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Abstract

In this thesis, we consider the k-edge connected L-hop-constrained network design prob-
lem. Given a weighted graph G = (N, E), aset D C N x N of pairs of terminal nodes,
and two integers k, L > 2, it consists in finding in G the minimum cost subgraph
containing at least k edge-disjoint paths of at most L edges between each pair in D.
This problem is of great interest in today’s telecommunication industry, where highly
survivable networks need to be constructed.

We first study the particular case where the set of demands D is reduced to a single
pair {s,t}. We propose an integer programming formulation for the problem, which
consists in the st-cut and trivial inequalities, along with the so-called L-st-path-cut
inequalities. We show that these three classes of inequalities completely describe the
associated polytope when k£ = 2 and L = 2 or 3, and give necessary and sufficient con-
ditions for them to be facet-defining. We also consider the dominant of the associated
polytope, and discuss how the previous inequalities can be separated in polynomial
time.

We then extend the complete and minimal description obtained above to any number
k of required edge-disjoint L-st-paths, but when L = 2 only. We devise a cutting plane
algorithm to solve the problem, using the previous polynomial separations, and present
some computational results.

After that, we consider the case where there is more than one demand in D. We
first show that the problem is strongly N P-hard, for all L fixed, even when all the
demands in D have one root node in common. For £k = 2 and L = 2,3, we give an in-
teger programming formulation, based on the previous constraints written for all pairs
{s,t} € D. We then proceed by giving several new classes of facet-defining inequalities,
valid for the problem in general, but more adapted to the rooted case. We propose



iv Abstract

separation procedures for these inequalities, which are embedded within a Branch-and-
Cut algorithm to solve the problem when L = 2, 3. Extensive computational results
from it are given and analyzed for both random and real instances.

Since those results appear less satisfactory in the case of arbitrary demands (non
necessarily rooted), we present additional families of valid inequalites in that situa-
tion. Again, separation procedures are devised for them, and added to our previous
Branch-and-Cut algorithm, in order to see the practical improvement granted by them.

Finally, we study the problem for greater values of L. In particular, when L = 4, we
propose new families of constraints for the problem of finding a subgraph that contains
at least two L-st-paths either node-disjoint, or edge-disjoint. Using these, we obtain
an integer programming formulation in the space of the design variables for each case.

Key words : Survivable network, edge connectivity, node connectivity, hop-constrained
paths, integer programming, polytope, facet, Branch-and-Cut algorithm.
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Introduction

Now that the telecommunications market is free, the main concerns of Belgacom and
its competitors are, without any doubt, reliability, quality of service, and price. How-
ever, these objectives are clearly contradictory. To improve the reliability and quality
of service in a network often requires increasing the number of its links, and hence, its
construction and maintenance costs. These costs must then be recovered by increas-
ing the prices of the services. But, on the contrary, if the network does not appear
survivable enough, the company will lose its clients. Therefore, to reach a satisfactory
compromise in the design of a telecommunication network, it becomes necessary to fix
at first the required survivability, and then to try to minimize its total cost. This is
the goal pursued in this thesis.

In all generality, a network design problem consists in determining the cheapest links
(connections, cables) to build in order to have a minimum cost network spanning a
given set of locations (which may be, for example, computers, cities, or countries)
while satisfying certain reliability requirements. Theses locations can be represented
by nodes, and all the possible links between them by edges (arcs) between the cor-
responding nodes. The construction cost of a link can be seen as a weight on the
corresponding edge (arc). This yields a weighted (di)graph. The network design prob-
lem can then be modelled as finding in this (di)graph a minimum weight subgraph
satisfying the required survivability constraints.

In fact, we will consider here a “double” network survivability. First, we will re-
quire that the network to be devised must be (Steiner) k-edge connected. This kind
of “quantitative” reliablity is quite common in network design. It guarantees that the
network contains at least k edge-disjoint paths between the pairs of (privileged) nodes.
In consequence, the network will stay fully operational, that is, able to route the infor-
mation between each pair, even after £ — 1 link failures. In practice, since the risk of
two simultaneous failures is often low, the 2-edge connectivity already offers a sufficient



2 Introduction

quantitative reliability for a reasonable cost. Therefore, we will focus most of our study
on the 2-edge connected case.

However, a purely quantitative reliability is often considered insufficient nowadays.
A minimum cost 2-edge connected network can indeed be made of a unique cycle span-
ning the n locations, which then obliges the information between two adjacent nodes
to travel through the whole cycle if their direct edge fails. The length of the routing
path will thus increase from 1 to n — 1. Clearly, this is unacceptable in certain kinds
of networks.

Actually, there are two types of rerouting strategies in telecommunications, the local
and the end-to-end reroutings. In the second one, in case of a link failure, the traffic
between the terminal nodes is rerouted along alternative paths. These have to be short
enough so that this procedure can be accomplished in a minimum amount of time.
This strategy is used in the ATM and Internet networks for example. In addition,
apart from rerouting needs, the paths cannot be too long in order to guarantee a good
quality of service. In data networks, such as Internet, if the route taken by the infor-
mation is long, it could cause a low transfer speed. For other networks, based on radio
waves, the signal itself could be degraded by a long routing if an increasing noise is
added each time the signal is received, transformed or reemitted. For all these reasons,
L-hop-constrained paths, that is, paths of bounded length L, offer exactly the kind of
additional “qualitative” reliability required. Note that, in practice, the bound L mainly
takes values 2, 3 or 4.

In all generality, we will therefore consider the following optimization problem. Given
a weighted graph G = (N, E), aset D C N x N of pairs of terminals, and two integers
k,L > 2, the k-edge connected L-hop-constrained network design problem consists in
finding in G the minimum cost subgraph containing at least £ edge-disjoint paths of at
most L edges between each pair in D. We will study this problem in several particular
cases from a polyhedral point of view. We will then extend some of the results ob-
tained to the general problem. Finally, we will make use of these theoretical results in
order to conceive an efficient Branch-and-Cut algorithm able to solve real size instances.

More precisely, this thesis will be organized as follows. In Chapter 1, we present
some basic definitions and notations in graph and polyhedral theory. We then give an
overview of the existing litterature in survivable network design, and explain in more
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detail why edge connectivity and hop-constrained paths are good requirements in this
framework. In Chapter 2, we consider the particular case where |D| = 1, £ = 2 and
L =2,3. We give an integer programming formulation of this problem in the space of
the natural design variables. We then show that its linear relaxation is integral, which
yields a complete (and minimal) linear description of the associated polytope. We also
consider the dominant of this polytope and separation procedures of the introduced
inequalities. In Chapter 3, we extend this polyhedral result to any & > 2 when L = 2.
We also present some computational results of a cutting plane algorithm in that case.
In Chapter 4, we come back to the 2-edge connectivity, but this time several pairs of
terminals (demands) are specified in D. We first show that the problem is strongly N P-
hard, for all fixed values of L, even when all the demands in D have a node in common.
We then proceed by giving several families of inequalities, which are always valid for the
problem, but particularly adapted to the rooted case. When L = 2, 3, we give necessary
and sufficient conditions for these inequalities to be facet-defining and we devise exact
and heuristic separation procedures. These are embedded within a Branch-and-Cut
algorithm for which we present extensive computational results. Since the inequalities
used in it are based on rooted demands, the results appear very good in this situation,
but less satisfactory in the case of numerous disjoint demands. Therefore, in Chapter
5, we present additional classes of valid inequalities taking into account the interaction
between disjoint demands. We propose some heuristic procedures to separate these
inequalities, and we integrate them into our previous Branch-and-Cut algorithm. New
computational results are finally presented. In Chapter 6, we consider the most difficult
case where L = 4. We give integer programming formulations in the space of the natural
design variables for two versions of the problem. More precisely, we ask for a minimum
cost network containing at least two 4-hop-constrained st-paths, either node-disjoint,
or edge-disjoint. In the conclusion, we summarize the results presented in this thesis
and give some insight regarding future work.






Chapter 1

Preliminary Notions and Previous
Works

1.1 Notions of graph theory

In this section, we present some basic definitions and notations of graph theory, which
will be frequently used in the subsequent chapters. For more details, the reader is
referred to [9)].

In network design problems, the locations and the possible links between them can
be represented by an undirected graph G = (NN, E). The set N, of cardinality n, is
called the node set, and the set F, of cardinality m, the edge set. If u,v € N, we denote
by uv a fixed edge between u and v. The nodes v and v will be called the end nodes
of uv. The edge e is then incident to u and v, while these two nodes are adjacent to
each other. A loop in a graph G is an edge whose two end nodes coincide. Two edges
are parallel if they have the same end nodes. A graph G = (N, E) is simple if E' does
not contain parallel edges or loops. Moreover, the graph G is complete if there exists
an edge uv between each pair of nodes u,v € N. Implicitly, we will always suppose
that the graphs we consider are finite, undirected, and loopless, but neither necessarily
simple, nor complete.

We will also consider directed graphs (digraphs). A directed graph D is a couple
(N, A) where N is the node set and A is the arc set. An arc between two nodes
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u,v € N is a couple (u,v) where u is the tail of the arc and v its head.

Given a digraph D = (N, A) with capacity u;; > 0 on each arc (i, j) € A, and two
nodes s,t € N, an st-flowis a set of quantities {¢;;} verifying the following conditions:
0 < ¢;; < wyy, for each (7, 5) € A, and ;j(gbw — ¢;i) =0, for all i € N\{s,t}. More-
over, the value of the st-flow is given by ¢(¢) = ?j(gbsj — @js) = — ;j(gbtj — jt).
For W C N with s € W and ¢t ¢ W, the value ¢(W) of the cut associated to W is equal
to D icw j¢w Wij- By the Ford and Fulkerson’s Theorem, we have that the maximum
value of an st-flow in D is equal to the minimum value of an st-cut.

Let G = (N, E) be an undirected graph. If W C N is a node subset of GG, then the
set of edges that have only one node in W is called a cut and denoted by (W), or
simply by d(W), when it is obvious that the cut is considered relatively to G. We will
write 6(v) for §({v}). The number of edges incident to some node v is then equal to
|0(v)], and is called the degree of node v. Given two nodes s and ¢, a cut §(W) such
that s € W and t € W = N\W will be called an st-cut. If V, W C N, [V, W] is the set
of edges having one end node in V' and the other one in W. Note that we will write
[v,w] instead of [{v}, {w}]. Also, if W C N, we will denote by E (W) the set of edges
having both end nodes in W.

A partition IT = (Vp, V1,...,V,) of N is a collection of disjoint node subsets whose
union is N. For a partition IT = (V,,V4,...,V},) of N, the associated multicut in G,
denoted by Ap(G) = 6(Vo, Vi,...,V,), is the set of edges having their end nodes in
two different subsets. We will denote by Eff" = U,_, .41, [Vi; Vit1] the set of edges

between the consecutive subsets V,, V41, ..., V,41 of II. We will call chord of the par-
tition an edge that is not between two consecutive subsets of II.

If W C N, we will denote by G—W the subgraph of GG obtained by deleting the nodes
of W and all the edges having at least one end node in this set. If W = {v}, we will
write G —v for G —{v}. The subgraph of G induced by W, that is G(W) = (W, E(W)),
is then G — (N\W). In the same way, if F' C F, we denote by G — F the subgraph
of G obtained by removing the edges in F'. If F' = {e}, we write G—e instead of G—{e}.

A path P of G is an alternate sequence of nodes and edges (u1, €1, ug, €2, . . ., Ug—1, €4—1,
u,) where e; € [u;, u;41] for i = 1,...,¢ — 1. We will denote a path P by either its
node sequence (uy,...,u,) or its edge sequence (ey,...,e,—1). The nodes u; and u, are
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called the end nodes of P, while its other nodes are said internal. A path is simple if it
does not contain the same node twice. In the sequel, we will always suppose that the
paths are simple. By opposition, a non-simple path will be called a walk. A path whose
end nodes are s and t will be called an st-path. A cycle in GG is a path whose end nodes
coincide, that is, u; = u,. It will be denoted in the same way as a path. Also, a cycle
is simple if, with the exception of w1, it does not contain the same node twice. As for a
partition, we call a chord an edge between any two non-adjacent nodes of a path (cycle).

Two st-paths are edge-disjoint if they have no edges in common. They are node-
disjoint if they have no internal nodes in common. Note that two node-disjoint paths
are edge-disjoint, but not conversely. A graph G is k-edge connected (resp. k-node
connected) if it contains k edge-disjoint (resp. node-disjoint) st-paths for all pairs of
nodes {s,t} € N x N. We say that G is Steiner k-edge (k-node) connected if it is
k-edge (k-node) connected relative to pairs of privileged nodes in N only. In the se-
quel, we will omit the qualificative Steiner since we always ask for this reliability over
aset D C N x N, rather than over N x N. The largest integer k, such that the graph
G is k-edge connected (resp. k-node connected), is called the edge connectivity (resp.
node connectivity) of G. A graph l-edge connected is also 1-node connected, and is
simply said connected. A graph that does not contain any cycles is called a forest. A
connected forest is a tree.

Let G = (N, E) be a graph. The demand set D C N x N is a subset of pairs of
nodes, called demands. If the pair {s,t} is a demand in D, we will call s and ¢ demand
nodes or terminal nodes. In particular, when several demands {s,t;},...,{s, t4} are
rooted in the same node s, we will speak of s as a source node and of the t;’s as the
destination nodes of s. The nodes in N that do not belong to any demand of D, will
be called Steiner nodes. Let L > 2 be a fixed integer. For a demand {s,t} € D, an
L-st-path in G is a path between s and t of length at most L, where the length of a
path is defined as the number of its edges (also called hops). We will also speak of
L-hop-constrained paths.

1.2 Notions of polyhedral theory

In this section, we present the main concepts of polyhedral theory, see [60] for more
details.
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Given a graph G = (N, E) and an edge subset F' C E, the 0 — 1 vector ¥ € IR”,
such that 2f'(e) = 1 if e € F and 2% (e) = 0 otherwise, is called the incidence vector
of F. The z-variables are named natural design variables since they are the ones char-
acterizing the topology of the network. The support graph of x" is the subgraph of G
containing only the edges e € E with x¥'(¢) = 1, that is, the edges of F. Similarly, the
support graph of an inequality ax > « is the graph whose edges are such that a(e) > 0.

A linear combination x of vectors x4, ..., x, in IR™ is Ei’l’ Nz, If Ei’l’ A =1, we
say that = is an affine combination of the x;’s, or, if we have at the same time that
every J; is nonnegative, a conver combination. Vectors are linearly independent (resp.
affinely independent) if none of them are a linear (resp. affine) combination of the
others. If S is a set of incidence vectors in IR™, we will denote by conv(S) the convex
hull of S, that is, the set of convex combinations of the vectors in S.

A polyhedron P is the intersection of a finite number of half-spaces in IR™. It can
also be seen as the set of solutions to a given linear system Ax < b, where A € R™*m
and b € IR™. We then write P = {z € R™ : Ax < b}. A polyhedron P is a polytope
if it is bounded. The dimension of P, dim(P), is the maximum number of affinely
independent vectors in P minus 1. We also have that dim(P) = m — rank(A~), where
A= is the submatrix of A of inequalities satisfied with equality by all the vectors in P
(implicit equalities). The polyhedron P is full dimensional if dim(P) = m.

An eztreme point of a polyhedron P is a vector in P that cannot be obtained as a
convex combination of other vectors in it. A polyhedron whose extreme points are all in
Z™ is integer. The dominant of a polyhedron P is the polyhedron Dom(P) containing
the vectors x +y, where v € P and y € IR

An inequality ax < « is valid for P if it is satisfied by all the vectors in P. The set
F, ={x € P : ax = a} is called the face of P induced by ax < a. A facet of P is a
face that is not strictly included in any other face except P itself. The dimension of a
facet is dim(P) — 1. A complete minimal linear description of a polyhedron consists of
the linear system of its facet-defining inequalities and implicit equalities.
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Considering a combinatorial optimization problem, with solution set S C [0, 1]™,
min{cz : © € S},
is equivalent to considering the linear program
min{cz : z € conv(S)},

where the polyhedron conv(S) is given by its complete linear description. However, for
most problems, this cannot be obtained explicitly. So, we will rather consider a special
relazation of the problem, that is, we will optimize the same objective function on a
polyhedron simpler to describe than conv(S), but containing it. If an optimal solution
x* of a relaxation is feasible for the original problem, then it is optimal for it and we
are done. If not, we try to generate an inequality valid for conv(S) and violated by z*.
An inequality az < « is violated by z* if ax* > «. This step corresponds to what we
we call a separation problem, and the general procedure for solving linear programs is
called a cutting plane algorithm, since we iteratively try to cut off infeasible solutions
obtained through relaxations by generating additional inequalities.

Given a family of linear inequalities C and z* € IR™, the separation problem asso-
ciated to C and z* consists in verifying if all the inequalities in C are verified by z*
and, if not, in finding an inequality of C violated by x*. In practice, this problem will
generally be solved exactly when it is polynomial, and heuristically when N P-hard.
In this latter case, or when all the families describing conv(S) are not known, the
cutting plane algorithm can finish with neither a feasible solution, nor a new violated
inequality. If this happens, we consider two subproblems of the current relaxation by
fixing a fractional component of x* either to 0 or to 1. This step is called branching,
and the whole procedure is then a Branch-and-Cut algorithm. In each subproblem, we
indeed try to obtain a feasible solution by adding additional cuts, and, when there are
not any, a new branching is performed.

1.3 State of the art in network design

In this section, we present the existing litterature concerning network design from a
topological point of view. Apart from the topology, other questions can indeed arise in
the conception of a network, such as routing or provisioning. However, in this thesis,
we will not consider these further stages of optimization. Moreover, we will focus this
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overview on works that use a polyhedral approach, since it is the one we have person-
ally adopted.

As explained in the introduction, survivability in network design has become quite
an issue in the past years. The first works on this subject considered a purely “quan-
titative” reliablity, where a survivable network corresponds to a k-edge, or k-node,
connected subgraph. At first, the edge and node connectivity was studied within the
framework of graph theory. Until the late eighties, algorithms and heurisitics were
only developed for very particular network design problems. For example, the Travel-
ing Salesman Problem (TSP) is nothing but a 2-edge connected network design problem
where all the nodes must be of degree 2 [42].

Due to the need of efficient algorithms for the design of survivable telephone net-
works, Monma and Shallcross [58| developed heuristics finding nearly optimal solu-
tions for problems encountered by the Bell company. At that time, the cutting plane
procedure had already shown its efficiency in obtaining optimal solutions, or at least
very good bounds, for particular network design problems (like the TSP). Therefore,
Grotschel and Monma [36] studied several linear relaxations of survivable models from
a polyhedral point of view.

This work was continued by them, along with Stoer, see [37],[38],[39],[40],[41]. They
studied edge and node connected subgraphs problems within the framework of a general
survivable model and discussed the polyhedral aspects. They developed a Branch-and-
Cut algorithm adapted to survivable network design problems. When the index k of
connectivity is low (at most 2), their algorithm is very efficient. For higher connectiv-
ity (3 or more), the first results on a real instance let hope that problems of this type
and size can also be solved efficiently by such an algorithm. One can conclude from
their studies that 2-edge (2-node) connected networks are cost effective and provide an
adequate level of survivability. In such networks, there are at least two edge-disjoint
(node-disjoint) paths between each pair of nodes. So, if a link (a node) fails, it is
always possible to reroute the traffic between two terminals along the second path.
This explains why the 2-edge (2-node) connected subgraph problem and its associated
polytope have been the subject of extensive research in the past years.

In [55], Mahjoub shows that if G is series-parallel then the 2-edge connected sub-
graph polytope is completely described by the trivial and the cut inequalities. This
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has been generalized by Baiou and Mahjoub [1] for the Steiner 2-edge connected sub-
graph polytope and by Didi Biha and Mahjoub [7]| for the Steiner k-edge connected
subgraph polytope for k even. The k-edge connected subgraph polytope has also been
completely described in the class of series-parallel graphs, see [6]. In [3], Barahona
and Mahjoub characterize this polytope when k& = 2 for the class of Halin graphs,
and also consider the node connected case. In [21], Fonlupt and Mahjoub study the
fractional extreme points of the linear relaxation of the 2-edge connected subgraph
polytope. They introduce an ordering on these extreme points and characterize the
minimal extreme points with respect to that ordering. As a consequence, they obtain
a characterization of the graph for which the linear relaxation of that polytope is inte-
gral. Kerivin, Mahjoub and Nocq [51] describe a general class of valid inequalities for
the 2-edge connected subgraph polytope, which generalizes the so-called F-partition
inequalities [55], and introduce a Branch-and-Cut algorithm for the problem based on
these inequalities, the trivial and the cut inequalities. Further work on the 2-edge and
2-node connected subgraph problems can be found in [10],[26],[49].

However, the 2-edge connectivity requirement can be insufficient regarding the re-
liability of today’s telecommunication networks. For example, the optimal solution
to the 2-edge connected subgraph problem is often a Hamiltonian cycle (or the union
of very few cycles). Therefore, in case of a link failure, the rerouting path between
its end nodes will have to go through all the other edges in the cycle. The length
of the path used by the information between these two nodes will thus increase from
1 to n—1. Clearly, this is not acceptable in certain types of network as explained below.

There are in fact two types of rerouting strategies in telecommunications, the local
and the end-to-end reroutings. In the first one, in case of a link failure, the traffic be-
tween its end nodes needs to be rerouted. In order to limit the length of this deviation,
a solution is, for example, to ask for a network such that each of its links belongs to
a bounded cycle. In the end-to-end rerouting strategy, the traffic of each demand pair
affected by the failure has to be rerouted along an alternative path. This one has to
be short enough so that this procedure can be accomplished in a minimum time. This
strategy is used in the ATM and Internet networks, for example. Also, in such situa-
tions, the paths cannot be too long in order to guarantee an effective routing of good
quality. In data networks, such as Internet, the elongation of the information route
could cause a strong loss in the transfer speed. For other networks, the signal itself
could be degraded by a long routing. For all these reasons, hop-constrained paths, that
is, paths of bounded length, offer exactly the kind of additional “qualitative” reliability
required.
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In the litterature, bounded paths were first considered within graph theory. For
example, relations between the degree of the nodes, the number of edges and the di-
ameter (i.e. the maximum length of the shortest paths for any two nodes) of a graph
were derived, see [20] and [57|. Personally, we have also worked on obtaining such
relations between graph invariants thanks to a computer-assisted polyhedral method,
called GraPHedron. In [11], we give, in particular, several classes of optimal linear in-
equalities between the diameter, the maximum degree and the irregularity of connected
graphs.

As already mentioned, another reliability condition was first considered in network
design, in order to limit the length of the local reroutings. It requires that each link
of the network belongs to a ring (cycle) of bounded length. In [24], Fortz, Labbé and
Maffioli consider the 2-node connected subgraph problem with bounded rings. This
problem consists in finding a minimum cost 2-node connected subgraph (N, F') such
that each edge of F' belongs to a cycle of length at most H. They describe several
classes of facet-defining inequalities for the associated polytope and devise a Branch-
and-Cut algorithm for the problem. Fortz and Labbé continue this study in [22] for the
special case of unit edge lengths. They present a new formulation of the problem and
derive facet results for different classes of valid inequalities, which are then integrated
into their Branch-and-Cut algorithm. Additional results are presented in [23]. In [25],
Fortz, Mahjoub, McCormick and Pesneau study the edge connected version of that
problem. They give an integer programming formulation in the space of the natural
design variables, and describe different classes of valid inequalities. They study the
separation problem for these inequalities and discuss a Branch-and-Cut algorithm.

It remains that H-bounded cycles can still not be sufficient in many cases, in par-
ticular, when the end-to-end rerouting strategy is used. In fact, in the case of a link
failure, we only have the guarantee that the alternative path to route the information
between two nodes will increase of at most H — 2. In practice, instead of covering the
network by cycles < H, we would rather have two available paths of equivalent length,
that is, L = H/2. This is the reason why we choose to consider in this thesis this kind
of reliability, along with the k-edge connectivity, with & > 2.

To the best of our knowledge, hop-constrained paths, for the design of survivable
networks, were first suggested by Leblanc and Reddoch [52]. Since then, research has
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concerned this requirement along with the 1-connectivity, which is not very satisfactory
as quantitative reliability in telecom network design. In [19], Dahl and Johannessen
consider the 2-path network design problem, which consists in finding a minimum cost
subgraph connecting each pair of terminal nodes by at least one path of length at most
2. This problem is NP-hard. Dahl and Johannessen give an integer programming for-
mulation for the problem and describe some classes of valid inequalities. Using these,
they devise a cutting plane algorithm and present some computational results.

The closely related problem of finding a minimum cost spanning tree with hop-
constraints is considered in [30],|31],[34]. Here, the hop-constraints limit the number
of links between the root and any terminal in the network to a positive integer L. This
problem is NP-complete, even for L. = 2. Gouveia [30] gives a multicommodity flow
formulation for that problem and discusses a Lagrangean relaxation improving the LP
bound. Gouveia [31] and Gouveia and Requejo [34] propose more efficient Lagrangean
based schemes for the problem and its Steiner version. Dahl [13] studies the prob-
lem for L. = 2 from a polyhedral point of view and gives a complete description of the
associated polytope when the graph is a wheel. Gouveia and Janssen [32] discuss a gen-
eralized problem where cables with different reliabilities are available. They formulate
the problem as a directed multicommodity flow model and use Lagrangean relaxation
together with subgradient optimization to derive lower bounds. Gouveia and Magnanti
[33] consider the problem that consists in finding a minimum spanning tree such that
the number of edges in the tree between any pair of nodes is limited to a given bound
(diameter). They present directed and undirected multicommodity formulations along
with some computational experiments. Further hop-constrained survivable network
design problems are studied in [2],[4],[5],[53],[59]- A survey of survivability with hop-
constraints can be found in [50].

In [14], Dahl considers the hop-constrained path problem, that is the problem of
finding between two distinguished nodes s and ¢ a minimum cost path with no more
than L edges when L is fixed. He gives a complete description of the dominant of the
associated polytope when L < 3. In the framework of the minimum cost spanning
tree problem with hop-constraints, Dahl and Gouveia [17] (see also [16]) consider the
directed hop-constrained path problem. They describe various classes of valid inequal-
ities and show that some of these are sufficient to completely describe the associated
polytope when L. < 3. Then they discuss some applications to the hop-constrained
minimum spanning tree problem. In [12], Coullard, Gamble and Liu investigate the
structure of the polyhedron associated with the st-walks of length L of a graph, where a
walk is a path that may go through the same node more than once. They present an ex-
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tended formulation of the problem and, using projection, they give a linear description
of the associated polyhedron. They also discuss classes of facets of that polyhedron.
Dahl et al. [15] also consider the hop-constrained walk polytope and characterize it
for L = 4. One of their conclusions is that the structure of the hop-constrained path
polytope for L = 4 is a lot more complicated.

Itai, Perl and Shiloach [48] study the complexity of several variants of the maximum
disjoint hop-constrained paths problem. This consists in finding the maximum number
of disjoint paths between two nodes s and ¢ of length equal to (or bounded by) L,
where L is a positive integer. They show that the problem is NP-complete for L > 5
and polynomially solvable for some of the variants for L < 4. In particular, they
devise a polynomial time algorithm for the problem when the paths must be node-
(resp. edge-) disjoint and of length bounded by L, with L < 4 (resp. L < 3). Bley [§]
addresses approximation and computational issues for the edge- (node-) disjoint hop-
constrained paths problem. In particular, he shows that the problem of computing
the maximum number of edge-disjoint paths between two given nodes of length equal
to 3 is polynomial. This answers an open question in [48]. In [54], Li, McCormick
and Simchi-Levi study the problem of finding K disjoint paths of minimum total cost
between two distinguished nodes s and ¢, where each edge of the graph has K different
costs and the jth edge-cost is associated with the jth path. They show that all the
variants of the problem, when the graph is directed or undirected and the paths are
edge- or node-disjoint, are NP-complete, even when K = 2.

In this thesis, we consider the k-edge connected L-hop-constrained network design
problem. Given a weighted graph G = (N, E), a set of pairs of terminal nodes
D C N x N, and two integers k, L > 2, it consists in finding in G the minimum
cost subgraph containing at least & edge-disjoint paths of at most L hops between
each pair of D. Despite its great interest in terms of survivability, this network design
problem has never been considered in the existing litterature. In the next chapters, we
will present the results that we have obtained concerning it, in function of k£, L and D.

Table 1.1 summarizes where our results are situated respectively to some of the pre-
vious works presented in this section. Of course, we do not claim that this list is
complete. Moreover, when a same article deals with several variants (as for example
the edge and node connected cases), we reference it only once in the cell that we per-
sonally find the most relevant. When a chapter is mentioned in parentheses in a cell, it
means that, although it does not mainly concern the corresponding case, it nevertheless
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evoke similar results for it. Note that we will also briefly consider the node version of
the k-edge connected L-hop-constrained network design problem, that is, when the k
paths of length < L must be node-disjoint rather than edge-disjoint.

Table 1.1 is organized as follows. The first line of the table corresponds to the 1-
connectivity case. In the subsequent lines, increasing quantitative reliability conditions
are considered, namely the k-edge connectivity and the k-node connectivity, first for
k = 2, then for k > 3. The first column concerns works where no additional qualitative
reliability is required. In the second one, the networks must be covered by cycles of
bounded length. In the last four columns, we ask for hop-constrained paths. Several
variants can be studied, namely for a single demand pair and L = 2/L > 4, and for
multiple demand pairs, either rooted (i.e. having a node in common) or arbitrary.
Observe that our work deals with this last part of the table, except for higher k con-
nectivity (k > 3) and several demands (|D| > 2) at the same time.

Table 1.1: Summary of previous and personal works

No qual. r. H-cycles L-st-paths (|D| = 1) L-st-paths (| D] > 2)
L=23 | L>4 D rooted | D arbitrary
[ k=1] many works || NA I [14] [ [15],[16] ]| [13],[17],[30],[31],[34] ] [19]
k-edge c. | k=2 || [1],]21],[51],[55] [25] Chapter 2 Chapter 6 Chapter(s) 4 (6) Chapter(s) 5 (6)
k>3 [61,[7] 7 Chapter 3 7 ? ?
k-nodec. | k= [3],[38],[39] [22],]23],[24] || (Chapters 2/6) | Chapter 6 (Chapter 6) (Chapter 6)
k>3 [36],[41] ? (Chapter 3) [8],[48],[54] ? ?

In Chapter 2, we will first study the k-edge connected L-hop-constrained network
design problem in the particular case where |D| = 1, K = 2 and L = 2,3. In the
concluding remarks (Section 2.8), we will also briefly consider the node version of this
specific problem. We will then study more general cases, namely when k& > 3 (Chapter
3), when |D| > 2 (Chapters 4 and 5), and when L > 4 (Chapter 6).






Chapter 2

Two Edge-Disjoint Hop-Constrained
Paths Problem

In this chapter, we consider the k-edge connected L-hop-constrained network design
problem in the particular case where the demand set D is reduced to a single pair
{s,t}, and k = 2. Moreover, our main results will hold for . = 2,3 only. We call
this problem the Two edge-disjoint Hop-constrained Paths Problem (THPP for short).
This study was realized with A. Ridha Mahjoub and Pierre Pesneau. It has been the
subject of an article published in STAM Journal on Discrete Mathematics [47].

2.1 Introduction

Given a graph G = (N, E') with distinguished nodes s and ¢, and a fixed integer L > 2,
an L-st-path in G is a path between s and ¢ of length at most L, where the length
of a path is the number of its edges. Given a function ¢ : £ — IR which associates
a cost c(e) to each edge e € E, the Two edge-disjoint Hop-constrained Paths Problem
(THPP) is to find a minimum cost subgraph such that between s and ¢ there exist at
least two edge-disjoint L-st-paths.

