote the double cut induced by II. The inequality ax > v is equivalent to

3k — |F| +1

s(H\E)+z(E\F) > 5

This implies that

20(H \ E) + 22(E) — 22(F) > 3k — | F| + 1. (5.61)

From the L-st-path-cut T and cuts 6(V}' U Vi) and 6(V}), we have that

o(T) 4+ z(0(V5 UVE)) +2(5(Vy)) = 22(H \ E) + 2(E). (5.62)

By combining (5.61) and the (5.62), we get
2(T) 4+ z(6(VF UVE) + 2(6(V1)) + 2(E) — 22(F) > 3k — |F| + 1,
and hence

o(T) + x(S(VF UVE) +2(6(V) +x(E\ F)+ |F| — 2(F) > 3k + 1.

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
148 DESIGN PROBLEM

Therefore, ax > 7 is equivalent to (5.60).

Now suppose that az > ~ is tight for (z¢, yo). From the development above, we have
that inequality (5.60) is also tight for (z¢,yo), that is

wo(T) + 2o(8(Vy UVY)) +20(6(V1)) + 20(E\ F) + |F| — 2o(F) = 3k + 1.

Since by Lemma 5.6.1, zo(T) > k, zo(6(V' UVE)) > k and zo(6(V1)) > k, it is clear
that zo(E \ F) + |F| — 2¢(F) < 1. Hence, if 2(E\ F) + |F| — 2o(F) = 1, we have that
20(T) = 2o(5(VE UVE)) = 20(6(V1)) = k. If 29(E\ F) + |F| — 29(F) = 0, then, clearly,
either zo(T), zo((Vyt UVE)) or x9(6(V1)) is equal to k + 1 and the others are equal to
k.

Consider now a solution (zg,yo) € kHNDP4,(G, D) such that zo(E \ F) + |F| —
zo(F) = 1 and x(T) = xo(6(Vy UVE)) = 20(6(V1)) = k. Then, clearly, inequality
(5.60) is satisfied with equality, and hence, ax > ~ is tight for (x¢,yo). Similarly, if
2o(E\ F)+ |F| — 2o(F) = 0 and either zo(T), 2o(5(V3 UVE)) or 2¢(5(V1)) is equal to
k+ 1 with the others equal to k, then (5.60) is satisfied with equality by z, and hence,
ax > 7 is tight for (zg,yo), which ends the proof of the lemma. O

Theorem 5.7.2 Suppose that L > 2 and k > 2, and let {s,t} € D.

Let 1T = {V}, V&, Vi, ..., Vi i1} be a family of node sets of V and F C E which induce a
double cut of G with respect to {s,t}, s € Vi and t € Vi1 (here iy = 0). Then,
the double cut inequality induced by II and F defines a facet of kHNDP4,(G, D),
kHNDP¢,(G,D), kHNDPyA(G,D), kHNDPpA(G, D) different from the trivial in-
equalities and inequalities (5.1)-(5.2) only if the following conditions hold

i) Vol = Vil =1;

ii) if L=3, then |[Vy, Vi U VA U [Vs, Vi] U [V, Vi]| = k.

Proof. The proof will be done for tHNDP 4,(G, D) as it is similar for tHNDP ¢, (G, D),
EHNDP N (G, D) and kHNDPpa(G, D). We will denote by ax > ~ the double cut
inequality induced by II and F. Let F = {(z,y) € kHNDP 4,(G, D) such that ax = v}
and let T' denote the L-st-path-cut induced by the partition (Vi', VZU Vi, Va, ..., Vo).

i) Let us denote by H the double cut induced by IT and F. Suppose first that |V;'| > 2.
By considering the family of node sets IT' = {{s}, VUV \{s}, Vi, ..., V41 }, the double

5.7. FACETS 149

cut H' induced by IT" and F' is such that H = H' U [V \ {s}, V4]. Thus, the double cut
inequality induced by H is redundant with respect to
3k — |F|
2
z(e) >, for all e € [V \ {s}, V], (5.63)

o(H'\ F) > [

and hence, cannot define a facet.

ii) We will show that F # 0 only if ii) holds. As JF defines a facet different from
z(6(Vi UVE)) > k, there exists a solution (Z,7) € F such that T(6(Vi UVE)) >k + 1.
Thus, by Lemma 5.7.2, Z(T') = k. Therefore, the graph induced by Z contains exactly
k edge-disjoint L-st-paths. Moreover, each L-st-path intersects 1" only once. Thus, by
Lemma 4.2.2, we have that |[Vy', V]| + |[Ve, VE U VA + |[Ve, Vi) > k. O

Lemma 5.7.3 Let ax > 7y be a triple path-cut inequality induced by a family of node
set IT = {Vo, .., Vi, Vi, VL, Vi, VALY and F C E. Then ax > v can be written
as

o(Th) + z(Ty) + 2(T3) + a(E\ F) + |F| —2(F) > 3k + 1 (5.64)
where T, Ty and T3 are the triple path-cuts induced by the partitions (Vo, V1 U Vy, Vo U
Vi V), Vo, ViU Vs, Vo UVE V2) and (Vo, Vi, Vo U Vs U VL V), respectively, and E =
(VE VI UV UV, V2] (resp. E = [Vo, V] U [V3, ViU Vs]) if L =2 (resp. L =3).

Moreover, ax > v is tight for a solution xy of the kHNDP, where o € R, if and
only if one of the following inequalities holds

Z) ZL’Q(E\F) + |F| — ZL’Q(F) =1 and ZL’()(Tl) = ZL’Q(TQ) = ZL’Q(Tg) = k‘,’

i) 2o(E\ F) + |F| — 2o(F) = 0 and, for some iy € {1,2,3}, 2o(T;,) = k + 1 and
zo(T;) =k fori e {1,2,3}\ {io}.

Proof. Similar to that of Lemma 5.7.2. O

Theorem 5.7.3 Let L € {2,3} and consider I1 = {Vq, ..., Vi, Vi, V2 Vi, VEL}
be a family of node sets of V. and F C E which induce a triple path-cut of G with
respect to demands {s1,t1} and {sqo,t2}. Then, the triple path-cut inequality induced
by II and F defines a facet of kHNDP4,(G, D), kHNDP¢, (G, D), kHNDPy (G, D),
kHNDPp (G, D) only if the following conditions hold

CHAPTER 5. THE K-EDGE-CONNECTED HOP-CONSTRAINED NETWORK
150 DESIGN PROBLEM

1) Vo\{s1,52} = 0;
i) Vil =1;
i) Vi =1;
w) if L =3, then

a) [[{s1, 52}, ViU V5 U {t}]] + [[Vs U VI]| + {51, 52}]| = ks
b) [{s1, 521, Vi UV U {t}]| + Vs U VS to[+ {5, s} to| 2 K5
¢) |[{sy so}, Vill + 1[Va UV U{ta} UVE o]l + [[{s1, 52}, | = k.

Proof. For the proof of Conditions i)-iii), we will consider, w.l.o.g., that L = 3. We
will denote by ax > v the triple-cut inequality induced by II and F'.

i) Suppose that V;\ {s1, s2} # 0 and denote by H the triple path-cut induced by IT and
F. Consider the family of node sets II' = {{sy, s2}, Vo\{s1, s2JUV1, Vo, V3, VL V2 VL V2)
and F' = F. If H' denotes the triple path-cut induced by II" and F’, we have that
H' = H\ [Vo \ {51,582}, V2]. Thus, as V \ {s1, s2} # 0, inequality (5.42) induced by II
and [is redundant with respect to the inequalities

2a([{s1, 52}, Val) + 2a([{s1, 52}, Vl) + 20(% U (Vo \ s, 21), Vi)
(51,2} UVA U (Vo fou, 1), Vi UVAD) + (Ve V]) + [V, V) +
) 3k — |F|
(W VU UV F) = [

xz(e) >0, forall e € [V \ {s1, 52}, V2.

Therefore, the triple path-cut inequality induced by II and F' cannot define a facet
of the kHNDP polytopes.

ii) Now we show that |V| = 1. Suppose on the contrary that [V}?| > 2 and let ax > v
denote the triple path-cut inequality induced by IT and F. Let II' = {Vj, ..., V3, V;} U
VEN\ {t1}, {t:},V, V2. First suppose that F N [Vo, V2 \ {t;}] = 0 and let H' be
the triple path-cut induced by II" and F. As F N [Va, V2 \ {t:}] = 0, we have that
H' = H\ [Vo, VZ\ {t1}]. If &’z >+ denotes the triple path-cut inequality induced by
IT" and F', then it is not hard to see that o/(e) = «a(e), for all e € H' \ F, and that
7' = . Thus, ax > 7 is redundant with respect to the following inequalities

o'z >,
z(e) >0, for all e € [Vo, V2\ {t:1}],

5.7. FACETS 151

and hence, cannot define a facet of the ktHNDP poytopes.

If FO[Vo,VE\{t:}] # 0, then we consider F/ = F\ (F N[V, V7 \ {t:}]) and let
o’z >+ be the triple path-cut inequality induced by II" and F’. Also let H' denotes
this triple path-cut. As before, we have that H' = H \ [V, V2 \ {t1}] and, for all

e€ H'\ F', /(e) = a(e). Moreover, 7 = {—%;‘FW and 7/ = Pk_mﬂpn[vg’vf\{tl”‘1. As

2
|F N [Va, VE\ {t:}]| > 1, we have that o/ > ~. This implies that ax > v is dominated
by the inequalities

o’x >,
z(e) >0, forall e € [Vo, V2 \ {t:}] \ F.

Thus, it cannot define a facet of the kHNDP poytopes.

iii) Suppose that [VZ| > 2. Consider IT' = {Vj, ..., V3, V}}, V2 VIUVZ\{t2}, {t2}} and let
H and H’ denote the triple path-cuts induced by IT and F', and by II" and F respectively.
If FN[Vs, V2\ {t2}] = 0, then, clearly, H' = H\ [Va, V2\ {t2}]. Tt FN[Vs, V2\ {t2}] £ 0,
then it is also not hard to see that, as before, H' = H \ [Va, V2 \ {t2}].

This implies that the triple path-cut inequality induced by H is redundant with
respect to that induced by H’ and the inequalities z(e) > 0, for all e € [Vo, V2 \ {t2}].
Thus, it cannot define a facet.

iv) To show that conditions iv) are necessary for az > 7 to define a facet, we show that
the sets F; = {x € R¥ such that x induces a solution of the ktHNDP and z(T;) = k},
i =1,2,3, are non empty only if conditions iv) are satisfied. As F is different from the
inequality z(e) < 0 for some e € F, there exists a solution (Z,7) € F such that T(e) = 0.
Thus, |F| —Z(F) > 1. By Lemma 5.7.3, this implies that Z(E \ F) + |F| — z(F) = 1
and hence, Z(T;) = k, for i = 1,2, 3. Therefore, from Lemma 4.2.2, we obtain that

[{s1, 82, ViU V5 U {E}]| + |[Va U V) 1] + | [{s1, 823, ta]] > &,
[{s1, 21, ViUV ULt}]|+ Vs U Vit + | [{s1, 82}, ta]| > &,
[{s1, s2}, Vil + [[Va UV ULt} U VA 6] + | [{s1, 52}, 8] | > &,

which ends the proof of the theorem. (]

In the following chapter, we use all the results presented in this chapter to devise
Branch-and-Cut and Branch-and-Cut-and-Price algorithms for the kFHNDP. As it will
turn out, these results will be particularly useful to develop effecient separation algo-
rithms for the various inequalities we have presented here.

Chapter 6

Branch-and-Cut and
Branch-and-Cut-and-Price Algorithms
for the FHNDP

In this chapter we present Branch-and-Cut and Branch-and-Cut-and-Price algorithms
we have devised to solve the kFHNDP. In Sections 6.1 and 6.2, we will describe the
framework of these algorithms. In Section 6.4, we will present some computational
results and in Section 6.5 we give some concluding remarks.

In order to solve the kHNDP using Aggregated, Cut and Node-Arc formulations,
we use a Branch-and-Cut algorithm. These formulations use a polynomial number of
variables. For the Path-Arc formulation, we use a Branch-and-Cut-and-Price algorithm
since this formulation uses an exponential number of variables. These algorithms are
described in Sections 6.1 and 6.2. Section 6.3 describes the various separation routines
used in both Branch-and-Cut and Branch-and-Cut-and-Price algorithms.

Here we recall some notations that will be used all along this chapter. Given an
undirected graph G = (V, FE) and a demand set D C V' x V| the set of terminal nodes
involved in a demand as source (resp. destination) node is denoted by Sp (resp. Tp).
The set of terminal nodes is denoted by Rp. The demand graph Gp = (Rp, Ep) is
the undirected graph whose nodes are those of Rp and, for every demand {u,v} € D,
we add an edge wv in Gp. The directed graph associated with G in the Aggregated
formulation is denoted by G = (V A) and the directed graphs associated with G in
the separated formulations (Cut, Node-Arc and Path-Arc formulations) are denoted
by Gy = (‘/sta st), {s,t} € D.

6.1. BRANCH-AND-CUT ALGORITHMS FOR AGGREGATED, CUT AND
NODE-ARC FORMULATIONS 153

Given a solution = € [0,1]F, the support graph G(x) = (V, E(z)) is the subgraph
of G obtained by removing from G all the edges e € F such that z(e) = 0, that is
E(x)={eec E | z(e) > 0}. Also, we let

Eo(r) = {e € E| x(e) = 0},
Ei(x) ={e€ E | z(e) =1},
Ei(z)={ec E|0<x(e) <1}.

In a similar way, given a solution y € [0, 1]/7, the support graph é(y) = (17, ﬁ(y)) is
the subgraph of G obtained by removing from G all the arcs a € A such that y(a) = 0,
that is A(y) = {a € A | y(a) = 0}. Also, we let

Ag(w) = {a € A | y(e) = 0}

0
Aiw) ={ae Al yle) = 1)
Ayw)=fac A 0<y(e)

<1}

Finally, for a demand {s,t} € and a solution yg € |0, 1]2“, the support graph is the
graph G (yst) = (Vit, Ast(yst)), is the graph such that Ay (7,,) = {a € Ag | yst(a) > 0}.
We let

Al (ya) = {a € Ay | yu(a) = 0},
AlL(yst) = {a € Ay | yul(a) =1},
Al (ya) = {a € Ay | 0 < yu(a) < 1}.

6.1 Branch-and-Cut algorithms for Aggregated, Cut
and Node-Arc formulations

We first describe a Branch-and-Cut algorithm for the Aggregated formulation. To start
the optimization, we consider the linear program given by the st-dicut inequalities
induced by the node sets {s}, {s} U N" and {s} U N' U N” for all s € Sp, toghether

CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICE
154 ALGORITHMS FOR THE KHNDP

with the linking and trivial inequalities. That is to say, we consider the program

y(65(s)) = k,
y(0L({s} UV1)) > &, for all s € Sp,
(OZ{stuViuly)) >k,

s
0, for all a € A,
1, for all e € E.

The optimal solution (Z,7) of this LP is feasible for kHNDP 4, if and only if (Z,7) is
integral and satisfies every st-dicut inequality, for all {s, ¢} € D. If (Z,7) is not feasible
for the problem, then we generate further valid inequalities for kHNDP 4,(G, D) that
are violated by (Z,7). To do this, the algorithm tries to add in the current LP the
following inequalities, in this order,

1. st-dicut inequalities,

2. aggregated cut inequalities,

3. double cut inequalities,

4. triple path-cut inequalities,

5. Steiner-partition inequalities,

6. Steiner-S P-partition inequalities.

For the Cut formulation, the optimization starts by considering the following linear
program

.00 2 ‘
5 {shUN)) = K,
({s} UNg UNL)) >k, for all {s,t} € D,
a) § xz(e), for all a € Ay(e), e € E,
) >0, for all a € Ay,

z(e) <1, foralle € E.

6.1. BRANCH-AND-CUT ALGORITHMS FOR AGGREGATED, CUT AND
NODE-ARC FORMULATIONS 155

Here also, the optimal solution (T, ¥,y ---» Us 1, is feasible for tHNDP ¢, if (Z,Yg,4,, -, Us 1)
is integral and satisfies every st-dicut inequality, for all {s,t} € D. If (Z,7,,;,, - Us,1,)
is not feasible for the problem, then we generate, as before, further valid inequalities
for KHNDP¢, (G, D) that are violated by (7,7, - Us,,)- For this, we look for the
following inequalities, in this order,

1. st-dicut inequalities,

2. aggregated cut inequalities,
3. double cut inequalities,

4. triple path-cut inequalities,
5. Steiner-partition inequalities,

6. Steiner-S P-partition inequalities.

Now we describe the Branch-and-Cut algorithm for the Node-Arc formulation. The
optimization starts by solving the linear relaxation of Formulation (5.15). As this
formulation contains a polynomial number of variables and constraints, its linear re-
laxation can be solved using only one linear program,

Min) ~ c(e)z(e)

sujected to
(5.11) — (5.14).

The optimal solution (f,?sltl, ...,fsdtd) of this LP is feasible for kHNDPy 4 if it is
integral. If this is not the case, we then try to add further inequalities that are valid for
EHNDPy4(G, D) and violated by this solution. The inequalities that are considered
here are the following, generated in this order,

1. double cut inequalities,
2. triple path-cut inequalities,

3. Steiner-partition inequalities,

4. Steiner-S P-partition inequalities.

CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICE
156 ALGORITHMS FOR THE KHNDP

6.2 A Branch-and-Cut-and-Price algorithm for Path-
Arc formulation

The Branch-and-Cut-and-Price algorithm for the kFHNDP starts by solving the linear
relaxation of Formulation (5.20). As this formulation uses an exponential number of
variables but a polynomial number of constraints, we use a column generation algorithm
to solve its linear relaxation.

6.2.1 Column generation algorithm

Remind that the column generation algorithm starts by solving a linear program ob-
tained from the linear relaxation of the Path-Arc formulation by considering a subset
of variables which induce a feasible basis for the initial problem. For our purpose, we
consider first the sets of st-dipaths By, C Py, {s,t} € D, such that |By| > k and the
paths of By, are arc-disjoint. Note that the subgraph of ést induced by the paths of
B contains k arc-disjoint st-dipaths. By Corollary 5.2.1, the edge set corresponding
to the arcs involved in the paths of By, {s,t} € D, induces a solution of the kFHNDP,
and, toghether with the sets By, {s,t} € D, induces a feasible solution for the linear
relaxation of Formulation (5.20). Hence, we consider as initial set of variables those
induced by the edge set E and the sets By, {s,t} € D. The first the linear program
solved in the column generation algorithm is, therefore, the one obtained from the
linear relaxation of Formulation (5.20) and these variables. This linear program is

c€E
RGCEL 6.)
PeBst
Z vfiau“(f’) < z(e), forall a € Ay(e),e € E, (6.2)
PeBst
1*1(P) > 0, for every P € By, and every {s,t} € D, (6.3)

z(e) <1, for all edge e € E.

At each iteration, the algorlthm tries to generate new columns, that is to add to B,
{s,t} € D, directed paths P € Py, \ By, such that the variable 1*/(P) has a negative
reduced cost. This is done by solving the so-called satellite problem which consists in
finding, for all {s,t} € D, a path P* such that ¢,(P*) = min{c,(P) | P € P,;} and
¢,(P*) < 0, where ¢,(P) is the reduced cost of the variable *'(P).

6.2. A BRANCH-AND-CUT-AND-PRICE ALGORITHM FOR PATH-ARC
FORMULATION 157

The reduced cost ¢, (P) is computed using the dual optimal solution. Let A and A*,
a € Ag, be the dual variables associated with inequalities (6.1) and (6.2), respectively.
Then, given a path P € Py, for some {s,t} € D, the reduced cost of the variable

*t(P) is given by
_)\st+ Z ’}/St)\st)‘St_l_z)‘zt

a€Aq acP

Thus, the satellite problem reduces to find a shortest st-dipath in the graph Gst, for
all {s t} € D, with respect to lengths A5 on arc a € A, If a shortest st- dipath of Gst,
say P*, is such that Z At < =3t then ¢, (P*) < 0. If not, then ¢, (P) > 0 for every

aeP*
st-dipath Pe Psi. Since A5t > 0, for all a € gst, the satellite problem can be solved in
polynomial time. As the graphs ést are circuitless, the shortest paths between s and ¢
can be computed using for instance Bellman algorithm |11].

If ¢,(P) > 0 for all P € P, {s,t} € D, then the optimal solution of the current
linear program is optimal for the linear relaxation of Formulation (5.20).

The initial sets By are chosen in the following way. For all {s,t} € D, we add in
B k st-dipaths of the form (s,t) or (s,u,u,t). To improve the convergence of the
column generation algorithm, at each iteration we add to a set By, all the dipaths of
G having a negative reduced cost, that is having length < —A§'. This can be done
in polynomial time using Epstein 46| or Hershberger et al. algorithms |70]. For our
purpose, we devise an algorithm which relies on the layered structure of the graph ést.
The algorithm works as follows for a pair {s,t} € D. First, we compute, using Bellman
algorithm [11], the shortest paths from s to every other node of Vy, \ {s}, and let L (u)
denote the length of the shortest path from s to u, u € Vi \ {s}. If Lyy(t) > — A3, then,
for every st-dipath Pc Py, (P) > 0. If 4(t) < —A§', then at least one st-dipath
will be added to By,. We first look for a path (s,t). If)\fﬁ’t) < =g, then we add
the path (s,t) to By. Afterwards, we look for a st-dipath of the form (s, u, v’ t), with
u € Ng and v" € N.,. In fact, every st-dipath of G.; different from (s,t) is of the form
(s,u,v",t). For every node v" € Ny, if Iy(v) + A{l, ;) < =AY, then we add the st-path
(s,u,v',t) to Bg. We repeat this procedure for every {s,t} € D. The algorithm is
exact and runs in polynomial time.

6.2.2 Branch-and-Cut-and-Price algorithm

The optimal solution of the linear relaxation of Formulation (5.20) is feasible for For-
mulation (5.20) if it is integral. If this is not the case, then we add further valid

CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICE
158 ALGORITHMS FOR THE KHNDP

inequalities for kKHNDPp4 (G, D) that are violated by this solution. The inequalities
that are considered are the following, in this order,

1. double cut inequalities,
2. triple path-cut inequalities,
3. Steiner-partition inequalities,

4. Steiner-S P-partition inequalities.

For our different Branch-and-Cut and Branch-and-Cut-and-Price algorithms, all the
inequalities that are considered are global, that is valid for all the Branch-and-Cut
tree, and several inequalities may be added at each iteration of the Branch-and-Cut
and Branch-and-Cut-and-Price algorithms. These inequalities are lifted before their
introduction in the current LP. We go to the next class of inequalities only if we have
not found any violated inequality in the current class.

In the following section, we describe the different procedures we use to detect the
violated inequalities.

6.3 Separation procedures

6.3.1 Separation of st-dicut inequalities

The separation of st-dicut inequalities (5.6) and (5.21) can be performed in polynomial
time by computing, for every {s, t} € D, a minimum weight st-dicut in Gst(yst) (resp.
G(7)) with weights (7,,(a),a € Au(F,)) (resp. (F(a),a € A(F))) for inequalities (5.6)
(resp. (5.21)). By minimum cut - maximum flow relationship, computing a minimum
weight st-dicut of Gy (7,,) (resp. Gy)) is equivalent to computing a maximum flow
separating s and t. We use, for computing maximum flows, the efficient algorithm of

Goldberg and Tarjan [58| which runs in O(|Vys|| As| log “‘th) for all {s,t} € D (resp.

O(|V||A] log |V|)) As this operation is repeated |D| times, the whole algorithm runs

in O(|D||V8t||A5t| log |V“‘) for all {s,t} € D (resp. O(|D||V||A|log H‘;")), and hence

is polynomial time.

6.3. SEPARATION PROCEDURES 159

6.3.2 Separation of aggregated cut inequalities

To separate the aggregated cut inequalities, we consider the inequalities of type (5.29)
and (5.33) and devise an heuristic to separate them. In particular, we consider the
inequalities described in the following two lemmas. The separation procedure relies
on a special graph (introduced later) defined with respect to G (Gy, {s,t} € D)
and a fractional solution. Recall that these inequalities are valid for the polytopes
KHNDP 4,(G, D) and kHNDP¢, (G, D).

Lemma 6.3.1 Consider an inequality cx+ Py > v of type (5 29) induced by a node set
family 11 = {Wl, .. W} p > 2, and arc subsets F* C 5+(VV,~) such that |F°| = k — 1.

Let F = U 5+ Wi)\ E2), Fy be the set of arcs of A which appear twice in F and Fy
i=1
those which appear once in F. Suppose that for all arc a € Fy there is another arc

a e ﬁl which corresponds to the same edge of G as a. Let Ey be the set of edges of G
corresponding to the arcs of Fj.

If (z,7) € RF x R4 is a fractional solution of kHNDP4,(G, D) such that y((sg(’wvl)) =
k and g(a) = 1, for all a € ﬁ’io, i =1,...,p, then ax + By > ¢ 1is violated by (T,7y) if
and only if

2> F(e) - > Fla) < 1. (6.5)

eEEy aeﬁl

Proof. First observe that inequality axz + Sy > § is violated by (Z,7) if and only if

S ga) + > w(e p+ L (6.6)

CLEFQ e€Fo
Since y(ég(Wl)) =k, |[F°) =k —1 and 5(a) = 1 for all a € F?, we have that

F(SE(T)\ 70y -
Yoz (Wi \ Fy) =1fori=1,...p

Thus, Zy (GE(W;) \ E?) —22 Z a) = p and hence,

=1 a€lh €l

CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICE
160 ALGORITHMS FOR THE KHNDP

From (6.6) and (6.7), we get

Z —l—QZ) <p+1.

€l ecky

and the result follows. O

Lemma 6.3.2 Consider an inequality ax + Z YstBst = 7y of type (5.83) induced by

{s,t}eD
a family of node sets II = {W", R qutq,. Sq Wyl Y, with p; > 1, fori =
q
1,...,q, and p = Zpi > 2, and arc subsets Ffiti’o C 5JGESiti(Wjiti) such that |Fjsiti’O =
i=1
pi
. . Tsiti 117siti rsiti,01 -~
k—1,j=1,...,pi,i=1,...q. Let F®¥' = U[égsm(Wj ¢ JNF] i =1,..,q. Also

j=1
let Fsi'2 be the set of arcs of A, which appear twice in F5% and Fsitil those which
appear once in Fsiti, Suppose that for all arc a € ﬁsiti’l, there exists a unique arc
a € Fsitil for some i' € {1, ..., q} which corresponds to the same edge of G as a. Let
Es be the set of edges of G corresponding to these arcs.

If (T, Ggy1,0 - Usye,) 15 @ fractional solution of kHNDPg, (G, D) such that
Vst (5+ t_(Wsztz)) =k and 7, (a) =1, for all a € Fsiti0 i =1, .. q, then

or + Z YstBse > 7y is wiolated by (T, T, 4, - Us,e,) if and only if

{s,t}eD
q
2> F(e) = > Y. Tula) <1 (6.8)
6€E2 i=1 aeﬁsiti
Proof. Similar to the proof of Lemma 6.3.1. U

In the following, we are going to discuss the separation of the aggregated cut inequal-
ities (5.29) for kHNDP 4,. After that, we will describe the separation procedure for the
aggregated cut inequalities (5.33) related to kHNDP,.

We are going to introduce an undirected graph, denoted by H(Z,7), obtained from
G and defined with respect to (Z,7). As we will see in the following, the main property
of this graph is that there is a matching between some particular cycles of H(Z,7) and
inequalities of type (5.29), described as in Lemma 6.3.1. The graph H(7,7) is obtained
as follows.

6.3. SEPARATION PROCEDURES 161

For each arc of A having a fractional value with respect to 7, we add a node in
H(z,7y). For convenience, we will denote by a the node of H(Z,y) corresponding to
an arc a of G. We add an edge in H(Z,7y) between two nodes a; and ay if one of the
conditions below is satisfied.