It is clear that, when L is fixed, an optimal solution of the THPP can be computed
in polynomial time by enumerating all the L-st-paths (given that there is a polynomial
number of them). However, in a complete graph G = (N, F) with |N| = n, there are
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O(nt=1) L-st-paths, which can also be enumeratively generated in O(nt~!) time. For
every pair of such paths, one has to verify their edge-disjunction, which requires O(L?)
comparisons. Consequently, the whole enumerative algorithm for the THPP runs in
O(L?n?T=D) time. Clearly, such a method is far from being applicable in practice (see
also Section 3.4). This is even worse for non simple graphs since there can then be a
non polynomial number of L-st-paths to enumerate. One of the principal aims of this
work is to devise a more efficient algorithm for the THPP. This algorithm, which will
be a cutting plane method, will be based on a complete description of the associated
polytope by a system of linear inequalities.

The THPP can also be seen as a special case of our general problem, where more
than one pair of terminals is considered. Thus an efficient algorithm for solving the
THPP would be useful to solve the k-edge connected L-hop-constrained network de-
sign problem. In the sequel, we will try to extend the results obtained here first to any
k > 2 (Chapter 3), then to multiple demands in D (Chapters 4 and 5), and finally, to
greater values of L (Chapter 6). Our strongest results here will indeed concern L = 2, 3.

Given a graph G = (N, E) and an edge subset ' C F, the 0—1 vector 2 € IR”, such
that 2f'(e) = 1 if e € F and 2 (e) = 0 otherwise, is called the incidence vector of F.
For L > 2, the convez hull of the incidence vectors of the solutions of the THPP on G,
denoted by P(G, L), will be called the THPP polytope. If W C N is a node subset of G,
then the set of edges that have only one node in W is called a cut and denoted by 6(W).
We will write 6(v) for 6({v}). A cut 6(W) such that s € W and t € W = N\W will be
called an st-cut. For more definitions and notations, the reader is referred to Chapter 1.

If ¥ is the incidence vector of the edge set I of a solution of the THPP, then z%
satisfies the following inequalities
z(0(W))

1> z(e)

> 2, for all st-cut 6(W), (2.1)
>0, forallee E. (2.2)

Inequalities (2.1) will be called st-cut inequalities and inequalities (2.2) trivial inequal-
ities. Their respective validity for the THPP will be proved in details in Section 2.2.

In [14], Dahl considers the problem of finding a minimum cost path between two
given terminal nodes s and t of length at most L. He describes a class of valid in-
equalities for the problem and gives a complete description of the dominant of the
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associated L-st-path polyhedron when L < 3. In particular, he introduces a class of
valid inequalities as follows.

Let Vi, Vi, ..., Vi1 be a partition of N such that s € Vi, t € V7 and V # () for all
ie{l,...,L}. Let T be the set of edges e = uv where u € V;, v € V; and |i — j| > 1.
Then the inequality

z(T)>1

is valid for the L-st-path polyhedron.

Using the same partition, this inequality can be generalized in a straightforward way
to the THPP polytope as
z(T) > 2. (2.3)

The set T is called an L-(st-)path-cut and a constraint of type (2.3) an L-(st-)path-cut
inequality. See Figure 2.1 for an example of this structure for L = 3. Again, we will
show their validity in the next section.

Vo Vi

Figure 2.1: Support graph of an L-st-path-cut inequality for L = 3

Let Q(G, L) be the solution set of the system given by inequalities (2.1)-(2.3). In this
chapter, we show that inequalities (2.1)-(2.3), together with the integrality constraints,
give an integer programming formulation of the THPP for L = 2,3. We then discuss
the THPP polytope, P(G, L), and show that P(G,L) = Q(G, L) when L = 2,3 for
any graph. Since inequalities (2.1),(2.3) can be separated in polynomial time when
L = 2,3, this yields a polynomial time cutting plane algorithm for the THPP in that
case. We also give necessary and sufficient conditions for inequalities (2.1)-(2.3) to
define facets for any L > 2 when the graph is complete. We finally investigate the
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dominant of P(G, L), for which we give a complete description for any L > 2 when
P(G,L) = Q(G,L). As a consequence, we obtain the dominant of P(G, L) when
L=23.

The chapter is organized as follows. In the next section, we give an integer program-
ming formulation of the THPP for L. < 3. In Section 2.3, we study the THPP polytope
when L = 2,3 and give our main result. In Section 2.4, we study some structural
properties of the facet-defining inequalities of P(G, L), which are used in Section 2.5
for proving our main result. In Section 2.6, we describe necessary and sufficient condi-
tions for the inequalities (2.1)-(2.3) to be facet-defining. In Section 2.7, we discuss the
dominant of P(G, L) and, in Section 2.8, we give some concluding remarks.

2.2 Formulation for L = 2,3

First, we show that inequalities (2.1)-(2.3) are valid for the THPP for any L > 2.

Theorem 2.2.1. For any L > 2, inequalities (2.1)-(2.8) are valid for P(G,L).

Proof. We will show that any feasible solution (V, F') to the THPP for any L > 2 has
an incidence vector ! satisfying constraints (2.1)-(2.3).

Let G be the support graph of 2. First, it is clear that the constraints 0 < 2'(e) < 1
are all satisfied since z¥ is a boolean vector. Suppose now that there exists a subset
of nodes W, containing s and not ¢, such that 2 (6(W)) < 1. Then there is at most
one edge ¢ € 6(W) such that 27 (e) = 1, and all the st-paths in G must go through
e. This contradicts the existence of two edge-disjoint st-paths in Gr. Finally, if there
exists an L-st-path-cut T such that 2 (T") < 1, there is at most one edge ¢ € T with
x¥(e) = 1. Therefore, if one st-path of G uses e, then any other can only go through
edges of F\T. Clearly, the minimum number of hops of such a path is L + 1, which
also contradicts the feasibility of the solution. O

We are now going to show that the st-cut, L-st-path-cut and trivial inequalities, to-
gether with the integrality constraints, suffice to formulate the THPP as a 0 — 1 linear
program when L = 2, 3. To this end, we first give a lemma.
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Lemma 2.2.2. Let G = (N, E) be a graph, s, t two nodes of N and L € {2,3}. Suppose
that there do not exist two edge-disjoint L-st-paths in GG. Then all the L-st-paths in G
(if any) have one edge in common.

Proof. We first show the statement for L = 3. The proof uses ideas from [25] and [48].
Consider the capacitated directed graph D = (N’, A) obtained from G in the following
way. The set N’ consists of copies s',t' of s,t and two copies Ny, Ny of N\{s,t}. For
u € N\{s,t}, let u; and uy be the corresponding nodes in N; and Ny, respectively. To
each edge e € [s,u], with u € N\{s,t}, we associate an arc ¢’ from s’ to u; of capacity
1. To each edge e € [v,t], with v € N\{s,t}, we associate an arc ¢’ from vy to ¢ of
capacity 1. For an edge e € [u,v], with u,v € N\{s,t}, we consider two arcs, one from
uy to vy and the other from v; to wus, both of capacity 1. Finally, we consider in D
an arc from s’ to t’ of capacity 1 for every edge in [s, ], and an arc from each node of
N1 to its peer in N, with infinite capacity (see Fig. 2.2 for an illustration). Note that
multiple edges in G yield multiple arcs in D.

Figure 2.2: The auxiliary digraph D = (N’, A) of Lemma 2.2.2

Observe that there is a one-to-one correspondance between the 3-st-paths in G and
the directed s't’-paths in D.

Now consider a maximum flow ¢ € IRJA; from s’ to t’ in D. As the capacities of D are
integer, ¢ can be supposed to be integer. Hence the flow value of each arc of capacity 1
is either 0 or 1. We claim that ¢ can be chosen so that no two arcs (u1,v2) and (vq, uz),
corresponding to the same edge uv in GG, have a positive value. Indeed, suppose that
¢(uq,v2) = 1 and @(vy,uz) = 1. Let ¢ € lRf be the flow given by

ole)+1 ifee {(up,us),(vy,v2)},
d'e)=1¢ 0 if e € {(u1,v2), (v1,u2)},
o(e) otherwise.
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As (uy,us) and (vq, v2) have infinite capacity and the flow going into us and v, has not
changed, ¢’ is still feasible. Moreover, ¢’ has the same value as ¢.

As a consequence, an s't’-flow of value ¢ in D corresponds to ¢ edge-disjoint 3-st-
paths in G. Since there do not exist, in GG, two edge-disjoint 3-st-paths, the maximum
flow in D is of value at most one. Hence a minimum st-cut in D is of value at most 1
as well. Observe that such a cut does not contain arcs with infinite capacity. Hence, a
minimum cut corresponds to a set of one edge that intersects all the 3-st-paths of G,
and the proof for L = 3 is complete.

If L = 2, then we can similarly show the statement by considering the digraph
D = (N', A) where N’ is a copy of N and to every edge e¢ € [s,u] (resp. [u,t], resp.
[s,t]), where u € N\{s,t}, corresponds an arc ¢’ from s’ to v’ (resp. v’ to t/, resp. '
to t') of capacity 1 in D. Here v’ is the copy of v in N’ for every u € N. O

Theorem 2.2.3. Let G = (N, E) be a graph and L € {2,3}. Then the THPP is
equivalent to the integer program

Min {cx : x € Q(G, L), x € ZF}.

Proof. To prove the theorem, it is sufficient to show that every 0 — 1 solution x of
Q(G, L) induces a solution of the THPP. Let us assume the contrary. Suppose that z
does not induce a solution of the THPP but satisfies the st-cut and trivial constraints.
We will show that x necessarily violates at least one of the L-st-path-cut constraints
z(T) > 2. Let G, be the subgraph induced by x. As x is not a solution of the problem,
G, does not contain two edge-disjoint L-st-paths. As L € {2,3}, it follows, by Lemma
2.2.2, that there exists at most one edge in GG, that intersects every L-st-path. Consider
the graph G, obtained from G, by deleting this edge. Obviously, G, does not contain
any L-st-path.

We claim that G, contains at least one st-path of length at least L + 1. In fact,
as r is a 0 — 1 solution and satisfies the st-cut inequalities, (G, contains at least two
edge-disjoint st-paths. Since at most one edge was removed from G, at least one path
remains between s and ¢ in G,. However, since G, does not contain an L-st-path, that
path must be of length at least L + 1.

Now consider the partition Vp,..., V4 of N, with Vy = {s}, V; the set of nodes
at distance i from s in Gy, for i = 1,...,L, and V,; = N\ (Uf:o Vi), where the
distance between two nodes is the length of a shortest path between these nodes. Since
there does not exist an L-st-path in G,, it is clear that ¢ € Vii1. Moreover, as, by
the claim above, G, contains an st-path of length at least L + 1, the sets Vi,...,V
are nonempty. Furthermore, no edge of G, is a chord of the partition (that is, an edge
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between two sets V; and Vj, where |i — j| > 1). In fact, suppose that there exists an
edge e = vv; € [V;,V;] with |i — j| > 1 and ¢ < j. Therefore v; is at distance i + 1
from s, a contradiction.

Thus, the edge deleted from G, is the only edge that may be a chord of the partition
in G,. In consequence, if T" is the set of chords of the partition in G, then z(7") < 1.
But this implies that the corresponding L-st-path-cut inequality is violated by x. [

If L > 4, inequalities (2.1)-(2.3), together with the integrality constraints z(e) €
{0,1}, for all e € E, do not suffice to formulate the THPP as an integer program.
Indeed, suppose that L = 4 and consider the graph shown in Fig. 2.3.

Figure 2.3: An infeasible network for the THPP with L = 4 whose incidence vector
nevertheless satisfies the candidate formulation

It is not hard to see that the solution induced by this graph satisfies inequalities (2.1)-
(2.3) whereas the graph itself is not a feasible solution of the THPP.

For the moment, we will let this as an open question. The already curious reader is
referred to Chapter 6, where we propose an integer programming formulation for the
THPP when L = 4 (and also for its node version).

The separation problem for a system of inequalities consists in verifying whether a
given solution z* € IRY satisfies the system and, if not, in finding an inequality of
the system that is violated by xz*. The separation problem for inequalities (2.1) can
be solved in polynomial time using any polynomial max-flow algorithm (e.g. [44]).
Inequalities (2.3) can also be separated in polynomial time when L < 3. In fact, in this
case, it is not hard to see that the separation problem reduces to finding a minimum
weight edge subset that intersects all L-st-paths. Recently, Fortz et al. [25] have shown
that this problem reduces to a max-flow problem (as described in the proof of Lemma
2.2.2) and hence can be solved in polynomial time.

Thus, by the ellipsoid method [35]|, the THPP can be solved in polynomial time. It
would then be interesting to characterize the graphs for which Q(G, L) is integral. In
what follows, we will show that (G, L) is integral for any graph when L = 2, 3.
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2.3 THPP polytope for L =2,3

We first state the main result of this chapter.

Theorem 2.3.1. P(G,L)=Q(G,L), if L =2,3.

The proof of this theorem will be given in Section 2.5. In what follows, we shall
discuss the dimension of P(G, L) and study some properties of its facial structure. Let
G = (N, FE) be a graph. An edge e € F will be called L-st-essential if e belongs to
an st-cut of cardinality 2 or an L-st-path-cut of cardinality 2. Let E* denote the set
of L-st-essential edges. Thus, P(G — e, L) = () for all e € E*. The following theorem
characterizes the dimension of the polytope P(G, L).

Theorem 2.3.2. dim(P(G, L)) = |E| — |E*|.

Proof. Let e be an L-st-essential edge of GG, that is, e € E*. Then, by definition, there
exists an st-cut (W) (resp. an L-st-path-cut T') of cardinality two containing e. Since
every solution to the THPP must contain at least two edges from §(W) (resp. from
T), we have in fact that it contains both edges of 6(W) (resp. of T'), and hence e.
Therefore, the incidence vector of any solution to the THPP satisfies z(e) > 1 as an
equation. This implies that the dimension of P(G, L) is at most |E| — |E*|.

On the other hand, for any edge e that is not L-st-essential, we have that F\{e}
is a feasible solution to the THPP. Moreover, the edge sets E and E\{e}, for every
e € E\E*, are clearly affinely independent. Since there are |F|—|E*|+1 such solutions,
we obtain that dim(P(G, L)) > |E| — |E*|, and the result is proved. O

Corollary 2.3.3. If G = (N, E) is complete with |N| > 4, then P(G, L) is full dimen-
stonal.

The following theorem gives a procedure for obtaining a linear description of the
THPP polytope for a subgraph of G from that corresponding to G.
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Theorem 2.3.4. Let G = (N, E) be a graph, s,t two nodes of N and L > 2 an integer.
Let e be an edge of E. Let G' = (N, E’) be the graph obtained from G by deleting e.
Then a linear system describing P(G', L) can be obtained from a system describing
P(G, L) by removing the variables corresponding to e.

Proof. Suppose, on the contrary, that there is a facet-defining inequality a’'x > « of
P(G', L) which does not come from a facet-defining inequality of P(G, L). Then any
valid inequality of P(G, L) of the form ar = d'z + ox(e) > a, with ¢ € IR, does
not define a facet of P(G,L). Thus ax > « is dominated by a linear combination
of facet-defining inequalities of P(G, L). That is there are valid constraints b;z > [3;,
i=1,...,p, defining facets of P(G,L) and Ay,..., )\, > 0, such that

a > i)\ibu a < i AifB;.
i—1 i=1

Let r = [{i : b, # 0}|. Here b} is the restriction of b; on E’. Note that, from the
hypothesis, it follows that r > 2. As blx > f3; is valid for P(G', L) for i = 1,...,p, we
obtain that > > \bix > Y7 | \;f3; is valid for P(G', L). Now observe that this latter
inequality dominates o’z > «, which contradicts the fact that this inequality defines a
facet of P(G', L). O

In the following, we will suppose that G = (N, E) is complete with |N| > 4. Hence,
by Corollary 2.3.3, P(G, L) is full dimensional. If G = (N, E) is not complete, then a
description of P(G, L) can be obtained from that of P(G, L), using repeatedly Theo-
rem 2.3.4. Here G is the complete graph obtained from G by adding the missing edges.
Moreover, it is clear that the problem can be reduced to that case by associating a big
cost to the missing edges in the graph.

Let
S(G) ={F C E|(N,F) is a solution of the THPP}.

Given an inequality ax > « that defines a facet of P(G, L), we let
S.(G) = {F € S(G) | az" = a}.

In what follows, we will consider a(e) as a weight on e. Hence, any solution S of S,(G)
will have a weight a(S) equal to «, and any solution of S(G) a weight > «.
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Lemma 2.3.5. i) Let ax > « be a facet-defining inequality of P(G, L), different from
the trivial inequalities. Then for every edge e € E, there exists an edge subset in S,(G)
that contains e and another one that does not.

ii) Let ax > « be a facet-defining inequality of P(G, L), different from the st-cut in-
equalities. Then for every st-cut 6(W), there exists an edge subset in S,(G) containing
at least three edges of §(W).

Proof. i) Let ax > « be a facet-defining inequality of P(G, L) different from a trivial
inequality, and let e € E. Suppose that all edge sets F' € S,(G) do not contain e (resp.
contain e). But then their incidence vector x! satisfies z(¢) > 0 (resp. z(e) < 1) as
equation, a contradiction.
ii) Let ax > « be a facet-defining inequality of P(G, L) different from an st-cut inequal-
ity, and let (W) be an st-cut. Suppose that all edge sets ' € S,(G) contain exactly
two edges from J(W). Therefore, their incidence vector z!" satisfies z(§(W)) > 2 with
equality, which is a contradiction.

]

Lemma 2.3.5 will be frequently used in the sequel. At times we will use it without
referring to it explicitely.

Lemma 2.3.6. Let ax > « be a facet-defining inequality of P(G, L), different from a
trivial inequality. Then a(e) > 0, for all e € E and a > 0.

Proof. Assume, on the contrary, that there is an edge e € F such that a(e) < 0. Since
ax > « is different from —z(e) > —1, by Lemma 2.3.5 i), there must exist a solution
S of S,(G) that does not contain e. As S = 5 U {e} still belongs to S(G), this yields
a < ax’ = ar® + ale) < ar® = a, a contradiction. Thus, a(e) > 0 for all e € E.
Since axr > « defines a facet of P(G, L), there must exist at least one edge, say f, with
a(f) > 0. Now, as ax > « is different from the inequality z(f) > 0, there is an edge
set of S,(G) containing f. This implies that a > 0. O

The following lemma shows that parallel edges in G have the same coefficient in every
non trivial facet-defining inequality of P(G, L) for L = 2, 3.

Lemma 2.3.7. Let L = 2,3 and ax > « be a facet-defining inequality of P(G, L)
different from the trivial inequalities. Let [u,v] = {ej,ea,...,e,} be the set of the
parallel edges between two nodes v and v in G. Then a(e;) = a(e;), fori,j=1,...,p.
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Proof. We will show the result for L. = 3. The proof for L = 2 is similar. First
we show that all edges in [u,v] have the same coefficient, except possibly one, that
may have a smaller coefficient. Indeed, if there are three edges e, e, e3 € [u,v]
such that a(e;) > a(ez) > a(es), then there cannot exist an edge subset of S,(G)
containing e;. For otherwise, one could replace e; by either e; or e3 and get a so-
lution which violates axr > «, a contradiction. Now, suppose that there are two
edges e1,es € [u,v] such that a(e;) > a(ey). By the remark above, it follows that
a(e) = a(ey), for all e € [u,v]\{ey,es}.

Claim 1. Let S be a solution of S,(G).
i) If S contains eq, then it must contain e,.
ii) If S does not contain ey, then it does not intersect [u, v].

Proof. i) If e; € S and ey ¢ S, then S’ = (S\{e;}) U {es} is in S(G). As az® < a, we
have a contradiction.

ii) Assume the contrary. Then we may suppose that S contains an edge e;, i €
{1,...,p}\{2}, and e; ¢ S. Since a(e;) > a(ey), this is impossible by the argument
given above. ¢

Now, since ax > « is different from a trivial inequality, by Lemma 2.3.5 i), there is
an edge set of S,(G), say Si, containing e;. Let L; be a 3-st-path of S; that contains
e;. By Claim 1 i), it follows that e; belongs to the second 3-st-path of Sy, say Ls.
Note that L; N Ly = (). It is not hard to see that L; and L, go through e; and e,
respectively, in the same direction starting from s. If not, one would have one path of
the form (s, u,v,t) and the other one of the form (s, v,u,t). But then, the edges e;, e;
might be deleted and one would obtain a feasible solution of weight smaller than «,
a contradiction. So, let us assume, w.l.o.g., that u is the first node of e, ey used by
Ly, Ly going in this direction.

Let L5, LY (resp. L3, L) be the subpaths of Ly (resp. Lg) between s and u, and v
and ¢t. Obviously, |L5 U Lf| <2, for i = 1,2. Note that we have either L = () = L§ or
L3 # () # L5. Moreover, if the latter case holds, we have that |L}| < 1 and |L| < 1.
Note also that, by symmetry, these properties remain true if we exchange s and ¢. Thus
every st-path consisting of a combination of subpaths Lf U {e;} U L} is of length at
most 3, for 7, j, k = 1,2. In other words, we have that

LU LL| <2, forall i,k € {1,2}.
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By Lemma 2.3.5 i), there must also exist an edge set of S,(G), say Ss, that does
not contain e;. By Claim 1 ii), we have that [u,v] N Sy = 0. Let P; and P, be two
edge-disjoint 3-st-paths in S;. We have the following claim.

Claim 2. At least one of the sets P,N Ly and PoN Ly (PoN Ly and Py N Ly) is nonempty.

Proof. Assume, on the contrary, that for instance P, N L; = () = P, N Ly. Then, since
P, U Ly € S(G), it follows that a(P,) > a(Ly). Now, let L} = (Li\{e1}) U {e2}. As
ey ¢ S, and hence ey ¢ Pp, we have that P, N L} = (). Thus P, UL} € S(G) and
therefore a(L}) > a(P,). In consequence, a(L}) > a(L;) and hence a(ey) > a(ey), a
contradiction. ¢

By Claim 2, we may assume, w.l.o.g., that P, N Ly # (). Also by the same claim, at
least one of the sets P, N Ly and P, N Ly is nonempty. In what follows, we suppose
that P, N Ly # (). The case where P, N L; # () can be treated along the same line.
As ey ¢ Sy, it follows that |Ly| = 3. If |L§| = 2, then v = t and L is of the form
(s,w,u,t) with w # s,t,u. Let eg be the edge of Ly N [u,w]. Note that one of the 3-st-
paths of Sy, say Py, uses ey. Then P; is of the form (s,u,w,t). Let {f} = P N [w,].
As (S1\{eo,e1}) U{f} and (S2\{eo, f}) U{ex} are edge sets of S(G), we obtain that
a(f) > a(eo) + a(er) and a(ez) > a(eg) + a(f), respectively. But this implies that
a(es) > a(ey), a contradiction.

Consequently, |L5| < 1 and, by symmetry, we also have that |L| < 1. Since |Ls| = 3,
it follows that |L5| = |LL] = 1. So L; and L, are both of the form (s,u,v,t). As
PiNLy#0+# P,NLyand SyN[u,v] =, we may assume, w.l.o.g., that P, N [s,u] # ()
and P, N [v,t] # (0. Moreover, this implies that P, N L; = ) = P, N L. Now, by
replacing e; and L} by the subpath P/ of P; between u and ¢, we get a solution,
yielding a(P") > a(ey) + a(L!). Similarly, if we replace P/ by ey and L} in S;, we
obtain that a(ey) + a(L}) > a(P{). But this yields again a(ey) > a(e;), which is
impossible. O

By Lemma 2.3.7, multiple edges have the same coefficient in any non trivial facet-
defining inequality of P(G, L). For the rest of the paper, if u,v € N, we will denote
by uv a fixed edge of [u,v]. If P is a path of the form (uy,us,...,u,), then we will
suppose that P uses the edges wjuo, ..., u,—1u,. If for a solution S € S(G) and two
nodes u,v € N we have that S intersects [u, v|, then we will suppose that S uses edge
uv and eventually further edges parallel to uv.
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2.4 Structural properties

In this section we give some structural properties of the facet-defining inequalities of
P(G, L) different from the trivial and the st-cut inequalities. These will be useful for
the proof of Theorem 2.3.1 in Section 2.5.

Let L = 2,3 and ax > « be a facet-defining inequality of P(G, L) different from the
trivial and the st-cut inequalities. First, we give the following technical lemma, which
will be frequently used in the subsequent proofs.

Lemma 2.4.1. Let Sy and Sy be two edge sets of S,(G). Let Py and P] be two edge-
disjoint L-st-paths of S1. Suppose that there is an L-st-path Py in So such that P,NP] =
(). Then, for every L-st-path P not intersecting Sa, we have a(P) > a(P}).

Proof. Let S| (resp. S5) be the edge set obtained from S; (resp. Ss) by replacing P; by
P, (resp. P> by P). As S}, S5 € S(G), it follows that a(P,) > a(Py) and a(P) > a(P,).
Hence, a(P) > a(Py). O

Now we show that the edges e € E such that a(e) = 0 do not form an L-st-path.

Lemma 2.4.2. There cannot exist an L-st-path containing only edges with zero weight.

Proof. We will show the result for L = 3. The proof for L = 2 can be done in a similar
way.

Let us assume the contrary. Let P, be a shortest st-path such that a(e) = 0 for all
e € Py. In what follows, we consider the case where |Py| = 3. The cases where |Py| = 2
or 1 can be treated similarly.

Let Py = (s,u1,us,t). Then a(e) > 0 for every chord of F,. By Lemma 2.3.7, we
have a(e) = 0 for all e € [s,u1] U [uy, us] U [ug, t]. As ax > « is different from a trivial
inequality, by Lemma 2.3.5 i), there must exist an edge set S of S,(G) not containing
the edge ust of Fy. Let P, P, be two edge-disjoint 3-st-paths of S.

Claim 1. Let T be a solution of S,(G) and Ti,75 be two edge-disjoint 3-st-paths of
T. Then at least one of the paths 77,75 has only edges with zero value, if one of the
following statements holds
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1) Ugt ¢ T,
i) suy ¢ T,
i) uyug ¢ T and |[ug, t]| > 2.

Proof. Suppose that both T} and 75 use edges with positive weight. We first claim
that both 77 and T, intersect P,. For otherwise, if for instance 73 N Py, = (), then
Ty U Py € S(G), yielding a(Py) > a(Ty). As a(Py)) = 0, we then have a(73) = 0, a
contradiction.

Now suppose that ust ¢ T. As Ty NTy, = (), one of the paths, say T}, uses edge uus.
Since T} uses at least one edge of positive weight, and a(e) = 0 for all e € [s, u;]U|us, t],
T; must be of the form (s,us,uy,t). By the remark above, we have indeed that
a(uit) > 0. Now if we replace in T the edges ujus and u it by ust, we get a solution of
S(G). Moreover, as a(ust) = a(ujug) = 0, it follows that a(u;t) = 0, a contradiction.

If suy ¢ T, then the statement follows by symmetry.

Suppose now that ujus ¢ T and |[ug, t]| > 2. Denote by f an edge of [us, t]\{ust}.
Since ujus ¢ T and T1 N Py # () # T N Py, we may suppose, w.l.o.g., that su; € T} and
ust € Ty. Let T/ be the subpath of T} between u; and t. Observe that a(7;"") > 0.
Consider the solution obtained from T by replacing 7" by the edges u u; and f. As
a(f) = a(uyuy) = 0, this yields a(T{""") = 0, a contradiction, which ends the proof of
the claim. ¢

As ust ¢ S, by Claim 1 i), it follows that at least one of the paths P, and P, say
Py, contains only edges with zero coefficient. Moreover, we have that P, N Py # (). For
otherwise, there would exist a solution formed by P; and F, of weight zero, contradict-
ing the fact that o > 0.

Claim 2. i) |[uz, t]| > 2.
i) |[s,u1]| > 2.

Proof. We will prove i), the proof of ii) follows by symmetry. Suppose that |[us, t]| = 1.
We claim that the edge su; of P, belongs to P;. In fact, if this is not the case, as
ust ¢ S and Py N Py # (), P, must contain the edge ujus. As |[ug,t]| =1 and ust ¢ S,
P, must use an edge of [u,t] which is of positive weight, a contradiction. Thus P
is of the form (s,uy,v,t) with v # uy. We thus have |[s,u1]| = 1. For otherwise, we
would have two edge-disjoint 3-st-paths of zero weight, yielding o = 0, a contradiction.
By considering a solution of S,(G) not containing su;, and using Claim 1 ii) together
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with similar arguments as above, we can show that there exists a path P| of the form
(s,w,us,t), with w # uy, constituted of edges with zero coefficient. As P, and P| are
edge-disjoint and hence form a solution of S(G), this yields v = 0, a contradiction. 4

Since there are not two edge-disjoint 3-st-paths of weight zero, at least one of the
sets [s, u1], [u1, us], [ug, t] must be reduced to a single edge. Consequently, by Claim 2,
it follows that |[uy, us]| = 1. Consider now a solution S’ of S,(G) not containing wus.
Let P and Py be two edge-disjoint 3-st-paths of S’. As by Claim 2 ii), |[ug,t]| > 2,
we may, w.l.0.g., suppose by Claim 1 iii) that a(P]) = 0. Also since a > 0, one should
have P/ N Py # (). Since ujug ¢ S’, we may, w.l.0.g., suppose that su; € Pj. Therefore
P = (s,uy,v',t) with v' # us. As, by Claim 2, |[s,u1]| > 2, the solution given by
Py U P, where Py = (f,uyv/,v't) with f € [s,u1]\{su;} would be in S(G) and of zero
weight. But this is a contradiction, and the proof of the lemma is complete. O

Let us denote by U (resp. V') the subset of nodes u such that a(e) = 0 for all e € [s, u]
(resp. e € [u,t]). Note that, by Lemma 2.3.7, if for an edge f € [s,u| (resp. f € [u,t])
for some u € N\{s,t}, we have a(f) =0, then u € U (resp. u € V). By Lemma 2.4.2,
we have that U NV = (). Moreover, a(e) > 0 for all e € [s,¢t] U [s, V]U[U,¢t]. If L = 3,
we also have that a(e) > 0 for all e € [U, V]. Let W = N\({s,t} UU UV). Note that,
if W #£0, ale) >0 forall e € [s, W] U [W,1].

Lemma 2.4.3. U # 0 # V.

Proof. We will prove the lemma for U. The proof for V' is similar. Since ax > « is
different from the st-cut constraint corresponding to the node s, by Lemma 2.3.5 ii),
there is an edge set F' of S,((G) that contains at least three edges of §(s). As only two
of these edges can be used by two edge-disjoint L-st-paths of I, there is an edge of
FNo(s), say eg € [s,u] with u € N\{s,t}, such that F\{ep} € S(G). This implies
that a(ep) = 0, and therefore v € U. O

This technical lemma will be used in the subsequent proofs.

Lemma 2.4.4. Let S € S,(G) and Py be a 3-st-path of S going through a node u of
N\{s,t}. Let P, be the subpath of P, between s (resp. t) and u. Let P be a path
between s (resp. t) and u such that a(P) = 0 and |P| < |Py|. If a(P)) > 0, then
PN Py, # 0 for any 3-st-path Py of S, where P, N Py = ().
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Proof. If PN P, = 0, as | P| < | Py|, the edge set (S\P;)U P belongs to S(G) and hence
a(Py) < a(P). As a(P) =0 and a(P;) > 0, this is impossible. O

The following lemma shows that the edges having both end nodes in U (V) all have
zero coefficient. Moreover, if . = 2, the same holds for the edges between U and V.

Lemma 2.4.5. i) If L = 2, then a(e) =0 for all e € [U, V].
ii) a(e) =0, foralle € E(U)UE(V).