1. There exists an st-dicut of G(7), say (%@ (W), for some {s, t} € D, which contains

a; and ay, and such that F((W) = k, |5§@)(W) N A (7)) = k— 1 and

)W) N A(@) = {ar, s,

+
56‘(@)
2. The arcs a; and as correspond to the same edge of G.

The edges added by Condition 1 will be said of type I and those added by Condition
2 will be said of type 2. Figures 6.1 and 6.2 give respectively the support graph é(y) of
a fractional solution (Z,7) of kHNDP 4,(G, D) and the graph H(Z,7) associated with
that solution.

CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICE
162 ALGORITHMS FOR THE KHNDP

Arcwithvalue 1
—_ — — — Arcwithvaue0.5

Figure 6.1: The support graph G(¥) of a fractional solution (Z,7) for L = 3 and k = 3

6.3. SEPARATION PROCEDURES 163

Edge of type 1
,,,,,, Edge of type 2

Figure 6.2: Graph H(Z,y) obtained from é@)

CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICE
164 ALGORITHMS FOR THE KHNDP

Note that in the case where there is an edge of type 1 in H(Z,y) between two nodes
a; and ag, we have that y(a;) + y(az) = 1. Also, if there is an edge of type 2 between
two nodes a; and as, then Z(e) > 0 where e is the edge of G corresponding to a; and
ay. Also it is not hard to see that, if in H(Z,y) there are two edges of type 2 of the
form ajas and asag, then there is also an edge of type 2 between a; and a3 (a;, as and
az form a triangle).

Now we give the main property of H(T,7).

Lemma 6.3.3 Let C = {aias, asas, ..., ajc|a1} be a cycle of H(Z,y) and {a; a;,, ..., a;,a;,}
the set of edges of C' of type 1. Also, let Vi be the set of nodes of C incident to two
consecutive edges of type 1. Suppose that p > 2 and that C does not contain two
consecutive edges of type 2. Then, C yields an inequality of type (5.29) defined by
Il = {W, ...,Wp} and F° = 55@)(WT) \{ai.,a;}, r=1,...p, where W, is the node set
ofgY associated with the edge a;.a;, in the construction of H(Z,7).

p
Proof. First observe that the arcs of A(7) which appear twice in F = U[éé@) (/WZ) \ F?]
i=1
are those of é@) corresponding to the nodes of V;, while the arcs which appear once
in F are those of A(7) corresponding to the nodes of {ay, ..., ajc)} \ V1. Thus we let F
and E be these two sets of arcs, respectively. Since every node a € {ai,...,aqic;} \ V4
is incident to one edge of C' of type 2, say ad’, the arcs a and o’ are in ﬁl and corre-
spond to the same edge of GG. Thus, the aggregated cut inequality associated with this
configuration can be written as

>+ Y ale) > | 5],

acFy e€ ks

where Es is the edge set of G corresponding to the arcs of F. U

To illustrate that lemma, on Figure 6.2, the cycle
C ={(3,15)(3,12"), (3,12')(21",4), (217, 4) (4, 21"), (4, 21") (3, 15"), (3',15")(3,15') }

contains three edges of type 1, (3,15)(3,12'), (3,12')(21”,4) and (4/,21")(3/,15"), and
two edges of type 2, (21”7,4)(4’,21”) and (3',15"”)(3,15’), that are not incident. One
can see on Figure 6.1 that the node sets W, = {3}, Wy = {3,2/,15',21",3",2" 15" 2}
and Wg ={1,12/,3",4',1",12" 4" 3" 2" 4} induce two 3 — 4-dicuts and one 1 — 2-dicut
of G(¥), and that these dicuts contain respectively the pairs of arcs {(3,15'), (3,12)},

6.3. SEPARATION PROCEDURES 165

{(3,12"),(21”,4)} and {(4',21"), (3',15")}. Moreover, they are such that y(ég@(Wi)) =
k and |5g@)(/ﬂ7i) NA®@)| =k—1,i€ {1,2,3}. Finally, it obviously follows that IT =

{Wy, Wy, Wa} and FO = {(3,1),(3,2)}, F¥ = {(3,1'),(2",4)} and F = {(4”,2),(3",2)}
induce an aggregated cut inequality of type (5.29). Furthermore, this inequality is vi-
olated by (7,7).

Before describing the construction procedure for H (7, 7), we give the following lemma.

Lemma 6.3.4 Let (Z,7) be a fractional solution of kKHNDP 4,(G, D), and let a1 and
as be two arcs of G with fractional values and {s,t} € D. If there exists a minimum
weight st-dicut of G(), say 5;5@)(W), such that {ay, a2} C 52@(W) and 52;5@)(1/[/) \

{a1,a2} C A, (9), then 55@)(W) can be considered in such a way that every arc a €

+ ye . . . + . _ ’ N
55@)(W) \ {a1,as} is either in 5@(@)(‘9) or in 55@)(15) \ [t ,t]G@),

Proof. Let 5;5@)(/1/[7) be a minimum weight st-dicut of G() containing a; and as
and such that 53@)(W) \ {a1,a2} C A;(y). Suppose also that there is an arc a €
5;5@)(1/1/) \ {a1, a2} which is not in 5;5@)(5) U [55@) (t)\ {(¥',t)}]. Hence, a is either of
the form (u/,v”), with v’ € N’, v” GNN” and v and v may be the same, or of the
form (¢',t). If a = (u/,v"), then ' € W and the node set W’ = W \ {u'} induces an

st-dicut. Since 5;5@)(1/1/) is a minimum weight st-dicut, [s,u’]@@) # () and therefore,
55@)(’147') = (5, W)\ {(,v")}) U {(s,u)}. Since 55@)(’147) is of minimum weight
with respect to §, we have that F(s,u’) > gy(u',v"). As y(u/,v") = 1, we also have
that g(s,u’) = 1 and that 53@)(1/(/’) is a minimum weight st-dicut. If a = (¥',¢), then
since 5;5@ (W) is of minimum weight in G(7), there is an arc of the form (s, ¢'). Thus,
W =W \ {#'} induces an st-dicut of G(y). Moreover, as the weight of 5§(y)(W) is
minimum with respect to g, we have that y(s,t') > y(t',t) = 1. Hence, y(s,t') = 1 and
oy @)(W’) is also of minimum weight.

By repeating this operation until 5;5@ (W) does not contain any arc of the form

) ~
(u',v") or (t',t), we obtain a minimum weight st-dicut of G(y) which contains a; and

as, such that 5§(§)(W) \ {a1, a2} C A;(7) and such that every arc of 5;5@)(va) \ {ai,as}
is either in 5;5@)(8) or in 55@) (t) \ [t',t]5), Which ends the proof of the Lemma. [

A consequence of Lemma 6.3.4 is that an st-dicut 53@)(va) of G(¥) containing two
arcs a; and ap with fractional values, such that y(ég@ (W)) = k and 52@ (W)NAs(7) =

CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICE
166 ALGORITHMS FOR THE KHNDP

{ay, as} can be obtained by computing st-dicuts of G(7) containing a; and ay and such

that 0 (W) \ {1, a2} € [55 () U (05 0\ {(.0)}]-

The construction of the graph H(T,7) is performed by computing first the edges of
type 2. For every pair of arcs (a,d’) € fl(y) X fl(g), corresponding to the same edge of
E and having a fractional value, we add an edge of type 2 between the corresponding
nodes in H(7,7). To compute the edges of type 1, we use a procedure based on Lemma
6.3.4. The idea is to compute a maximum flow in é(y) with respect to appropriate
capacities separating s and t. Given two arcs a; and ay such that F(ay) + 7(az) = 1
and a pair {s,t} € D, we first give 0 as capacity to a; and as. Then, we give an infinit
capacity to every other arc of é@) having a fractional value. This ensures that a; and
ao are the only arcs of fractional values present in the st-dicut we will obtain. We give
an infinit capacity to every arc of 5;5@)(5) and 6 @ () indicent to a; and as and having
value 1. We also give an infinit capacity to every arc of [t/ ,t]@@). For all other arc
a, we give F(a) as capacity (note that for these arcs, y(a) = 1). Then, we compute a
maximum flow between s and ¢t with respect to these capacities. Let 55@ (W) denote

the st-dicut thus obtained. By Lemma 6.3.4, we have that (%@ \ {ay, a3} € Ay(7).

We then check if y(ég@(ﬁ)) =k and |5§@)(/V[7) \ {a1,as}| = k — 1. If this is the case,
then we add an edge of type 1 between the nodes of H(Z,y) corresponding to a; and
ay. We repeat this procedure for all pair of arcs (ai, az) having fractional value and
such that y(a;) +y(az) = 1, and for all demand {s,t} € D.

Now we describe the separation procedure of the aggregated cut inequalities. The
procedure is based on Lemma 6.3.1. Thus we generate inequalities of type (5.29) which
satisfy the conditions of that lemma. First, we compute H(Z,7) as described above.
Then we compute one or more cycles of H(7,7) which contain an odd number of edges
of type 1 and which does not contain two consecutive edges of type 2. By Lemma 6.3.3,
every cycle satisfying these conditions yields an aggregated cut inequality of type (5.29).
We then check if for each inequality thus obtained, (Z,7) satisfies inequality (6.5). If
this is the case, then by Lemma 6.3.1, this inequality is violated by (Z,7) and added
to the set of violated inequalities. If no cycle is found or if for every inequality of type
(5.29) obtained, (7,y) does not satisfy inequality (6.5), then the procedure ends with
failure.

To detect cycles of H(Z,7) satistying the conditions of Lemma 6.3.3, we use a proce-
dure in which we compute shortest paths in an auxiliary graph obtained from H (7, 7).
Let H, be the undirected graph obtained as follows. The node set of Hj is composed
of two copies, denoted by V}/ and V', of the node set of H(Z,7). The copies of a node
a of H(7,y) are denoted by o' and o” with ¢’ € V}/ and a” € V. For every edge a;as

6.3. SEPARATION PROCEDURES 167

of H(Z,7y) of type 1, we add in H, two edges of the form aa} and aba! and give them
1 as length. For every edge ajas of H(Z,7) of type 2, we add in H, two edges of the
form ajal, and ajaj and give them a length M sufficiently large. Figure 6.3 shows an
example of graph Hj, obtained from a subgraph of H(7,7) given in Figure 6.2. It is not
hard to see that a path between two nodes @' and a” of Hj, corresponds to a cycle of
H(Z,7) containing node a and an odd number of edges of type 1, and does not contain

two consecutive edges of type 2, and vice versa.

Edge of type 1

——————— Edge of type 2

(37157)77

(3,12))”

(217774)77

|) Y9
\ \\ (3 15) (3:71577)77
I
‘ ',
(3,157 | oo
| (47’2177)7 (477217’)7’
(47,217)

Subgraph of H(T,7) Graph H,

Figure 6.3: Graph H, obtained from a subgraph of H(Z,7)

For our separation procedure, we compute the shortest paths between each pair of
nodes (a’,a”) of Hy, for every node a of H(Z,7).

Now we turn to the aggregated cut inequalities for the Cut formulation. The separa-
tion procedure for these inequalities is similar to that described above for kHNDP 4.
Given a fractional solution (Z,¥,,, ., ¥s,,) of KHNDP¢,(G, D), we construct the
graph H (T, Y45 -+ Ys,e,) in a similar way as H(Z,y), that is for all {s,} € D, and
for every arc a € A’,(7,,) we associate a node in H (T, Usitrs - Usaty)- We add an edge,
said of type 1, between two nodes a; and ay if they belﬂo/ng to the same graph Gy,

Uola1) + Yy (az) = 1 and there exists an st-dicut 5;5 @)(W) containing a; and ay and
st\Yst

such that 6% (W) N AL(@,) = {ar, a2} and |65 . (W) \ {ar,az}) N AL (@a)| =

k — 1. We also add an edge, said of type 2, between two nodes a; € Zf:t (7,,1,) and
as € Af;,ti, (Ys,1,) if the arcs a; and ap correspond to the same edge of G.

CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICE
168 ALGORITHMS FOR THE KHNDP

The st-dicut 5JG£st(yst)(W) used to set edges of type 1 can be computed with the
procedure used for kHNDP4,. As before, every cycle of H(Z, 7, - Js,,) Which
contains an odd number of edges of type 1 and which does not contain two consecutive
edges of type 2 yields an inequality of type (5.33). These cycles are computed by looking
for shortest paths in a graph H, obtained in a similar way as for kHNDP 4,. Finally,
for each cycle thus obtained, we check if (Z,¥,,,, ..., ¥s,,) satisties or not inequality
(6.8) with respect to the sets Ey and F®'! obtained from that cycle. If this is the
case, then by Lemma 6.3.2, the corresponding inequality of type (5.33) is violated by

(T, ¥syt,» - Us,e,) and hence added to the set of violated inequalities.

6.3.3 Separation of double cut inequalities

The separation of double cut inequalities is performed by looking for inequalities of
type (5.39) for L = 2 and of type (5.40) for L = 3 that are violated by the current
solution. We describe the procedure for the kHNDP 4,. We will present later how this
can be extended to the other formulations.

The idea of the procedure is to find a partition 7 = (Vy, ..., Vi, Vi11), L € {2,3}, of G
and an edge set F' C E, with |Vg| = |[V3| = 1 and [Vp, V4] # 0, which induces a double
cut, with 7g = 0, and whose weight is minimum with respect to z. The procedure
works as follows. For all {s,t} € D, we compute the st-cut dg(s). If T(da(s)) = k,
then for every terminal ' € Rp such that Z([s, s']) > 0 and T(d¢(s")) = k, we compute
an L-st-path-cut T of G induced by a partition 7 = (Vg, ..., Vz, Vp41) with Vo = {s}
and V) = {s'}. For this, we use the correspondance between L-st-path-cuts in G' and
st-dicuts in é, given by Lemma 5.4.1. Since the desired partition m must be such that
Vo = {s} and Vi = {s'}, we must have TN [s,s'] = 0 and dc(s) \ [s,s'] € T. Thus,
any st-dicut of G corresponding to 7" must contain arcs corresponding to the edges of
dc(s) \ [, '] and no arcs corresponding to the edges of [s, s’]. Also remark that this
st-dicut does not contain any arc of the form (v, u”), u € V and of the form (¢,1),
t € T'p. Therefore, to compute an st-dicut of G corresponding to the desired L-st-path-
cut, we start by giving the arcs corresponding to the edges of [s, §'] an infinit capacity
and removing all the arcs corresponding to the edges of dg(s) \ [s, s']. Then, we give to
every arc of the form (v, "), w € V and (¥,t), t € T, an infinit capacity. Afterwards,
we compute a maximum flow between s and ¢ with respect to these capacities. Let

5;5(W) denote the st-dicut thus obtained.