Proof. i) Let e € [U,V] and let S be a solution of S,(G) containing e. As e cannot
belong to a 2-st-path of S, S\{e} is also a solution of S(G), and therefore a(e) = 0.

ii) [f L =2and e € E(U)UE(V), we can show as in i) that a(e) = 0. Now let us
consider the case where L = 3. Let us assume, on the contrary, that there exists an
edge ujuy with uy, us € U (the case where uy, uy € V' is similar) such that a(uyus) > 0.
Note that by Lemma 2.3.7 it follows that a(e) > 0 for all e € [uy, us]. Let us consider
an edge set of S,(G), say S, that contains ujus and let P, P| be two edge-disjoint
3-st-paths in S;. As a(ujus) > 0, ujuy must be in one of the 3-st-paths of Sj, say
P;. We can suppose, w.l.o.g., that P; is (s,uy,us,t). Moreover, as a(e) = 0 for all
e € [s,us], by Lemma 2.4.4, P/ must contain every edge of [s,us]. However, this is
possible only if |[s, us]| = 1. Consequently, we will assume in the rest of the proof that
[s,us] = {sus} and sus € P|. Let us assume that P] is of the form (s, uo, z,t) with
z # s,t,uy. If P| consists of only two edges, then the proof is similar. Furthermore,
z ¢ U. For otherwise, one can consider the edge set S| = (S1\{su1, uyus, usz}) U{sz},
which is a solution of S(G). As a(sz) = 0, we get a(su1) + a(ujus) + a(uzz) < 0 and
hence a(ujus) = 0, a contradiction. Therefore z € VU W.

Moreover, we have that a(e) > 0 for all e € [U\{u1, uz}, us]. Indeed, if a(e) = 0, then
the edge set (S7\{su1,uius}) U {su, e}, where u is the end node of e different from u,,
would be a solution of S(G) with a weight smaller than «, a contradiction.

Now, let us consider an edge set of S,(G), say S, that does not contain the edge
sug. Let Py, Py be two edge-disjoint 3-st-paths in S;. We claim that [us,t] NSy = (). In
fact, if one of the 3-st-paths of Sy, say P», uses an edge of [us, t], say ust, as |[s, us]| = 1
and suy ¢ Sy, one should have P, = (sw, wus, ust) where w € N\{s, us,t}. Moreover,
we have a(sw) + a(wug) > 0. In fact, this is clear if w ¢ U. If w € U, then, as shown
above, a(wug) > 0 and the statement follows. Now, by replacing in Sy the subpath
(sw, wuy) by sus, we get a solution of smaller weight, which is impossible.

Thus [ug,t] N Sy = () and hence, as sus ¢ Ss, no 3-st-path in Sy goes through the
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node uy. Let P be the path (sus,ust). Thus, PN Sy = (). Moreover, as neither sus
nor usz belongs to Ss, at most one of the paths P, P, intersects P;. W.l.o.g., we may
suppose that P, N P/ = (). From Lemma 2.4.1, it then follows that a(P) > a(P;). But
this implies that a(ujus2) = 0, a contradiction. O

Now we show that the subset W is empty when L = 2, and nonempty when L = 3.

Lemma 2.4.6. i) If L = 2, then W = ().
i) If L = 3, then W # 0.

Proof. i) Assume the contrary, and let w € W. Then a(e) > 0 for all e € [s, w] U [w, t].
We will show that |[s, w]|NF| = |[w, t|NF | for every F' € S,(G). In fact, suppose, by con-
tradiction, that there exists F' € S,(G) such that, for instance, |[s, w]NF| > |[w, t|NF|.
Since at most |[w,t] N F| edge-disjoint 2-st-paths can go through w, there must exist
an edge, say ¢, of [s,w] N F such that F\{e} € S(G). This implies that a(€) = 0, a
contradiction. Thus, the incidence vector of any solution of S,(G) verifies the equation
z([s,w]) = z([w, t]). As, by Lemma 2.3.6, this equation cannot be a positive multiple
of ax > «, we get a contradiction.

ii) Assume that, on the contrary, W = (). Let U’ = U U {s}. Since ax > « is different
from the st-cut inequality associated to §(U’), there exists an edge set of S,(G), say
F}, that uses at least three edges of §(U’). Let P, P] be two edge-disjoint 3-st-paths
of Fy. Since W = 0, a(e) > 0 for all e € §(U’), and hence every edge of F; N §(U’)
must belong to one of the paths P, and P]. So, one of these paths, say P;, must use at
least two edges of 6(U’). As any st-path intersects any st-cut an odd number of times,
we have that P, contains exactly three edges of 6(U’). Therefore, P; is of the form
(s,v,u,t), where w € U and v € V. Let Fy, = (F1\(P{ U {vu})) U {su,vt}. Obviously,
Fy € S(G). As a(su) = a(vt) = 0, it follows that a(vu) = 0, a contradiction. O

For the rest of this section, we assume that L = 3.

Lemma 2.4.7. i) If there are a node w € W and a node uy € U such that a(uyw) = 0,
then a(e) =0 for all e € [U, w).

ii) If there are a node w € W and a node vy € V' such that a(wvy) = 0, then a(e) =0
for all e € [w,V].
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Proof. We show the result for U, the proof for V' is similar. If [U| = 1, then the state-
ment follows from Lemma 2.3.7. So, let us suppose that |U| > 2 and assume, on the
contrary, that there is a node uy € U such that a(usw) > 0. Let S; be a solution of
Sq(G) such that usw € S;. As a(usw) > 0, usw must belong to a 3-st-path P in S;.
Let P| be a further 3-st-path of S} with P, N P = 0.

Claim 1. P; = (s, ug,w,t).

Proof. As usw € Py, P is of the form either (s, w, us, t) or (s, ug, w,t). Suppose that the
first case holds. As a(e) > 0 for all e € [s,w] and a(e) = 0 for all e € [s, uy|, it follows
from Lemma 2.4.4 that P] uses all the edges between s and uy. Therefore [s,us] C P|.
Moreover, since, by Lemma 2.4.5 ii), all the 2-sus-paths going through u; have weight
zero, again by Lemma 2.4.4, P/ must also intersect all these paths. As P/ cannot
use more than one edge incident to s, one should have [uy,us] € P/. In consequence,
[s, ug]| = |[u1,us]| =1 and P is of the form (s, us, uq,t). But, by adding edge su; and
removing the edges sw, wus, we obtain a solution of lower weight, which is impossible. 4

Consequently, P, = (s,us,w,t). As a(usw) > 0, and therefore the weight of the
subpath of P; between s and w is positive, it follows by Lemma 2.4.4 that P] must in-
tersect every 2-sw-path of weight zero going through u;. Since a(ujw) = 0, by Lemma
2.3.7, a(e) = 0 for all e € [uy,w]. Thus, as a(e) = 0 for all e € [s,u;], we obtain that
at least one of the sets [s,u1] and [uy, w] is reduced to a single edge. If there is a node
u € U\{uy,us} such that a(e) = 0 for some edge e € [u,w], then by Lemma 2.4.4,
P] must also intersect the 2-sw-paths going through u. But as |P{| < 3, this is not
possible. Therefore a(e) > 0 for all e € [U\{u1 },w].

Claim 2. PN [uy, w] = 0.

Proof. Suppose, on the contrary, that P uses for instance uvjw. If P{ = (s, w,uy,t),
then, as the weight of the subpath of P| between s and wu; is positive, and a(e) = 0
for all e € [s,u;], by Lemma 2.4.4 it follows that P, uses all the edges between s
and u;. But this contradicts Claim 1. Hence Pj is of the form (suj,ujw,h) where
h € [w,t]\{wt}. We consider two cases.

Case 1. |[s,u1]| = 1. Consider an edge set Sy of S,(G) such that su; ¢ S;. We
may suppose that S, is minimal. Let P, and P; be the two edge-disjoint 3-st-paths of
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Sy. If Sy uses an edge uyz with z € V U W, then u;z belongs to one of the 3-st-paths
of Sy, say Pa. As su; & So, Py = (8,2,uq,t). Observe that a(e) > 0 for all e € [s, z].
Now by replacing the edges sz, zu; by suj, we get a solution of S(G) of weight less
than «, a contradiction. In consequence, we have [u;, VU W] N Sy = () and therefore
[ug, w] NSy = . Suppose now that Sy N [w,t] # 0 and for instance that P, N [w,t] # 0.
Since a(e) > 0 for all e € [U\{u1},w], the subpath of P, say Ps*, between s and w has
a positive weight. As {su;,ujw} is a 2-sw-path of weight zero which does not intersect
Ss, if we replace P;" by suy, uyw, we get a solution of lower weight, which is impossible.
Thus Sy N [w, t] = (), and, in consequence, P; N Sy = (). Let P = P/. By Lemma 2.4.1,
it follows that a(P) = a(P]) > a(P1). As a(h) = a(wt) and a(su;) = a(u;w) = 0, this
yields a(usw) = 0, a contradiction.

Case 2. |[s,u1]| > 2. Since one of the sets [s,u1], [ujw] contains exactly one edge,
we have that [u;,w] = {ujw}. Let S, be a solution of S,(G) not containing ujw.
Suppose that S, is minimal, and let P, and P, be the two edge-disjoint 3-st-paths of
S,. We can show, in a similar way as in Case 1, that [w,#] N Sy = 0. As uyw ¢ So,
it follows that |S, N P/| < 1. Hence, there is a 3-st-path of S,, say P, that does not
intersect P|. Therefore P, U P/ is a solution of S(G), yielding a(P) > a(P;). On the
other hand, since |[s,u1]| > 2, we may suppose that P, N P| = (). So, if we replace,
in Sy, P, by P/, we get a solution of S(G), implying that a(P]) > a(P,). Therefore
a(P{) > a(P;) and hence a(usw) = 0, a contradiction. ¢

By Claim 2, we then have P/ N [uj, w] = (). As P intersects all the 2-sw-paths going
through wuy, it follows that [s, u;] = {su1} and su; € P).

If P| uses an edge of [uy, t], then, by removing the edge usw and adding edges u;w and
uiug, we get a solution of S(G). But this implies that a(usw) = 0, which is impossible.
Along the same line, we can also show that P; does not go through any node of U.
Hence P] must use a node of V U W say v.

Consider now a solution S5 of S, (G) not containing su;. Let P; and P; be two edge-
disjoint 3-st-paths of Ss;. Suppose that there is an edge, say uiz, of [u, V U W] that
belongs to S3. Since su; ¢ S, the 3-st-path containing u,z, say P3, must be of the
form (s, z,ui,t). Note that the subpath between s and u; has a positive weight. As
a(suq) = 0, by Lemma 2.4.4, it follows that su; € P} and hence su; € Ss, contradicting
our hypothesis. Thus [u;, VUW]NS; = 0 and hence ([uy, v] U [ug,w]) NSs = 0. Thus
|P{ N S3] < 1. Consequently, there must exist a 3-st-path of S3, say Ps, such that
P/NP; = (). Also we may show in a similar way that [w, ] N S3 = (). Consider now the
path P = (s,u;,w,t). Observe that P N S; = (). By Lemma 2.4.1 with respect to S;
and S, it follows that a(P) > a(P;). But this implies that a(usw) = 0, a contradiction,
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and the proof of the lemma is complete. O

We now establish the equality of coefficients a(e) for all edges e between U and ¢, or
between s and V.

Lemma 2.4.8. For alle,e' € [U,t] (resp. e,e’ € [s,V]), a(e) = a(€).

Proof. We will prove the lemma for U, the proof for V is similar. If |U| = 1, the
statement follows from Lemma 2.3.7. So suppose |[U| > 2. Let uj,us € U such
that a(uit) = min{a(e),e € [U,t]} and a(ust) = max{a(e),e € [U,t]}. Assume that
a(ugt) > a(uqt).

Claim. i) Let S € S,(G). If SN [uy,t] # 0, then [ug,t] C S.
i) |[ug,t]] = 1.

Proof. i) Suppose that ust € S, and let 77 and T5 be two edge-disjoint 3-st-paths of S.
As a(ust) > 0, we may suppose, for instance, that ust € T5. Assume that there is an
edge e of [uy,t] that is not in S. If there is an edge e € [s,uy] that is not in 77, then
we can replace ust by e and e; and get a solution of S(G) of lower weight, a contradic-
tion. Hence [s,u;] C T; and therefore [s,u;] = {su1}, su; € Ty, and [s,us] N Ty = 0.
Furthermore, if 77 contains an edge ¢’ € [uy, us], then, as su; € Ty, T} must use an
edge f of [ug,t]\{ust}. Now it is easy to see that (S\{f}) U {ei} € S(G). Since
by Lemma 2.3.7, a(e;) = a(u;t) and a(f) = a(ust), it follows that a(uit) > a(ust).
But this contradicts our hypothesis. Therefore [u,us] N T; = (). Consider now the
solution S" = (S\{uat}) U {sug, ujug, e1}. As a(suz) = a(ujug) = 0, we have that
a(uit) = a(ey) > a(ust), a contradiction.

ii) Let S € S,(G) such that uyt € S. We may suppose S minimal. Let T, T, be the
edge-disjoint 3-st-paths of S, and suppose, w.l.o.g., that ust € T. From i), it follows
that [u1,t] € S. Moreover, as ust € Ty, To N [u1,t] = 0, and hence [u1,t] C T;. This
implies that |[u,t]| = 1. ¢

Let S; be a solution of S,(G) containing ust. By the claim above, S; also contains
uit. As a(suy) = a(suy) = 0, and {suq, sus, uit, ust} is a solution of S(G), we may
assume that S; = {suq, sug, uit, ust}.

Consider now a solution S, € S,(G) that does not contain u;¢, which may be sup-
posed minimal. Since uit ¢ Sy, by the claim it follows that [us,t] NSy = (). And, in
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consequence, [u1, us] N Sy = (). Suppose that Sy contains an edge su;. Since S, is min-
imal, one of the two 3-st-paths of Sy, say 7', contains su;, and hence 7" is of the form
(s,u1,2,t) where z € N\{s,t,uy,us}. Let T"'* be the subpath of T" between u; and t.
As the sets (So\T"") U {uit} and (S1\{uzt}) U ({ujuz} U T are both solutions of
S(G), and, as by Lemma 2.4.5 ii) a(ujus) = 0, we have that a(uit) > a(T"") > a(ust),
a contradiction. Consequently, [s,u1] NSy = 0.

Let P, = (sug, ust) and P| = (suy,uqt) be the two 3-st-paths of S;. Let P = P| and
P, be any 3-st-path of Sy. Note that P NSy = P{ NSy = (), and hence P, N P = ).
By Lemma 2.4.1, it follows that a(P) > a(P;). However, as a(su;) = a(suz) = 0, this
implies again that a(uit) > a(ust), which is impossible. O

Here under, we prove that, if U = {u} (resp. V = {v}), any minimal solution in
Sa(G) not using edges in [s, u| (resp. [v,t]) does not go through node u (resp. v) at all.

Lemma 2.4.9. Let S be a minimal solution of S.(G).
i) If U = {u} and SN [s,u] =0, then §(u)N S = 0.
i) If V.= {v} and SN v, t] =0, then 6(v) NS = 0.

Proof. We will show 1), the proof of ii) is similar. We first show that [u,t] NS = (.
Assume, on the contrary, that ut € S. Then, as a(ut) > 0, one of the 3-st-paths of 5,
say P, must contain ut. As [s,u] NS = @, P must be of the form (s, w,u,t), where
w € N\{s,t,u}. Note that w ¢ U, and hence a(sw) > 0. Thus, one can replace sw
and wu by su in S and get a solution of S(G) of weight less than «, a contradiction.
Thus [u,t] NS = 0. Now, by the minimality of S, no other edge of d(u) may be used
by S. O

The following lemma shows that all the edges in [U, ] U [s, V| have the same coeffi-
cient in a.

Lemma 2.4.10. a(e) = a(¢’) for all e € [U,t] and €’ € [s,V].

Proof. Assume the contrary. Thus, by Lemma 2.4.8, we may assume, w.l.o.g., that
a(e) > a(e') for all e € [U,t] and €' € [s, V]. (2.4)

Let u; € U. Consider a solution S; of S,(G) that contains u;t and suppose that S; is
minimal. Let P, and P]| be the two edge-disjoint 3-st-paths of S}, and suppose that
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Ult € Pl.
Claim. |V| = 1.

Proof. Assume that |V| > 2. First observe that P, cannot go through a node v € V.
For otherwise, P; would be of the form (s, v, uy,t). Since the subpaths of P, between s
and u;, and v and ¢, have both positive weight, by Lemma 2.4.4, P must use edges su,
and vt. Now, if we remove the edges of S; between u; and v, we still have a solution of
S(G). This implies that a([ug,v]) = 0. But this contradicts the fact that a(uiv) > 0.
In consequence, since S; is minimal, S; may contain at most one edge from [s, V]. Sup-
pose that S; contains edge sv;, where v; € V. Note that sv; € P{. As |V| > 2, there is
an edge svq, with vy € V, that does not belong to S;. If there is an edge e € [vs, t] such
that e ¢ S}, then, by replacing u;t by sv, and e, we get a solution of S(G). As a(e) =0,
this yields a(svy) > a(uit), which contradicts (2.4). Thus [ve,t] C S; and therefore
[ve,t] € P/. This implies that [vy,t] = {vst} and P} = (s,vy,v,t). By considering
the solution obtained by replacing uit by sve and v;t, we obtain that a(sve) > a(ust),
which once again contradicts (2.4).

Consequently, S; N [s,V] = 0. Now remark that, since S; is minimal and u;t € S,
S1 cannot use two edges of [V, t]. Thus there is a node z € V such that ([s, z] U[z,t]) N
S1 = (0. By replacing uit by sz and zt in S}, we get a solution of S(G), yielding
a(sz) > a(uyt). This contradicts (2.4), and the claim is proved. ¢

Let V = {v}. Let P = (s,v,t) be an st-path of length 2 going through v. We claim
that P{ N P # (). In fact, if this is not the case, then, as the edge set obtained from
S1 by replacing P, by P is in S(G), we would have that a(sv) > a(uit). But this
contradicts (2.4). Therefore, P/ must contain at least one of the sets [s,v] and [v, t].
Thus at least one of the sets [s,v] and [v,t] is reduced to a single edge.

Case 1. [v,t] = {vt}. Consider a solution Sy € S,(G) not containing vt, which is
supposed minimal. Then, by Lemma 2.4.9, Sy N d(v) = () and hence P N Sy = (.
Moreover, as P{ N P # (), P] does meet v, and therefore |P] N S3| < 1. Thus there
exists a 3-st-path of Sy, say P, that does not intersect P{. As PN Sy = (), by Lemma
2.4.1, we have that a(P) > a(Py), and hence a(sv) > a(u;t). But this contradicts (2.4).

Case 2. [s,v] = {sv}. By Case 1, we may suppose that |[v,t]| > 2. As P] contains
one of the sets [s,v] and [v,t], it follows that sv € P]. Note that {sui,uit, sv, vt} €
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S(G). As a(su;) = a(vt) = 0 and S; is minimal, we may suppose, w.l.o.g., that
S1 = {suy,ust, sv,vt}. Hence Py = (suy,uit) and P = (sv,vt). Consider now an edge
set S3 of S,(G) not containing sv and suppose that S3 is minimal. Since |P/ N S5| <1,
there must exist a 3-st-path in S3, say P3, such that PsN P} = (). If we replace, in S, P
by Ps, the resulting set is still a solution of S(G), and therefore a(P3) > a(P;). On the
other hand, if there is an edge h € [v, t] such that h ¢ S, then one can replace the path
P; by the one formed by sv and h, and get a solution of S(G). But this implies that
a(Ps) < a(sv) + a(h). As a(Ps) > a(P;) and a(h) = 0, we obtain that a(uit) < a(sv),
contradicting (2.4). Thus [v,t] C S3. As |[v,t]| > 2 and S3 is minimal, it follows that
P;N v, t] # 0. Let P be the subpath of P; between s and v. By replacing, in Ss,
P3? by sv, we get a solution of S(G), which yields a(sv) > a(P§"). As a(P3) > a(Fy),
and therefore a(P5") > a(uqt), we get a(sv) > a(ut). But this contradicts again (2.4),
which ends the proof of the lemma. O

Lemma 2.4.7 allows a partition of the set W into four subsets:
Wy ={w € Wla(e) =0 for all e € [U,w], and a(e’) > 0 for all ¢’ € [w, V]},
Wy ={w e Wla(e) =0 for all e € [U,w]U [w, V]},
W3 ={w € Wla(e) > 0 for all e € [U,w], and a(e’) = 0 for all ¢’ € [w, V]},
Z = W\(W, U WU Ws).

Lemma 2.4.11. 3) If U = {u}, then a(e) = a(e’), for alle € [u,t] and ¢’ € [W1UWy, t].
i) If V = {v}, then a(e) = a(e’), for all e € [s,v] and €' € [s, Wy U W3],

Proof. We will only prove i), the proof of ii) is similar. Assume by contradiction that
a(ut) # a(wt) for some w € Wi U Wy, We will first give the following claim.

Claim. No solution of S,(G) uses at the same time an edge of [u, t] and an edge of [w, t].

Proof. 1t suffices to show that there is no solution of S,(G) containing at the same
time ut and wt. Let us suppose, on the contrary, that there exists a solution S € S,(G)
with ut, wt € S. Let T} and T5 be two edge-disjoint 3-st-paths of S. As a(ut) > 0 and
a(wt) > 0, we may suppose that ut € T and wt € Ts.

Suppose that a(wt) < a(ut). The case where a(wt) > a(ut) can be treated along the
same line. If [s,u]| N T} = 0, T} must go through a node z € N\{s,t,u}, and hence the
subpath 77" of T} between s and w is of positive weight. By Lemma 2.4.4, it follows
that [s,u] C Ty, and therefore [s,u] = {su} and Ty = (s,u,w,t). If z € V, then by
replacing wt by zt in S, we get a solution of S(G). But, as a(zt) = 0, this implies
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that a(wt) = 0, a contradiction. Thus 7} cannot go through V. In consequence, as by
Lemma 2.4.3 V # (), there is a node v € V such that sv and vt do not belong neither
to 11 nor to Ty. So, by replacing 77 by (sv,vt), we get a solution of S(G). However,
since, from Lemma 2.4.10, we have a(ut) = a(sv), we get a(T7") = 0, a contradiction.
Consequently, [s,u] N T} # 0 and T} = (s,u,t). By using similar arguments, we can
also show that 75 is of the form (f, uw,wt), where f is an edge parallel to su, and
hence |[s,u]| > 2. Furthermore, at least one of the sets [u,w] and [w, ] is reduced to
a single edge. If not, one may replace ut by a 2-ut-path going through w and get a
solution of S(G). But this would imply that a(wt) > a(ut), a contradiction.

Suppose that |[w,t]] = 1. The case where |[u, w]| = 1 is similar. Hence [w, t] = {wt}.
Let S” € S,(G) such that wt ¢ S" and suppose that S’ is minimal. If S’ contains an
edge e € [u,w], then, as S’ is minimal, there must exist in S” a 3-st-path T' containing e.
Therefore T is of the form (s, w,u,t). Observe that in this case, the edge set obtained
by deleting ut and adding wt is in S(G) and then a(ut) < a(wt), a contradiction.
Consequently, [u,w]NS" = (. Hence, as |T,NS’| < 1, there is a 3-st-path, say 77, in S’
such that 77 NT, = (). By replacing 77 by T} in S, we get a solution of S(G) and hence
a(T}) > a(Ty). Note that only one edge of [s,u] can be used by the second 3-st-path
of S’. Thus one can replace 7] by T in S" and obtain a feasible solution, which yields
a(Ty) > a(T7), and therefore a(Ty) > a(7}). But this implies that a(wt) > a(ut), which
is impossible. ¢

Suppose that a(ut) > a(wt). The case where a(ut) < a(wt) can be treated similarly.
Let S; be a minimal solution of S,(G) that contains ut, and let P, and P be two
edge-disjoint 3-st-paths of S;. Suppose, w.l.o.g., that ut € P;. By the Claim, we have
[w,t] NSy = (. If S; contains an edge of [u, w], then there is a 3-st-path of S; of the
form (s, w, u,t). However, by removing ut and adding wt, we obtain a solution of S(G),
yielding a(wt) > a(ut), a contradiction. Thus [u, w] N S; = (). Moreover, if there is an
edge e of [s,u] such that e ¢ P/, one can replace ut by (e, uw,wt) and get a solution
of S(G). But this implies that a(wt) > a(ut), a contradiction. Consequently, we have
that [s,u] C P{. Hence [s,u] = {su} and P, = (s,z,u,t) with z € N\{s,t,u,w}.
Observe that the subpath P;* of P, between s and u is of positive weight. If there
are two edges f € [s,v] and f’ € [v,t] such that f, f" ¢ P|, where v € V, then we
can replace P; by the edges f and f’ and still have a feasible solution. As by Lemma
2.4.10, a(f) = a(ut), we obtain that a(P;") = 0, a contradiction. Thus, for every node
v € V, the path P| must use all the edges of at least one of the sets [s,v] and [v, ¢]. This
implies that V' = {v}. Moreover, as su € P;, we have that [s,v] N P| =0, [v,t] = {vt}
and P| = (s,u,v,t).
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Let Sy be a solution of S,(G) that does not contain su. Recall that [s,u] = {su}.
Suppose that S; is minimal. Thus S; consists of two edge-disjoint 3-st-paths, say P,
and Pj. As |U| = 1, by Lemma 2.4.9, we have that 6(u) NSy = (). If Sy contains an
edge e of [w, t], as a(e) > 0, e must belong to one of the 3-st-paths of Sy, say P,. Since
({su}Ulu,w])NSy = 0, P, must be of the form (s, 2/, w,t) where 2’ ¢ {s,t,u}. Remark
that the subpath of P, between s and w is of positive weight. Hence, by Lemma 2.4.4,
Pj must intersect every 2-sw-path going through u. But this contradicts the fact that
({su}U[u,w])N Sy = 0. Tt then follows that [w,]N Sy = 0. As |P/NSs| < 1, there is a
3-st-path in Sy, say P», that does not intersect P|. Let P be a 3-st-path going through
the nodes s,u,w,t. From Lemma 2.4.1, it follows that a(P) > a(P;). But then we
have that a(wt) > a(ut), a contradiction. O

2.5 Proof of Theorem 2.3.1

In this section, we prove Theorem 2.3.1, that is P(G, L) = Q(G, L) for L = 2,3. For
this, we consider an inequality ax > « that defines a facet of P(G, L) different from
the trivial and the st-cut inequalities. We will show that ax > « is necessarily an
L-st-path-cut inequality.

Case 1. L = 2. Let U,V,W be as defined in the previous section. By Lemma 2.4.6,
it follows that W = () and hence each 2-st-path uses exactly one edge with a nonzero
coefficient. Thus, any solution of S,(G) contains exactly two edges with a positive
coefficient, which are exactly the edges of the 2-path-cut inequality induced by the
partition {s}, U, V,{t}. This implies that ax > « is the 2-path-cut inequality induced
by this partition.

Case 2. L = 3. Let U, V,W;, W5, W3, Z be as defined in the previous section. We
consider two cases.

Case 2.1. Wy, UW3U Z # (. Let Fy = [{s} UU, Z] U [s,W;] U [U, W3] and
Fy, = [Z,V U {t}] U [Ws,t] U [W;,V] (see Figure 2.4). Remark that F; N Fy, = ()
and that there is no st-path of length 3 in G formed by edges only from F} and F5.
We have the following.

Lemma 2.5.1. For every solution S of S.(G), we have that |S N Fy| =[S N Fy|.
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edges of weight zero
edges of F

edges of Fy

Figure 2.4: The structure generated in Case 2.1

Proof. Assume the contrary. Then there exists a solution, say S;, such that, for one of
its 3-st-path, say P;, we have |P, N Fy| # |Py N F,|. Let P be the second 3-st-path in
S1. W.lo.g., we may suppose that Py N F; # ().

Claim 1. leFQ ZQ

Proof. Since Py N F; # () and F; N Fy = (), we have that |P,N Fy| < 2. If [Py N Fy| =1,
as |[PLNFy| # |PLNFy| and PN F, # 0, |PLN Fy| = 2. Then, P; is of length 3 and
contained in F} U Fy, which is impossible by the remark above. If |P; N Fy| = 2, then
|Py N Fi| = 1, and again we have that P, is of length 3 and contained in F} U Fy, a
contradiction. Thus, |P; N F3| = 0 and the claim is proved. ¢

Claim 2. i) P, N [s, U] = 0.

ii) P, = (s,z,w,t) with z € ZUWj and w € UUW; UW; (z and w may be the same).
iii) [s, U] C P.

iv) [Ul =1 and |[s,U]| = 1.

Proof. First note that iv) is a consequence of iii).

i) If P, uses an edge of [s, U], say su with u € U, as P, N F} # (), P, would be of the
form (s, u, z,t) where z belongs to either Z or W3. But this implies that P, N Fy # (),
which contradicts Claim 1.

ii) Suppose that P; contains an edge of [U, W3], say uws. Note that a(uws) > 0. As,
by i), [s,U] N P = 0, it follows that P, = (s, w3, u,t). By removing uws and adding
su and edges w3v, vt for some v € V, we get a solution of S(G). As the added edges
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all have zero weight, this implies that a(uws) = 0, a contradiction. Consequently, we
have that P, N [U, W3] = (). Then, by i) and the fact that P, N F; # 0, it follows that
Py uses one of the edges of [s, Z UW;]. As, by Claim 1, P, N Fy = (), we obtain that
P = (s,z,w,t), where z € ZUW; and w € U U W; U Ws,.

iii) Suppose that there is an edge of [s, U], say suo, that does not belong to P|. We
have that w # wy. For otherwise, P; would be (s, z,ug,t). As by ii) z € Z U W; and
hence a(sz) > 0, it follows that the subpath of P, between s and u, has a positive
weight. But this implies by Lemma 2.4.4 that suy € P{, a contradiction. We claim
that [ug, w] C P]. In fact, if, for instance, upw ¢ P/, then consider the solution, say
S, obtained from S; by replacing sz and zw by sug and wyw. Clearly, S7 € S(G),
which implies that a(sug) + a(uow) > a(sz) + a(zw). As a(uow) = a(sug) = 0, we
obtain that a(sz) = 0, a contradiction. Thus [ug, w] C Py, and hence [ug, w] = {uqw}.
Suppose now that P = (f, upw, g) where f (resp. g) is an edge of [s, ug] (resp. [w,t])
different from that used by P,. By removing sz, zw and g, and adding the edges su
and ugt, we get a solution of S(G). As by Lemma 2.4.11 a(ugt) = a(g), it follows that
a(sz) = 0, a contradiction. Consequently, P] = (s, w,ug,t). Now, by considering the
solution Sy = (S;\{sz, zw}) U {sue}, one can get a contradiction along the same line.
This ends the proof of the claim. ¢

Now, by Claim 2 iv), we may suppose that U = {u} and [s,u] = {su}. Let S,
be a solution of S,(G) that does not contain su. W.l.o.g., we may suppose that S,
is minimal. Then, by Lemma 2.4.9, it follows that So N d(u) = (). Let P = {s,u,t}.
Clearly, PNSy = (). Moreover, as P| goes through node u, | P/NSs| < 1. In consequence,
there must exist a 3-st-path of Sy, say P, such that P, N P{ = (). Now, by Lemma
2.4.1, we obtain that a(P) > a(P;). By Claim 2 ii) together with Lemma 2.4.11, it
follows that a(sz) < 0. We then have a contradiction and the lemma is proved. O

From Lemma 2.5.1, it follows that the facet defined by ax > « is contained in the
face induced by the equation z(F}) — z(F3) = 0. As, by Lemma 2.3.6, this equation
cannot be a positive multiple of ax = «, we have a contradiction.

Case 2.2. W, UW3UZ = (). Since by Lemma 2.4.6 W # (), we have necessarily that
Wy # 0. Thus {s}, U, Ws, V, {t} is a partition of N. Let T be the set of edges of the 3-
path-cut induced by this partition (these edges are represented by solid lines in Figure
2.5). Note that a(e) > 0 for all e € T. Moreover, a(e) = 0 for all e € E\T'. This is clear
for the edges of E\(T U E(W,)) from Lemma 2.4.5 ii) and the definition of U, V, W5.
If a(z122) > 0 for some 21, 2o € W, then there must exist a solution S of S.(G) and a
3-st-path P of S containing z;z,. W.lo.g., we may suppose that P = (s, 21, z,t). Let
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S = (S\{z122}) U {su, uzs, v, vt} for some nodes u € U and v € V. As S’ € S(G)
and all the added edges have zero weight, it follows that a(z;22) = 0, a contradiction.

N

Figure 2.5: The 3-st-path-cut generated in Case 2.2

Now we claim that each solution of S,(G) contains exactly two edges of T'. First
of all, note that, as the constraint (2.3) associated with 7 is valid for P(G, 3), every
solution of S,(G) must contain at least two edges of 7. Assume that there is a solution
S of S,(G) with more than two edges of 7. So, there must exist in S a 3-st-path P
that contains at least two edges of 7. We consider the case where P = (s, ws, wh,t)
with we, w) € Wy. The other possible cases for P can be treated similarly ((s,ws,t),
(s,we,u,t) with u € U, (s,v,ws,t) with v € V, (s,v,u,t)). Let P’ be the second
3-st-path of S. By replacing P’ by the edges su, uw}, wov, vt in S, we get a solution of
S(G). As all these edges have zero weight, a(P’) = 0, contradicting Lemma 2.4.2.

Thus, every solution of S,(G) uses exactly two edges of T'. This implies that ax > «
is nothing but the 3-path-cut inequality induced by 7', which ends the proof of the
theorem.

2.6 Facets of P(G, L)

In this section, we give necessary and sufficient conditions for inequalities (2.1)-(2.3)
to be facet-defining for P(G, L). This yields a minimal description of this polytope
when L < 3. Throughout this section, G = (N, F) is a complete graph with |N| > 4,
which may contain multiple edges. Hence, by Corollary 2.3.3, P(G, L) is full dimen-
sional. The first theorem describes when the trivial inequalities define facets of P(G, L).
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Theorem 2.6.1. i) For L > 2, inequality x(e) < 1 defines a facet of P(G,L).

ii) For L > 2, inequality x(e) > 0 defines a facet of P(G, L) if and only if [N| > 5,
or |[N| =4 and e does not belong to either an st-cut or an L-st-path-cut, with ezactly
three edges.

Proof. 1) Since we are working here on a complete graph of at least four nodes, the edge
sets F and F\{f}, for all f € E\{e}, are clearly feasible for the THPP. Moreover, their
incidence vectors satisfy the inequality x(e) < 1 as an equality, and they are affinely
independent. Thus, as we have |E \ {e}| + 1 = |E| such solutions, the face induced by
z(e) <1 is of dimension |F| — 1 and so, is a facet of P(G, L).

ii) Suppose first that |N| > 5. Then, the four L-st-paths {s,t}, {s,u,t},{s,v,t} and
{s,w,t} with u,v,w € N\{s,t} are edge-disjoint. Therefore removing any two edges
will cut at most two of these four paths. For this reason, the |E| edge sets E\{e} and

Fy=FE\{e, f} forall fe E\{e},
all belong to S(G). Moreover, their incidence vectors satisfy z(e) > 0 with equality
and are affinely independent. Hence, x(e) > 0 defines a facet of P(G, L).

Suppose now that |[N| = 4. Let e be an edge belonging to an st-cut §(1W) (resp. an
L-st-path-cut T') of cardinality three. Then inequality z(e) > 0 is dominated by the
inequalities

2(35(W)) 2 2, (resp. 2(T) = 2),
z(f) <1, for all f € 6(W)\{e} (resp. f € T\{e}),

and hence z(e) > 0 cannot define a facet.

Now assume that e does not belong to any st-cut, or L-st-path-cut, of cardinality
three. By considering the edge sets £ and E\{e, f} for all f € E\{e}, we have |F|
solutions of S(G), whose incidence vectors satisfy xz(e) > 0 with equality and are
affinely independent. This implies that x(e) > 0 is facet-defining. O

We now investigate the conditions under which inequalities (2.1) are facet-defining.

Theorem 2.6.2. i) If L. = 2, then the only st-cut inequalities that define facets of
P(G,2) are those induced by {s} and N \ {t}.
ii) For L > 3, every st-cut inequality defines a facet of P(G, L).
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Proof. i) Let 6(W) be an st-cut. Suppose first that |[WW| > 2 and |W| > 2. Consider
the partition

Vo = {s),
Vi = W\{s},
Vo = W\{t},
Vi = {t},

and denote by T the 2-st-path-cut induced by this partition. It is easy to see that
T C 0(W). Hence, the st-cut inequality z(0(W)) > 2 is dominated by the 2-st-path-
cut inequality x(7") > 2, along with the nonnegativity constraints.

Thus the only st-cut inequalities that may induce facets of P(G,2) are those induced
by {s} and N\{t}. In what follows, we shall show that the st-cut inequality associated
with W = {s} is facet-defining. The proof for W = N\{t} is similar.

Denote by ar > « the inequality z(d(s)) > 2. Let bxr > [ be a facet-defining
inequality of P(G,2) such that

{z € P(G,2)|ax = a} C {z € P(G,2)|bx = p}.

To show that ax > « defines a facet of P(G, 2), it suffices to show that b = pa for some
p > 0.

First, consider the edge sets
F,={st,e}UE(W), foralleec Ay,
where st is some edge of [s,t] and Ay = §(s)\{st}. As G is complete, F, belongs to
S(G) for all e € A,;. Moreover, we have that az’ = a for all e € Ay;. Thus
0= bzt —bxfr =ble) —b(f), foralle, fe Ay,
and hence,

ble) =+, forallee Ay for some v € IR.

Now, as |[N| > 4, let u,v € W\{t} and consider the solution F' = {su, sv} U E(W),
where su and sv are some edge from [s, u] and [s, v], respectively. Obviously, F' € S(G)
and az” = a. As su € Ay, and hence az’>* = a, we obtain that

0 = bals — ba!" = b(st) — 7.
This yields
ble) =~, foralleei(s).

Now, we show that b(f) = 0 for all f € E(W). Let f be such an edge and u,v be its
end nodes in W. If u # t # v, consider the edge set !, = F,\{f}. Clearly, this one
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belongs to S(G) and its incidence vector satisfies az > o with equality. Hence,

0 = bafs — balsu = b(f).
Now, if v = t (the case where u = t is similar), since |N| > 4, there is a node
w € N'\{u,t}. Consider the edge set F. = Fy,\{f}. Clearly, this one belongs to
S(G) and its incidence vector satisfies az > « with equality. Hence,

0 = bxsw — brfaw = b(f).

Altogether, we finally have

b(e)

b(e)
As a > 0 by Lemma 2.3.6, v > 0. By setting p = v, we get b = pa and the proof is
complete for L = 2.

for all e € E(W).

v, for all e € §(s),
0,

ii) Let us denote inequality (2.1) by ax > « and let bz > (3 be a facet-defining
inequality such that

{r € P(G,L)|ax =a} C{zx € P(G,L)|bx = 3}

As we did before, we will show b = pa for some p > 0.

Let ' = E(W)UE(W) and Ay, = 6(W)\{st} for some fixed st € [s,t]. Consider the
edge sets
F, =T U{st,e}, for all e € Ag.
As F, € S(G) and az' = « for all e € A, it follows that
0 = bxfe — balr =ble) — b(f), for all e, f € Ag.
Hence,

b(e) =, for all e € Ay, for some v € IR.

It remains to show that edge st also has a b-coefficient equal to . This is the object
of the following claim.

Claim. b(st) = 7.
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Proof. Suppose first that |[IW| = 1. Since |N| > 4, there exist two nodes u,v in
W\{t}. Let F = {su,sv} U E(W). Clearly, F € S(G) and az™ = a. As su € A,; and
axf = q, it follows that

0 = bxfs — bl = b(st) — 7.
If |W| = 2 (resp. |W| > 3), then, by considering the solution {ut,sv} UT (resp.
{ut, vt} UT), where u € W\{s}, v € W\{t} (resp. u,v € W\{s}), we obtain along the
same line that b(st) = v and the claim is proved. ¢

Next we show that b(e) = 0 for all e € I". We will prove this for e € E(W), the proof
when e € E(W) can be done along the same line.
Let e € E(W). If e is not incident to s, it is clear that Fy\{e} is a solution of the
problem for each f € A, and hence b(e) = 0.
Thus, suppose that e € [s,u] for some u € W. If |W| = 1, as |[N| > 4, W\{s,u} # 0.
Let v € W\{s,u} and f € [v,t]. As Fy\{e} € S(G), we have that b(e) = 0.
Now, if [W| > 2, let v’ € W\{t}. By considering f’ € [s,v'], we have that F}\{e} €
S(G) and hence b(e) = 0.

Altogether, we have that

ble) =, for all e € (W),
ble) =0, for all e € I

As a > 0 by Lemma 2.3.6, v > 0. Moreover, by setting p = 7, we have that b = pa
and the theorem is established. O

We give now necessary and sufficient conditions for the L-st-path-cut inequalities to
be facet-defining for P(G, L).

Theorem 2.6.3. For L > 2, inequality (2.3) defines a facet of P(G, L) if and only if
Vol = [V = 1.

Proof. Necessity. We will show that =(T") > 2 does not define a facet of P(G, L) if
[Vo| > 2. The case where |V 1| > 2 follows by symmetry.
Suppose that |Vy| > 2, and consider the partition given by
Vo = {s},
Vi=ViU(Vo\{s}),
Vi=Vi,i=2,.. . L+1.
This partition induces the L-st-path-cut inequality z(T') > 2, where T = T\ [V;\{s}, V2.
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As G is complete, we have that T is strictly contained in T, and hence, z(T) > 2 cannot
be facet-defining.

Sufficiency. Now, suppose that |Vo| = |Vp1| = 1, that is Vy = {s} and V1 = {t}.
Let us denote inequality (2.3) by az > « and let bx > 3 be a facet-defining inequality
of P(G, L) such that

{r € P(G,L)|ax =a} C{x € P(G,L)|bx = 3}

We will show that a = pb for some p > 0.

Let Vo = {s},V4,...,V;, Vi1 = {t} be the partition inducing ax > a. Let E =
E\T = (U, E(V) U (UL [Vi. Vist))- Let f € [s,1] and Ty = T\{f}. As the graph G
is complete, it is easy to see that the sets given by

F,=FEU{f,e}, for all e € T},

induce solutions of the THPP, whose incidence vectors satisfy ax > o with equality.
Thus,

0 = bxle — bzt =b(e) — b(e'), for all e, e’ € T}.

Hence,
b(e) = b(e'), for all e, e’ € T}. (2.5)
Now let g € [V, V], ' € Vi, Vi) (9,9 € Tf), and F* = E U {g,g'}. Tt is obvious

that F™* induces a solution whose incidence vector satisfies ax > o« with equality. Thus
bzt — bxfs = b(g’) — b(f) = 0. This together with (2.5) yields

b(e) =, for all e € T for some v € IR.

Now, we shall show that b(e) = 0 for all e € E. Suppose first that e € [Vj, V;]. Consider
an edge h € [s,w] with w € V, and the edge set F\{e}, where F}, is as defined above.
It is easy to see that Fj\{e} still induces a solution of the THPP whose incidence
vector satisfies ax > « with equality. Thus,
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0 = bafh — bxtr\Meh = p(e).

Similarly, we obtain that b(e) = 0 for all e € UiLZO[Vi, Vii1]. Consider now an edge
ec E(V;),ie€{l,...,L}. Let v eV, and b’ € [s,v]. Clearly, the set F},\{e} induces a
solution of the problem. As az™ = azf\M¢t = o, we have that bz = brfw\Mel = o
and hence b(e) = 0.

Consequently, we have that

ble) =0, forall e € E,
b(e) =, forall e € T.
Since o > 0, we have that v > 0, and by setting p = 1/, we obtain that a = pb. O

Let E’' be the set of edges that do not belong neither to an st-cut nor to an L-st-
path-cut, consisting of exactly three edges. From the previous theorems, we have the
following.

Corollary 2.6.4. If G = (N, E) is complete and |N| > 4, then a minimal complete
linear description of P(G,2) is given by

z(d(s)) > 2,

z(4(t)) > 2,

z(T) > 2, for all 2-st-path-cut T induced by Vo = {s}, Vi, Vo, V3 = {t},
z(e) <1, foralle e F,

z(e) >0, foralle € E'.

Corollary 2.6.5. If G = (N, E) is complete and |N| > 4, then a minimal complete
linear description of P(G,3) is given by

z(6(W)) > 2,  for all st-cut §(W),

z(T) > 2, for all 3-st-path-cut T induced by Vo = {s}, Vi, Vo, V3, V) = {t},
z(e) <1, foralle € E,

z(e) >0, foralle € E'.
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2.7 Dominant of P(G, L)

In this section, we consider the dominant of the polytope P(G,L). We give a com-
plete description of that polyhedron for any graph G and integer L. > 2 such that
P(G,L) =Q(G, L).

Let Dom(P(G, L)) be the dominant of P(G, L), that is
Dom(P(G,L)) ={y € R” |3z € P(G,L),r <y}

Let D(G, L) be the polyhedron given by

y(6(W)) > 2, for all st-cut §(WW),

y(6(W)\{e}) > 1, for all st-cut §(W), e € (W), (2.6)
y(T) > 2, for all L-path-cut T,

y(T\{e}) > 1, for all L-path-cut T, e € T,

y(e) >0, foralle € E.

Theorem 2.7.1. For every L > 2, if P(G,L) = Q(G, L), then Dom(P(G,L)) =
D(G, L).

Proof. We first prove that Dom(P(G, L)) C D(G, L). Let y € Dom(P(G, L)). Then
there exists T € P(G, L) such that z < y. Hence, y satisfies (2.1), (2.3) and (2.8). We
show that y also satisfies constraints (2.6) and (2.7).

Consider a constraint y(6(W)\{e}) > 1 of type (2.6). As z(6§(1W)) > 2 and Z(e) < 1,
we have that

y(6(W)\fe}) = z(0(W)\{e})
= z(0(W)) = z(e)
> 2—7(e)
> 1

Now, in a similar way, we obtain that y(7\{e}) > 1 for all L-st-path-cut 7" and
e € T. Therefore Dom(P(G, L)) C D(G, L).
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Next we prove that D(G,L) C Dom(P(G, L)). To this end, first let us note that
the dominant of D(G, L), Dom(D(G, L)), is D(G, L) itself. Thus, to prove that
D(G, L) € Dom(P(G, L)), it is sufficient to show that any extreme point § of D(G, L)
belongs to P(G,L). Indeed, suppose that this is the case. Then any convex com-
bination of extreme points of D(G, L) is also in P(G,L). On the other hand, since
Dom(D(G, L)) = D(G, L), any solution y € D(G, L) can be seen as § + z, where
belongs to the convex hull of the extreme points of D(G, L) and z > 0. As g € P(G, L),
we have therefore that y € Dom(P (G, L)).

So let  be an extreme point of D(G,L). As P(G,L) = Q(G, L) and all inequalities
in Q(G, L) are in D(G, L) except z(e) < 1,e € E, in order to show that y € P(G, L),
it suffices to show that y(e) <1 for all e € E.

Suppose that y(eg) > 1 for some ¢y € E. Since y is an extreme point of D(G, L),
there exists at least one constraint among (2.1),(2.6),(2.3),(2.7), involving the variable
y(eo) and that is tight for .

IFg(O(W)\{f}) = 1 with eg € 6(W)\{[}, then, clearly, g(eo) < y(O(W)\{f}) =1, a
contradiction.

If go(W)) = 2 with e € 6(W), then g(eg) + y(6(W)\{eo}) = 2, and hence
yleo) = 2 — g(6(W)\{eo}). As y satisfies (2.6), it follows that y(eq) < 1, which is
impossible.

We obtain a similar contradiction if one of the constraints (2.3),(2.7) is tight for y. O

It would be interesting to investigate the dominant of the THPP polytope when
P(G,L) # Q(G,L). An immediate consequence of Theorems 2.3.1 and 2.7.1 is the
following.

Corollary 2.7.2. If L = 2,3, then Dom(P(G, L)) = D(G, L).

2.8 Concluding remarks

In this chapter, we have considered the problem of finding a minimum cost edge set
containing at least two edge-disjoint paths between two terminals s and t of length
no more than L, where L > 2 is a given integer. We have given some valid inequal-
ities for this problem and, when L = 2,3, an integer programming formulation in
the space of the design variables. We have also investigated its polyhedral structure
when L = 2,3. In particular, we have shown in that case that the associated polytope
P(G, L) is described by the trivial, st-cut and L-st-path-cut inequalities. Moreover, we
have given necessary and sufficient conditions for these inequalities to be facet-defining
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for any L > 2. This yielded a complete and minimal linear description for P(G, L)
when L = 2,3. We have finally considered the dominant of P(G, L), for which we have
given a complete description for any L > 2 when P(G, L) is given by those inequalities.

Note that the results for L = 2 could be easily extended to the node version of the
THPP, that is, when the two required L-st-paths must be node-disjoint. For this new
problem, one can indeed suppose that the underlying graph G is simple. Therefore, any
two edge-disjoint 2-st-paths are also node-disjoint, and the two problems are equivalent.

Since the separation problems for inequalities (2.1) and (2.3) can be solved in poly-
nomial time when L < 3 (see Section 2.2), from Theorem 2.3.1, it follows that, for
L < 3, the THPP can be solved in polynomial time using a cutting plane algorithm.
To the best of our knowledge, this is the first (non-enumerative) polynomial algorithm
devised for this problem. Since a more general cutting plane algorithm can be derived
for the problem where an arbitrary number k > 2 of edge-disjoint L-st-paths is required
(kHPP), we will present computational results for it later on, in Chapter 3.

Moreover, a natural question that may be posed is whether a similar integer pro-
gramming formulation can be obtained for the tHPP (when L = 2, 3), and whether its
linear relaxation is still integral. This motivates us to give the following conjecture.

Conjecture 2.8.1. When L = 2,3, the linear relaxation of kHPP 1is integral for any
k> 2.

In Chapter 3, we will show that this conjecture holds true when L = 2. The question
for L = 3 will remain open, although the computational experiments will give us some
empirical idea about the answer.

For L = 2,3, the formulation given in Section 2.2 for the THPP can be extended
to the case where more than one pair of terminals is considered. However, the linear
system of constraints will no longer be sufficient to completely describe the associated
polytope. In fact, consider the graph shown in Figure 2.6 with two pairs of terminals
{s,t} and {s',t'}. Suppose that L = 2. Here, a feasible solution must contain at
least two edge-disjoint 2-st-paths and at least two edge-disjoint 2-s't’-paths. It is not
hard to see that the fractional point z = (1,1,1,1,0,0,0,1/2,1/2,1/2) satisfies all
trivial, st-cut and L-st-path-cut inequalities (with respect to the two pairs of terminals).
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Figure 2.6: A fractional extreme point for the problem with several demands

Moreover, 7 is an extreme point of the polyhedron given by these inequalities. Actually,
the following inequality

z(es) + x(es) + x(er) + x(es) + x(eg) + x(e19) > 3 (2.9)

is valid for the problem, but violated by . We will study in depth this more general
problem in Chapters 4 and 5. In fact, inequality (2.9) will be nothing but a double
path-cut inequality (see Section 5.2).

Finally, as it has already been mentioned, if L > 4, the formulation given in Section
2.2 is no longer valid for the THPP. This question will be considered in Chapter 6.



Chapter 3

k Edge-Disjoint Hop-Constrained
Paths Problem

In this chapter, we consider the k-edge connected L-hop-constrained network design
problem for D = {s,t}. This problem, called the k edge-disjoint Hop-constrained Paths
Problem (or kHPP for short), consists in finding a minimum cost subgraph containing
at least k edge-disjoint st-paths of at most L hops with k, L > 2. It can also be seen
as an extension of the THPP (see Chapter 2) to any value k. In particular, we will
prove that Conjecture 2.8.1 holds true when L = 2. This result has been the object
of an article in collaboration with Geir Dahl, A. Ridha Mahjoub and Pierre Pesneau
[18]. Moreover, we have added some computational experiments of a cutting plane
algorithm (and of an enumerative procedure) to solve the kHPP when L = 2, 3. These
will also give some practical insight about the validity of Conjecture 2.8.1 for L = 3.

3.1 Introduction

Given a function ¢ : £ — IR which associates a cost c(e) to each edge e € E, the k edge-
disjoint Hop-constrained Paths Problem (kHPP) is to find a minimum cost subgraph
such that between s and ¢ there exist at least k£ edge-disjoint L-st-paths.

In this chapter, we consider the kHPP for L = 2, 3. We give an integer programming
formulation for this problem and discuss its associated polytope. In particular, we
give a minimal complete linear description of that polytope for L = 2. Finally, we
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present some computational results of a cutting plane algorithm to solve the kHPP
when L = 2,3. We compare these results with those obtained thanks to an enumera-
tive algorithm. Also, these tests will give us some partial answer about the previous
linear description being or not complete for L = 3.

The convex hull of the incidence vectors of the solutions to the KkHPP on G, denoted
by Pi(G, L), will be called the kHPP polytope. If 2" is the incidence vector of the edge
set I of a solution to the kHPP, then clearly =% satisfies the following inequalities

z(6(W)) > k, for all st-cut 6(W),
z(T) > k, for all L-st-path-cut T
1>x(e) >0, foralleecFE.

Inequalities (3.1) will be called st-cut inequalities, inequalities (3.2) L-(st-)path-cut in-
equalities, and inequalities (3.3) trivial inequalities. Remark that these are the general-
ization to any k > 2 of the inequalities (2.1)-(2.3) introduced in the previous chapter.
Their validity can be shown along the same line as in Theorem 2.2.1.

Now, let L = 2 and consider Figure 3.1 for an example of a 2-path-cut inequality
with Vo = {s} and V5 = {t}.

Vo V3

Figure 3.1: Support graph of a 2-path-cut inequality

Remark that the 2-path-cut 7" intersects each 2-st-path in exactly one edge. Let F
be the set of edges involved in a 2-st-path in G. Thus, F; consists of the edges [s, t] and
[s,v], [v,t] for all those nodes v for which G contains these edges. Let G; = (N, E}) be
the subgraph of G induced by E;.
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Observe that, when L = 2, it is equivalent to consider the kHPP on G and on G;.
More precisely, an optimal solution in G will consist of an optimal solution in GG1, plus
the edges in E'\ E; of negatives costs, if any.

Also, it is not hard to see that T' (in G) corresponds to the st-cut §(V, U Vi) in Gj.
Therefore, we can consider the inequalities

(0, (W)) >k, foral W C N,s € W,t ¢ W, (3.4)

where g, (W) stands for the cut induced by W in G;. Clearly, inequalities (3.4)
dominate inequalities (3.1) and (3.2).

Let Qr(G, L) be the solution set of the system given by inequalities (3.1)-(3.3). In
the next section, we show that inequalities (3.1)-(3.3), together with the integrality
constraints, give an integer programming formulation for the kHPP when L = 2, 3.
Moreover, we show that one can also formulate the kHPP when L = 2 using only
inequalities (3.3) and (3.4), along with the integrality constraints. In Section 3.3, we
study the kHPP polytope for L = 2, P,(G,2), and show that P(G,2) is completely
described by these latter two classes of linear inequalities. In Section 3.4, we discuss
the polynomial time solvability of the problem and give some computational results of
a cutting plane algorithm for I = 2, 3. We also test an enumerative procedure to solve
the problem. Finally, in Section 3.5, we propose some concluding remarks.

3.2 Formulation for L = 2,3

In this section, we show that the st-cut, L-st-path-cut and trivial inequalities, together
with the integrality constraints, suffice to formulate the kHPP with L =2,3asa0—1
linear program. To this aim, we first give a lemma. The proof is omitted because it is
along the same line as the proof of Lemma 2.2.2.

Lemma 3.2.1. Let G = (N, E) be a graph, s, t be two nodes of N, and L € {2,3}.
Suppose that there do not exist k edge-disjoint L-st-paths in G, with k > 2. Then there
exists a set of at most k — 1 edges that intersects every L-st-path (if any).

Theorem 3.2.2. Let G = (N, E) be a graph, k > 2, and L € {2,3}. Then the kHPP
1s equivalent to the integer program

Min {cx : x € Q1(G, L), x € ZF}.
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Proof. To prove the theorem, it is sufficient to show that every 0 — 1 solution x of
Qr(G, L) induces a solution of the kHPP when L = 2,3. Let us assume the contrary.
Suppose that x does not induce a solution of the KHPP, but that it satisfies the st-cut
and trivial constraints. We will show that x necessarily violates at least one of the
L-st-path-cut constraints x(7) > k.

Let G, be the subgraph induced by z. As z is not a solution of the problem, G, does
not contain k edge-disjoint L-st-paths. It then follows, by Lemma 3.2.1, that there
exists a set of at most £ — 1 edges in G, that intersects every L-st-path. Consider the
graph G, obtained from G, by deleting these edges. Obviously, G, does not contain
any L-st-path. We claim that G, contains at least one st-path of length at least L+ 1.
In fact, as x is a 0 — 1 solution and satisfies the st-cut inequalities, (-, contains at least
k edge-disjoint st-paths. Since at most k£ — 1 edges were removed from G, at least one
path remains between s and ¢ in G,. However, since G, does not contain an L-st-path,
that path must be of length at least L + 1.

Now consider the partition Vp, ..., Vi of N, with V5 = {s}, V; the set of nodes at
distance i from s in G, fori =1,... L, and V., = N\ (U@-L:o %), where the distance
between two nodes is the length of a shortest path between these nodes. Since there
does not exist an L-st-path in G, it is clear that ¢ € Vii1. Moreover, as, by the
claim above, G, contains an st-path of length at least L + 1, the sets V...,V are
nonempty. Furthermore, no edge of G, is a chord of the partition (that is, an edge
between two sets V; and Vj, where |i — j| > 1). In fact, suppose that there exists an
edge e = vv; € [V;,V;] with |i —j| > 1 and ¢ < j. Then v, is at distance i+ 1 < j from
s, a contradiction.

Thus, the edges deleted from G, are the only edges that may be chords of the partition
in G,. In consequence, if 7" is the set of chords of the partition in G, then z(7T") < k—1.
But this implies that the corresponding L-st-path-cut inequality is violated by . O

Of course, since for k£ = 2 we already had that this formulation was no more suffi-
cient when L > 4, the same problem also occurs for the ktHPP. On the other hand, it is
easy to show that, when L = 2, the problem can be advantageously formulated using
inequalities (3.4) instead of (3.1) and (3.2).

Theorem 3.2.3. Let G = (N, E) be a graph and k > 2. Then the kHPP with L = 2
18 equivalent to the integer program

Min {cx : x satisfies (3.3) and (3.4), v € Z*}.

Proof. 'To prove the theorem, it is sufficient to show that every 0—1 solution x satisfying
(3.3),(3.4) induces a solution of the kHPP for L. = 2. Let us assume the contrary.



3.3 Facets and Completeness 59

Suppose that x does not induce a solution of the kHPP for L = 2. If x does not
satisfy an st-cut inequality, then clearly one of the inequalities (3.4) is not satisfied.
So suppose that x satisfies the st-cut and trivial constraints. Then, by doing the same
proof as in the previous theorem, one can show that = necessarily violates at least one
inequality (3.4) that corresponds to a 2-path-cut constraint. O

3.3 Facets and Completeness

In this section, we will show that inequalities (3.3),(3.4) completely describe the poly-
tope Pi(G,2). This answers Conjecture 2.8.1 when L = 2. In order to give a minimal
system for this polytope, we first study when these inequalities are facet-defining.

3.3.1 Facets

We first establish the dimension of Py (G, L). As for k = 2 (see Section 2.3), we say
that an edge e € E is L-st-essential if e belongs either to an st-cut of cardinality £,
or to an L-st-path-cut of cardinality k. Let E* denote the set of L-st-essential edges.
Thus, Py(G —e,L) = () for all e € E*. We have the following theorem, which can be
easily seen true along the same line as in Theorem 2.3.2.

Theorem 3.3.1. dim(P(G, L)) = |E| — |E*|.

Throughout this section, G = (N, F) is a complete graph with |N| > k + 2, which
may contain multiple edges. Hence any st-cut and L-st-path-cut of G contains at least
k + 1 edges. Therefore, by Theorem 3.3.1, P(G, L) is full dimensional.

Theorem 3.3.2. i) For L > 2, inequality x(e) < 1 defines a facet of Py(G, L).

ii) For L > 2, inequality x(e) > 0 defines a facet of Py(G, L) if and only if [N| > k+3,
or |[N| = k+2 and e does not belong to either an st-cut or an L-st-path-cut with exactly
k+ 1 edges.

Proof. 1) As |N| > k+2, and P, (G, L) is full dimensional, £y = E\{f} is a solution for
the kHPP for every f € E\{e}. Hence the sets E and E; for f € E\{e} constitute a
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family of | F'| solutions of the kHPP. Moreover, their incidence vectors satisfy x(e) = 1,
and are affinely independent.

ii) Suppose first that |N| > k + 3. Then G contains k + 2 edge-disjoint L-st-paths (an
edge of [s,t] and k + 1 paths of the form (s,u,t), u € N\{s,t}). Hence any edge set
E\{f,g}, f,g € E, contains at least k paths among these k + 2 L-st-paths. Consider
the sets

Ey = E\{e, f} for all f € E\{e}.

By the above remark, these sets, along with £'\{e}, induce solutions of the ktHPP. Now,
it is easy to see that the incidence vectors of E\{e} and Ey, f € E\{e}, all satisty
z(e) = 0 and are affinely independent.

Now suppose that |[N| =k + 2. If e belongs to an st-cut 6(W) (resp. an L-st-path-cut
T) with k£ + 1 edges, then z(e) > 0 is redundant with respect to the inequalities

z(6(W)) > k, (resp. z(T') > k),
—z(f) > —1, forall f € §(W)\{e}, (resp. f e T\{e}),

Vv

and hence, cannot be facet-defining.

If e does not belong to neither an st-cut nor an L-st-path-cut with k£ + 1 edges, then
the edge sets E\{e} and Ef, f € E\{e}, introduced above, are still solutions for the
problem. Moreover, their incidence vectors satisfy z(e) = 0 and are affinely indepen-
dent. O

Now we show that inequalities (3.4) are always facet-defining.

Theorem 3.3.3. Constraints (3.4) define facets for Py(G,2).

Proof. Let us denote inequality (3.4) by axr > «, and let bx > (3 be a facet defining
inequality of Py(G, 2) such that

{z € P.(G,2) |ax = a} C{z € P(G,2)|bx = 3}.

We will show that b = pa for some p > 0. Let T' = g, (W), W1 = W\{s} and

Wy = W\{t}. Let E = E\T. As |N| > k + 2, |[Wy| + |[W5| > k. So consider k nodes

U1, ..., € Wiy UW,. Suppose that vy,...,v, € Wy and vgqq, ..., v, € Wy for some

0<qg<k. Lete €lv,t]fori=1,...,qande; € [s,v;] fori=¢q+1,... k. Let
Fy={ey,...,exJUE.

It is clear that F} induces a solution of the kHPP. Let e € T\{ey,...,ex}. If e is
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parallel to one of the edges ¢;, say e, then clearly F| = (Fi\{e1}) U {e} still induces

F,

a solution for the problem. Since az™ = az®i = a, we get b(e;) = b(e). This implies

that
b(f) = pi, for every f parallel to e;, for some p; € R, fori=1,... k. (3.5)

If e is not parallel to any e;, then F; = (F1\{e;})U{e} induces a solution for the kHPP,
for j = 1,...,k. As an edge of [s, ] is such an edge, this together with (3.5) implies
that, for some p € IR,

be) = p, for every edge f € T. (3.6)
Now we shall show that b(f) = 0 for all f € E. Suppose f € [s,W;]. If f is not
incident to any node among vy, ..., v,, then Fy\{f} induces a solution of the problem,

and hence, b(e) = 0. If f € [s,v;] for some 1 < i < ¢, then let

A = (R\{f,e:}) U{g}, ~
where g is an edge of [s,t]. It is easy to see that F} still induces a solution of the
EHPP. As, by (3.6), b(e;) = b(g), it follows that b(f) = 0. Similarly, we can show that
b(f) =0 for all f € [Wy,t]. If f € [Wy,Wy]U E(W;)U E(W,), then obviously Fi\{f}
is a solution of the problem, and hence, we obtain that b(f) = 0.