To check that this dicut corresponds to an L-st-path-cut of G, we apply the following

procedure. We first remove from G all the edges corresponding to the arcs of 5§(W)

6.3. SEPARATION PROCEDURES 169

Then, we compute the shortest paths between s and every node of V'\ {s} with respect

to length 1 on the remaining edges. Let [(u) denotes the length of a shortest path

between s and u, u € V' \ {s}. If I(¢) is finite, then 5;5(va) corresponds to an L-st-

path-cut of G. In this case, we construct the partition 7 such that Vy = {s}, V; = {s'},
L

Vi={ueV\{s, st} |l(u)=i},i=2,...,L, and V4, = V\(U V).

Let E be the edge set [V, V3] (vesp. [Vi U Vi, Va]) if L = 2 (vesp. L = 3) having a
positive value with respect to Z. We choose the edges of ' among those of E having
the highest value and such that |F| and k have different parities. If [E| > k — 1, then
F consists of the k — 1 edges having the highest value. If |E| < k — 1 and |E| has a
parity different from that of k, then we let F = E. If |E| < k—1 and | E| has the same
parity as k, then we let ' = E\ {eg} where e is the edge of £ having the smallest
value.

Finally, we check if the inequality (5.39) (resp. (5.40)) for L = 2 (resp. L = 3)
induced by 7 and F'is violated or not.

We repeat this procedure for every demand {s,t} € D, and the violated inequalities
found are added to the constraint pool. To compute the maximum flow in G we use

the algorithm of Goldberd and Tarjan [58] which runs in O(JA||V|log H‘;") time. If G

is complete and L = 3, we have that |V| = 2|V|+|Sp|+ |Tp| and |A| = (V|- 1)(|V|+
|Sp|+|Tp|). Thus, the maximum flow algorithm runs in O(|V|? log (|V(‘2_“1/)|(J‘““/S|ﬂ;§f’r‘|¥[)‘)).
To compute the shortest paths in G between s and the other nodes of V', we use the
algorithm of Dijkstra [43] which is implemented to run is O(|V||E|log(|V])) time. As
the computation of a cut in the graph G requires at most |E| iterations, our separation
procedure runs in O(|V]?log |V| |V‘2“1/|Z‘““/‘q|ﬁ|‘g]‘3fp|ﬂ)%‘)

L = 2, the algorithm is also polynomial.

)) time, and hence is polynomial. If

For the case of the separated formulations (Cut, Path-Arc and Node-Arc formula-
tions), the procedure is the same except that the computation of the L-st-path-cut,
induced by the partition 7, is performed using the directed graph ést associated with
the demand {s,t}. We remove from ést all the arcs corresponding to the edges of
da(s)\ [s, '], and those corresponding to the edges of [s, s'] are given an infinit capac-
ity. In the same way, we give an infinit capacity to every arc of the form (u,u’), with
(TS ‘Zt. Then, we compute a maximum flow between s and ¢ in ést. Also, for these
formulations, the algorithm remains polynomial.

CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICE
170 ALGORITHMS FOR THE KHNDP

6.3.4 Separation of triple path-cut inequalities

To separate triple path-cut inequalities, we devise a heuristic. This heuristic is based
on Theorem 5.7.3. The procedure is given for L = 3. It is similar for L = 2.
The main idea is to compute, given two demands {s,t;} and {s,t2}, a family II =
{Vo, Vi, Vo, V3, V] V2 VL V2} of node sets from a 3-sti-path-cut T induced by a par-
tition of the form (Vo, Vi UVEUVE Vi, Vs U VE V). In fact, from this latter partition,
one can obtain a whole triple path-cut by fixing the sets V', V2, Vil and V2. In our
procedure, we will look for those triple path-cuts such that V}! =0, V2 = {t,}, V! =0
and VZ = {t,}.

The procedure works as follows. For each source s € Sp, we apply the following
steps. Let {s,?;} and {s,f2} be two demands associated with s. We first look for a
partition 7 = (Vy, V{, V3, Vi, V) which induces an L-st;-path-cut of G, denoted by T,
and such that Vj = {s} and ¢, € V. For this, we use the correspondance between the
L-sty-path-cuts in G and st{-dicuts in G. Since to € V] and Vj = {s}, we have that
TNs,ta) =0 and any arc of é corresponding to the edges of [s,t5], does not appear
in an st;-dicut of G correspondmg to 1. Thus, computing 7" reduces to compute a
minimum weight st;-dicut in G. To do this, we compute a maximum flow in G between
s and t; with respect to the following capacities:

o for every arc of A([s, t5]) or of the form (u/,u”) or (#,t), with u € N and t € Tp,
we give an infinit capacity;

o for every arc of A(e), with e € E \ [, 5], we give the capacity Z(e).

Let 53(@1) denote the directed cut thus obtained. We check if it corresponds to an
L-sti-path-cut by performing the following steps. First, we remove from G all the
edges corresponding to the arcs of 5;5(/1/[7) and compute all the shortest paths between
s and the other nodes of G with respect to the length 1 on the remaining edges. Let
[(u) denote the length of the shortest path between s and w, for all u € V'\ {s}. If I(¢)
is finite, then 5+(W) corresponds to an L-sti-path-cut, denoted by 7. In this case, we
construct the partition 7 such that Vj = {s}, V/ ={u e V | [(u) =i}, fori € {1,2, 3},
and for all the nodes u € V' \ {t;} such that {(u) > 4 or l(u) = 400, we assign them

alternatively to V/ and VJ. Finally, V| =V \ UV Note that t; € V] as [(t;) > 3

and to € V/. Now the family of node sets II is such that Vo = Vi = {s}, Vi = V/ \ {2},
‘/2_‘/27%_‘/237‘/4 —@,V;l _{t2}7‘/5 —(DandV5 :{tl}

6.3. SEPARATION PROCEDURES 171

Let E be the set of edges of [V, V3 U V)] U [V4', V] having a positive value with
respect to T. We choose the edges of /' among those of E having the highest value and
such that |F| and k have different parities. If |E| > k — 1, then F consists of the k — 1
edges having the highest value. If |E| < k — 1 and |E| has a parity different from that
of k, then we let F' = F. If |E| <k—1and |E| has the same parity as k, then we let
F = E\ {ey} where ¢ is the edge of £ having the smallest value.

Finally, we check if the triple path cut inquality induced by IT and F' is violated or
not.

Our algorithm runs in polynomial time, as it consists, for every pair {{s,t1},{s,t2}}
of demands, in computing a maximum flow and shortest paths between s and the
other nodes of GG. In our implementation, we use the algorithm of Goldberg and
Tarjan [58] for the maximum flow and the algorithm of Dijkstra [43| for the shortest

paths which run repesctively in O(]V|? log (|V(‘2_‘Y)|(J‘r“/.sii|‘;§i‘|i‘)) and O(|V?log |V]) time,
2|V |+|Sp|+|Tp|)?

respectively. Thus, the procedure runs in O(|D]*(]V]?log |V| VD (VIeISn 1T

))) time,
and thus, is polynomial.

For the case of the separated formulations, the procedure is the same except that
the computation of the L-st-path-cut inducing the partition 7 is performed using the
directed graph ésm associated with the demand {s,t;}. All the arcs corresponding to
the edges of [s,ts] are given an infinit capacity. In the same way, we give an infinit
capacity to every arc of the form (u,u’), with u € ‘Zt and all the arcs corresponding to
an edge e € E'\ [s, 5] is given the capacity Z(e). Then, we compute a maximum flow

between s and ¢; in Gg,.

6.3.5 Separation of Steiner-partition inequalities

Now we discuss the separation of Steiner-partition inequalities. The separation problem
of inequalities (5.43) is NP-hard (see [99]). To separate them, we devise the following
heuristic. Note that we look for Steiner-partition inequalities when £ is odd. The idea
of the procedure is to find a partition 7 = (Vp, V4,...,V},), p > 3 and odd, such that
Vo CV\ Rp and T(6(Vh, ..., V,)) is minimum.

Our heuristic begins by contracting every pair of nodes ¢ and u, where ¢ is a terminal
node and u a Steiner node, and Z(dg(z)(u) \ {ut}) < T(ut). The node resulting from
that contraction will considered as a terminal. Let G(z) = (V', E’) be the reduced
graph thus obtained and let {u},...,u;} be the set of terminals of G()". If p is odd,
we let 7' = (Vg,V{,..,V)), where V' = {ui}, i = 1,...,p, and Vj = V' \ {u}, ..., u,}.

7

CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICE
172 ALGORITHMS FOR THE KHNDP

Then, we let V;, ¢ = 0,...,p, be the node sets of G(Z) corresponding to the node sets
V!, i=0,..p,of G(T).
If p is even, we look for two nodes w;, and u, ip,jo € {1,...,p}, of G(T)" such
that Z([u], v}]) is maximum and there is a demand between u; and uj , that is
|0c, ({ui,, u, })| = 1. This later condition ensures that the partition we will obtain is
admissible. We let

Vi=Aul}, i=1,...;90 — 1,

‘/’li) - {u’/i()7u_/jo 9

V;/ = {U;}, 1= ’io + 1, ...,jo — 1,

‘/il—l = {U;}, L= .jO + 17 s Py

Vo = V' \{u},...,u,}.

Then, we let V; be the node set of G(Z) corresponding to the node set V/, i =0, ...,p—1,
of G(T)". After that, we check if the Steiner-partition inequality induced by = is violated

by Z or not.

The computation of the graph G(Z)' runs in O(|V||E|) while the computation of the
nodes uj,,u,, when p is even, requires O(|Rp|*(|E'| 4 |D|)) operations. Thus, our
separation algorithm runs, in the worst case, in O(|V||E|+ |Rp|*(|E’| + |D|)) time and

thus, is polynomial.

6.3.6 Separation of Steiner-SP-partition inequalities

Now we turn our attention to the separation of the Steiner-S P-partition inequalities.
We devise the following heuristic to separate inequalities (5.44). The main idea is to
determine a Steiner-partition 7 = (V4,...,V,), p > 3, of V which induces an outerplanar
subgraph of G(Z) and such that the subgraph of Gp (the demand graph) induced by
7 is connected. By Theorem 5.6.8, such a partition is a Steiner-S P-partition. Also,
%L i=1,..,p, (modulo
p) and for every consecutive sets V; and Vj, the edge set [V;, V] contains at least one
edge with fractional value.

the partitions we are looking for are such that |[V;, Vi4]| > [

The heuristic works as follows. We first contract every pair of nodes ¢t and u, where
t is a terminal node, v is a steiner node and Z(dg(z)(u) \ {ut}) < T(ut). The node
resulting from that contraction is said to be terminal. Let G(Z)" = (V', E’) be the
reduced graph thus obtained.

We look in G(Z)" for a path T' = {vjv), vyvy, ..., v, _v) 1}, p > 3, such that v, ..., v,

are terminal nodes, |[v},v/,,]| > [£] and [v], v],,] contains one edge or more with frac-

6.3. SEPARATION PROCEDURES 173

tional value, for i = 1, ..., p—2. The partition 7 = (V4, ..., V},), p > 3, is constructed such
p—1
that V; is the node set of G corresponding to v}, i =1,...,p—1,and V, =V'\ (U Vi).

i=1

" is outerplanar and

Afterwards, we check by a simple heuristic if the graph G (7)
if the subgraph of Gp induced by 7 is connected. If it is connected, then, we check
if the Steiner-SP-partition inequality induced by 7 is violated. If this subgraph is
not connected, we compute from m new partitions m;, = (Vi, Vieq, V \ (Vi U Viiy)),
1 =1,...,p— 2. Clearly, these new partitions are Steiner-partitions and since they are
of size 3, they induce Steiner-S P-partitions. We then check if the Steiner-S P-partition

inequality induced by 7; is violated, for i = 1,...,p — 2.

If none of these inequalities is violated by @, we apply again the procedure by looking
for another path. In order to avoid the detection of the same path, we label the nodes
we met during the search of the previous ones, so that they won’t be considered in
the search of the new path. This process is iterated until either we find a violated
Steiner-S P-partition inequality or all the nodes of V" are labeled. The heuristic can
be implemented to run in O(|E'||V’| 4+ |D|) time.

To store the generated inequalities, we create a pool whose size increases dynamically.
All the generated inequalities are put in the pool and are dynamic, that is, they are
removed from the current LP when they are not active. We first separate inequalities
from the pool. If all the inequalities in the pool are satisfied by the current LP-solution,
we separate the classes of inequalities in the order given before.

6.3.7 Primal heuristic

An important issue in the efficiency of the Branch-and-Cut and Branch-and-Cut-and-
Price algorithms is to compute a good upper bound at each node of the Branch-and-Cut
tree. To do this, when the separation procedures do not generate any violated inequality
and the current solution is still fractional, we transform it into a feasible one. We
describe the procedure we have devised for kHNDP 4, with a fractional solution (7, 7).
It is similar for kHNDP¢,,, kHNDPp,4 and Kk HNDPy 4. The main idea is to construct
a graph obtained by removing from G(¥) every arc corresponding to an edge of G(T)
having a fractional value and add arcs in that graph until the number of arc-disjoint
st-dipaths reaches k, for all {s,t} € D. Note that since (7,7) is fractional and is an
optimal solution for the current LP, the restriction of G(¥) to A,(¥) cannot contain k
arc-disjoint st-dipaths for all {s,t} € D. Otherwise, (Z,7) would be integral or would
not be optimal for the current LP.

CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICE
174 ALGORITHMS FOR THE KHNDP

The procedure relies on the computation of a maximum flow between s and t for
every pair {s,t} € D. The capacities of the arcs of G() are updated at each iteration
of the procedure. At the end of the procedure, we remove from é(y) every arc whose
capacity is null.