Thus we have that
ble) = p, ifee T,
b(e) =0, if not.

Since ax > « is not a trivial inequality, we have that p > 0, and hence, that b = pa. [

3.3.2 The polytope P;(G,?2)

We now consider the polytope Py (G,2) and we give a complete linear description of
this polytope. In fact, we will use an idea from [14] which was used to find a com-
plete linear description of the dominant of P;(G,2). The idea is based on the fact
that the only edges e € E that can lie in a 2-st-path are [s,t], and [s,v], [v,] for
v # s,t, that is, the edges of F;. Thus, essentially, the remaining edges play no role.
Our proof uses this reduction combined with a well-known result on edge-disjoint paths.

A linear system Ax < b is totally dual integral (TDI) if, for all integral ¢ such that
max{cTx : Az < b} is finite, the dual min{y”b : yTA = ¢’', y > O} has an integral opti-
mal solution. This implies that, if Az < bis TDI and b is integral, then the polyhedron
given by Ax < b is integral. In what follows, we give a TDI system that characterizes
Pi(G,2).
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Theorem 3.3.4. The system given by (3.3) and (3.4) completely describes the polytope
P.(G,2). Moreover, this system is TDI.

Proof. Observe first that P, (G, 2) is the product of the polytope P, (G1,2) and [0, 1)7\F1|
where G; = (N, E;) is the subgraph of G containing only the edges belonging to 2-
st-paths (as defined in Section 3.1). Note that in G every st-path is a 2-st-path.
Thus, P.(G1,2) is the convex hull of incidence vectors of edge sets in GG; containing k
edge-disjoint st-paths and therefore it equals the solution set of the system

(g, (W) >k, foral W C N, se Wt & W,
0<z, <1, for alle € E.

This is a direct consequence of a well-known result on edge-disjoint paths (a recent
reference is Schrijver [61]). Moreover, the system is TDI. The theorem now follows
by noting that the TDI property extends to the product of the two polytopes (this is
immediate from the definition of TDI). O

Note that, if G = (IV, F) is a complete graph, with |N| > k+ 2, then, from Theorems
3.3.2, 3.3.3 and 3.3.4, we have the following.

Corollary 3.3.5. If G = (N, E) is complete and |N| > k + 2, a minimal complete
linear system describing Py(G,2) is the following.

2(0g,(W)) >k, forall W C N,s € W,t ¢ W,

z(e) <1, foralle e E,

Te > 0, for all e € E satisfying condition ii) of Theorem 3.3.2.

In terms of st-cut and L-path-cut inequalities in G, we then have the result here
under, which answers Conjecture 2.8.1 for L = 2.

Corollary 3.3.6. If G = (N, E) is complete and |N| > k + 2, a minimal complete
linear system describing Py(G,2) is the following.

z(6(s)) = k,

z(0(t)) = k,

x(T) >k,  for all 2-st-path-cut T with Vo = {s} and V3 = {t},
z(e) <1, foralle e F,

ZTe > 0, for all e € E satisfying condition ii) of Theorem 3.3.2.
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3.4 Solvability and computational results

The separation problem for inequalities (3.4) can be solved in polynomial time using
any polynomial max-flow algorithm (e.g. [44]). Therefore the kHPP for L = 2 can be
solved in polynomial time using a cutting plane algorithm.

Also note that this polynomial cutting plane can be used for solving the node-disjoint
case, that is to find a minimum cost subgraph containing at least k£ node-disjoint 2-st-
paths. In fact, for this problem, we can suppose that the underlying graph does not
contain multiple edges. In consequence, as L = 2, two L-st-paths are node-disjoint if
and only if they are edge-disjoint. Therefore, the system given before is also a complete
minimal description of the associated polytope.

The separation problem for the L-st-path-cut inequalities (3.2) can be solved in
polynomial time if L < 3 [25]. Hence these inequalities can be used, together with
inequalities (3.1), within the framework of a polynomial time cutting plane algorithm
for the kHPP for L = 2, 3. However, when L = 3, we do not have the guarantee that
this procedure will solve the problem to optimality. Indeed, except for £k = 2 (see
Chapter 2), we do not know if this linear system is integral or not.

Nevertheless, we will now present computational results of such a cutting plane algo-
rithm for the kHPP, not only for L = 2, but also for L = 3. In the latter case, whether
or not we will always obtain a feasible solution will at least gives us some insight about
the linear relaxation being still integral or not.

The computational results presented here concern instances consisting in complete
graphs with edge costs equal to random values in the interval [1,1000]. These random
EHPP problems were generated with n = 20 to n = 100 nodes, for different numbers k
of required edge-disjoint L-st-paths. For each couple (n, k), five instances were tested
for L = 2, and five others for L = 3.

The cutting plane algorithm has been implemented in C++, using CPLEX 8.11 as
linear solver, and tested on a Pentium III at 933 MHz with 384 Mo of RAM under
Linux. The separations for the st-cut inequalities and L-st-path-cut inequalities are
performed exactly as described in Section 2.2. Recall that for L = 3 and k£ > 2 we
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do not have the guarantee that this algorithm will reach an optimal integer solution.
We have indeed not established that those two families of inequalities, along with the
trivial constraints, are sufficient to describe the KHPP polytope in that case.

In the following table, the entries are:

n . the number of nodes in the graph,
k : the number of required edge-disjoint L-st-paths,
Cut2 : the average number of st-cut inequalities generated
over the five random KHPP instances tested when L = 2,
Pcut2 : the average number of 2-st-path-cut inequalities,
CPU2 : the average CPU time in seconds when L = 2,
Cut3 : the average number of st-cut inequalities generated

over the five random KHPP instances tested when L = 3,
Pcut3 : the average number of 3-st-path-cut inequalities,
CPU3 : the average CPU time in seconds when L = 3.

In Table 3.1, we see that all instances have been solved within a very reasonable
runtime. For I = 2, the maximum is about 5 seconds for instances with 100 nodes
and 45 paths, while, for L = 3, it is about 3.5 minutes for instances with 100 nodes
and 78 paths. Moreover, for all kHPP instances tested when L = 3, the resulting
optimal solution is integer. This lets us think that Conjecture 2.8.1 also holds true for
L = 3. In most cases, we remark that the numbers of generated st-cut inequalities and
of L-st-path-cut inequalities are quite similar, slightly in favor of the first ones, maybe
because they are separated before the second ones. Finally, it seems that the comput-
ing time increases from k = 2 to k = n/2, and decreases from k = n/2 to k =n — 1.
This general behavior is confirmed through the following two graphs, giving the CPU
time in function of £ for a fixed instance of 100 nodes, for L = 2 and L = 3, respectively.

In Figure 3.2, we see that the maximum runtime when L = 2 is attained around 45
edge-disjoint paths. Moreover, the slope of the curve mainly keeps the same sign before
and after this critical value for k. On the contrary, when L = 3, the curve in Figure
3.3 presents several local maxima. Despite this, the greatest runtime is still reached
around k& = n/2, namely for 55 edge-disjoint paths.

Note that, if the graph has positive costs and no parallel edges, the problem for
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Table 3.1: Results for random AHPP instances when L =2 and L = 3

[ » k] Cut2 Pcut2 CPU2 | Cut3 Pcut3 CPU3 |

20 2 11 9 0.028 23 3 0.049
20 5 7 7 0.027 19 8 0.067
20 10 10 10 0.034 19 11 0.084
20 15 9 9 0.034 23 4 0.095
20 19 0 0 0.011 0 0 0.010
40 2 22 13 0.073 54 9 0.229
40 10 22 22 0.124 52 49 0.825
40 19 22 22 0.139 55 46 0.873
40 30 15 15 0.111 57 31 0.851
40 39 0 0 0.022 0 0 0.023
60 2 44 26 0.241 84 12 0.614
60 15 40 40 0.454 79 75 4.269
60 30 41 41 0.563 137 133 9.929
60 45 24 24 0.326 144 117 9.097
60 59 0 0 0.040 0 0 0.041
80 2 21 17 0.254 112 5 1.537
80 19 50 50 1.208 245 243 35.746
80 39 62 62 1.815 270 267 45.783
80 59 33 33 0.857 159 152 21.950
80 78 9 9 0.268 26 0 0.727
100 2 39 22 0.530 217 7 8.190
100 19 53 53 1.964 503 500 152.323
100 45 84 84 4.730 493 491  181.618
100 78 44 44 1.734 553 537  207.464
100 98 7 7 0.348 87 0 4.764

L = 2 can also be solved polynomially, for k fixed, by enumerating the (at most) n — 1
different 2-st-paths in G and picking the k of these paths with smallest cost. The
same holds for any fixed values of L and k, since the number of L-st-paths is always
polynomial for simple graphs and the edge-disjunction of k L-st-paths can be verified
in polynomial time (by verifying that the resulting incidence vector is in 0 — 1). Note
that our cutting plane algorithm for L. = 2,3 is polynomial even when £ is not fixed.
Here below, we compare this enumerative procedure to our cutting plane algorithm on
several instances, and show that the latter one is a lot more effective in practice than
the former one. In the next table, Enum2 and Enum3 report the CPU time in seconds
of the enumerative algorithm, for L = 2 and 3, respectively.

Clearly, for the instances tested, the cutting plane algorithm performed a lot faster
than the enumerative procedure. In particular, when (n, k) = (20, 5), (20, 10) or (40, 5),
for L = 3, while the former one gave the optimal solution in less than one second, the
latter one had not yet reached optimality after one day of computations.
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Table 3.2: Respective CPU times of the enumerative and cutting plane algoritms for
L=23

| » & ] Enum2 CPU2 | Enum3  CPU3 ||

20 2 0.03 0.02 0.89 0.03
20 5 0.43 0.02 | > 86400.00 0.03
20 10 6.16 0.02 | > 86400.00 0.06
40 2 0.07 0.04 81.95 0.05
40 5 91.15 0.07 | > 86400.00 0.51
100 2 2.78 1.52 18303.94 4.51

3.5 Concluding remarks

In this chapter, we have given a complete and minimal description of the polytope asso-
ciated to the problem of finding a minimum cost subgraph with at least k edge-disjoint
2-st-paths, for any k > 2. This have answered part of Conjecture 2.8.1 from Chapter 2.

Moreover, we have presented some computational experiments of a cutting plane
algorithm for this problem when L = 2 or 3. Thanks to the polynomial separation
procedures used in it, we have reached optimality in a few minutes for instances up to
100 nodes and arbitrary values k of required paths. This appeared to be a lot better
than the performance of the enumerative procedure, which is only polynomial for k
fixed. We have also analyzed the variation of the computing time in function of k,
and shown that this one is maximum when £ is about half the number of nodes in the
graph. Finally, all optimal solutions obtained when L = 3 were integer, which gives
hope for Conjecture 2.8.1 being still true when L = 3.

Of course, the kHPP can be seen as a special case of the more general problem when
more than one pair of terminals is considered. The efficient cutting plane procedure
used here for solving the kHPP will be our starting point in order to devise a good al-
gorithm for that new problem. Our primary goal will then be to determine new classes
of facet defining inequalities for this more general problem. Separation procedures for
these classes will be embedded in the previous algorithm. We will also make use of
branching this time. The whole Branch-and-Cut algorithm, along with a polyhedral
study of the problem, will be presented in the next two chapters.

Finally, it would be interesting to study from a polyhedral point of view the kHPP
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for L > 3. For k = 2 and L = 3, we already shown in Chapter 2 that the st-cut, L-st-
path-cut and trivial inequalities describe completely Py(G, L). However, for £ = 2 and
L = 4, this system does not suffice to even formulate the kHPP as an integer program.
This question will be considered in Chapter 6.



Chapter 4

Rooted Two-Edge Connected
Hop-Constrained Network Design
Problem

In this chapter and the next one, we will consider the Two-edge connected Hop-
constrained Network Design Problem (or THNDP for short). So, if the number of
required edge-disjoint L-paths will be fixed to 2 again, we will work this time with a
non-singleton set D of demands. Nevertheless, for most of the results given in this
chapter, we will restrict our attention to L = 2,3, and D being rooted, that is, all
demand pairs having one node in common. This work has been the object of an article
[45]. In Chapter 5, we will then consider in more depth the case where D is an arbitrary
set of demands.

4.1 Introduction

Let G = (N, E) be a graph. Let D C N x N be a set of pairs of nodes, called demands.
If the pair {s,t} is a demand in D, we will call s and ¢ demand nodes or terminal
nodes. In particular, when several demands {s,},...,{s,t;} are rooted in the same
node s, we will speak of s as a source node and of the t;’s as the destination nodes of
s. The nodes in N that do not belong to any demand of D, will be called Steiner nodes.
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Let L > 2 be a fixed integer. If s,¢ are two nodes of N, recall that an L-st-path in
GG is a path between s and ¢ of length at most L, where the length of a path is the
number of its edges (or hops). Given a function ¢ : F — IR which associates a cost c(e)
to each edge e € F, the Two-edge connected Hop-constrained Network Design Prob-
lem (THNDP) is to find a minimum cost subgraph such that, between each demand
{s,t} € D, there exist at least two edge-disjoint L-st-paths. If all the demands in D
are rooted in some node s, then we will speak about the rooted THNDP.

In this chapter, we study the THNDP from a polyhedral point of view. We first
show that the (rooted) THNDP is strongly NP-hard for any fixed value of L > 2. We
then give an integer programming formulation for the THNDP with L = 2,3. We
also introduce several classes of valid inequalities, along with necessary conditions and
sufficient conditions for these inequalities to be facet-defining in the rooted case. We
finally discuss separation routines for these classes of inequalities, and, using them, we
propose a Branch-and-Cut algorithm for the THNDP when L = 2,3. We conclude by
giving some computational results based on random and real instances, in the rooted
and arbitrary cases, for L = 2 or 3.

Recall that, for a partition II = (Vp, V4,...,V},) of N, the associated multicut in G,
denoted by Ap(G) = 0(Vp, Vi,...,V,), is the set of edges having their end nodes in two
different subsets. We will then denote by Eff" = (J,_, .1, [Vi, Viy1] the set of edges
between the consecutive subsets V;, V,11,..., V41 of II. Also, given a set of demands
D C N x N and an integer L > 2, the convex hull of the incidence vectors of the so-

lutions to the THNDP on G, denoted by Pg(D, L), will be called the THNDP polytope.

The chapter is organized as follows. In the next section, we investigate the complexity
of the (rooted) THNDP. In Section 4.3, we give an integer programming formulation for
the problem when L = 2, 3. In Section 4.4, we present some new classes of valid inequal-
ities. Necessary and sufficient conditions for these inequalities to be facet-defining are
discussed in Section 4.5. In Section 4.6, we study the separation of these inequalities.
In Section 4.7, we derive a Branch-and-Cut algorithm and present our experimental
results. Finally, in Section 4.8, we give some concluding remarks.
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4.2 Complexity of the THNDP

It is easy to see that the rooted THNDP is a generalization of the two-edge connected
subgraph problem. This consists, given a graph with weights on its edges, in finding
a minimum weight subgraph such that, between every pair of nodes, there exist at
least two edge-disjoint paths. So the two-edge connected subgraph problem is nothing
but the rooted THNDP for D = {s} x N and L sufficiently large. It is well known
that this former problem is N P-hard, even when the weights are all equal to 1. This
implies that the rooted THNDP is also N P-hard in this case. Moreover, since the in-
put is then of polynomial length, we have that the rooted THNDP is strongly N P-hard.

In what follows, we are going to show that the rooted THNDP remains strongly
N P-hard for every L > 2. Of course, since the rooted THNDP is a particular case of
the THNDP, the same will hold for the latter problem.

Theorem 4.2.1. For L > 2 fized, if P #* NP, then the rooted THNDP 1is strongly
N P-hard.

Proof. We will show that any instance of the minimum cardinality dominating set
problem can be polynomially transformed to an instance of the rooted THNDP with
L > 2. As the former problem is N P-hard (see [27]), this will prove that the latter one
is also N P-hard. Moreover, as the input data of the corresponding THNDP instance
will always be of polynomial length, we obtain that this problem is strongly N P-hard.

Consider an instance G = (N, E) of the dominating set problem. This problem con-
sists in finding a subset N’ of N of minimal cardinality such that every node in N\ N’
is adjacent to at least one node of N’.

Let us construct an instance of the rooted THNDP for a fixed value of L in the
following way. We create a source node s, and two copies, N; and N,, of N. Consider
an edge sv for each node v € N; U Ny, and an edge v,v5 between v; € Ny and vy € Ny
if the corresponding nodes in N are either the same or adjacent to each other in the
original graph G. Finally, insert L —2 nodes of degree two on each edge between either
s and Ny, or Ny and N,. Observe that the latter operation transforms these edges into
paths of length L — 1, which we denote in the following way. For each u € {s} UN; and
v € Ny, let us call P, the (L — 1)-uv-path. Let us denote by G = (N, E) the auxiliary
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graph. See Fig. 4.1 for an illustration for L = 3. We consider the rooted THNDP on
G, with unit costs on all edges, and the set N, as destination nodes relatively to s.

Let S* be an optimal solution to the rooted THNDP in G with respect to s and
N5. In what follows, we are going to show that an optimal solution of the THNDP
in G corresponds to a minimum cardinality dominating set in G and conversely. Let

Fl = UUGNQ Psv and FQ = UUEN1,UGN2 Puv-

v w

G = (N,E)

Figure 4.1: An instance of the dominating set problem (graph G) and the
corresponding instance of the rooted THNDP with L = 3 (graph G)

Claim 1. There exists an optimal solution S* of the rooted THNDP in G such that

(i) S* contains all the paths of I', and

(ii) S* contains exactly |N| paths from T's.

Proof. First remark that any feasible solution to the THNDP will contain at least 2| V|
paths from I'; U Ty, since such a path used for an L-svs-path, with vy € Ny, cannot be
used for an L-sv)-path, where vj € No\{v2}.

Moreover, an optimal solution S* for the THNDP in G can be considered so that it
contains the |N| paths of I';. Indeed, if a path of T'y, say Py, with vy € Ny, is not
taken in S*, then there must exist two L-svs-paths in the solution, going through Nj.



4.2 Complexity of the THNDP 73

Therefore, the optimal solution contains two paths from I's incident to v,. Now, by
replacing one of these two by P;,,, we get a solution with the same cardinality, hence
being still optimal, and containing P,,. This shows (i).

Finally, by (i) and the first remark, we have that S* must contain at least | V| paths
in I'5. As, for each node vy € N», only one path from I'y is needed in S*, and since
the costs are positive, it follows that S* contains exactly |N| paths from I's, which
establishes (ii). ¢

By Claim 1, all the paths of I'; can be considered in S* and S* then contains ex-
actly |N| paths from I';. As a consequence, determining such an optimal solution S*
reduces to finding a minimum number of edges between s and N; such that, for each
node vy € Ny, there is a path of length exactly L between s and vs, going through
N; and using one of those |N| paths of I's. Since every node of N; is adjacent to s,
this is equivalent to finding a minimum cardinality subset Ni of N; that covers all
the nodes of Ny, in the sense that all the nodes of N, are reachable by the paths of
I’y going out of Ni. See for instance Fig. 4.1 where S* is represented by the bold edges.

Claim 2. A node subset N’ of N is a dominating set of G if and only if the correspond-
ing subset N| of N; covers all the nodes of N; in G.

Proof. Suppose that we have a dominating set N’ of G. By definition, each node of
N\N'is adjacent to at least one node of N’. Let Nj and N} be the sets of nodes corre-
sponding to N’ in N; and N, respectively. In G, we have that each node in N\ N} is
adjacent to at least one node of N| C N; by a path of I'y. Moreover, by construction,
each node of N/ is adjacent to its copy in Nj. Hence, we have that N, is covered by
the paths of I's going out of N|. The other way is similar. ¢

By Claim 2, and the above developments, the minimum cardinality subset N| C N;
that covers N, corresponds to a minimum cardinality dominating set in G (for example,
the black node w in Figure 4.1). Moreover, it is clear that any optimal solution in G
can be transformed into a solution verifying the conditions of Claim 1 in polynomial
time. ]

For rooted demands and unitary costs, along with the additional assumption that
the underlying graph is complete, the THNDP can be solved in polynomial time, as
shown in the following theorem. This result is based on Theorem 4.4.5 whose proof in
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given in Section 4.4.

Theorem 4.2.2. If the graph G is complete, and all edge costs are equal to 1, the
rooted THNDP can be solved in polynomial time for every L > 2.

Proof. Let D = {{s,t1},{s,t2},...,{s,ta}} be a set of d demands rooted in some
node s. By Theorem 4.4.5, the minimum number of edges of a feasible solution to
the THNDP is [(L + 1)d/L]. Since the graph G is complete, it is easy to build a
solution having exactly this number of edges, hence optimal for the THNDP in G with
unitary costs. This solution can be constructed in the following way. We consider the
first L destination nodes and cover them, along with s, with a simple cycle of length
L + 1. Observe that each destination node ¢; that is considered is covered by two
edge-disjoint L-st;-paths. This procedure is iterated for sets of L destination nodes
until there remain [ < L destination nodes to cover. If [ = 0, we are done. If [ = 1, we
link the last destination node ¢; to s and to t;_; (two additional edges). The resulting
solution contains [(L + 1)d/L] edges. If [ > 1, we cover the [ remaining destination
nodes, along with s, by a simple cycle of length [ + 1, and the obtained solution still
contains the desired number of edges. 0J

4.3 Integer programming formulation

It is clear that the incidence vector " of any solution (N, F') to the THNDP for any
L > 2 satisfies the following inequalities.

z(6(W)) > 2, for all st-cut 6(W), for all {s,t} € D, (4.1)
z(T) > 2, for all L-st-path-cut 7', for all {s,t} € D, (4.2)
z(e) <1, foralle € E, (4.3)
z(e) >0, foralle € E. (4.4)

Recall that inequalities (4.1), (4.2), and (4.3)-(4.4) are respectively called st-cut in-
equalities, L-(st-)path-cut inequalities, and trivial inequalities. Also, with the notations
of Section 4.1, note that an L-path-cut T is equal to Ap(G)\EY".

It is clear that the system of inequalities (4.1)-(4.4) along with integrality constraints
formulates the THNDP as an integer program when L = 2, 3. The proof being similar
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to the one for a single demand {s,t} (see Theorem 2.2.3), we only give the theorem
and its lemma.

Lemma 4.3.1. Let G = (N, E) be a graph, s and t two nodes of N, and L € {2, 3}.
Suppose that there do not exist two edge-disjoint L-st-paths in G. If G contains an
L-st-path, then there exists an edge that belongs to every L-st-path.

Theorem 4.3.2. Let G = (N, E) be a graph and L € {2,3}. Then the THNDP is
equivalent to the integer program

Min {cx : x satisfies (4.1)-(4.4),x € ZF}.

Of course, this result is no more true when L > 4, since this was already the case
when |D| = 1 (see Chapter 2). The problem seems to be much harder in that case.
We have however identified other classes of valid inequalities for the THNDP, for any
L > 2. The next section is devoted to these classes.

4.4 Valid inequalities

In what follows, we present new classes of valid inequalities for the THNDP for any
L > 2 and set of demands D = {{s1,t1},...,{sa,ta}} with d > 2. Note that some
demands may have common nodes.

Theorem 4.4.1. Let G = (N, E) and I1 = (Vo, V4, ..., Vi11) be a partition of N with
s1 € Vo (resp. t1 € Vo) and t1 € Viiq (resp. s1 € V1) Leti € {0,..., L} such that
Vi and V; 1 induce st-cuts. Let

E= [‘/i;la Vil U [Visr, Vieal U (U g iy, o> 1 Ve Vi),
and F' C E. Then the inequality

o(An(G)\(F U EY U E™")) >3~ ||F|/2] (4.5)

is valid for Pg(D, L).



76 Rooted Two-Edge Connected Hop-Constrained Network Design Problem

Proof. Observe that the following inequalities are valid for the THNDP.

z(0(Vi)) > 2,

2(0(Vita)) > 2

o(An(GN\E;") > 2,

—z(f) > —1, forall feF,
x(f) > 0, for all f € E\F.

The first two inequalities indeed correspond to the st-cuts induced by V; and V4,
respectively, and the third one is the L-s;t;-path-cut inequality induced by II. By
summing these inequalities, dividing the sum by 2, and rounding up the righthand side
to the highest integer, we obtain inequality (4.5). O

Inequality (4.5) will be called double cut inequality, and the set of edges having a
positive coefficient in (4.5) double cut.

In particular, these inequalities will take the following form when L = 2,3, |F| =1
and i = 0 (in that case V;_; does not exist).

Corollary 4.4.2. i) Let L = 2 and (Vo, V1, V2, V3) be a partition of N such that
s1 € Vi (resp. t1 € Vi), to € Vi and t; € Vi (resp. sy € V). Let e € [V1, V5], The
double cut inequality

2(6(Vo)) + =([Vi, Vs]) + 2([V1, Val\{e}) > 3 (4.6)
is valid for Pg(D,2).

ii) Let L =3 and (Vy,...,Vy) be a partition of N such that s; € Vg (resp. t1 € Vi),
to € Vi and ty € Vi (resp. sy € V). Let e € [Vi, Vo] U [Vo, Vi]. The double cut
inequality (see Fig. 4.2)

z(6(Vo)) + x([Vi, Vs U Vi]) + 2(Vi UV, Va]\{e}) > 3 (4.7)
is valid for Pg(D,3).
Our second class of valid inequalities are called triple path-cut inequalities. In a sim-

ilar way as before, we will speak of a triple path-cut as the set of the edges having a
positive coefficient in such an inequality. They are defined as follows.
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Figure 4.2: Support graph of a double cut inequality for L = 3

Theorem 4.4.3. Let L > 4 and 11 = (Vo, Vi,..., Vo) be a partition of N such that
S1,82 € Vo, t1 € Vi1, and ty € Viio. Let e € [V, Vi1 U Viis]|. Then the inequality

Qx(AH(G)\E%L_l) - x(Uj:O,l,Q,L[Vjv Vit U Viya]) — 2([Vie1 U Vg, Vi) — 2(e) > 3,
(4.8)
is valid for Pg(D, L).

Proof. Let T be the L-s;t;-path-cut induced by the partition (Vo, Vi U Vo, Vo, V3, ...,
Vi-1,Ve, Vii1), and T and T3 be the L-soto-path-cuts induced by (Vo, Vi U Vi1, Vo, Vi,
s Ve, Vi, Vo) and (Vo, Vi, Vo, Vi, oo Vi1, Vi U Vg, Vige), respectively. Then
the following inequalities are valid for the THNDP.

x(17) > 2,
x(Ty) > 2,
x(Ts) > 2,
—xz(e) > -1

By summing these inequalities, along with nonnegativity constraints, dividing the sum
by 2, and rounding up the righthand side, we obtain inequality (4.8). O

When L = 2,3, triple path-cut inequalities have a slightly different form, due to
multiple occurences of certain sets of edges in the lefthand side of (4.8). The way of
obtaining them stays however the same.

Corollary 4.4.4. i) Let L =2 and (Vy, V1,...,Vy) be a partition of N with s1, sy €
Vo, t1 € V3 and ty € V. Then the triple path-cut inequality (see Fig. 4.3)

22([Vo, Val) + 2([Vo, Va U VA]) + Vi, Va[\{e}) + a([Va U Vs, Va]) = 3, (4.9)
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where e € [V, V3], is valid for Pg(D,?2).

ii) Let L = 3 and (Vo,V1,...,V5s) be a partition of N with s1,s, € Vy, t1 € Vi and
to € V5. Then the triple path-cut inequality

22([Vo, VaUVa]) +22([Vi, V3]) + 2((Vo UVIUVa UV, ViU VB[ \{e}) +2([Va, V5]) 2> 3,
(4.10)
where e € [Vo U V3, V| U [V3, V5], is valid for Ps(D, 3).

Figure 4.3: Support graph of a triple path-cut inequality for L = 2

Our next class of inequalities gives the minimum number of edges used by a feasible
solution of the THNDP in a multicut, based on a subset of demands rooted in some
node s. We will call such a multicut a rooted-partition and the associated inequality a
rooted-partition inequality.

Theorem 4.4.5. Let L > 2 and T = {t1,...,t,} be a subset of p destination nodes
relatively to node s. Let Il = (Vy, V4,...,V,) be a partition of N such that s € V;, and
t, €V, foralli=1,...,p. See Fig. 4.4 for an illustration. Then the inequality

2(An(G)) = p+ [p/L] (= [(L+ 1)p/LT) (4.11)

is valid for Pg(D, L).

Proof. The proof is by induction on p. If p = 1, it is obvious that we need at least two
edges in any feasible solution, and thus (4.11) is satisfied. Suppose that the statement
holds for any partition based on at most p — 1 destination nodes relatively to s. We
will show that the statement remains true for the partition II.
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Figure 4.4: Support graph of a rooted-partition inequality on p = 5 demands

First remark that we can assume that the V;’s contain only one node, that is V5 = {s}
and V; = {t;} fori = 1,...,p. If not, we could indeed consider the graph obtained from
G by contracting the V;’s with |V;| > 2. It is clear that neither the number of edges
in the multicut, nor the number p of distinguished destinations, would be changed by
this operation, and hence the inequality to prove remains the same.

Now let F' be a feasible solution of the THNDP. Let T} (resp. T3) be the subset of
destinations adjacent to s (resp. not adjacent to s) in . By the previous remark, we
can assume that T} # (). Let ¢; € T;. There must exist in ' another L-path between
s and t;. Note that this path can use an edge that is parallel to the first edge between
s and t;. These two paths give us a cycle C of length ¢, with 2 < ¢ < L + 1, going
through at most ¢ — 1 destinations. Suppose, w.l.o.g., that C' = {s,t1,...,t._1}.
Let I" = (Vg,V/,...,VJ_.,,) be the partition given by Vj = {s,t1,...,t.1} and
V=V, .qfori=1,...,p—c+ 1. By induction, we have

(A (G) = (p—(c= 1)+ [(p = (c=1))/L].
This yields
2(An(G)) =z (p—(c=1))+[(p—(c=1)/L] +c
Since ¢ < L + 1, we have that p — (¢ — 1) > p — L. Hence [(p — (¢ — 1))/L] >
[(p = L)/L] = [p/L] = 1. So,
2(An(G)) Z2p+1+[p/L] -1

=p+[p/L].
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We will now present a reinforcement of the rooted-partition inequalities when L = 2.

Figure 4.5: Support graph of a rooted-opt-partition inequality on p = 5 demands

Theorem 4.4.6. Let L =2 and T = {t1,...,t,} be a subset of p > 2 destination nodes
of s amongst the demands of D. Let I1 = (Vo,...,V,-1,V,, Vpi1) be a partition of N
such that s € Vi, and t; € V;, foralli=1,...,p. Let e € [V,_1,V,11]. See Fig. 4.5 for
an illustration. Then the following inequality

2(An(GN\([Vy, Vora] U {e})) = [3p/2], (4.12)

is valid for Pg(D,?2).

Proof. If p = 2, it is obvious that we need at least three edges in any feasible solution,
and thus (4.12) is satisfied. Suppose that the statement holds for any partition based
on at most p — 1 destination nodes relatively to s. We will show by induction that the
statement remains true for the partition II.

First note that, as we did in Theorem 4.4.5, we can suppose that the sets V;, ¢ =
0,...,p+ 1, are reduced to single nodes. Also we may suppose that the (single) node
of V41, say v, is a Steiner node. Indeed, if inequality (4.12) is valid in this case, it
would also be valid if the node of V,,1; is a terminal node.

Consider the rooted-partition inequality induced by the partition (Vg, ..., V,-1UV,11,V},),

2(6(Vo, -+, Vot UV, 1)) = [3p/2].
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Similarly, by collapsing V,, and V1, we get
2(0(Vo, ..., Vo1, Vp U Vi) = [3p/2].

Since Ap(G) = 0(Vo, -+, Voot UV, Vo) U Vo, Vil = (Vo -, Vet V, U Vi) U
[V,, Vipi1], the previous two inequalities can be respectively written as

2(An(G)) = 2([Vpr, Voral) = [3p/2], (4.13)

and
2(Au(G)) — z([Vp, Visal) = [3p/2]. (4.14)
Let F' be a solution to the THNDP. We distinguish two cases.

Case 1: ¢ ¢ For FN [V, Vpp1] = 0. If e ¢ F, then, by (4.14), we have that
(4.12) is satisfied by x*', the incidence vector of F. If F' does not intersect [V,, V1],
then inequality (4.13) implies (4.12), and thus this latter inequality is satisfied by z*".

Case 2: ¢ € F and F N[V, V,11] # 0. First note that we may suppose that
F N [s,Vyo41] # 0, because otherwise F'\{e} would be a solution of the THNDP, and
Case 1 would apply. So let us consider an edge, say ey, of F'N [s, V,11]. Let also ¢’ be
an edge in F'N [V, V,11].

Suppose that there is a cycle C' of length ¢ = 2 or 3, linking s and ¢—1 destinations from
{t1,...,t,—2}. W.lo.g., we may suppose that C' is simple and C' = {s,t1,...,t._1}.
Let II' = (Vg,...,V, .i5) such that Vi = U, ., Vi, and V/ = Vi oy, for i =
1,...,p—c+ 2. We have

2P (A (@) = 25 (An(G)) — c. (4.15)

By induction hypothesis, inequality (4.12) is satisfied by " with respect to I’ and e,
and hence we get

2 (A (CN(Vy -1 Vpesal U{e}) = [Bp — e+ 1)/2].

As ¢ < 3, by (4.15), it follows that inequality (4.12) is also satisfied by z" with respect
to IT and e. Thus we may suppose that the subgraph, say G = (V, E), induced by F
on the nodes s,t;,...,%,_2 does not contain any cycle of length 2 or 3.

Let T} (resp. T3) be the set of nodes among {¢i,...,t,_o} that are linked (resp. not
linked) to s by edges in F. Note that, for every node t; € T}, we already have one
2-st;-path, namely the edge st;. Since G does not contain cycles of length 2 or 3, the
second 2-st;-path for ¢; € T} must use one edge of [t;, {t,—1,t,,v}]. Moreover, all those
edges are different. Therefore, to cover T, F' uses at least 2|T7| edges.
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Next, each node in 7, must be linked to s by two 2-paths, each one going through
either 77 or {t,_1,t,,v}. Hence F' must use two additional edges for every node of 75.
In consequence, in the 2-paths between s and the nodes {ti,...,t, 2}, F uses at least
ATi|+|Tsl) = 2(p — 2) edges.

Let F' be the set of these edges, and F” be the set of edges of F different from those in
EFU[V,,V,41] U{e}. We have the following claim.

Claim. |F'| > 3.

Proof. First note that ey € F’. Also observe that, in order to cover t, i,t,, be-
sides ey, €, €/, we still need one 2-path from s to ¢,_; and another from s to ¢,. (Recall
that v is a Steiner node.) We consider two cases.

Case 2.1: None of the edges of F is incident to t,_; or t,. This implies that the edges
of F used in 2-st;-paths, with t; € T) U Ty, going through the node set {tp—1,tp, v}
are all incident to v. So, to cover ?,_;, we need at least one more edge, say h, from
5(t,—1)\{e}. Moreover, we note that h € F'. If h ¢ [t,_1,t,], then, in order to cover
tp, one more edge in F' is needed, and hence, |F’| > 3. If h € [t,_1,t,], again it is not
hard to see that one more edge from F”’ is necessary to cover both tp—1 and t,.

Case 2.2: Some of the edges of I are incident to t,—1 or t,. If there is an edge of F
incident to t,_; (vesp. t,), then F’ must contain the edge st,_; (resp. st,). If not, the
edge of F would not belong to a 2-st;,-path, where ¢; € T} UT5, which is a contradiction.
Therefore, if there are edges of F incident to both t,—1 and t,, then clearly F’ contains
at least the edges ey, st,_1, st, and thus \ﬁ”\ > 3. Now suppose there is only one node
t; among t,_;,t, that is incident to some edge of F. Thus st; € F. Moreover, to cover
t;, 3 € {p — 1,p}\{i}, we need one more edge in F’, which implies that |[F'| > 3. ¢

In consequence, by the claim above, and as FUF' C I, we have that

[F|=2(p—2)+3 = [3p/2],
for all p > 2. O

Inequalities (4.12) will be called rooted-opt-partition inequalities. The rooted-opt-
partition will then be the set of edges with positive coefficient in the corresponding
inequality. Note that this extension of the rooted-partition inequalities for other values
of L leads to non valid inequalities for the THNDP. Indeed, consider a rooted instance
where s is the source node, t; and ¢, are the destination nodes of s, and v is a Steiner
node. A cycle of length four spanning s,t;,v,ts in this order is feasible for L. = 3.
However, if we take Vy = {s}, Vi = {t1}, Vo = {t2} and V3 = {v} (hence p = 2), the
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corresponding rooted-opt-partition inequality would be
xstl + xStQ _'_ L gy + xtltg Z |74p/3~‘ = 37

which is violated by this point.

4.5 Facets of the rooted THNDP polytope

In this section, we will consider the rooted case, where all the demands are rooted in an
unique source node s. So, let G = (N, E') be a graph and D = {{s,t1},...,{s,t4}} be a
set of rooted demands. We will describe necessary conditions and sufficient conditions
for the previous inequalities to be facet-defining. Besides their theoretical interest,
these conditions will be used in the next section in order to devise efficient separation
procedures.

First we discuss the dimension of Pg(D,L). If D = {{s,t}}, dim(Pgs(D, L)) =
|E| — |E%,| where E?, is the set of L-st-essential edges of G, see Section 2.3. Recall
that an edge e is L-st-essential if and only if e belongs to an st-cut or L-st-path-cut
of cardinality 2. If we extend this definition of F¥, to any demand {s,t} € D, we get
that dim(Pe(D, L)) = |E| — [Uep Exl- In the following, we will always suppose
that G = (N, E) is a complete graph with | V| large enough to have U, ycp £5 = 0,
and hence P;(D, L) full dimensional.

Let
S(G)={F C E|(N,F) is a solution of the THNDP}.

Given an inequality ax > « valid for Pg(D, L), we will denote by

S.(G) ={F € S(GQ) | ax™ = a}.

We first give two lemmas that will be frequently used in the sequel, sometimes with-
out explicit reference. The proofs of similar results having already been given in Section
2.3, they are omitted here.

Lemma 4.5.1. Let ax > « be a facet-defining inequality of Po(D, L), different from
the trivial inequalities. Then for every edge e € E, there exists an edge subset in S,(G)
that contains e and another one that does not.
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Lemma 4.5.2. Let ax > « be a facet-defining inequality of Po(D, L), different from a
trivial inequality. Then a(e) > 0, for all e € E and a > 0.

The following two theorems give conditions for inequalities (4.11) to be facet-defining.

Theorem 4.5.3. Let G = (N, E) be a complete graph and let t,, ... t, be p destination
nodes associated to s. Let I1 = (Vo, Vi, ..., V,) be a partition of N such that s € Vi and
ti € Vi fori=1,... p. If the rooted-partition inequality (4.11) is facet-defining, then
p s not a multiple of L.

Proof. Suppose that p is a multiple of L. We will show that, for any feasible solution
F whose incidence vector xz!" satisfies (4.11) with equality, we have |FFN[s, T]| = 2p/L,
where T' = {t;,...,t,}. But this will imply that every solution of the face defined by
(4.11) satisfies the equation

z([s, T]) = 2p/ L.

As (4.11) is not a positive multiple of this equation, it cannot define a facet.

For this, first note that, as we did before, we may suppose that the V;’s are reduced
to single nodes, that is Vo = {s}, V; = {t;}, ¢ = 1,...,p. It is easy to see that if the
statement holds in this case, it also holds when the elements of the partition are not
necessarily singletons.

Claim 1. The solution F' does not contain any chordless cycle containing s of length
< L.

Proof. Assume on the contrary that there exists in F' a chordless cycle C spanning s and
at most L — 1 destination nodes of s. Suppose, w.l.o.g., that C' spans V,, Vi,..., V. 4,
¢ < L. Let I'= (Vg, Vi,...,V,_.1) be the partition given by Vi =,y ., Vi, and
V! =Viie, fori=1,...,p—c+ 1. By the validity of the rooted-partition inequality

induced by II’, we have
A (G)NF| > [(L+1)(p—c+1)/L].

On the other hand, we have |Ap(G)NF| = (L+1)p/L. As |An(G)NF| = |Aw(G) N
F| + ¢, it follows that

(L+Dp/L>[(L+1)(p—c+1)/L]+c=[(p—c+1)/L] +p+1.

As ¢ < L, we have
/L= [(p—L+1)/L]+1=p/L+1,



4.5 Facets of the rooted THNDP polytope 85

where the last equality comes from the fact that p is a multiple of L. But this is a
contradiction. ¢

Consequently, by Claim 1, F' does not contain any cycle that spans V and sets V;’s,
and whose length is less than or equal to L.

Claim 2. Any two cycles C1,Cy C F, C # Cs, of length L + 1 and going through s,
cannot have a destination node in common.

Proof. Assume, on the contrary, that C; and C5 intersect in r destination nodes,
L > r > 1. Let g be the number of destination nodes covered by C; U (5. First
we show that ¢ < p. In fact, suppose, by contradiction, that ¢ = p. If p = L, then
|F|=L+1. As |Cy| = L+ 1 and |C5\C4| > 1, we have that

|F| > [Ch] +|Co\Ci| > L+ 2,

a contradiction.
So suppose that p > L. Then
q=2L—1r> L.

Therefore, » < L. But this implies that ¢ = p is not a multiple of L, a contradiction.
Consequently, ¢ < p. Also, as » > 1, we have ¢ < 2L — 1. Moreover, observe that
|C1 U Cy| > g+ 2. This follows from the fact that C; U Cy covers ¢ + 1 nodes and
C1 U (Y is not a simple cycle.

Suppose, w.l.o.g., that ¢,...,¢, are the destination nodes covered by C; U C;. Let
= (f/o, Vi, ..., f/p_q) such that V, = {s,t1,...,t,},and Vi = {tirq},fori=1,... p—q.
By the validity of the rooted-partition inequality corresponding to II, we have

[ Ap(G)NF| > [(L+1)(p—q)/L].
Since |[An(G)NF| > |Az(G) N F|+ q+ 2, we get

An(G)NF| >[(L+1)(p—q)/L]+q+2,
=p+2+[(p—q)/L],
>p+2+[(p— (2L —1))/L],
=p+p/L+[1/L],
=p+p/L+1.

But this contradicts the fact that x" satisfies (4.11) with equality, and the claim is
proved. ¢
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Clatm 3. The solution F' does not contain any chordless cycle containing s of length
> L+ 2.

Proof. Suppose there is a cycle C' C F' of length ¢ > L + 2. We assume that c is
minimum. Suppose w.l.o.g. that C' goes through s,t;,...,t. 1 in this order. Since F'
is a feasible solution for the THNDP and, by Claim 1, F does not contain cycles of
length less than or equal to L, there must exist two paths P; and P, of length L joining
s to t; and t. 4, respectively. Let C; = {st;} U P, and Cy = {st._1} U Ps.

If ¢ > L+ 3, then there must also exist a chordless path P from s to t, of length either
L—1or L. If Pis of length L — 1, then the cycles C; and P U {sty,tt2} are both
of length L + 1. Since these cycles intersect in ¢;, this contradicts Claim 2. If P is
of length L, then the cycle P U {sty,t1t2} is chordless and of length L + 2. But this
contradicts the minimality of C.

Consequently, we have that ¢ = L + 2. Now we are going to show that P; (P) cannot
go through two nodes t;,t;, i,j € {1,...,L + 1}, i < j, such that the subpaths of
P, (P,) and C between t; and ¢; are edge-disjoint. In fact, suppose for instance that
the subpaths P, of P, and C of C' between ¢; and t; are edge-disjoint. Let p; and ¢
be the lengths of P, and C, respectively. We claim that p; = ¢. Indeed, if p; > ¢,
then, by replacing P, by C' in P;, we get a path of length < L — 1 between s and ¢1,
a contradiction. On the other hand, if ¢ > p;, then, by replacing C by P, in C, we
obtain a cycle, say C’, of length < L+ 1. Since, by Claim 1, I’ does not contain a cycle
of length < L, it follows that C’ is of length exactly L + 1. Since C and C’ have t¢; in
common, this contradicts Claim 2.

Therefore p; = ¢. But this is still a contradiction since C; and the cycle obtained
from C by replacing Py by C are both of length L 4 1 and have destination nodes in
common.

In consequence, if ¢;, (resp. t;,) is the first node of C' met by P, (resp. P,), then P,
(resp. P,) contains the subpath of C' between t;, and t; (resp. t;, and t;.1). See Fig.
4.6 for an illustration. Moreover, we have that [; < [, for otherwise, the cycles C; and
C5 would intersect in some destination nodes, which by Claim 2 is impossible.

Let r = Iy — l; — 1. Observe that r is the number of internal nodes of the subpath
of C between t;, and t,,. Also note that r < L. Now let Il = (V,V71,... ,VP,QL,T)
be the partition of N obtained from II by gathering the nodes of C; U C5 U C into V.

Note that |E (V)| > 2(L + 1) + 7 + 1. By the validity of the rooted-partition induced
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Py

P

Figure 4.6: An example of an (L + 2)-cycle C' and the two associated (L + 1)-cycles (4
and Cy

by II, we have
AR(G)NF| >p—2L—r+[(p—2L—r)/L],
—p—2L—r+p/L—2.

Remark that this remains true even if p — 2L — r = 0, that is if Vy = N, since in this
case Aj(G) N F is empty and the righthand side of (4.11) is equal to 0. So,

IAp(G)NF| > |Ag(G)NF|+2(L+1)+r+1>p+p/L+1,

a contradiction, which finishes the proof of the claim. ¢

From Claims 1 and 3, it follows that the only cycles induced by F' are of length exactly
L+1. By Claim 2, these cycles do not contain destination nodes in common. Therefore
F consists of p/L cycles of length L + 1 and having only s in common. Since each of
these cycles uses exactly two edges of [s, T, this yields that |F'N[s,T]|| = 2p/L, and
the proof of the theorem is complete. O

Given a graph G = (N, E), and a node subset V' C N such that s € V| we say that
V satisfies Property (7) if one of the following holds :

i) V] =4,
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ii) |V] = 2,3 and V contains no destination node of s (two Steiner nodes),

iii) |V| = 3, V contains two destination nodes t,t’ of s (no Steiner node), and at
least two of the sets [s, t], [s, '], [t,t'] contain parallel edges,

iv) |V| = 3, V contains one destination node ¢ of s (and hence one Steiner node u),
and either |[s,t]| > 2, or |[s,u]| > 2 and |[u, t]| > 2,

v) |V| =2,V contains one destination node ¢ of s (no Steiner node), and |[s, t|]| > 2,

vi) |V|=1.

Theorem 4.5.4. Let L =2, and G = (N, E) be a complete graph with one source node
s and at least p > 2 destination nodes associated to s. Let I1 = (Vp, V4,...,V,) be a
partition of N such that s € Vo and t; € V; fori=1,...,p.

Then, the rooted-partition inequality (4.11) defines a facet if and only if

(i) p is odd,
(i) |Vi| =1 foralli=1,... p,

(i11) Vi satisfies Property ().

Proof. Necessity.
(i) This follows from Theorem 4.5.3.

(ii) Suppose that V; contains a further node u. Then consider the partition (V{, ...,V ;)
such that V/ =V, for [ € {0,1,...,p}\{i}, V/ = Vi\{u}, and V,,; = {u}. We have
that the rooted-opt-partition inequality (valid for L = 2) induced by this partition and
some edge e € [V}, V], 7 € {0,1,...,p}\{i}, dominates inequality (4.11). Therefore,
the latter one cannot be facet-defining.

(iii) Let us suppose that V{ does not satisfy Property (7) and that the rooted-partition
inequality is, nevertheless, facet-defining. We have either |Vy| = 2 or || = 3. Suppose
first that [Vy| = 2 and let ¢ be the other node in V along with s. By hypothesis, we
also have that ¢ is a destination node and that |[s,¢]| = 1. Consider a solution F' such
that ¥ satisfies the rooted-partition inequality with equality. Thus F contains exactly
[3p/2] edges in Ap(G), which, by the validity of the inequality, are all necessary to
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link the demand nodes other than ¢ to s. We will show that F' necessarily contains st,
which will yield a contradiction to the fact that the rooted-partition induces a facet.
Suppose, on the contrary, that /' does not contain the edge st. Then there must be at
least two edges in Ap(G) linking ¢ to the other nodes. However, these edges are not
useful to the 2-paths of the demand nodes other than ¢. Consequently, we have at least
[3p/2] + 2 edges from Ap(G) in F, a contradiction.

Now suppose that |V5| = 3, and that V{ contains two destination nodes, ¢ and ¢'. By
hypothesis, we have that at most one of the sets [s, ], [s,?], [¢t,t'] contains parallel
edges. Suppose first that all these sets contain a single edge. Then, by putting ¢ and
t" in two additional partition subsets, we get a new rooted-partition inequality, which
dominates the previous one, a contradiction. If there are exactly one set of parallel
edges and two single edges, we can suppose w.l.o.g. that |[s,¢]| = 1. We can show, in
a similar way as when |Vy| = 2, that st belongs to any solution whose incidence vector
satisfies (4.11) with equality, which yields again a contradiction.

Finally, if |V5| = 3, and V} contains one destination node ¢ and one Steiner node u, we
have that |[s,t]| = 1, and |[s,u]| = 1 or |[u,t]| = 1. Once again, one can show that st
must belong to any solution in the face.

Sufficiency. Suppose that (i), (ii) and (iii) hold. As p > 2 and p is odd, we have that
p > 3. Let us denote inequality (A (G)) > [3p/2] by ax > « and let bx > 3 be a
facet-defining inequality of Pg(D,2) such that

{2 € P5(D,2) | ax" = a} C {zF € Pg(D,2)|bz" = §}.

We will show that b = pa for some p > 0.

Consider the edge sets
FQ = {Sti,’i = 1, ce ,p} U {titi+1,’i = 1, 3, B 2} U {tp—ltp} U E(Vb),

Fe = (Fo\{tptp}) U e},
for some e € §(t,)\{st,}-

It is not hard to see that Fy and F, belong to S,(G). Thus bxf® = bxfe = 3, which
implies that
b(e) = b(t,-1t,), for all e € §(¢,)\{st,} (4.16)

Furthermore, let Fj) = (Fy\{st,}) U {t:t,}. Since az’® = «, and hence bz’ = 3, we
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obtain that b(st,) = b(t1t,). This together with (4.16) yields
b(e) = b(e'), for all e, e’ € §(¢,).
By exchanging the roles of ¢, and the t,’s, ¢ # p, we get
ble) = p, for all e € Ap(G), (4.17)

for some p € IR.

Now suppose that F(V;) # () (hence case vi) of Property (7) does not hold), and let
f € E(Vy). If one case among i)-iv) of (7) holds, then F{! = Fo\{f} is still in S,(G).
Thus its incidence vector satisfies bx > [ as equality, and we get

0 = bx'® — bz = b(f).

Now assume that case v) of (7) holds. Let ¢ be the terminal node of V; different
from s. By Property () v), |[s,t]| > 2. Let Fy = (Fo\{tp-1t,, f}) U {tt,}. Clearly,
Fy € S(G). As az™ = ax’ = q, it follows that

0 = bafo — bxft = b(f) + b(t,_1t,) — b(tt,).

Since by (4.17) b(t,-1t,) = b(tt,), we have that

b(f) = 0.

Consequently, we obtain

b(e) =0, for all e € E(V}),
ble) = p, for all e € Ap(G).

Since bx > [ is different from a trivial inequality, we have by Lemma 4.5.2 that
£ > 0, and hence p > 0. Therefore, b = pa with p > 0. O

We now present necessary and sufficient conditions for the double cut inequalities to
be facet-defining when L = 2. We consider first the case where s € V4.

Theorem 4.5.5. Let L = 2 and G = (N, E) be a complete graph with |N| > 4,
one source node s and d destination nodes T = {t1,...,tq}. Let (Vo, V1, Vs, V3) be a
partition of N such that s € Vi, to € Vi and t; € V3. Let e € [V, V,]. Then the double
cut inequality (4.6) is facet-inducing for Pg(D,2) if and only if
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(i) Vol = 1,
(1) Vil =1,
(iii) d =2,

(iv) if vy is the end node of e in Vo and |[ta, va]| > 2, then |[t1, vo]| > 2 and |[s, vo]| > 2.

Proof. Let us denote inequality (4.6) by ax > « and let S,(G) be the induced face.

Necessity.

(i) Suppose, on the contrary, that inequality (4.6) is facet-defining while |V;| > 2.
Let vy € Vp\{s}. We are going to show that any feasible solution F' € S,(G) does not
intersect [vg, V5], which contradicts Lemma 4.5.1. Suppose that this is not the case and
that there exists a feasible solution F' containing f € [vg, V»] and such that z!" satisfies
(4.6) as equation. First, note that, as f belongs to the double cut, F' contains exactly
two more edges of it. On the other hand, since f is incident neither to s, nor to t;
(resp. t2), f is not useful to the two 2-paths between s and ¢; (resp. t2) that F' must
contain. However, it is not possible to build these four paths with only two more edges
from the double cut.

(ii) Suppose on the contrary that inequality (4.6) is facet-defining while |V;| > 2.

Hence, since the graph G is complete, we have that |[Vi, V5]| > 2. Suppose first that
e € [ta,V5]. Then, we have that any edge f € [V1\{t2}, V2] belongs to the double cut.
However, f is not useful for building 2-paths between s and ¢,, or s and ¢;. Therefore,
any feasible solution F' € S,(G) cannot contain f. Thus, by Lemma 4.5.1, we have a
contradiction.
Suppose now that e € [Vi\{t2}, V5]. In that case, any edge f € [to, V3] is in the double
cut. Consider a solution F' € S,(G) that contains f. If f is not used in a 2-sto-path of
F, then f does not belong to any of the 2-paths between s and ¢5, and s and ¢;, and
therefore we get the same contradiction as before. As a consequence, f must belong
to a 2-sto-path of F' of the form (s, vs,t5) with vy € V5. As this path uses two edges of
the double cut, F' can only contain one more edge of it for the other 2-st,-path and for
at least one of the two 2-st;-paths (given that svs can be used together with an edge
of [vg, t1] to form a 2-sti-path). But this is also impossible.

(iii) By definition of the double cut, we already have that d > 2. Let us show now that
d < 2 when the corresponding inequality is facet-defining. Suppose, on the contrary,
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that the double cut inequality is facet-defining while there exists a third destination of
s, say t3. By (i) and (ii), we have that t3 € V5, U V3. Consider a solution F' € S,(G) not
containing e. Therefore, the two 2-st,-paths of F' are only constituted of edges in the
double cut. First, it is clear that these paths cannot be both of length 2. If one of the
paths is of length 1 and the other is of length 2, we already have three edges taken by
F' in the double cut, while we still need to construct at least one 2-path for one of the
two destination nodes tq, t3. Clearly, this is impossible. Finally, if both 2-st,-paths are
of length 1, we can still take one more edge in the double cut. But, this time, we need
to link both ¢; and ¢3 to s by two 2-paths. Once again, this is not possible. We get
therefore that any solution F' € S,(G) does contain e, which contradicts Lemma 4.5.1.

(iv) Suppose that the double cut inequality is facet-defining and that |[t2, vo]| > 2.
Therefore, any edge €’ € [t2, v2]\{e} belongs to the double cut. By Lemma 4.5.1, there
must exist a feasible solution F' in S,(G) containing ¢’. Moreover, ¢’ must belong to
a 2-sto-path of F'. This path is then of the form (svy,€’). As svy and €’ belong to the
double cut, only one more edge of it must be used to form a second 2-sto-path and one
2-sty-path (the other one using the edge svs plus an edge in [vg, t1]). Clearly, the only
possibility to do that is to go once again through v,. As a consequence, we obtain that
both [s,vs] and [vs, t1] contain parallel edges.

Sufficiency.
Suppose that (i), (ii), (iii) and (iv) hold. Let vy be the end node of e in V5. Let bx > 3
be a facet-defining inequality of P;(D,2) such that

{2t € Ps(D,2) | axt = a} C {zF" € P4(D,2) | bz" = p}.

As before, we will show that b = pa for some p > 0.

Consider the solution F' = {sty, sty, tit5}. Clearly, its incidence vector z! satisfies
ar = «. Note that we can add to F' all the edges in E(V, U V3) U {e} while o still
verifies ax = a. Consequently, we get

b(f) =0, forall f e E(VoUV3)U{e}. (4.18)

Now, let F* = (F\{tit2}) U {svq, €, vot1}. Clearly, F* € S,(G). Hence bz’ = 3. As
by (4.18) b(e) = b(vgty) = 0, this yields

b(t1ta) = b(svg). (4.19)
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The same holds if we replace in F™* sty (or sty) by t1t2. Therefore

b(Stl) = b(tltz) = b(Stg) (420)

From (4.19) and (4.20), we get
b(Stl) = b(StQ) = b(tltg) = b(SUQ).

As these edges are arbitrary edges from [s,t1], [s,ta], [t1,t2], [sv2], respectively, we
obtain that
b(f) =p, for all e € [s,t1] U [s,ta] U [t1,t2] U [s, va], (4.21)

for some scalar p.

Now consider the solution

F, = {svq, €, v9t1, sU, vta, vt1 }
for v € (Vo U V3)\{v,t1}. It is not hard to see that F' € S,(G). Therefore bz’ = 3.
As baxt” = 3, using (4.18) we obtain that

b(sty) + b(sta) = b(sv) + b(vts). (4.22)
Also consider

F! = (F\{ut2}) U {sta).
Since F' € S,(G), and hence bzfs = 3, we get

From (4.22) and (4.23), it follows that
b(st1) = b(sv). (4.24)

From (4.23) and (4.24) together with the fact that sv (resp. vty) is an arbitrary edge
between s and v (resp. v and ty), by (4.21) it follows that

b(f) = p, forall f € [{s,ta}, Vo U V5]\|va, ta]. (4.25)

If there are edges in [vq, 5]\ {e}, we still need to prove that their coefficient in b is
equal to p. Suppose this is the case and let vty be an edge of [vg,t2]\{e}. Then, by
(iv), the edge set F' = {svs, g, e, vata, vatq, h} exists. Here, g and h are edges parallel
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to svy and vaty, respectively. Clearly, its incidence vector xt" satisfies az = o. Thus
bat = 3. As bt = 3, we obtain

From (4.21) and the fact that vety is an arbitrary edge of [vg, to]\{e}, we get

b(f) = p, for all f € [vq,ts]\{e}. (4.27)

From (4.18),(4.21),(4.25),(4.27), we have b = pa. As bx > [ is a facet-defining
inequality different from a trivial one, by Lemma 4.5.2, it follows that p > 0. O

The following theorem gives a similar result for the double cut inequalities based on
partitions with s € V3. Its proof is along the same line as that of Theorem 4.5.5.

Theorem 4.5.6. Let L = 2 and G = (N, E) be a complete graph with |N| > 6,
one source node s and d destination nodes T = {tq,...,tqs}. Let (Vo, Vi, Vo, V3) be a
partition of N such that t; € Vi, to € Vi and s € V3. Let e € [V1,V5]. Then the double
cut inequality (4.6) is facet-inducing for Pg(D,2) if and only if

(i) Vol =1,

(i) Vil =1,

(#i) if vy is the end node of e in Vy and |[t2, vo]| > 2, then |[s, vo]| > 2.

For L. = 3, we have also investigated necessary conditions for the double cut inequal-
ities (4.7) to be facet-defining. More precisely, we have the following.

Theorem 4.5.7. When L = 3, if inequality (4.7) defines a facet of Pg(D,3), then

(1) Vol =1,
(i) V2| =1,

(iii) [Vi] < 2.
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Proof. (i) Let s € Vj and suppose that [Vy| > 2. Let vy € Vi\{s}. Consider a feasible
solution satisfying the double cut inequality with equality and containing an edge vgvo
with vy € V5. As this edge has a coefficient 1 in the double cut inequality, it must be
used in the 3-paths linking ¢1,¢5 to s. Suppose first that it belongs to a path of the
form s, vq, v, t1 (resp. t2). Clearly, since three edges of the double cut are already used
by this path, it is impossible to construct three other 3-paths with only these edges
plus those of coefficient 0, hence a contradiction. Now, suppose that we have rather
a path of the form s, vy, vo,t; (resp. tz). Without loss of generality, we can suppose
that the third edge of this path is e. Hence, we may only use two more edges in the
double cut to construct another 3-path to ¢; (resp. ¢») and two 3-paths to ¢, (resp. t1).
Clearly, this is impossible, which contradicts Lemma 4.5.1. As a consequence, we have
that |Vo| = 1. A similar proof can be done when s € V.

(ii) Let s € V; and suppose that |V5| > 2. Let v, v} € V5 such that e € §(vy). Con-
sequently, all the edges in [v}, V3 U V,] have a coefficient 1 in the double cut inequality.
Now, there must exist a feasible solution satisfying this inequality as an equality and
containing the edge vyt;. Clearly, this edge must belong to a 3-st;-path. Moreover, this
path must contain an edge in 6(Vp), which is of coefficient 1. We consider two cases. If
the path uses an edge in [Vp, V4 U V], it must then contain an edge of [V; UV, v5] and
no more edge in the double cut can be used to construct a second 3-st;-path, which
is impossible. If the path uses an edge f € [V, Vo U V5], its third edge (if any) is of
coefficient 0. Moreover, in the best case, that is if e is incident to 9, it will be possible
to complete f by edges of coefficient 0 to form a 3-sto-path. Now, we have to construct
a second 3-sto-path using only one edge of the double cut. Clearly, the only possibility
is to take an edge in [Vp, Vi]. But then, it is impossible to complete it by edges of
coefficient 0 to make a second 3-st;-path. A similar proof can be done when s € Vj.

(iii) Let s € V. We are going to show that, if there exists w € V,\{t1}, then
e € [w, vy] (recall that Vo = {vs}). As a consequence, by unicity of e, we will have that
|V4| < 2. By contradiction, let w € V;\{t;} and suppose that e is not incident to w.
Then, the edge wuvsy is of coefficient 1 and there must exist a solution containing it plus
two other edges in the double cut. As all the edges in §(V) have a coefficient 1, we
are obliged to take the two additional edges in this subset. Moreover, since at most
one edge of §(V7) (i.e. e) is of coefficient 0, at least one of these two edges belongs
to [Vo, V1]. On the other hand, as the edge wv, must be used by a 3-path, the other
of these two edges must be in [s,v5] or [s,w]. But then, in both cases, it is clearly
impossible to complete the edge in [Vj, V1] by edges of coefficient 0 to form a second
3-st1-path. A similar proof can be done when s € V. O
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We have also investigated the conditions under which the triple path-cut inequalities
are facet-defining when L = 2. Note that, in the case of rooted demands, we simply
pose S; = So.