Let C; = (Ci(a)) e 4 be a capacity vector obtained at the end of the i'" iteration,
i =0,....d, with Co = (Co(a)) e 55)» Where Co(a) =1 for all a € Ay(7) and Co(a) = 0
otherwise. Note that the capacity vector C;, i € {1,...,d}, is associated with demand
{si,t;}. For a demand {s;,t;}, ¢ € {1,...,d}, we first compute a maximum s;t;,-flow
with respect to capacity vector C_1. Let f = (f(a)),c4) Pe the corresponding flow
vector and fy the value of this flow. If fy > k, then there is nothing to do for this
demand. Thus we let Cj(a) = Ci_1(a) for all a € A(%) and go to the next demand
{sis1,tiz1}. If fo < k, then we compute k — fy arc-disjoint augmenting s;t;-paths with
respect to capacity 1 on every arc of é(@) and f(a) as initial flow value. Remark that
the flow is null for all arc @ having C;_1(a) = 0. Then, we set to 1 the flow on every
arc involved in the k — fy augmenting paths computed before and update the capacity
vector C; in the following way:

e Ci(a) =1, for all a € A(y) such that C;_,(a) = 1;

e Ci(a) =1, if C;_1(a) = 0 and a is involved in an augmenting path computed
before;

e (;(a) = 0 otherwise.

We repeat this operation for every demand {s;,¢;}, i = 1,...,d. At the end of the
procedure, we remove from G(7) every arc such that Cy(a) = 0. Afterwards, we
construct the graph G = (V, E), where E is the set of edges associated with an arc
remaing in G(7), that is having Cy(a) = 1. Since the remaining graph G(y) contains k
arc-disjoint st-paths for all {s,t} € D, the graph G contains k edge-disjoint L-st-paths,
for all {s,t} € D, and hence, induces a feasible solution of the kHNDP.

If the weight of this solution is lower than best known upper bound, then we update
this upper bound with the weight of the solution we have just computed.

6.4 Computational results

The Branch-and-Cut and Branch-and-Cut-and-Price algorithms described in the pre-
vious sections have been implemented in C++-, using ABACUS 3.0 |1, 101] to manage

6.4. COMPUTATIONAL RESULTS 175

the Branch-and-Cut tree, and CPLEX 11.0 [2] as LP-solver. It was tested using a ma-
chine equiped with a processor Intel Centrino Duo and 2 Go of RAM, running under
Linux. The maximum CPU time has been fixed to 5 hours. The test problems we have
considered are complete euclidian graphs from TSPLIB library [3]. The demands used
in these tests are randomly generated. Each set of demand is either rooted in a node
s, or is such that there is no demand having the same destination node as another
demand. The tests have been performed for L = 2,3 and k£ = 3,4, 5.

Each instance is given by the number of nodes of the graph preceded by the type of
demand, indicated by ’r’ for rooted demands and ’a’ for arbitrary demands. The other
entries of the various tables are:

\4 : number of nodes of the graph;

| D] : number of demands,

NC : number of generated cut inequalities;

NAC : number of generated aggregated cut inequalities;
NDC : number of generated double cut inequalities;

NTC : number of generated triple path-cut inequalities;

NP : number of generated Steiner-partition inequalities;
NSP : number of generated Steiner-S P-partition inequalities;

COpt : weight of the best upper bound obtained;

Gap : the relative error between the best upper bound
(the optimal solution if the problem has been solved
to optimality) and the lower bound obtained at the
root node of the Branch-and-Cut tree;

NSub : number of subproblems in the Branch-and-Cut tree;

TT : total CPU time in hours:min:sec.

The instances indicated with "*" are those for which the algorithm has not finished
the computation of the root node of the Branch-and-Cut tree after the CPU time limit.
The entries in the tables for these instances are given in italic. Also, for some instances,
the algorithm runs out of ressources (lack memory). For these instances, we give the
results we have obtained during the time the algorithm runned. These instances are
indicated with "**".

The main objective of these experiments is to check the effeciency of the different
formulations introduced before for solving the kHNDP. It also aims to compare each
formulation with the others and compare the algorithms depending on the connectivity
requirement. Obviously, we have used the same test problems with each formulation
and each value of L.

176

CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICE
ALGORITHMS FOR THE KHNDP

Our first series of experiments concerns kHNDP 4, with & = 3 and L = 2,3. The
instances we have considered have graphs with 21 up to 52 nodes and a number of

demands up to 50. The results are summurized in Tables 6.1 and 6.2.

V| |[D] NC NAC NDC NTC NP NSP COpt Gap NSub TT
r21 15 1963 0 0 24 0 0 7138 95 151 0:00:15
r21 17 2463 2 0 25 0 0 7790 934 359 0:00:35
r2l 20 4076 12 0 73 0 0 8762 11.6 2195 0:06:10
a2l 10 358 51 87 0 0 0 8313 319 57 0:00:08
r30 15 3482 15 0 11 0 0 12512 556 435 0:01:22
r30 20 7084 138 0 31 0 0 14215 6.84 4567 0:26:55
r30 25 8379 27 0 70 0 0 15610 857 3845 0:34:07
a30 10 518 566 0 0 0 0 12124 496 375 0:01:16
a30 15 862 1141 0 0 0 0 15868 3.36 1193 0:13:54
r48 20 12780 0 0 38 0 0 2158 816 267 0:08:23
r48 30 46392 0 0 5 0 0 34144 27.18 1581 5:00:00
r48 40 42461 0 0 6 0 0 49698 37.23 1131 5:00:00
ad8 15 3514 365 2562 0 0 0 32097 268 891 0:28:42
ad8 20 11990 640 3754 0 0 0 46967 8.9 3993 5:00:00
a48 24 12417 210 820 0 0 0 57865 1259 3453 5:00:00
r52 20 22656 19 0 2 0 0 14093 621 2283 0:35:50
r52 30 67301 7 0 304 0 0 18957 169 3289 5:00:00
r52 40 51484 12 0 91 0 0 24780 26.04 1703 5:00:00
r52 50 38633 0 0 49 0 0 31541 3236 1981 5:00:00
ab2 20 2168 1434 0 0 0 0 18480 3.24 5281 2:33:47
a2 26 5054 780 265 0 0 0 24131 337 5699 5:00:00

Table 6.1: Results for Aggregated formulation with L = 2 and k = 3.

It appears from that 6.1 that for L = 2, 14 instances over 22 have been solved to

optimality within the time limit. The CPU time for these instances, except the last
one, is less than 35 minutes. All the instances of the table have required a branching
phase and, for most of them, the relative error between the lower bound at the root
node of the Branch-and-Cut tree and the best upper bound (Gap) is less than 10%.
We also observe that our separation procedures have detected a large enough number

of aggregated cut inequalities and a fewer number of double cut and triple path-cut
inequalities. We observe from Table 6.2 that for L = 3 only 2 instances over 22 have

been solved to optimality within the time limit. They have been solved respectively

in 499mn and 2h34mn. Except for the previous instances, the gap between the lower

6.4. COMPUTATIONAL RESULTS 177

V| |D| NC NAC NDC NTC NP NSP COpt Gap NSub TT
r21 15 23423 45 0 24 0 7 5472 833 975 0:49:54
r21 17 35364 32 0 61 0 5 5864 824 1745 2:34:13
r2l 20 33934 5 0 58 0 0 8874 3408 2389 5:00:00
a2l 10 51099 0 142 0 0 0 9934 3858 347 5:00:00
a2l 11 43858 0 121 0 2 0 11390 446 333 5:00:00
r30 15 55589 144 0 4 0 22 10901 13.56 2009 5:00:00
r30 20 51627 24 0 1 0 18 15944 3545 1835 5:00:00
r30 25 45492 3 0 11 0 6 20379 4553 917 5:00:00
a30 10 39785 0 3 0 0 2 12365 21.82 1127 5:00:00
a30 15 44901 12 43 0 0 0 23481 4764 353 5:00:00
r48 20 61029 0 0 11 0 19 25605 41.22 387 5:00:00
r48 30 68969 0 0 12 0 2 40871 5561 205 5:00:00
r48 40 67303 0 0 0 0 1 59513 6281 133 5:00:00
ad8 15 72110 0 22 0 0 1 62557 668 29 5:02:34
ad8 20 75449 0 3 0 0 0 90253 7032 11 5:00:00
a48 24 101539 0 3 0 0 0 121740 74.18 3 5:00:00
r52 20 63033 0 0 0 0 15 17474 419 543 5:00:00
r52 30 79985 0 0 0 0 3 23345 4806 263 5:00:00
r52 40 86116 0 0 0 0 4 28743 51.28 143 5:00:00
r52 50 80976 0 0 0 0 0 37051 5746 125 5:00:00
a52 20 76055 0 32 0 0 2 30939 5326 19 5:00:00
a52 26 116481 0 20 0 0 0 51870 65.45 9 5:00:00

Table 6.2: Results for Aggregated formulation with L = 3 and k£ = 3.

CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICE
178 ALGORITHMS FOR THE KHNDP

bound at the root node of the Branch-and-Cut tree and the best upper bound is more
than 10%. It even reaches in some cases 70%. We also have that our separation
procedures have detected a few number of aggregated cut, double cut, triple path-cut
and Steiner-S P-partition inequalities.

Our second series of experiments concerns kHNDP¢,, with £ = 3 and L = 2,3. The

results are given in Tables 6.3 and 6.4 for L = 2 and L = 3 respectively.

V| [D] NC NAC NDC NTC NP NSP COpt Gap NSub TT
r21 15 22047 0 0 24 0 0 7138 95 151 1:18:44
r2l 17 42621 22208 0 6 0 0 8384 17.73 63 5:00:00
r2l 20 49283 0 0 0 0 0 10444 2584 31 5:00:00
a2l 10 231 150 70 0 0 0 8313 322 71 0:00:05
a2l 11 330 163 14 0 1 0 8677 311 99 0:00:06
r30 15 11437 35413 0 0 0 0 13114 989 43 5:00:00
r30 20 47879 0 0 0 0 0 16488 19.68 31 5:00:00
*r80 25 61391 0 0 0 0 0 - - 1 5:00:00
a30 10 450 2074 0 0 0 0 12124 496 359 0:02:38
a30 15 698 2527 0 0 0 0 15868 3.33 947 0:17:20
r48 20 34042 0 0 0 0 0 25112 21.06 27 5:00:00
*r 48 80 75649 0 0 0 0 0 - - 1 5:00:00
*r 48 40 25240 0 0 0 0 0 - - 1 5:00:00
a48 15 1604 1402 830 0 0 0 3297 27 491 0:30:03
ad8 20 3284 3641 887 0 0 0 47449 995 2793 5:00:00
a48 24 3567 2134 404 0 0 0 57308 11.48 3019 5:00:00
r52 20 56127 0 0 0 0 0 17039 22.43 3 5:00:00
*r52 80 38286 0 0 0 0 0 - - 1 5:00:00
¥r52 40 24510 0 0 0 0 0 - - 1 5:00:00
¥r52 50 24644 0 0 0 0 0 - - 1 5:00:00
a2 20 1474 4513 0 0 0 0 18480 3.24 3185 4:13:36
a52 26 2656 2894 142 0 0 0 24416 451 3669 5:00:00

Table 6.3: Results for Cut formulation with L = 2 and k = 3.

We observe that for L = 2 (Table 6.3), 6 instances over 22 have been solved to
optimality within the time limit. Also, for 6 instances, the algorithm has not been able
to finish within 5 hours the resolution of the root node of the Branch-and-Cut tree. A
large enough number of aggregated cut inequalities has been detected. However only
a few number of double cut inequalities has been used. For L = 3 (Table 6.4), no

6.4. COMPUTATIONAL RESULTS 179
V] |[D] NC NAC NDC NTC NP NSP COpt Gap NSub TT
r21 15 20526 1344 0 12 0 3 7801 357 287 5:00:00
r21 17 20852 95 0 1 0 1 7688 30.01 169 5:00:00
r21 20 15636 0 0 11 0 0 10183 4255 407 5:00:00
a2l 10 24143 0 0 0 0 0 10808 43.55 395 5:00:00
a2l 11 23988 0 1 0 1 0 9970 36.71 317 5:00:00
r30 15 6854 0 0 0 0 7 18349 48.65 21 5:00:00
r30 20 11332 0 0 0 0 2 21552 5225 21 5:00:00
r30 25 14842 0 0 0 0 0 22829 51.38 7 5:00:00
a30 10 17955 0 0 0 0 1 12365 21.82 567 5:00:00
a30 15 14218 66 1 0 0 0 24360 49.53 171 5:00:00

*r48 20 2729 0 0 0 0 0 - - 1 5:00:00

*r48 80 3833 0 0 0 0 0 - - 1 5:00:00
r48 40 5772 0 0 0 0 0 67381 67.15 3 5:00:00

“a 48 15 3600 0 0 0 0 0 - - 1 5:00:00

*a 48 20 2700 0 0 0 0 0 - - 1 5:00:00

“a 48 2/ 2928 0 0 0 0 0 - - 1 5:00:00

¥r52 20 2338 0 0 0 0 0 - - 1 5:00:00

¥r52 80 8358 0 0 0 0 0 - - 1 5:00:00

*r52 40 8743 0 0 0 0 0 - - 1 5:00:00

*r52 50 5332 0 0 0 0 0 - - 1 5:00:00

*a 52 20 3657 0 0 0 0 0 - - 1 5:00:00
a2 26 7437 0 0 0 0 0 52501 65.93 3 5:00:00

Table 6.4: Results for Cut formulation with L = 3 and k£ = 3.

CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICE
180 ALGORITHMS FOR THE KHNDP

instance has been solved to optimality within the time limit and for 9 instances over
22, the root node of the Branch-and-Cut tree has been solved after 5 hours. The gap
between the lower bound at the root node of Branch-and-Cut tree and the best upper
bound, when they exist, is between 30% and 50% in general. However, in some cases
it reaches 67%.

The third series of experiments concerns the ktHNDPp,y with £ = 3 and L = 2, 3.
The results are given in Tables 6.5 for L = 2 and 6.6 for L = 3. Recall that for
this formulation, we have used a Branch-and-Cut-and-Price algorithm and that the
aggregated cut inequalities are not valid. Thus, they don’t appear in Tables 6.5 and
6.6.

V| |[D] NDC NTC NP NSP COpt Gap NSub TT
r2l 15 0 24 0 0 7138 95 151 0:00:10
ra21 17 0 19 0 0 7790 934 309 0:01:13
r21 20 0 91 0 0 8762 11.6 2491 0:04:07
a2l 10 74 0 0 0 8313 343 85 0:00:03
a2l 11 14 0 0 0 877 3.3% 103 0:00:06
r30 15 0 3 0 0 12512 556 303 0:00:49
r30 20 0 24 0 0 14215 6.84 4731 0:28:50
30 25 0 94 0 0 15806 10.22 8226 3:12:00
a30 10 0 0 0 0 12124 52 335 0:00:31
a30 15 0 0 0 0 15868 3.68 943 0:02:27
r48 20 0 46 0 0 2158 816 265 0:07:17
48 30 0 100 0 0 32284 2299 6779 4:37:00
r48 40 0 20 0 0 47331 34.09 7167 5:00:00
ad8 15 0 2 0 0 17626 6.15 215 0:01:27
¥ 48 20 1762 0 0 0 46446 810 8599 3:57:00
¥ d8 24 TT6 0 0 0 55877 851 7583 3:52:00
r52 20 0 3 0 0 14093 621 2807 0:43:36
52 30 0 501 0 0 18497 14.84 5431 4:48:00
r52 40 0 207 0 0 24626 25.58 6145 5:00:00
r52 50 0 79 0 0 31541 3236 3931 5:00:00
a52 20 0 0 0 0 18480 3.43 6547 3:02:08
a52 26 231 0 0 0 24125 411 9825 5:00:00

Table 6.5: Results for Path-Arc formulation with L = 2 and k = 3.

When L = 2, we can see that 13 instances over 22 have been solved to optimality
within a CPU time which does not exceed 43 minutes except for the last one which

6.4. COMPUTATIONAL RESULTS

181

V| |D|] NDC NTC NP NSP COpt Gap NSub TT
r21 15 0 65 0 10 5472 8.33 867 0:36:25
r21 17 0 92 0 9 5864 8.24 1855 1:53:37
r21 20 0 130 0 0 8445 30.73 3627 5:00:00
a2l 10 138 0 0 0 - - - 3:35:00
a2l 11 38 0 1 0 6770 6.8 4155 1:46:36
r30 15 0 45 0 23 10114 6.68 2185 5:00:00
r30 20 0 13 0 14 15767 34.73 1553 5:00:00
r30 25 0 21 0 5 20511 45.88 675 5:00:00
a 30 10 0 0 0 15 10254 5.73 4833 5:00:00
a 30 15 18 0 0 0 19420 36.7 2853 5:00:00
r48 20 0 22 0 34 26721 43.68 69 5:00:00
r48 30 0 44 0 8 40197 54.87 49 5:00:00
r48 40 0 38 0 1 59762 62.97 19 5:00:00
a48 15 2 0 0 0 49102 57.73 101 5:00:00
ad8 20 2 0 0 0 70272 61.88 25 5:00:00
ad8 24 2 0 0 0 85625 63.29 13 5:00:00
rs52 20 0 6 0 12 17894 43.27 83 5:00:00
ro2 30 0 12 0 4 24970 51.44 49 5:00:00
rs52 40 0 12 0 5 28530 50.92 19 5:00:00
r52 50 0 46 0 0 38734 59.31 1 5:00:00
ad2 20 27 0 0 2 27739 47.89 45 5:00:00
ad2 26 15 0 0 0 41535 56.92 13 5:00:00

Table 6.6: Results for Path-Arc formulation with L = 3 and k& = 3.

CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICE
182 ALGORITHMS FOR THE KHNDP

has been solved in 3 hours. For most of the instances, the gap between the lower
bound at the root node of the Branch-and-Cut tree and the best upper bound is less
than 32%. The separation procedures have detected a few number of double cut and
triple path-cut inequalities. Also we have observed that in most cases, after the root
node of the Branch-and-Cut tree, the column generation algorithm has not added new
variables in the current basis. When L = 3, 3 instances over 22 have been solved to
optimality. The CPU time used to solve them is between 36 minutes and near 2 hours.
A few number of double cut, triple path-cut and Steiner-S P-partition inequalities have
been detected. The gap between the best lower and upper bounds is less than 62%.

Our next series of experiments concerns the kFHNDP v 4 with & = 3 and L = 2 (Table
6.7) and for L = 3 (Table 6.8). Here also, the aggregated cut inequalities are not valid
for ktHNDP 4 and do not appear in the table.

V| |[D] NDC NTC NP NSP COpt Gap NSub TT
r21 15 0 21 0 0 7138 95 203 0:00:11
ra21 17 0 19 0 0 7790 934 333 0:00:27
r21 20 0 8 0 0 8762 11.6 2621 0:03:38
a2l 10 74 0 0 0 8313 343 85 0:00:02
a2l 11 12 0 1 0 8677 3.11 107 0:00:05
r30 15 0 9 0 0 12512 556 337 0:00:54
r30 20 0 20 0 0 14215 6.84 4993 0:32:46
r30 25 0 8 0 0 15610 857 5087 1:.07:49
a30 10 0 0 0 0 12124 52 335 0:00:26
a30 15 0 0 0 0 15868 3.68 947 0:02:30
r48 20 0 38 0 0 2158 816 259 0:06:37
48 30 0 0 0 0 33114 2492 3147 3:38:00
*E 48 40 0 0 0 0 47464 34.28 2399 4:14:00
ad8 15 867 0 0 0 32097 285 351 0:08:23
¥ 48 20 1508 0 0 0 46118 7.53 4409 2:43:00
¥ 48 24 603 0 0 0 55623 9.19 3817 2:44:00
r52 50 0 67 0 0 31541 3236 3149 5:00:00
r52 10 0 0 0 0 8299 235 15 0:00:02
r52 20 0 1 0 0 14093 621 1541 0:40:35
a52 20 0 0 0 0 18480 3.43 5969 2:41:04
*a52 26 193 0 0 0 24364 5.06 3231 3:19:00

Table 6.7: Results for Node-Arc formulation with L = 2 and k& = 3.

From Table 6.7 we can see that, for L = 2, 14 instances over 22 have been solved to

6.4. COMPUTATIONAL RESULTS

183

V| |D] NDC NTC NP NSP COpt Gap NSub TT
r21 12 0 0 11 7 4658 3.53 107 0:02:45
r21 15 0 28 0 5 0472 833 1033 0:29:01
r21 17 0 53 0 7 5864 8.24 1885 1:27:58

a2l 10 83 0 0 0 6886 11.40 5041 3:35:00
a2l 11 22 0 1 0 6770 6.8 4269 1:18:48
r30 15 0 10 0 24 10142 7.1 2837 5:24:33
r30 20 0 1 0 11 16157 36.3 1377 5:09:22
r30 25 0 6 0 2 21330 47.96 439 5:00:00
a 30 10 0 0 0 13 10254 5.73 4937 4:35:04

a30 15 10 0 0 0 - - - 3:35:00
r48 20 0 1 0 9 27126 44.52 71 5:00:00
r48 30 0 0 0 0 41350 56.12 27 5:00:00
r48 40 0 0 0 1 60165 63.21 11 5:00:00
a48 15 0 0 0 0 67328 69.17 107 5:00:00
a48 20 0 0 0 0 86553 69.05 51 5:00:00
ad8 24 0 0 0 0 113754 72.37 33 5:00:00
r52 20 0 0 0 7 19713 48.5 45 5:00:00
rs52 30 0 0 0 0 25870 53.13 17 5:00:00
rs2 40 0 0 0 0 28530 50.92 9 5:00:00
rs52 50 0 0 0 0 37933 58.45 7 5:00:00
ao52 20 13 0 0 2 27870 48.14 35 5:00:00
ao52 26 2 0 0 0 45709 60.85 13 5:00:00

Table 6.8: Results for Node-Are formulation with L = 3 and k£ = 3.

CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICE
184 ALGORITHMS FOR THE KHNDP

optimality. The maximum CPU time for these instances is 2h41mn and most of them
are solved in less than 6 minutes. The gap between the best lower and upper bounds
is, in general, less than 10%. The separation algorithms have generated a few number
of double cut and triple path-cut inequalities. For L = 3 (Table 6.8), 7 instances have
been solved to optimality. For most of the instances, the gap between the best lower
and upper bounds is less than 60% but reaches in some cases 72%. We can see that a
few number of double cut, triple path-cut and Steiner S P-Partition have been detected
during the resolution.

When comparing, for each table, the results obtained for L = 2 and L = 3 when
k = 3, we observe that the number of instances solved to optimality when L = 2 is
greater than that when L = 3. Also the gap between the best lower and upper bounds,
is in most cases, better when L = 2 than when L = 3. This let us believe that the
kKHNDP is easier when L = 2 than when L = 3.

Also, when comparing Tables 6.1, 6.3, 6.5 and 6.7 for L = 2, and Tables 6.2, 6.4, 6.6
and 6.8 for L = 3, we observe that the effeciency of the different algorithms for solving
the problem is not the same. We observe that the results for kHNDP 4,, KHNDP p4
and kHNDP 4 are better than those of kHNDP¢,, for both L = 2 and L = 3. In fact
the number of instances solved to optimality for this later formulation is less than that
of the others and, in most cases, the gaps between the best lower and upper bounds
are greater for this formulation than those of the other formulations. Moreover, for
6 instances for L = 2 and 9 instances for L = 3, the algorithm for kHNDP¢, has
not been able to finish the resolution of the root node of the Branch-and-Cut tree
whereas the other algorithms have solved the problem for the same instances with a
branching phase. Hence, for these instances, the algorithm for kHNDP¢, does not
produce an upper bound of the optimal solution. Comparing Tables 6.1 to 6.5 for
L = 2, and Tables 6.2 and 6.6 for L = 3, we observe that the number of instances
solved to optimality is quite the same for the two formulations, and the CPU times
are generally closer. However, for L = 2, the gap between the best lower and upper
bounds is, in most cases, better for the Aggregated formulation than for those of the
Path-Arc formulation. Also, for L = 3, we notice that the gap is in general better for
the Path-Arc formulation. In fact, for this latter formulation, the gap is up to 63.29%
whereas it reaches 74.18% for the Aggregated formulation. The comparison between
Tables 6.7 and 6.8 on the one hand and Tables 6.1, 6.2, 6.5 and 6.6 on the other hand
shows that more instances have been solved to optimality by the Node-Arc formulation
for both L = 2 and L = 3. The CPU time is slightly better with this formulation and
the gaps between the best lower and upper bounds are better in some cases than those
obtained for the Aggregated and Path-Arc formulation.

6.4. COMPUTATIONAL RESULTS 185

As a conclusion, these observations show that the Aggregated, Path-Arc and Node-
Arc formulations are more efficient than the Cut formulation. Also, the Node-Arc
formulation solves more instances to optimality while the Aggregated formulation pro-
duces better upper bounds when L = 2 and the Path-Arc formulation gives better ones
when L = 3. Also, the problem is easier to solve when L = 2.

Our last series of experiments concerns the kHNDP with £ = 4,5 and L = 3 (Tables
6.9 and 6.10). It aims to observe the easiness of the problem when the connectivity
requirement increases. The instances used have graphs with 48 and 52 nodes and up
to 50 demands. Note that when k& = 4 the Steiner-partition and Steiner-S P-partition
inequalities are redundant with respect to the st-cut inequalities. Thus, they do not
appear in Table 6.9.

CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICE
186 ALGORITHMS FOR THE KHNDP

Aggregated formulation
V| |D| NC NAC NDC NTC COpt Gap NSub T

r48 30 56483 0 0 0 48899 49.32 249 5:00:00
r48 40 60857 0 0 0 60090 49.87 123 5:00:00
a48 20 57931 0 1 0 112414 68.11 11 5:00:00
ad48 24 79543 0 1 0 157063 73.26 3 5:00:00
ro2 40 74438 0 0 0 34100 44.03 131 5:00:00
ro52 50 75463 0 0 0 41894 48.00 91 5:00:00
ad2 20 64736 0 32 0 39863 50.35 21 5:00:00
ad2 26 77734 0 11 0 66306 63.02 9 5:00:00

Cut formulation
V| |D| NC NAC NDC NTC COpt Gap NSub TT

*r48 30 3684 0 0 0 - - 1 5:00:00
48 40 5788 0 0 0 69349 56.56 3 5:00:00
*a 48 20 2760 0 0 0 - - 1 5:00:00
*a 48 24 3408 0 0 0 - - 1 5:00:00
r52 40 3995 0 0 0 - - 1 5:00:00
rs2 50 6619 0 0 0 45587 52.21 3 5:00:00
*a b2 20 5832 0 0 0 - - 1 5:00:00
ad2 26 10303 0 0 0 59807 59.01 3 5:00:00

Path-Arc formulation
V| |D| NDC NTC COpt Gap NSub TT

r48 30 0 0 49758 50.2 47 5:00:00
r48 40 0 0 64253 53.12 19 5:00:00
a48 20 1 0 92597 61.29 93 5:00:00
ad8 24 0 0 111039 62.18 15 5:00:00
rs52 40 0 0 32552 41.37 15 5:00:00
*rb52 50 0 0 - - 1 5:00:00
a 52 20 32 0 34525 42.67 39 5:00:00

ab2 26 9 0 54694 55.17 13 5:00:00
Node-Arc formulation
V| |D] NDC NTC COpt Gap NSub TT

r48 30 0 0 50894 51.31 25 5:00:00
r48 40 0 0 64495 53.29 11 5:00:00
a48 20 0 0 111168 67.75 51 5:00:00
ad8 24 0 0 135650 69.04 31 5:00:00
rs52 40 0 0 35724 46.57 9 5:00:00
ros2 50 0 0 45536 52.16 5 5:00:00
ad2 20 1 0 39347 49.71 35 5:00:00
aos2 20 0 0 57370 57.26 13 5:00:00

Table 6.9: Results for Aggregated formulation with L = 3 and k = 4.