Theorem 4.5.8. Let L = 2 and G = (N, E) be a complete graph with |N| > 5, one
source node s and d destination nodes T = {ti,...,tq}. Let (Vo, Vi, Vo, V3, Vy) be a
partition of N such that s € Vi, t; € V3 and ty € V. Let e € [V1,V3]. Then the triple
path-cut inequality (4.9) is facet-defining for Po(D,2) if and only if

(i) Vol =1,
(ii) [Vs] = 1,
(ii7) |Va| =1,

(iv) if vy is the end node of e in Vi and |[vy,t1]| > 2, then |[s, v1]| > 2.
(v) if V1] <2 and V} C T, then there exists t € Vi N'T such that |[s,t]| > 2.
(vi) if |[Vi| =2 and Vi N'T = {t3}, then at least one of the following holds :

- e 18 incident to t3,

- [ls: Vi3] > 2,
- |[s,ts]] > 2.

Proof. As before, let us denote inequality (4.9) by ax > . We will consider a(e) as a
weight on e. Hence, any solution I of S,(G) will have a weight a(F") = 3.

Necessity. Assume that az > « defines a facet of Pg(D,2).

(i) Suppose, by contradiction, that |Vo| > 2. Let vy € V;\{s}. Consider a solution
F € S,(G) containing an edge f € [vg, V5]. Since a(f) = 2, F' can only contain one
more edge with weight 1 in the triple path-cut, say f’. However, as f is incident neither
to s, nor to t; (resp. t3), f cannot be used by any of the two 2-sti- (resp. 2-sto-) paths
of F. Clearly, these four paths cannot be constructed only with f’ along with the edges
of weight zero in the triple path-cut. Consequently, we have that any solution F' of
S.(G) does not contain f, contradicting Lemma 4.5.1.
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(ii) Suppose on the contrary that |V5] > 2. Let v3 € V3\{t1}. Suppose first that e is

incident to vs. Then, any edge of [Vi, 1] is in the triple path-cut. Consider a solution
F € 5,(G) containing an edge f = v1t; € [Vi,t1]. Note that we can complete f by an
edge sv; (of weight zero) to form a first 2-st;-path. However, with only an additional
weight of 2 in the triple path-cut, it is impossible to form another 2-st;-path and two
2-sto-paths, hence a contradiction.
Suppose now that e is not incident to vs. Therefore any edge f’ € [Vi,v3] is of weight
1. We claim that there does not exist a feasible solution F’ of weight 3 containing such
an edge f’. Indeed, as f’ is incident neither to s, nor to ¢; (resp. t3), f’ is not useful to
the two 2-sti- (resp. 2-sty-) paths of F’. So, we can only use either two more edges of
weight 1, or one more edge of weight 2, in order to build these four paths. Obviously,
this is impossible. Therefore, f' ¢ F’. But this contradicts Lemma 4.5.1.

(iii) The proof is similar to the second part of (ii).

(iv) By (ii), |V4| = {t.} and hence e € [v,?;]. Suppose that |[v1,t1]| > 2. Let e be
an edge parallel to e, and let F' be a solution of S,(G) containing é. By definition, e
has a weight 1. Observe that € must be used in one 2-st;-path, of the form (s, vy, ;).
Otherwise € would not be used by any 2-st;- and 2-sto-path in F', and thus F' could
not have a weight 3, which is a contradiction. Moreover, e must belong to the second
2-sti-path of F. If not, one could indeed replace € by e and get a solution of weight 2,
a contradiction. This path must also be of the form (s, vy, ¢,) and therefore |[s, v1]| > 2.

(v) Suppose that |Vi| = 2 and that V; = {t3,t4} (if |V4| = 1, the proof is similar).
W.l.o.g., let t3 be the end node of e in V;. Assume, by contradiction, that [s, 3] = {st3}
and that [s,t4] = {st4}. Let F' € S,(G) not containing st3. Then the two 2-sts3-paths of
F must be of length exactly 2. Let (s, u,t3) and (s,v,t3) be these two paths. Clearly,
the edges ut3 and vt3 are not useful for linking ¢; or ¢5 to s. Therefore, ut; and vt
must be both of weight zero and thus we get that u,v € {t1,t4} U V5. Remark that we
can consider u = t4. In fact, any 2-st3-path going through ¢, is of weight zero.

Now, if v € V5, then the 2-stz-path (sv,vt3) is of weight 2. Also we can use edge sv in
a 2-sty-path and in a 2-st,-path along with edges of weight zero. But in this case, it
remains to construct one more 2-path between s and ¢;, and one more 2-path between
s and t,. However, this is not possible using only one more edge of weight 1. (Note
that edge e cannot be used here.)

If v = t1, then the 2-sts3-path (sv,vt3) is this time of weight 1. As ¢; is already covered
by sv = st;, there must exist one more 2-st;-path and two 2-st,-paths in F' with a total
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weight < 2. Clearly, the only possibility for that is to use edges st, and t1¢5. But there
must also exist a 2-path in F' between s and ¢, (besides sty). As a(sty) + a(tits) = 2,
this path must only use edges of weight zero. As |[s,t4]| = 1, this is impossible.

So, in both cases, we obtain that st3 € F, contradicting Lemma, 4.5.1.

(vi) The proof is similar to that of (v).

Sufficiency.
Suppose that (i), (ii), (iii), (iv), (v) and (vi) hold. Let v; be the end node of e in V;.
Let bz > [ be a facet defining inequality of Pg(D,2) such that

{2F' € Po(D,2) |azt = o} C {2z € Pg(D,2) | bzt = }.

As before, we will show that b = pa for some p > 0.

By (i), (ii) and (iii), we have that Vj, = {s}, V53 = {t1}, V4 = {t2}, and hence
T\{t1,t2} C V4 UV;. Consider the solution

F = {sty,sty, tity ) UE,
where,

E={f e Ela(f)=0}.
Clearly, F € S,(G). First we show that

b(f) =0, forall fcE. (4.28)

If TN (ViUVy) =0, then F\E is a solution of the THNDP. Hence F\{f} € S(G)
for all f € E, and (4.28) holds.

Now suppose that 7N (V; U V3) # (. Assume first that 77N V; = (), and therefore
TNV, # 0. Let t be a destination node of V5. Observe that, in F, ¢ is connected
to s by three 2-paths, namely (sv,vt), (sti,t1t), (sto,tst), where v € Vi. Thus, by
deleting from F' any edge among {sv,vt,tit,tst}, the resulting solution is still feasi-
ble. As v and t¢ are arbitrary in Vj and V5, this implies that F\{f} € S(G) for all
fes,Vi]U[ViU{ty,t2}, VaNT]. But we can also easily remark that, in this case, the
solution obtained from F by deleting any edge of E\([s, V1] U [Vi U {t1,t2}, Vo NT]) is
still feasible. Therefore, we have that (4.28) holds.
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Now suppose that T'NV; # (). Consider first the case where TNV, = (). We consider
two cases.

Case 1: |Vi| > 3. Then it is clear that F\{f} € S(G) for all f € E({s} U 1).
Moreover, as T NV, = (), we also have that F\{f} € S(G) for all f € E\E({s}UW}).
Case 2: |V}| < 2. Suppose that |Vi| = 2 (the case where |V;| = 1 is similar). Thus V}
contains either one or two destination nodes.
First suppose that V; = {t3,t4} C T and that ¢3 is the end node of e in V1. By (v), we
have that at least one of the sets [s,t3] and [s, t4] contains two edges.
If |[s, t4]| > 2, then

F' = {sty, sty t1ta, €, sts, tsts} U [s, 4]
is a solution of S(G). Therefore F\{f} € S(G) for all f € E\({e, st3,t3ts} U [s,14]).
Moreover, it is easy to see that F'\{f'} € S(G), for all f" € {e, st3, t3t,}U[s, t4]. Hence,
equation (4.28) holds.
If |[s,t4]| = 1, then |[s,t3]| > 2. Consider the solutions

Fy = {svq, tot3} UE,

Fy = {svy, tats} U E,
where vy € Vs and E = [s, t3] U {sty, ttq, t3vs, Lyva, €, Vat1, Usts}. We have that Fy, Fy €
S.(G). Hence b(f) = 0 for all f € E\E. Also, it is not hard to see that F5\{f} € S(G)
for all f € E\{e, vat1,vots}. Finally, we have that F\{f} € S(G), where F is the
solution introduced above and f € {e, vaty, vots}. Overall, we obtain

b(f) =0, forall f € E,

and hence (4.28) holds.
If [ViNT| = 1, equation (4.28) can be shown in a similar way, using this time condition

(vi).

Finally, the case where T'N V5 # () can be treated using similar ideas as before, and
we obtain that (4.28) also holds in this case.

Now we show that b(f) = pfor all f € E\(EU[s, V5]), and b(f) = 2pforall f € [s, V5],
for some p € IR. Consider the solution F' introduced above, which belongs to S,(G).
Let F* = (F\{tito}) U {v1ta}. Clearly, F'* € S,(G), and hence bz’ = bzt = 3. This
yields

b(vity) = b(tits). (4.29)

The same holds if we replace in F™* the edges sty, sty by svy, with vy € V5, and thus
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we get
b(svy) = b(sty) + b(sts). (4.30)

Consider now the edge sets
Fy = {st1,vity, t1ta} UE,
Fy = {stg, vity, t1ts} U E.
We have that Fy, F;, € S,(G) and hence bz’ = baxf? = 3. As bx!" = 3, we have

b(sty) = b(vite) = b(sty). (4.31)
This together with (4.30) yield
b(svg) = 2b(sty). (4.32)
As v, is an arbitrary node in V5, it follows that
b(f) = 2b(sty), for all f € [s, V3] (4.33)
Consider now the edge sets {vity, vity, st} U E and {sty, vits, sty} U E, with v} €

Vi\{v1}. Clearly, both sets belong to S,(G) and therefore their incidence vectors satisfy
br = (3. As bx!" = 3, by (4.31) we get

b(vit1) = b(titz) = b(vyta). (4.34)

From (4.29), (4.31) and (4.34), we have shown that
b(f) = p, for all f € [s, {t1,t2}] U [t1, 2] U [v1, 2] U [v], {t1, t2}],
for some scalar p € IR. As v} is an arbitrary node in V;\{v;}, it also follows that

b(f) = pP, for all f € [S, {tl, tg}] U [tl, tg] U [’Ul, tg] U [‘/1\{’01}, {tl, tg}] (435)

If there are edges in [vy,t1]\{e}, we still need to prove that their coefficient in b is
equal to p. Suppose this is the case and let v1¢; be an edge of [v1,¢1]\{e}. Then, by
(iv), the edge set F' = {vit,, vits, sta} UE is in S(G). Clearly, its incidence vector z*
satisfies az = . Thus bz’ = 3. As ba™ = 3, by (4.35) we obtain

Since wvit; is an arbitrary edge of vy, t1]\{e}, this implies that
b(f) = p, for all f € [vr,t1]\{e}. (4.37)

From (4.28),(4.32),(4.35),(4.37), we have b = pa. As bz > [ is a facet-defining
inequality different from a trivial one, by Lemma 4.5.2, it follows that p > 0. O
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Note that triple path-cut inequalities never define facets of Pg(D, L) when L = 3.
It is indeed impossible to find a feasible solution satisfying such an inequality with
equality while containing an edge in [V}, V3] (of coefficient 2 in the triple path-cut).

4.6 Separations

In this section, we discuss the separation problem for the inequalities introduced be-
fore. Let 2* be a vector in IR'Fl. In the sequel, we will denote by G- = (N, E,-) the
support graph of x*, that is the graph induced by the edges e such that z*(e) > 0.

The st-cut constraints (4.1) can be separated exactly using the Gomory-Hu algorithm
[29]. This produces the so-called Gomory-Hu tree, which has the property that for all
pairs of nodes s,t € N the minimum st-cut in the tree is also a minimum st-cut in
G,+. To do this, we use the algorithm developed by Gusfield [43]. This one requires
|N
first use a simple heuristic to try to quickly find a violated st-cut inequality. This one
goes as follows. We iteratively contract the edges by decreasing z* values until either

— 1 maximum flow computations. In practice, to speed up the computation, we

the total value of the shrunk graph G = (‘7, E) is less than its number of nodes, or
there only remain two nodes. In the first case, at least one of the nodes of G induces
a cut violated by the restriction of z* on E. By expanding this node, we obtain a
violated cut in G,-. In the second case, we check if the cut between the two nodes of
G is violated or not. Of course, in both cases, we verify if the cut obtained separates
two nodes of the same demand. If this heuristic is unsuccessful, we then generate the
Gomory-Hu tree, using the Gusfield algorithm, to separate the cut constraints exactly.

The L-path-cut inequalities (4.2) can also be separated in polynomial time when
L = 2,3. In fact, for a fixed demand {s,t} € D, the separation problem reduces to
finding a minimum weight edge subset that intersects all L-st-paths. This has been
shown polynomially solvable in [25]. In practice, when L = 2, we do the following for
each demand {s,t} € D. We consider the partition IT = (V4, Vi, V5, V3) with Vy = {s},
V3 = {t}, and where V; and V; are constructed as follows. For each node u € N\{s, ¢},
we put u in V; if z(su) > x(ut), and w in V5 if not. We then test the violation of the
corresponding 2-st-path-cut inequality. When L = 3, for each demand {s,t} € D, we
first check if the minimum weight edge set cutting all the 3-st-paths of G- is less than
2. If yes, there is a 3-st-path-cut inequality violated by x*. That one is then build
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through a breadth first search from s in G-.

Let us turn now our attention to the separation problem for the rooted-partition
inequalities (4.11). We shall prove that this problem for L = 2, when p is odd, and
the partition sets, except V|, are singletons, can be solved in polynomial time. Note
that these two conditions are necessary for the rooted-partition inequalities to be facet
defining, see Theorem 4.5.4. As it will turn out, that problem will reduce to minimizing
a submodular function on a parity subfamily of a lattice family.

Let M be a finite set. A family C' of subsets of elements of M is called a lattice family
if
XUY, XNnY e, foral XY €C.
A function f: C — IR is said to be submodular if

FIXUY)+f(XNY) < f(X)+ f(Y), forall XY € C.
A subcollection D of C'is called a parity family if
XNYeD < XuYeD, forall X,Y € C\D.

In |28], Goemans and Ramakrishnan have shown the following result.

Theorem 4.6.1. [28] Given a submodular function f on a lattice family C, and a
parity family D of C, a set U minimizing f(U) over U € D can be found in polynomial
time.

Theorem 4.6.2. The separation problem for the rooted-partition inequalities
2(An(G)) = [3p/2], (4.38)

when L =2, p odd, and V; = {t;} fori=1,...,p, can be solved in polynomial time.

Proof. Let © € R'¥l. As p is odd, the separation problem for inequalities (4.38) is
equivalent to

min z(Ap(G)) — 3p/2 —1/2, (4.39)
over the partitions II = (V;,V4,...,V,) of N such that V; = {¢;} for i = 1,...,p.
Problem (4.39) can also be written as

Cmin  (B(S)) +2(5(5)) - 3|5]/2 — 1/2. (4.40)
SCUj—1{t:}, S| odd
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Now let M be the set N of nodes of GG, C' be the set of subsets of N contained in
U {t:}, £(5) = 2(B(S)) + x(5(S)) = 3|5]/2 = 1/2, and D = {X € C: [X| odd }.

It is clear that C is a lattice family and that D is a parity family. Also it can be
easily seen that f is submodular on C. Consequently, by Theorem 4.6.1, the result
follows. O

In our Branch-and-Cut algorithm, we will rather use a heuristic separation for the
rooted-(opt-)partition inequalities (4.11) ((4.12)). This one works as follows for each
source node s with at least two destinations. We consider the nodes that are not
destinations of s as Steiner nodes. If L = 2, we first look for triangles formed by
edges with value 1. If C is such a triangle, then we contract C into a pseudo-node
w. If C contains s (resp. a destination node but not s) (resp. only Steiner nodes),
then w will take the role of s (resp. a destination node) (resp. a Steiner node) in the
new graph. After this possible step, we consider the Steiner nodes. If a Steiner w is
adjacent to at least one destination node, then we contract the edge that has the highest
value, between u and a destination node. The new node is considered as a destination
node. If not, then we contract v and s and consider the new node as s. At the end of
this procedure, we get a graph without Steiner node, and containing, say p, destination
nodes ¢y, ..., t,. This graph gives rise to a partition Vy, V1, ..., V, of N such that s € 1}
and V; contains at least a destination node of s, for ¢« = 1,...,p. If L = 3, then we
check whether the rooted-partition induced by this partition is violated. If L = 2, then
we consider a rooted-opt-partition obtained from V4, Vi, ...,V as follows. We consider
an edge uv with maximum value such that v € V; and v € V; for some ¢, j € {1, ..., p},
i < j, and at least one of the sets V;\{u} and V;\{v} contains at least a destination
node. If V;\{u} (resp. V;\{v}) contains a destination, then we consider the rooted-
opt-partition induced by e = wv together with the partition II' = (Vj,V{,...,V/.)

» Vot
given by

v - V fori=0,...;i—1,

V., =V forl=i+1,...,5-1,

Vi, =V forl=j+1,...,p,

v 1% (resp. V;),

v/ = Vi\{u} (resp. V;\{v}),

Vi = {u}  (resp. {v}).

We notice that, as shown in the proof of Theorem 4.5.4 (ii), this rooted-opt-partition
inequality is stronger than the rooted-partition one. We then test the violation of this
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rooted-opt-partition inequality. Moreover, in both cases (L = 2 or L = 3), if the tested
inequality is not violated, we then contract two sets V;, V; such that [V;, V;] contains an
edge having the biggest value in A(G), and test this smaller partition. This procedure
is stopped whenever the number of partition subsets becomes 2, since the correspond-
ing rooted-partition is then an st-cut.

When L = 2,3, we also separate heuristically the double cut inequalities (4.6)-(4.7)
and triple path-cut inequalities (4.9)-(4.10). In what follows, we present their sepa-
ration procedures for L = 2. Those for L = 3 are similar. For the former class, we
apply the following for every demand {s;,t;} € D and every terminal node ¢, different
from sy,t;. We consider the partition IT = (Vp, ..., V3) where Vy = {s1}, Vi = {t2},
Vo = N\{s1,t1,t2}, V5 = {t1}. The idea behind this is to get a double cut inequality
that, by Theorems 4.5.5-4.5.6, may define a facet of Pg(D,2). We select e € [V;, V3]
having the biggest value and then test the violation of the double cut inequality corre-
sponding to IT and e. (We also test the partition obtained by exchanging the roles of
s1 and t;.)

For the latter class, the separation procedure goes as follows for any source node
s with at least two destinations. We look for two destination nodes t¢,t, of s such
that the triangle s,t;,f5 has minimum z* value. We then consider the partition
I = (Vo,V1,...,V4) such that Vo = {s}, Vi = N\{s,t1,t2}, Vo = 0, V3 = {t1},
Vi = {t2}. Note that this partition satisfies the necessary conditions (i), (ii), (iii) of
Theorem 4.5.8. Also, since we consider graphs with at least five nodes, we have that
|[Vi| > 2. For every node u of Vi, if 2*(su) < 1/2(x*(uty) + 2*(uts)), then we move
u from V; to V5, and consider the new partition, still denoted by II. The motivation
behind this is, as before, to reduce as much as possible the lefthand side of the gener-
ated inequality. This process is stopped if V; has only one node left. If, after this step,
V5 is still empty, then we take a node u from V; such that z*(su) = min,ey, {z*(sv)},
and we transfer it to V5. We then test if the triple path-cut inequality corresponding
to II is violated. The edge e to be removed is chosen as the edge with the maximum
x* value between V] and {¢,t>}. If e is incident to ¢5, then we exchange the roles of t;
and ¢, for e to belong to [V, V3].
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4.7 Branch-and-Cut and computational results

Based upon the previous theoretical results, we have developed a Branch-and-Cut al-
gorithm in order to efficiently solve the THNDP when L = 2,3. The algorithm has
been implemented in C++, using BCP to manage the branching tree and CPLEX 8.11
as linear solver, and tested on a Pentium IIT at 933 MHz with 384 Mo of RAM under
Linux. The maximum runtime has been fixed to 5 hours. The results presented here
essentially concern the case where the demands are rooted in a node s, since we have
focussed our polyhedral study on this case. Nevertheless, our algorithm is adapted
to any set of demands, and we also present some computational results in that case.
For each instance tested, we have run the algorithm twice, once with the constraints
(4.1)-(4.4) only, and a second time with also inequalities (4.5)-(4.12) depending on their
respective validity for L = 2, 3.

To begin the optimization, we consider the linear program consisting of the cut in-
equalities associated to the demand nodes, and the trivial inequalities. Moreover, in
the second run of the algorithm, for each source node s with at least two destinations,
we add to this basic program the rooted-partition inequality where each destination of
s corresponds to an element of the partition and all the other nodes are put in V4.

In the Branch-and-Cut algorithm, we have to check whether or not an optimal solu-
tion of a relaxation to the THNDP is feasible. An optimal solution z* of a relaxation is
feasible for the THNDP if it is an integer vector satisfying the st-cut and L-st-path-cut
inequalities. Verifying if an integer solution x* is feasible for the THNDP can be done
in an efficient way. For every edge e of G+ and every demand {s,¢} € D, we check if
the shortest st-path in G, — e is of length < L. If this the case, then by Lemma 4.3.1
x* is feasible. If not, this means there is no L-st-path not containing e. This implies
that z* is not feasible.

Another important issue in the effectiveness of the Branch-and-Cut algorithm is to
compute a good upper bound. For this, in the solution of the current linear program,
we first round up to 1 all the variables with a value > 0.3 and round down to 0 those
with value < 0.3. We try to improve this solution by deleting all the edges incident to
a Steiner node whose total value is less than 2. We then verify if the resulting integer
solution is feasible. If not, we apply the same procedure for the solution obtained by
rounding up to 1 all the fractional values.
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If an optimal solution x* of the linear relaxation of the THNDP is not feasible, the
algorithm generates additional valid inequalities of Pg (D, L) violated by z*. Their
separation is realized in the following order :

st-cut inequalities,

L-path-cut inequalities,

double cut inequalities,

rooted-(opt-)partition inequalities (if L = 2),

triple path-cut inequalities.

We remark that all inequalities are global (i.e. valid at every node of the Branch-
and-Cut tree) and several of them can be added at each iteration. Moreover, we go to
the next class only if we do not find any violated inequalities in the current class.

To separate the different inequalities, we use the algorithms described in Section 4.6.
All our separation procedures are applied on the support graph of z*, that is GG+, where
x* is the solution of the current relaxation. When solving instances of the THNDP,
we remarked that the exact separation of the st-cut inequalities is time consuming.
Therefore, we decided to perform this exact separation after that of the L-path-cut
inequalities.

To store the generated inequalities, we use a pool whose size increases dynamically.
Inequalities in the pool can be removed from the current linear program when they are
not active. Also, they are the first inequalities to be separated. If all the inequalities in
the pool are satisfied by the current solution, we then separate the classes of inequali-
ties according to the order given above.

The computational results presented here concern randomly generated instances and
instances coming from real applications. The instances consist in complete graphs
with edge costs equal to rounded Euclidean distances. The tests were performed for
L = 2, 3. In practice, note that the bound on the routing paths does not usually exceed
4. The second set of instances comes from the network of the Belgian telecommuni-
cations operator, Belgacom, on 52 cities and subsets of these. The random problems
were generated with n = 10 to n = 40 nodes, with different number d of demands. For
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each couple (n,d), five instances were tested.

In the various tables, the entries are:

Gapl
Gap2
Gtl
Gt2
Treel
Tree2

CPU1
CPU2

the number of nodes of the problem,

the number of demands,

the number of generated st-cut inequalities (run 2),

the number of generated L-path-cut inequalities (run 2),

the number of generated double cut inequalities (run 2),

the number of generated rooted-(opt-)partition (if L = 2) inequalities (run 2),
the number of generated triple path-cut inequalities (run 2),

the number of problems solved to optimality (run 1) over five instances tested,
the number of problems solved to optimality (run 2) over five instances tested,
the gap between the best upper bound and the lower bound obtained

at the root node of the Branch-and-Cut tree in the first run,

the gap between the best upper bound and the lower bound obtained

at the root node of the Branch-and-Cut tree in the second run,

the gap between the best upper bound and the best lower bound

obtained in the first run,

the gap between the best upper bound and the best lower bound

obtained in the second run,

the number of nodes in the Branch-and-Cut tree for the first run,

the number of nodes in the Branch-and-Cut tree for the second run,

the total time of the first run in seconds,

the total time of the second run in seconds.

The first two tables report the average results for the random instances, obtained in

the case of rooted demands, for . = 2 and L = 3, respectively.

In Table 4.1, we remark that, up to 20 nodes and 15 demands, all problems have
been solved to optimality within the time limit. Besides one exception, this is also the

case for 30 (resp. 40) nodes when there are 15 (resp. 10) destinations or less. When

we consider 20 demands or more, only one instance has been solved in less than 5

hours. We can remark that not many st-cut inequalities are obtained for the different
instances. This, in fact, is because, when L = 2, the L-st-path-cut inequalities dom-

inate the st-cut constraints induced by non singletons (see Section 2.6). Note that,
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Table 4.1: Results for random instances for L = 2 and rooted demands

[ d Cu Pc Dc Ro Tp ol o2 Gapl Gap2 Gtl Gt2 Treel Tree2 CPU1 cru2 ||
10 2 0 1 2 2 2 5 5 00 00 00 00 1 1 0.01 0.01
10 5 1 24 5 9 5 5 5 80 L1 00 00 17 5 0.10 0.06
10 8 3 70 20 26 8 5 5 120 50 00 00 156 34 1.30 0.54
20 5 0 3 5 10 10 5 5 66 09 00 00 10 2 0.12 0.09
20 10 5 480 65 311 25 5 5 135 68 00 00 1143 547 32.02 40.88
20 15 13 3077 371 973 59 5 5 151 92 00 00 79054 35770  6711.73  7081.31
30 8 2 249 22 273 26 5 5 89 33 00 00 152 51 5.05 15.19
30 15 8 2465 207 1491 82 4 4 128 74 02 07 28501 7694  5023.44 521593
30 22 17 2982 327 1554 40 1 1 305 202 226 157 73564 26235 14591.42 14432.96
40 10 3 1714 87 2972 84 4 4 132 74 01 10 10458 2139  3696.43  4426.79
40 20 13 3252 213 3379 56 0 0 334 242 256 207 60744 10978 18000.00  18000.00
40 30 26 3191 234 1626 19 0 0 433 363 39.1 341 53753 12859  18000.00  18000.00

in the second run, a significant number of double cut, rooted-opt-partition, and triple

path-cut inequalities have been generated. If these yield little impact on the number

of instances solved to optimality, or on the CPU time, we remark that the gaps (Gap2,

Gt2) and, in particular, the size of the Branch-and-Cut tree (Tree2) are significantly

reduced with respect to Gapl, Gtl, and Treel. We may also observe that for the in-

stances with 20 demands or more, the gap at the root node in the second run (Gap2)

is better than the final gap obtained after 5 hours in the first run (Gt1).
Table 4.2 gives the computational results for the same instances as those of Table

4.1, when L = 3.

Table 4.2: Results for random instances for L = 3 and rooted demands

[ d Cu Pc Dc Ro Tp ol 02 Gapl Gap2 Gtl Gt2 Treel Tree2 CPU1 cru2 |
0 2 5 0 2 3 1 5 5 00 00 00 00 1 1 0.01 0.01
10 5 11 5 10 14 3 5 5 113 56 00 00 58 17 0.70 0.21
10 8 9 198 20 8 2 5 5 123 64 00 00 278 89 7.26 1.50
20 5 28 146 13 45 2 5 5 83 52 00 00 37 17 2.25 1.35
20 10 30 3407 52 312 9 5 5 139 68 00 00 3681 1247  2403.97  437.00
20 15 38 24953 170 422 21 0 0 306 161 21.8 86 10049 11971 18000.00 _ 18000.00
30 8 30 2250 42 384 1 5 5 103 53 00 00 996 336 192748  468.81
30 15 60 18509 122 1071 5 0 1 299 164 219 99 5326 5087 18000.00 1664714
30 22 39 15703 105 318 4 0 0 428 304 385 277 3859 5753 18000.00  18000.00
40 10 58 9351 71 1087 4 2 3 167 74 6.6 17 1965 1099 1192539  8710.00
40 20 61 11442 76 940 1 0 0 460 367 424 347 1808 1930 18000.00  18000.00
40 30 49 11344 8 274 4 0 0 573 457 551 444 1525 1547 18000.00  18000.00
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Similar observations as for Table 4.1 can be made for Table 4.2. However, the im-
provement between the first and second runs is even more important. Indeed, one can
remark that, for the instances with (n,d) = (10,8), (20, 10) or (30, 8), the CPU time
is almost divided by 5. This can be explained by the fact that the st-cut inequalities
when L = 2 have been all generated by our heuristic, while, for L = 3, the exact sep-
aration, which takes more time, has been used. For this reason, it is natural to come
with more exciting results in run 1 when L = 2 than in run 1 when L = 3. Moreover,
for the instances with (n,d) = (30, 15) or (40, 10), we can see that one more instance
has been solved to optimality in run 2. And finally, the gap Gt2 has been reduced for
the big instances by almost 10% with respect to Gtl.

Tables 4.3 and 4.4 summarize the average results obtained for the same instances,
but with arbitrary sets of demands.

Table 4.3: Results for random instances for L = 2 and arbitrary demands

[ d Cu Pc Dc Ro Tp ol 02 Gapl Gap2 Gtl Gt2 Treel Tree2 CPUlL crpu2 ||
10 5 3 50 21 10 20 5 5 102 88 00 00 21 21 0.16 0.24
20 5 3 76 14 7 20 5 5 4.7 38 00 00 7 9 0.22 0.40
20 10 7 761 52 20 102 5 5 8.3 78 00 00 625 358 50.58 45.19
30 8 5 650 66 56 1564 5 5 8.5 85 0.0 00 459 489 28.61 43.40
30 15 13 5397 412 119 910 2 2 125 127 39 46 23291 15357 1174840 11613.36
40 10 6 519 50 15 173 5 5 5.4 50 0.0 00 107 63 15.28 16.44
40 20 13 6565 363 15 736 0 O 17.0 193 11.4 140 10859 8349 18000.00  18000.00

Table 4.4: Results for random instances for L = 3 and arbitrary demands

[n d Cu Pc Dc Ro Tp ol 02 Gapl Gap2 Gtl Gt2 Treel Tree2 CPUL cru2 ||
0 5 9 68 21 4 2 5 5 7.0 58 0.0 0.0 29 22 0.35 0.34
20 5 20 565 46 6 0 5 5 8.5 77 00 0.0 103 91 12.12 10.01
20 10 31 20280 395 7 3 2 2 207 185 80 6.7 5042 4369 12555.41 11183.45
30 8 50 14251 282 40 4 3 3 157 140 3.1 21 1948 1816  8489.24  8181.75
30 15 29 19982 318 4 1 0 0 567 564 537 535 1126 1190 18000.00  18000.00
40 10 64 16501 279 9 1 0 0 301 335 238 282 1605 1709 18000.00  18000.00
40 20 29 12519 148 4 1 0 0 615 614 602 60.0 274 301  18000.00  18000.00

Unfortunately, for Tables 4.3 and 4.4, no significant improvement, between the first
and second runs is observed. We believe that this is because the valid inequalities pre-
sented in this chapter are more adapted to rooted demands. However, many instances
in both cases have been solved to optimality. For L = 2, all the instances with up to 10
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demands were solved to optimality. For L = 3, this was the case for up to 5 demands
only.

In Tables 4.5 and 4.6, we report the computational results obtained for real instances
for L = 2 and L = 3, respectively. Here, the instances with 10 demands are rooted,
while the others have multiples sources.