6.4. COMPUTATIONAL RESULTS 187
Aggregated formulation
V| |D] NC NAC NDC NTC NP NSP COpt Gap NSub T
r48 30 57487 0 0 21 0 0 54677 41.45 259 5:00:00
r48 40 51981 0 0 13 0 0 67290 42.72 157 5:00:00
a48 20 46889 0 0 0 0 0 140927 68.02 15 5:00:00
a 48 24 64629 0 0 0 0 0 207928 74.64 3 5:00:00
rb52 40 62674 0 0 0 0 0 38257 36.11 163 5:00:00
r52 50 75568 0 0 9 0 0 48095 41.52 93 5:00:00
ab2 20 55999 0 28 0 0 0 46728 45.57 25 5:00:00
ab2 26 63377 0 2 0 0 0 83433 62.1 11 5:00:00
Cut formulation
V| |D] NC NAC NDC NTC NP NSP COpt Gap NSub TT
*r48 30 3789 0 0 0 0 0 - - 1 5:00:00
r48 40 5073 0 0 0 0 0 76132 49.37 3 5:00:00
*a 48 20 2619 0 0 0 0 0 - - 1 5:00:00
*a 48 24 4824 0 0 0 0 0 - - 1 5:00:00
*rb52 40 3868 0 0 0 0 0 - - 1 5:00:00
rb52 50 8412 0 0 0 0 0 53997 47.91 3 5:00:00
ab2 20 7292 0 0 0 0 0 47687 46.67 3 5:00:00
ab2 26 9314 0 0 0 0 0 84578 62.61 3 5:00:00
Path-Arc formulation
V| |D] NDC NTC NP NSP COpt Gap NSub TT
r48 30 0 37 0 0 56700 43.54 41 5:00:00
r48 40 0 19 0 0 70057 44.98 15 5:00:00
a48 20 3 0 0 0 106719 57.77 49 5:00:00
ad48 24 2 0 0 0 130029 59.45 7 5:00:00
rb2 40 0 3 0 0 39933 38.79 15 5:00:00
*r 52 50 0 12 0 0 - - 1 5:00:00
ab2 20 8 0 0 0 42615 40.33 39 5:00:00
ab2 26 5 0 0 0 63315 50.06 9 5:00:00
Node-Arc formulation
V| |D] NDC NTC NP NSP COpt Gap NSub TT
r48 30 0 3 0 0 58514 45.29 25 5:00:00
r48 40 0 0 0 0 72125 46.56 13 5:00:00
a48 20 0 0 0 0 133820 66.32 47 5:00:00
ad8 24 0 0 0 0 170278 69.03 33 5:00:00
r52 40 0 0 0 0 40081 39.02 9 5:00:00
rb52 50 0 0 0 0 53997 47.91 5 5:00:00
ab2 20 0 0 0 0 46318 45.09 35 5:00:00
ab2 26 0 0 0 0 70195 54.96 15 5:00:00

Table 6.10: Results for Aggregated formulation with L = 3 and k = 5.

CHAPTER 6. BRANCH-AND-CUT AND BRANCH-AND-CUT-AND-PRICE
188 ALGORITHMS FOR THE KHNDP

First, we remark that for ¥ = 4 and k = 5, the instances in Tables 6.9 and 6.10
have not been solved to optimality after 5 hours. The Cut formulation has not been
able to solve after 5 hours the linear relaxation of the problem at the root node of the
Branch-and-Cut tree for 5 (resp. 4) instances when k =4 (resp. k = 5).

We notice that for the Aggregated formulation, the gap between the best lower and
upper bound is better when £ = 4 than when k£ = 5. For example, when k = 4, the
gaps are between 44.03% and 73.26% while for k = 5 the gaps are between 36.11% and
74.64%. Also, except one instance, the gap is better when & = 4 than when k& = 5. This
shows that the kFHNDP is easier when k = 4 than when k£ = 5. The same observation
can be done for the other formulations. In particular, for the Cut formulation, we see
that the instance r 52 with |D| = 20 has not reached the branching phase for k = 4
while 3 nodes have been generated in the Branch-and-Cut tree for £ = 5. Moreover,
for k£ = 4 the primal heuristic does not produce a feasible, and hence no upper bound
for the optimal solution, while for £ = 5 the algorithm produces an upper bound and
a gap of 46.67%.

Also these results can be compared to those obtained for £ = 3 and L = 3. We can
remark that, for every formulation, the gaps between the best lower and upper bounds
are better when £ = 4,5 than when & = 3. From these observations, we conjecture
that the ktHNDP becomes easier when the connectivity requirement k increases.

6.5 Concluding remarks

In this chapter, we have studied the k-edge-connected hop-constrained network design
problem when £ > 3 and L = 2,3. We have presented four integer programming for-
mulations based on the transformation of the initial graph into appropriated directed
graphs. We have also introduced some classes of valid inequalities and given conditions
under which these inequalities define facet of the associated polytope. We have also dis-
cussed separation procedures for these inequalities and a column generation algorithm.
Using these results, we have devised Branch-and-Cut and Branch-and-Cut-and-Price
algorithms to solve the problem.

The computational results have shown that the Aggregated, Path-Arc and Node-Arc
formulations are effective in solving the problem and producing good upper bound for
the problem and that the Cut formulation is less efficient. Also, it has been shown that
the Node-Arc formulation is more efficient in solving the problem to optimality and
that Aggregated and Path-Arc formulation produces good upper bound when L = 2
and when L = 3, respectively.

189

Also our heuristics to separate the aggregated, double cut and triple path-cut in-
equalities have appeared to be very efficient.

These experiments showed that the kHNDP is easier when L = 2 than when L = 3.
It also showed that the problem becomes easier when the connectivity requirement
increases.

In some cases, we may consider that L > 4. Few works have been done for this
case in the literature. In particular, Huygens and Mahjoub |73] studied this case and
showed that st-cut inequalities (5.1) and L-st-path-cut inequalities (5.2) toghether
with integrality constraints are no more sufficient to formulate the problem as an
integer program. They |73| introduced new classes of inequalities and showed that
these inequalities toghether with integrity constraints and inequalities (5.1) and (5.2)
formulate the problem in the space of the design variables. One can try to extend
the approach developed in the previous chapters to study the problem when L > 4
and devise efficient Branch-and-Cut or Branch-and-Cut-and-Price algorithms for the
problem in this case.

Conclusion

In this thesis, we have studied, within a polyhedral context, two survivable network
design problems, the k-edge-connected subgraph (KECSP) and the k-edge-connected
hop-constrained network design (kHNDP) problems. In particular, we have considered
these problems in the case where a high level of connectivity is required, that is when
k > 3. These two problems are NP-hard when £ > 2.

First, we have discussed the polytope of the kECSP. We have introduced a new class
of valid inequalities and given conditions for these inequalities to be facet defining. We
have also studied further valid inequalities and given conditions under which they define
facets. Moreover, we have studied the reduction operations introduced by Didi Biha
and Mahjoub [39] (see also [38]). These allow to perform the separation of the valid
inequalities in a reduced graph. Using these results, we have devised a Branch-and-Cut
algorithm for the problem and given computational results for k = 3,4, 5.

We have also studied the kHNDP when k£ > 3 and L € {2,3}. We have first
investigated the problem when a single demand is considered and shown that the
associated polytope is completely described by the st-cut and L-path-cut inequalities
toghether with the trivial inequalities. We showed that this complete description yields
a polynomial cutting plane algorithm for the problem, generalizing at the same time
the results of Huygens et al. [75] and Dahl et al. |35].

Finally, we have considered the tHNDP when more than one demand are considered.
We have introduced four new integer programming formulations for the problem in this
case. These formulations rely on the transformation of the initial undirected graph G
into appropriate directed graphs and the equivalence between edge-disjoint L-st-paths
in G and arc-disjoint paths in these directed graphs. We have introduced several
classes of valid inequalities for the polytopes associated with each formulation and
studied conditions under which these inequalities define facets. Using this, we have
devised Branch-and-Cut and Branch-and-Cut-and-Price algorithms for the problem.
Computational results have been given for £ = 3,4,5 and L = 2,3, and a comparative

191

study has been done in order to compare the efficiency of the different formulations we
have introduced.

The experimental studies presented throughout this thesis have shown that the two
problems are easier to solve when the connectivity requirement k increases. It also
appeared that the problems are more difficult to solve when k is odd. Our experi-
ments for the kECSP also showed that reduction operations, when properly designed
and implemented, can significantly improve a Branch-and-Cut algorithm. It would be
interesting to extend the use of such operations for other combinatorial optimization
problems.

The experiments we have performed for the kHNDP for £k = 3,4,5 and L = 2,3
gave gaps (relative error between the best lower and upper bounds) relativety high, in
particular when a large number of demand is considered. It would be interesting to
pursue the approach used here for the tHNDP when L € {2,3}. One may lead a deeper
investigation of the polytope of the problem by using the appropriate directed graphs
and exploiting the known results on arc-disjoint paths problems in directed graphs.
This may help to provide new facet defining inequalities. It would also be interesting,
from an algorithmic point of view, to improve the separation procedures provided for
the various inequalities we have introduced in this work, especially for the aggregated
cut inequalities.

The same kind of study can also be used for the ktHNDP when L > 4. If possible,
this may provide an integer programming formulation for the problem as well as a
Branch-and-Cut algorithm for all L > 4 and k > 2.

Bibliography

[1] ABACUS - A Branch-And CUt System, "http://www.informatik.uni-
koeln.de/abacus".

[2] Cplex, "http://www.ilog.com".
[3] TSPLIB, "http://www.iwr.uni-heidelberg.de/groups/comopt /software/ TSPLIB95/".

[4] D. Applegate, R. Bixby, V. Chvatal and W. Cook, "Implementing the Dantzig-
Fulkerson-Johnson algorithm for large travelling saleman problems", Mathematical
Programming 97, 2003, pp. 91-153.

[5] M. Baiou, "Le probléme du sous-graphe Steiner 2-aréte-connexe: approche polyé-
drale", PhD. Thesis, Université Rennes 1, 1996.

[6] M. Baiou, F. Barahona and A. R. Mahjoub, "Separation of partition inequalities",
Mathematics of Operations Research 25, 2000, pp. 243-254.

[7] M. Baiou and A. R. Mahjoub, "Steiner 2-edge connected subgraph polytopes on
series-parallel graphs", SIAM Journal on Discrete Mathematics 10, 1997, pp. 505-
514.

[8] F. Barahona and A. R. Mahjoub, "On two-connected subgraph polytopes", Dis-
crete Mathematics 147, 1995, pp. 19-34.

[9] C. Barhart, C. A. Hane, P. H. Vance, "Using Branch-and-Price-and-Cut to Solve
Origin-Destination Integer Multicommodity Flow Problems", Operations Research
48, 2000, pp. 318-326.

[10] C. Barhart, E. L. Johnson, G. L. Nemhauser, G. L. Savelsberg and P. H. Vance,
"Branch-and-Price: Column generation for solving huge integer programs", Oper-
ations Research 46, 1998, pp. 316-329.

BIBLIOGRAPHY 193

[11] R. E. Bellman, "On a Routing Problem", Quarterly of Applyied Mathematics 16
(1), pp. 87-90, 1958.

[12] F. Bendali, I. Diarrassouba, M. Didi Biha, A. R. Mahjoub and J. Mailfert, "A
Branch-and-Cut algorithm for the k-edge connected subgraph problem", to appear
in Networks.

[13] F. Bendali, . Diarrassouba, A. R. Mahjoub and J. Mailfert, "The k edge-disjoint
3-hop-constrained paths polytope", submitted to Discrete Optimization.

[14] D. Bienstock, E. F. Brickel and C. L. Monma, "On the structure of minimum
weight k-connected networks", SIAM Journal on Discrete Mathematics 3, 1990,
pp- 320-329.

[15] J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications", University
Press, Belfast, 1976.

[16] S. Borne, "Sécurisation et dimensionnement de réseaux multicouches: modéles et
polyédres", PhD. Thesis, Université Blaise Pascal, Clermont-Ferrand II, 2006.

[17] S. C. Boyd and T. Hao, "An integer polytope related to the design of survivable
communication network", SIAM Journal on Discrete Mathematics 6, 1993, pp.
612-630.

[18] G. R. Cai and Y. G. Sun, "The minimum augmentation of any graph to a k-edge-
connected graph", Networks 19, 1989, 151-172.

[19] J. Cheriyan, A. Seb6 and Z. Sziget, "An improved approximation algorithm for
minimum size 2-edge connected subgraphs", Proceedings of the 6" International
IPCO (Integer Programming and Combinatorial Optimization) Conference, 1998,
pp- 126-136.

[20] J. Cheriyan and R. Thurimella, "Approximating Minimum-Size k-Connected
Spanning Subgraphs via Matching", SIAM Journal on Computing 30 (2), 1998,
pp. 292-301.

[21] S. Chopra, "The k-edge connected spanning subgraph polyhedron", STAM Journal
on Discrete Matematics 7, 1994, pp. 245-259.

[22] S. A. Cook, "The complexity of theorem-proving procedures", In procedings 3™
Annual ACM Symposium on Theory of Computing, New York, 1971, pp. 151-158.

[23] G. Cornuéjols, J. Fonlupt and D. Naddef, "The traveling salesman problem on
a graph and some related polyhedra", Mathematical Programming 33, 1985, pp.
1-27.

194

BIBLIOGRAPHY

[24]

[25]

26]

27]

28]

29]

130]

[31]

32]

3]

[34]

[35]

[36]

C. R. Coullard, A. B. Gamble and J. Lui, "The k-walk polyhedron", Advances
in Optimization and Approzimation, Nonconver Optimization Application 1, D-Z
Du and J. Sun editions, Kluwer Academic Publishers, Dordrecht, The Netherlands,
1994, pp. 9-29.

R. Coullard, A. Rais, R. L. Radin, D. K. Wagner, "Linear time algorithm for the
2-connected Steiner subgraph problem on special classes of graphs", Networks 23,
1993, pp. 195-206.

R. Coullard, A. Rais, R. L. Radin, D. K. Wagner, "The Dominant of the 2-
connected Steiner subgraph polytope for Wy-free graphs", Discrete Applied Math-
ematics 66, 1996, pp. 33-43.

G. Dahl, "Contributions to the design of directed survivable networks", PhD.
Thesis, University of Oslo, 1991.

G. Dahl, "Directed Steiner problems with connectivity constraints", Discrete Ap-
pilied Mathematics 47, 1993, pp. 109-128.

G. Dahl, "The Design of Survivable Directed Networks", Telecommunication Sys-
tems 2, 1992, pp. 349-377.

G. Dahl, "The 2-hop spanning tree problem", Operations Research Letters 23 (1-
2), 1999, pp. 21-26.

G. Dahl, "Notes on polyhedra associated with hop-constrained paths", Operations
Research Letters 25 (2), 1999, pp. 97-100.

G. Dahl and L. Gouveia, "On the directed hop-constrained shortest path problem",
Operations Research Letters 32, 2004, pp. 15-22.

G. Dahl, N. Foldnes and L. Gouveia, "A note on hop-constrained walk polytopes".
to appear in Operations Research Letters.

G. Dahl and B. Johannessen, "The 2-path network problem", Networks 43 (3),
2004, pp. 190-199.

G. Dahl, D. Huygens, A. R. Mahjoub and P. Pesneau, "On the %k edge-disjoint
2-hop-constrained paths polytope", Operation Research Letters 34 (5), 2006, pp.
577-582.

G. Dantzig and P. Wolfe, "Decomposition principle for linear programming", Op-
erations Research 8, 1960, pp. 101-111.

BIBLIOGRAPHY 195

37]

38

139]

[40]

[41]

42|

143

|44]

[45]

|46]

147]

48]

[49]

[50]

I. Diarrassouba and L. Slama, "Les inégalités de S P-partition pour le probléme
du sous-graphe k-aréte connexe", Research Report, LIMOS RR-07-153, 2007.

M. Didi Biha, "Graphes k-arétes connexes et polyédres", PhD. Thesis, Université
de Bretagne Occidentale, Brest, 1998.

M. Didi Biha and A. R. Mahjoub, "The k-edge connected subgraph problem I:
Polytopes and critical extreme points", Linear Algebra and its Applications 381,
2004, pp. 117-139.

M. Didi Biha and A. R. Mahjoub, "k-edge connected polyhedra on series-parallel
graphs", Operations Research Letters 19, 1996, pp. 71-78.

M. Didi Biha and A. R. Mahjoub, "Steiner k-edge connected subgraph polyhedra",
Journal of Combinatorial Optimization 4, 2000, pp. 131-134.

M. Didi Biha, A. R. Mahjoub and L. Slama, "On the separation of partition
inequalities", Proceedings INOC 2005, pp. B2.500-B2.505.

E. W. Dijkstra, "A note on two problems in connexion with graphs", Numerische
Mathematik. 1, 1959, pp. 269-271.

J. Edmonds, "Covers and packings in a family of sets", Bull. American Mathe-
matical Society 68, 1962, pp. 494-499.

J. Edmonds, "Maximum matching and a polyhedron with 0,1-vertices", Journal
of Research of the National Bureau of Standards (B) 69, 1965, pp. 9-14.

D. Eppstein, "Finding the k Shortest Paths", STAM Journal on Computing 28(2),
1999, pp. 652-673

K. P. Eswaran and R. E. Tarjan, "Augmentation problems", SIAM Journal on
Computing 5, 1976, pp. 653-665.

C. G. Fernandes, "A Better Approximation Ratio for the Minimum Size k-Edge-
Connected Spanning Subgraph Problem", Journal of Algorithms 28, 1998, pp.
105-124.

J. Fonlupt and A. R. Mahjoub, "Critical extreme points of the 2-edge connected
spanning subgraph polytope", Mathematical Programming 105, 2006, pp. 289-310.

J. Fonlupt and D. Naddef, "The traveling salesman problem in graphs with some
excluded minors", Mathematical Programming 53, 1992, pp. 147-172.

196 BIBLIOGRAPHY

[51] B. Fortz, A. R. Mahjoub, S. T. McCormick and P. Pesneau, "Two-edge connected
subgraphs with bounded rings: Polyhedral results and Branch-and-Cut", Mathe-
matical Programming 105 (1), 2006, pp. 85-111.

[52] B. Fortz, M. Labbe and F. Maffioli, "Solving the two-connected network with
bounded meshes problem", Operations Research Letters 48, 2000, pp. 866-877.

[53] A. Frank, " Augmenting graphs to meet edge-connectivity requirements", SIAM
Journal on Discrete Mathematics 5, 1992, pp. 22-53.

[54] G. N. Frederickson and J. Jaja, "On the relationship between the biconnectivity
augmentations and traveling salesman problem", Theoretical Computer Science
13, 1982, pp. 189-201.

[55] H. N. Gabow, M. X. Goemans, E. Tardos and D. P. Williamson, "Approximating
the smallest k-edge connected spanning subgraph by LP-rounding", Networks 53
(4), 2009, pp. 345-357.

[56] M. R. Garey and D. J. Johnson, "Computer and Intractability: A Guide to the
Theory of N P-completness", Freeman, San Francisco, 1979.

[57] M. X. Goemans and D. J. Bertsimas, "Survivable network, linear programming
and the parsimonious property", Mathematical Programming 60, 1993, pp. 145-
166.

[58] A. Goldbergand R. E. Tarjan, "A New Approach to the Maximum Flow Problem",
Journal of the Association for Computing Machinery 35, 1988, pp. 921-940.

[59] R. E. Gomory and T. C. Hu, "Multi-Terminal Network Flows", Journal of the
Society for Industrial and Applied Mathematics 9, 1961, pp. 551-570.

|60] L. Gouveia, "Multicommodity flow models for spanning trees with hop con-
straints", Operations Research Letters 25 (2), 1999, pp. 97-100.

|61] L. Gouveia, "Using variable redefinition for computing lower bounds for minimum
spanning", INFORMS Journal on Computing 10 (2), 1998, pp. 180-188.

[62] L. Gouveia and P. icio and A. de Sousa and R. Valadas, "MPLS over WDM
Network Design with Packet Level QoS Constraints based on ILP Models", In
Proceedings of INFOCOM 2003, 2003.

[63] L. Gouveia and C. Requejo, "A new Lagrangean relaxation approach for the hop-
contrained minimum spanning tree problem", European Journal of Operations
Research 25 (2), 2001, pp. 539-552.

BIBLIOGRAPHY 197

[64]

[65]

[66]

167]

168]

169]

[70]

[71]

72|

73]

[74]

[75]

M. Grotschel, L. Lovasz, A. Schrijver, "The ellipsoid method and its consequences
in combinatorial optimization", Combinatorica 1, 1981, pp. 70-89.

M. Grotschel and C. L. Monma, "Integer polyhedra arising from certain network
design problems with connectivity constraints", SIAM Journal on Discrete Math-
ematics 3, 1990, pp. 502-523.

M. Grétschel, C. L. Monma and M. Stoer, "Polyhedral approches to network
survivability", In F. Roberts, F. Hwang and C. L. Monma, eds, Reliability of

computer and Communication newtorks, Vol 5, Series Discrete Mathematics and
Computer Science, AMS/ACM, 1991, pp. 121-141.

M. Grotschel, C. L. Monma and M. Stoer, "Polyhedral and computational in-
vestigations arising for designing communication networks with high survivability
requirements", Operation Research 43, 1995, pp. 1012-1024.

D. Gusfield, "Very simple method for all pairs network flow analysis", Society of
Industrial and Applied Mathematics 009, 1990, pp. 143-155.

J. Hao and J. B. Orlin, "A faster algorithm for finding the minimum cut in a
directed graph", Journal of Algorithms, 1992, pp. 424-446.

J. Hershberger, M. Maxel, S. Suri , "ACM Transactions on Algorithms", Trans-
actions on Algorithms (TALG) vol 3(4), 2007

T.-S. Hsu and M.-Y. Kao, "A unifying augmentation algorithm for the two-edge
connectivity and biconnectivity", Journal of Combinatorial Optimization 2, 1981,
pp- 237-256.

D. Huygens, "Design of Survivable Networks with Bounded-Length Paths", PhD.
Thesis, Université Libre de Bruxelles, Bruxelles, 2005.

D. Huygens and A. R. Mahjoub, "Integer programming formulation for the two
4-hop-constrained paths problem", Networks 49 (2), 2007, pp. 135-144.

D. Huygens, A. R. Mahjoub, M. Labbe and P. Pesneau, "The two-edge connected
hop-constrained network design problem: Valid inequalities and Branch-and-Cut",
Networks 49 (1), 2007, pp. 116-133.

D. Huygens, A. R. Mahjoub and P. Pesneau, "Two edge-disjoint hop-constrained
paths and polyhedra", SIAM Journal on Discrete Mathematics 18 (2), 2004, pp.
287-312.

198

BIBLIOGRAPHY

[76]

7]

78]

[79]

180]

[81]

82]

183

[84]

185]

136]

87]

138

189]

D. Huygens, M. Labbe, A. R. Mahjoub and P. Pesneau, "The two edge-connected
hop-constrained network design problem: valid inequalities and Branch-and-Cut",
Networks 49 (1), 2007, pp. 116-133.

R. M. Karp, "Reducibility among combinatorial problems", In R. E. Miller and
J. W. Tatcher, editors, Complexity of Computer Computation, 1972, pp. 85-103.

D. R. Karger, "Random sampling in cut, flow and network design problems",
Mathematics of Operations Research 24, 1999, pp. 383-413.

H. Kerivin, "Réseaux fiables et polyédres", PhD. Thesis, Université Blaise Pascal,
Clermont-Ferrand II, 2000.

H. Kerivin and A. R. Mahjoub, "Design of Survivable Networks: A Survey",
Networks 46, 2005, pp. 1-21.

H. Kerivin, A. R. Mahjoub and C. Nocq, "(1,2)-survivable networks: Facets
and Branch-and-Cut", The Sharpest Cut, MPS-SIAM Series in Optimization, M.
Grétschel (Editor), 2004, pp. 121-152.

S. Khuller and B. Raghavachari, "Improved Approximation Algorithms for Uni-
form Connectivity Problems", Journal of Algorithms 21, 1996, pp. 434-450.

C.-W. Ko and C. L. Monma, "Heuristics for designing highly survivable commu-
nication networks", Technical Report, Bellcore, Morristown, New Jersey, 1989.

J. B. Kruskal, "On the shortest spanning subtree of a graph and the travelling
salesman problem", Proceedings of the American Mathematical Society 7, 1956,
pp- 48-50.

I. Loiseau, A. Ceselli, N. Maculan and M. Salani, "Génération de colonnes en pro-
grammation linéaire en nombre entiers", In V. Th. Paschos, editor, Optimisation
combinatoire: concepts fondamentaur, Chapitre 8, Hermes, Paris, 2005.

M. E. Lubbecke and J. Desrosiers, "Selected topics in Column Generation", Op-
eration Research 53, 2005, pp. 1007-1023.

W. Mader, "A reduction method for edge-connectivity in graphs", Annals of Dis-
crete Mathematics 3, 1978, pp. 145-164.

A. R. Mahjoub, "Two-edge Connected spanning subgraphs and polyhedra'", Math-
ematical Programming 64, 1994, pp. 199-208.

A. R. Mahjoub, "On perfectly Two-edge connected subgraphs and polyhedra",
Discrete Mathematics 170, 1997, pp. 153-172.

BIBLIOGRAPHY 199

[90] A. R. Mahjoub, "Approches polyhédrales", In V. Th. Paschos, editor, Optimisa-
tion combinatoire: concepts fondamentaux, Chapitre 9, Hermes, Paris, 2005.

. Menger, "Zur allgemeinen kurventhorie”, Funacamanta Mathematicae 10, ,
91| K. M "Z 1l i k horie", Fund Math) 10, 1927
pp. 96-115.

[92] C. L. Monma, B. S. Munson and W. R. Pulleyblank, "Minimum weight two-
connected spanning networks", Operations Research 37, 1989, pp. 153-171.

[93] G. L. Nemhauser and L. A. Wolsey, "Integer and Combinatorial Optimization",
Wiley Editions, 1988, pp. 259-295.

[94| P. Pesneau, "Conception de réseaux 2-connexes avec contraintes de bornes", PhD.
Thesis, Université Blaise Pascal, Clermont-Ferrand II, 2003.

[95] R. C. Prim, "Shortest connection networks and some generalization", Bell System
technical Journal 36, 1957, pp. 1389-1401.

[96] A. Schrijver, "Combinatorial Optimization - Polyhedra and Efficiency. Algorithms
and Combinatorics", Vol. 2/. Springer, Berlin, Heidelberg, 2003.

[97] L. Slama, "Conception de réseaux fiables: Séparation et Polyédres", PhD. Thesis,
Université Blaise Pascal, Clermont-Ferrand II, 2008.

[98] T. Soneoka, H. Nakada and M. Imase, "Design of a d-connected digraph with a
minimum number of edges and a quasiminimal diameter", Discrete Applied Math-
ematics 27, 1990, pp. 225-265.

[99] M. Stoer, "Design of Survivable Networks", PhD. Thesis, University of Augsburg,
1992.

[100] J. W. Suurballe, "Disjoint paths in networks", Networks 14, 1974, pp. 125-145.

[101] S. Thienel, "ABACUS - A Branch-And-CUt System", PhD thesis, Universitit zu
Koln, 1995.

[102] F. Vanderbeck, "Decomposition and Column Generation for Integer Program-
ming", PhD. thesis, Université Catholique de Louvain, Louvain, Belgique, 1994.

[103] T. Watanabe and A. Nakamura, "A minimum 3-connectivity augmentation of
graph", Journal of Computing and System Sciences 46 (1), 1993, pp. 91-128.

[104] P. Winter, "Generalized Steiner problem in Halin Networks", Proceedings of 12t
International Symposium on Mathematical Programming, MI'T, 1985.

200 BIBLIOGRAPHY

[105] P. Winter, "Generalized Steiner problem in series-parallel Networks", Journal of
Algorithm 7, 1986, pp. 549-566.