Table 4.5: Results for real instances when L = 2

[ d Cu Pc Dc Ro Tp Gapl Gap2 Gtl Gt2 Treel Tree2 CPUL  CPU2 |

1110 0 37 25 28 3 9.9 33 00 00 201 29 1.83 0.59
11 30 0 793 4 48 49 173 89 00 00 135 95 7.86 10.67
11 55 1 2376 8 51 51 209 10.1 0.0 00 245 235 118.30 38.88
30 10 4 241 35 302 27 9.9 34 00 00 215 101 5.19 18.58
30 30 2 1862 7 347 67 173 89 00 00 103 87 35.29 94.78
30 55 0 8767 4 610 98 209 101 0.0 0.0 227 321  463.32 859.75
52 10 1 613 48 1041 59 9.9 45 00 00 641 315 35.30 226.05
52 30 0 4184 13 1239 156  17.3 92 00 00 161 235 241.0  1130.67
52 55 0 13540 3 6920 90 209 11.1 0.0 7.4 221 1051 3119.40 18000.00

Table 4.6: Results for real instances when L = 3

[ d Cu Pc Dc Ro Tp Gapl Gap2 Gtl Gt2 Treel Tree2 CPU1 cru2 |
11 10 10 135 19 3 0 11.2 2.4 0.0 0.0 869 81 21.82 1.13
11 30 11 2887 234 14 5 162 88 0.0 00 4627 891  1655.84 126.39
11 55 11 3485 351 9 0 16.1 73 00 00 3767 721  2741.18 196.13
30 10 3 43 3194 50 339  11.2 38 00 00 3235 603 3678.49 348.73

30 30 14 24111 423 659 44 17.1 8.9 5.3 1.8 2233 3115  18000.00  18000.00

30 55 16 25376 512 576 45 53.2 7.6 46.8 1.0 1605 2361  18000.00  18000.00

52 10 51 14309 68 1328 9 11.3 7.3 3.2 2.6 1643 2221  18000.00  18000.00

52 30 31 14685 80 535 4 21.5 12.2 139 6.6 449 407  18000.00  18000.00

52 55 42 11950 103 1234 11 53.5 13.7 49.1 10.6 383 387  18000.00  18000.00

Consider first Table 4.6. We can remark that, for the instances solved to optimality,
the CPU time in the first run has been divided by more than 10 in the second run.
And for the other instances, the final gap Gt2 has been considerably reduced compared
to Gt1l. The most significant case is the instance with 30 nodes and 55 demands. The
final gap decreases from 46.8% to 1%. However, quite surprisingly, in Table 4.5, for
the same instances with L = 2, the second run does not permit to improve neither the
CPU time, nor the final gap. Only the gap at the root node decreases between the two
runs.
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Here below, we present the best solutions obtained for the real instances with 52
Belgian cities, for L = 2 and L = 3, respectively. The case where d = 10 (Figure 4.7)
corresponds to a rooted situation where we would like to link the “capitals” of the ten
regions of Belgium to Brussels (BRU). When d = 30 (see Figure 4.8), we split these
ten cities into two groups, namely BRG-GEN-ANT-HAS-LEU and WAV-NAM-LIE-
MON-ARL, and, in each group plus Brussels, we require two L-paths relatively to all
the possible pairs. Finally, when d = 55 (Figure 4.9), we consider all demands based
on these ten cities plus Brussels.

Figure 4.7: Best solutions found for 52 cities with 10 demands, on the left, when L = 2
(optimal), and, on the right, when L = 3
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IEP
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Figure 4.8: Best solutions found for 52 cities with 30 demands, on the left, when L = 2
(optimal), and, on the right, when L = 3
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Figure 4.9: Best solutions found for 52 cities with 55 demands, on the left, when L = 2
(optimal), and, on the right, when L = 3
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4.8 Concluding remarks

In this chapter, we have studied the Two-edge connected Hop-constrained Network De-
sign Problem (THNDP). We have proved that the problem remains strongly N P-hard
even in the rooted case and for any fixed L > 2. We have given an integer program-
ming formulation of the THNDP when L = 2,3, and described various families of
valid inequalities. We have then focussed on the rooted case and L = 2,3, where we
have studied necessary conditions and sufficient conditions for these inequalities to be
facet-defining. We have also discussed separation routines for the different classes of
inequalities. In particular, for the rooted-partition inequalities, when the elements of
the partition, different from the one containing the source node, are singletons, and
when there are an odd number of them, we have shown that the associated separation
problem can be reduced to the minimization of a submodular function, and hence, can
be solved in polynomial time.

Using our polyhedral results, we have devised a Branch-and-Cut algorithm for L =
2,3, and presented extensive computational results. We could estimate the effect of
the double cut, the rooted-(opt-)partition and the triple path-cut inequalities in the
Branch-and-Cut algorithm. This is particularly strong for the rooted case since these
inequalities are more adapted to this case. For arbitrary demands, the best results
have been realized for the real instances when L = 3. We could also measure the
performance of our separation techniques.

Therefore, it would be of great interest to know additional classes of valid inequali-
ties for the THNDP when the demand set contains multiple sources. Those could then
be used as cutting planes in our Branch-and-Cut algorithm in order to improve the
previous computational results in that case. The general THNDP (i.e. non necessarily
rooted) will be considered in the next chapter.






Chapter 5

General Two-Edge Connected
Hop-Constrained Network Design
Problem

We continue here our study of the Two-edge connected Hop-constrained Network De-
sign Problem, or THNDP. In Chapter 4, we already gave several results for this problem.
However, even if the introduced classes of valid inequalities were given in all generality,
they happened, by their structure, to be more effective in the case of rooted demands.
Therefore, we will now present additional classes of valid inequalities, which rather take
into account the interaction between node-disjoint demands. We will then see if they
are useful in practice, when we are in presence of arbitrary demands (non necessarily
rooted). This work is issued from the same collaboration as in the previous chapter,
but has not been the object of a publication up to now.

5.1 Introduction

We do not recall here the statement of the THNDP problem and its related definitions.
For this, the reader is referred to Section 4.1.

The chapter is organized as follows. In the following section, we present several
new classes of valid inequalities for the THNDP when L = 2. While the inequalities
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given in Chapter 4 were based on several rooted demands, these ones are build on
disjoint demands. In Section 5.3, we also propose a similar family of valid inequalities
for the problem when L = 3. We then give heuristic separation procedures for these
inequalities in Section 5.4, and test their effectiveness within the framework of our
Branch-and-Cut algorithm in Section 5.5. We finally present some concluding remarks
about this study in the last section.

5.2 New classes of valid inequalities for L =2

In this section, we give new classes of valid inequalities for the THNDP when L = 2.

Theorem 5.2.1. Let Vo, Vi,..., V) be a partition of N, di = {s1,t1} be a demand
of D such that |dy N Vo| = 1 and |dy NV, = 1, and Vi induce an s;t;-cut for some
i€{2,...,d}. Let e € [V},VoUV3|. See Figure 5.1. The following inequality, called a
double path-cut inequality,

z([Vo, Vi) + 2([Vo, Va]) + 2([Vo U V1 U Vo, Vi]) + 2([V1, Va U Vs]\{e}) =3 (5.1)

is valid for Pg(D,?2).

Proof. Inequality (5.1) can be obtained as the rounded-up half-sum of the following
constraints:

s;t;-cut inequality on subset V7,

2-s1t1-path-cut inequality on the partition Vy, V3 U Vs, V3, Vy,

2-s1t1-path-cut inequality on the partition V, V5, V4 U V3, Vy,

trivial inequality —z(e) > —1,

trivial inequalities x(f) > 0 for all f € [V1, Vo U V3]\{e}.

O

The second class is similar to the first one, but it is based on 2-path-cut inequalities
for different demands.
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Figure 5.1: Support graph of a double path-cut inequality when L = 2 (¢, € N\11)

Theorem 5.2.2. Let Vy, Vi, ..., Vy be a partition of N, and di = {s1,t1}, do = {s2, 2}
be two disjoint demands of D such that |di NVo| =1, |[dyNVy| =1, |[daonNVi| =1 and
|do NVa| = 1. Let e € [V1, Vo U V3. See Figure 5.2. The following inequality, called an
opposed double path-cut inequality,

2(6(Vo)) + z([Va, Va]) + 2([W, Va U Vs]\{e}) > 3 (5-2)
is valid for Ps(D,2).

Proof. Inequality (5.2) can be obtained as the rounded-up half-sum of the following
constraints:

sit1-cut inequality on subset V),

2-s1t1-path-cut inequality on Vy, V5,V U V3, Vy,

2-soto-path-cut inequality on Vi, Vo U Vi, V3, V5,

trivial inequality —z(e) > —1,

trivial inequalities z(f) > 0 for all f € [V;, Vo U V3]\{e}.
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Figure 5.2: Support graph of an opposed double path-cut inequality

The following two classes are obtained as Chvatal-Gomory cuts of the two previous
ones.

Theorem 5.2.3. Let Vj, ..., V, be a partition of N, and dy = {s1,t1}, do = {s2,t2} be
two disjoint demands such that |di NVl =1, [diNVy| =1, |[doNVi| =1, |[doN Vs = 1.
Let e € [V1,Vo U V3] and [ € [Vy, V3 U Vy]. See Figure 5.3. The following inequality,
called a type I inequality,

z([Vo UV, Vi UVa]) +2([Vo, Vs UVIN{f}) + 22([V1, Va U V3] \{e}) + z(e) = 4 (5.3)
is valid for Pg(D,2).

Proof. Inequality (5.3) can be obtained as the rounded-up half-sum of the following
constraints:

- double path-cut inequality associated to partition Vi, Vj, V4, V3, Vs, demands ds, d;,
and edge f,

- opposed double path-cut associated to partition Vi, Vp, V4, V3, Vs, demands ds, dy,
and edge f,

- 2-soto-path-cut inequality on partition Vi, V), V3 U Vy, Vs,
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- trivial inequality —x(e) > —1,

- trivial inequalities x(g) > 0 for all g € [V4, Vo U V3]\{e}.

Figure 5.3: Support graph of a type I inequality

Theorem 5.2.4. Let Vy, ..., Vy be a partition of N, and di = {s1,t1}, do = {s2,t2}
be two disjoint demands of D such that |[di N Vo] = 1, [diNVy| =1, |[den'V3| = 1,
|do NV = 1. Let e € [Vi, Vo U V3]. See Figure 5.4. The following inequality, called a
type II inequality,

2(0(Vo)) + 2([Vi, Va]) + 2([Va, Va]) + 22([V1, Vo U V] \{e}) > 4 (5-4)

is valid for Pg(D,?2).

Proof. Inequality (5.4) can be obtained as the rounded-up half-sum of the following
constraints:

- double path-cut inequality associated to partition Vg, ..., Vy, demands d;, d5, and
edge e,
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opposed double path-cut inequality associated to partition Vg, ..., V), demands
dy, ds, and edge e,

2-soto-path-cut inequality on partition Vi, Vg, V3 U Vg, Vs,

trivial inequality —z(e) > —1,

trivial inequalities z(f) > 0 for all f € [V;, Vo U V3]\{e}.

V3

Figure 5.4: Support graph of a type II inequality

Our last class of valid inequalities gives the minimum number of edges in a multicut
based on several disjoint demands.

Theorem 5.2.5. Let {s1,t1}, ..., {sopt1,topt1}, 1 < 2p+1 < d, be disjoint demands
of D, and Vo, Vi, ..., Viprs be a partition of N. Let Vaj_1 = {s;} and Va; = {t;}
forj =1,....2p+ 1, and Vo = N\(U;_1 _4p0 Vi) Suppose that [[s;,t;]| < 1 for
1 =1,...,2p+ 1. See Figure 5.5. Then the inequality, called a disjoint-partition
inequality,

z(0(Voy ..., Vipia)) > 4p+3 (5.5)

is valid for Pg(D,2).
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Proof. The following inequalities are valid,
x(6(V;))>2,j=1,...,4p+2,
z(6(Vo)) = 0.

By summing these inequalities and dividing by 2, we obtain
2(6(Vo Vi Vipya)) = 4p + 2.

Let us suppose that the above inequality holds with equality for an integer solution z.
Then one should have z(§(V;)) =2for j =1,...,4p+2 and (6(Vp)) = 0. This implies
that 7’ is the union of disjoint cycles C', . . ., C, where the nodes correspond to elements
of the partition. Here i’ is the restriction of ¥ on G(U,_, _ 4,,, Vi)- Note that if a cycle
goes through a terminal s; (¢;), then it must also go through ¢; (s;). In consequence,
each cycle must be even. As L = 2 and [[s;, ;]| < 1,Vi = 1,...,2p+ 1, each cycle is
of length exactly 4 and therefore uses exactly two pairs of terminals. Thus the cycles
altogether go through an even number of pairs of terminals. Since the number of pairs
of terminals is odd, this is impossible. O

Figure 5.5: Support graph of a disjoint-partition inequality with p =1

5.3 New class of valid inequalities for L = 3

When L = 3, we can extend the family of double path-cut inequalities as follows.
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Theorem 5.3.1. Let Vi, Vi,..., Vs be a partition of N, di = {s1,t1} be a demand
of D such that |dy N Vy| = 1 and |dy N'Vs5| = 1, and V; induce an s;t;-cut for some
i €{2,...,d}. Let e € [V}, V3]. See Figure 5.6. The double path-cut inequality,

z(0(Vi)\{e}) + z([Vo, Vs UV U Vs]) + a([Va, Va U V5]) + z([V5, Vs]) = 3 (5.6)

is valid for Pg(D,3).

2 e e N
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Figure 5.6: Support graph of a double path-cut inequality when L =3 (¢, € N\14)

Proof. Inequality (5.6) can be obtained as the rounded-up half-sum of the following
constraints:

- s;t;-cut inequality on subset V7,

2-s1t;-path-cut inequality on the partition Vy, Vi U Vo, V3, V), Vs,

2-s1t1-path-cut inequality on the partition Vg, V5, V3, V4 U Vy, Vs,

trivial inequality —z(e) > —1,

trivial inequalities z(f) > 0 for all f € [V1, V3]\{e}.
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5.4 Separation procedures

In this section, we present heuristic separation procedures for inequalities (5.1)-(5.6).
As before, let =* be the current solution that we would like to separate.

The separations of inequalities (5.1) and (5.2) are performed simultaneously in the
following way. The procedure for separating inequalities (5.6) uses similar ideas. We
consider each possible pair of disjoint demands of D, say {si,?;1} and {ss,t2} with
these four nodes distinct two by two. We then look for the edge among s;ss, sits,
189, t1ty with the maximum z*-value. Let uv be this edge and let u' (resp. v’) be
the terminal associated to u (resp. v). All the other nodes besides those four are in
V3. We distribute u, v, u/,v" to Vg, Vi, Vo,V as follows. If the edges between u and V3
have a total weight bigger than those between v and V3, we put w in V5 and v in V),
and hence, v’ in V; and ¢’ in Vj. If the contrary holds, we rather put « in Vj and v in
Va, while v’ and v’ are put in V; and Vj, respectively. We then check for the violation
of the double path-cut inequality associated to this partition and to edge e, where e
has the biggest z*-value among the set [V;, V5 U V3]. Whatever may be, we also try to
generate a violated opposed double path-cut inequality. Again, let uv be the edge with
the greatest z*-value among s1S9, S1ta, 152, t1ta, and u’, v’ the terminals associated
to u,v. This time, if the edges incident to u’ and V3 have a bigger weight than those
between v’ and Vs, ¢’ is placed in V5 and v in V{, and thus « is put in V; and v in Vj.
If not, v’ is rather placed in V; and v’ in V5, making u in V; and v in V;. Finally, we
test if the opposed double path-cut inequality associated to this partition and to edge
e, where e has the biggest z*-value among the set [V}, V2 U V3], is violated or not by z*.

Inequalities (5.3) and (5.4) are also separated at the same time. This works as follows
for any disjoint demands {sy,?;} and {sy,t2} in D. All the other nodes are first put in
V3. For each of these four nodes, we search for the incident edge, to V3 or its associated
terminal, with the biggest x*-value. We also compute the total weight of its incident
edges to V3 and its associated terminal, minus the previous maximum edge. Let u be
the node with this computed value minimum. Then, we put v in V] and let e be the
maximum edge corresponding to u. Also, if v is the terminal associated to u, we put
u' in V3. The other demand pair is distributed between Vj and V, according to the
total weight of edges between each terminal node and V3 (minimizer in Vj, maximizer
in V). We test the violation of the type II inequality corresponding to this partition
and edge e. In any case, we proceed to the generation of a type I inequality in the
following manner. We start from the previous partition and edge e, and simply choose
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the edge f as the maximum edge associated to the terminal in V. We check if the
corresponding type I inequality is violated by x* or not.

Inequalities (5.5) are separated in the following way. We look for the demand {sy,¢;}
of D minimizing the weight of the multicut V; = {s1}, Vo = {t1}, Vo = N\{s1,t1}.
The corresponding partition is then tested for inducing a violated disjoint-partition
inequality. If not, we search for two additional disjoint demands in V[, minimizing the
total weight of the edges between two of their four nodes, or between one of them and
some node in Vj different from them. The resulting four terminal nodes are taken from
Vo to four new susbsets, namely Vj, 1, ..., Viyio, if this is the p'® iteration of this step.
The new disjoint-partition inequality is checked for violation, and, if this is not the
case, this procedure is iterated. Of course, we stop whenever there are no longer two
disjoint demands remaining in V.

5.5 Computational results

The separation procedures of the previous section were embedded into the Branch-
and-Cut algorithm presented in Chapter 4. We would indeed like to test if our new
classes of valid inequalities were of any practical use for the THNDP with L = 2,3 and
arbitrary demands.

After some preliminary experiments, we noticed that no disjoint-partition inequali-
ties were generated by our separation procedure. Moreover, as already mentioned in
the previous chapter, all violated st-cut inequalities were found through the heuristic
when L = 2, that is, no additional ones were produced by the exact separation in that
case. Also, inequalities (5.3) and (5.4) were more quickly separated, and more numer-
ously generated, than inequalities (5.1) and (5.2). Finally, for the biggest instances,
when demands rarely shared a same node, it seemed more efficient to first separate
these new classes of inequalities, than those adapted to the rooted case, that is, the
double cut, rooted-(opt-)partition and triple path-cut inequalities from Chapter 4.

As a consequence, we have decided to perform the separation of the following in-
equalities, and in this precise order,

1. st-cut inequalities (heuristically),
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2. L-st-path-cut inequalities,
3. type I and type II inequalities (L = 2 only),

4. double path-cut inequalities (L = 2,3) and opposed double path-cut inequalities
(L =2 only),

5. triple path-cut inequalities,

6. double cut inequalities,

7. rooted- (opt-, when L = 2) partition inequalities,

8. st-cut inequalities (exactly, when L = 3 only).

In the first two tables here below, we present average results obtained for the same
random instances with L = 2, 3 and arbitrary demands as in Section 4.7. Here we only

separate the basic and “disjoint” inequalities in the order 1. to 4., eventually plus 8. if
L =3.

The entries are as follows:

n :  the number of nodes of the problem,

d the number of demands,

Cu :  the number of generated st-cut inequalities,

Pc :  the number of generated L-path-cut inequalities,

Dp : the number of generated double path-cut inequalities,

Dpo :  the number of generated opposed double path-cut inequalities,

TI : the number of generated type I inequalities,

TII :  the number of generated type II inequalities,

03 : the number of problems solved to optimality over the five instances tested,

Gap3 : the gap between the best upper bound and the lower bound obtained
at the root node of the Branch-and-Cut tree,

Gt3 . the gap between the best upper bound and the best lower bound,

Tree3 : the number of nodes in the Branch-and-Cut tree,

CPU3 : the total time in seconds.

Let us compare Table 4.3 from Chapter 4 with Table 5.1. First, one can see that the
same number of instances were solved to optimality within the time limit (5 hours).
For these ones, the gap at the root node (Gap3) is similar to the one obtained with
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Table 5.1: Results for random instances for L. = 2 and arbitrary demands, with basic
and disjoint inequalities only

[ d Cu Pc Dp Dpo TI TI o

w

Gap3 Gt3 Tree3 CPU3 |

10 5 4 60 21 16 40 51 5 8.9 0.0 22 0.28
20 5 2 77 11 7 49 48 5 3.8 0.0 15 0.49
20 10 7 816 71 43 99 177 5 8.0 0.0 558 66.82
30 8 6 626 67 58 192 244 5 8.5 0.0 425 45.16
30 15 12 5319 390 420 341 1080 2 11.8 3.5 15063  11489.65
40 10 6 531 47 36 134 178 5 5.1 0.0 109 22.25
40 20 13 6473 303 282 261 901 0 19.9 149 8211  18000.00

the basic and “rooted” inequalities (Gap2), and thus, quite less than the one obtained
with the basic constraints only (Gapl). In the same way, more CPU time is used when
more inequalities are separated, which yields a total time CPU3 bigger than CPU1
(and similar to CPU2). For instances not solved to optimality, one can remark con-
tradicting results. For (n,d) = (30, 15), we have indeed that the gap at the root node
(Gap3) and the final gap (Gt3) are both reduced by about half a percent compared to
the previous ones (Gapl, Gap2, Gt1l, Gt2). Also, the average CPU time has decreased,
which makes the new classes of disjoint inequalities quite better than the rooted in-
equalities introduced in Chapter 4. However, when (n,d) = (40, 20), all these values
become worse than their counterparts obtained in the previous tests. This is mainly
due to the fact that, if the lower bounds slightly improve in this new run, the upper
bounds are not as good as before (since more time is now passed in separations and
less in branchings, see Tree3 compared to Treel and Tree2), making the overall gaps
larger.

Table 5.2: Results for random instances for L = 3 and arbitrary demands, with basic
and disjoint inequalities only

[~ d cCu Pc Dp 03 Gap3 Gt3 Tree3 CPU3 |

10 5 9 88 52 7.6 0.0 37 0.49
20 5 15 703 159 8.4 0.0 111 15.97
20 10 27 21568 2552 19.5 6.6 4521  11983.82
30 8 39 14694 2183 15.3 3.0 2020 8712.69
30 15 26 20258 1450 56.6 53.6 1092 18000.00
40 10 34 16533 1722 32.8 272 1516  18000.00
40 20 23 12333 494 61.5 60.2 269  18000.00

O|lOo|Oo|w|N| ot ot

For L. = 3, the double path-cut inequalities introduced in this chapter do not give
very satisfactory results. Indeed, the gaps and CPU time are between the correspond-
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ing values obtained in Chapter 4 thanks to the basic constraints, respectively with and
without the rooted inequalities. Only for (n,d) = (20, 10), the final gap here (Gt3) is
slightly smaller than both of the previous ones (Gt1,Gt2).

The following tables present average results on the same set of THPP instances, but,

this time, the “rooted” inequalities are also separated (in the order 1. to 8.). We have

the following entries.

n
d

Cu
Pc
Dc
Ro
Tp
Dp
Dpo
TI
TII
o4
Gap4

Gt4
Tree4

CPU4

the
the
the
the
the
the
the
the
the
the
the
the
the

number of nodes of the problem,

number of demands,

number of generated st-cut inequalities,

number of generated 2-path-cut inequalities,

number of generated double cut inequalities,

number of generated rooted-(opt-)partition inequalities,

number of generated triple path-cut inequalities,

number of generated double path-cut inequalities,

number of generated opposed double path-cut inequalities,
number of generated type I inequalities,

number of generated type II inequalities,

number of problems solved to optimality over the five instances tested,
gap between the best upper bound and the lower bound obtained

at the root node of the Branch-and-Cut tree,

the
the
the

gap between the best upper bound and the best lower bound,
number of nodes in the Branch-and-Cut tree,
total time in seconds.

Table 5.3: Results for random instances for L = 2 and arbitrary demands, with basic,

disjoint and rooted inequalities

[n d Cu Pc Dc Ro Tp Dp Dpo TI TII o4 Gapd Gtd Treed Ccru4 ||
10 5 3 57 5 3 9 16 14 39 50 5 87 0.0 22 0.28
20 5 1 69 3 3 5 12 7 44 47 5 3.8 0.0 11 0.47
20 10 7 83 271 20 92 60 44 81 151 5 78 0.0 521 73.74
30 8 6 594 22 20 109 58 49 181 218 5 85 0.0 289 34.34
30 15 12 5299 203 112 901 330 363 318 980 2  11.6 3.5 14001 11719.93
40 10 7 521 14 8 50 38 32 130 166 5 5.0 0.0 80 22.08
40 20 13 6341 151 16 606 247 287 240 859 0 21.9 171 7929  18000.00

Let us now analyze Table 5.3 compared to the previous ones. One can first remark

that a large amount of violated inequalities were generated in all families (basic, dis-
joint and rooted). This means that, in the case of arbitrary demands, the interaction
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between two intersecting demands is still to consider. Of course, more disjoint inequal-
ities are found than rooted ones, but the difference is not so important. Compared to
the results presented in Chapter 4, one can draw similar conclusions as for Table 5.1.
This new run still slightly improves the gaps for all instances up to (n,d) = (40, 10).
The contrary unfortunately happens for the bigger instances. The additional time used
in separations limits again the search in the Branch-and-Cut tree. This has an impact
on the quality of the final upper bounds, which annihilates the improvement made on
the lower bounds.

Table 5.4: Results for random instances for L = 3 and arbitrary demands, with basic,
disjoint and rooted inequalities

[ n d Cu Pc Dc Ro Tp Dp o4 Gapi Gt4d Treed CPU4 |
10 5 7 67 21 3 2 37 5 53 0.0 26 0.43
20 5 20 556 46 5 0 136 5 76 00 89 11.65
20 10 30 20311 38 4 4 1811 2 192 7.4 4395 11407.33
30 8 38 14147 272 22 3 1278 3 136 1.7 1896  8432.54
30 15 28 19650 297 O O 822 0 564 534 1196 18000.00
40 10 35 16491 272 1 1 1138 0 293 234 1634 18000.00
40 20 28 12213 132 0 1 312 0 614 600 289  18000.00

For L. = 3, the simultaneous use of basic, rooted and disjoint inequalities is quite ef-
fective compared to their separate use. We indeed get an improvement of the gap at the
root node and of the final gap in nearly all cases. For example, when (n,d) = (30, 8),
Gt4 is equal to 1.7%, which is 1.4% smaller than Gt1 and 0.4% smaller than Gt2 (see
Table 4.4). Also, when (n,d) = (40, 10), Gt4 has for value 23.4%, that is, 0.4% less
than Gt1 and 4.8% less than Gt2. Finally, note that these good results are mainly due
to the basic constraints, the double cut inequalities and the double path-cut inequali-
ties, since very few violated constraints were found among the other classes of rooted
inequalities, namely the triple path-cut and rooted-partition ones.

5.6 Concluding remarks

In this chapter, we have proposed several additional classes of valid inequalites for the
THNDP with L = 2, 3. These are based on disjoint demands, that is, demands that do
no share nodes. We have then given heuristic procedures to separate these inequalities
in order to use them within the framework of the Branch-and-Cut algorithm devised
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in Chapter 4.

From the new computational results obtained, it appears that separating these in-
equalities and the previous “rooted” ones at the same time yields the best improvements
concerning the gaps. This is especially true when L = 3, since, in that case, the double
path-cut inequalities do not give satisfactory results when used alone.

Of course, additional improvements could still be performed. First, one could study
necessary and sufficient conditions for inequalities (5.1)-(5.6) to be facet-defining. This
would indeed permit to devise more effective separation procedures, in the sense that
they would only generate the facially best cuts. On the other hand, we think that
some work could still be done concerning the obtention of better upper bounds. For
the biggest instances, random rounding indeed begins to reach its limits. It would be
interesting to implement further heuristics for obtaining feasible solutions.






Chapter 6

Two Disjoint 4-Hop-Constrained Paths
Problems

In this chapter, we pursue the study of the THPP started in Chapter 2. This time, we
also consider a variant of this problem, namely where the two required L-st-paths of
the solution must be node-disjoint instead of edge-disjoint. For both versions, we give
an integer programming formulation in the space of the design variables when L = 4.
This work has been the object of an article with A. Ridha Mahjoub [46], although not
yet published.

6.1 Introduction

Recall the following definition from Chapter 2. Given a function ¢ : £ — IR which
associates a cost c(e) to each edge e € E, the Two Hop-constrained Paths Problem
(THPP) is to find a minimum cost subgraph such that between s and ¢ there exist at
least two L-st-paths. In this chapter, we will speak of the node THPP if those two
paths must be node-disjoint, and of the edge THPP if they must be edge-disjoint.

In what follows, we consider the node THPP and the edge THPP when L = 4. For
both versions, we give an integer programming formulation in the space of the design
variables. Such a formulation is indeed not trivial to obtain for the edge case when
L =4, as already mentioned in Chapter 2.
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In the next section, we first propose an integer programming formulation, in the
space of the design variables, for the node THPP with L = 4. This one will also be
valid when L = 2, 3. It will be based not only on the st-cut and L-st-path-cut inequal-
ities introduced before, but also on “node-versions” of these ones. In Section 6.3, we
first recall why the formulation known for the edge THPP when L = 2,3 is no more
valid when L = 4. We then present a new family of valid inequalities for the edge
THPP when L = 4. Using this family, we give an integer programming formulation, in
the space of the design variables, in that case. Finally, in Section 6.4, we present our
concluding remarks.

6.2 Formulation for the node THPP when [ =14

From Chapter 2, we know that the incidence vector z'" of any solution (N, F) to the
THPP satisfies the following inequalities.

x(6(W)) > 2, for all st-cut 5(W),
x(T) > 2, for all L-st-path-cut T,
1>2xz(e) >0, foralleeFE.

These inequalities are called st-cut inequalities, L-(st-)path-cut inequalities, and trivial
inequalities, respectively.

Moreover, in the node case, the following inequalities, which we call st-node-cut
inequalities, are also valid for the problem. They are defined as
ra_.(0(W)) > 1,

where z € N\{s,t} and §(W) is an st-cut in the graph G — .

In the same way, we can write L-path-node-cut inequalities, that is,
xG—z(T) Z 17

where z € N\{s,t} and T is an L-path-cut in the graph G — z, which are valid for the
node THPP.
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Finally, consider the following linear system consisting of the inequalities introduced
above, that is,

z(6(W)) > 2, for all st-cut §(WW), (6.1)
ra—.(0(W)) > 1, for all st-cut 6(W), for all z € N\{s,t}, (6.2)
z(T) > 2, for all L-path-cut T, (6.3)
ro_.(T) > 1, for all L-path-cut 7', for all z € N\{s,t}, (6.4)
z(e) <1, foralle € F, (6.5)
z(e) >0, foralle € E. (6.6)

We will show that the system (6.1)-(6.6), along with the integrality constraints, for-
mulates the node THPP as an integer program when L = 4.

Theorem 6.2.1. The node THPP for L = 4 is equivalent to the integer program
Min {cx : x satisfies (6.1)-(6.6),x € ZF}.

Proof. Necessity. First we show that any feasible solution (N, F') to the node THPP
with L = 4 has an incidence vector z* satisfying constraints (6.1)-(6.6).

Let G be the support graph of 2. First, it is clear that the constraints 0 < z(e) < 1
are all satisfied by definition of the boolean vector zf. Suppose that there exists a
subset of nodes W, containing s and not ¢, such that z¥'(§(W)) < 1. Then there is
at most one edge ¢ € 6(WW) such that 27 (e) = 1, and all the st-paths in G must go
through e. This contradicts the existence of two node-disjoint st-paths. Similarly, if
zk__(6(W)) = 0, it means that there is no st-path in Gy — z, and therefore, that all
the st-paths in G go through z, a contradiction. Now, if there exists a 4-path-cut T’
such that x¥'(T) < 1, there is at most one edge e € T' with 2¥'(¢) = 1. If one st-path
of G uses e, then the other can only go through edges of F\T'. Clearly, the minimum
number of hops of such a path is 5, contradicting the feasibility of the solution. Finally,
if z5_,(T) = 0, the shortest st-path in Gr — z is of length at least 5. Hence, in G,
all the 4-st-paths go through z, which is impossible.

Sufficiency. Consider an edge subset F' C F and suppose that F' does not induce
a solution to the node THPP with L = 4. Suppose that all st-cut and st-node-cut
constraints are satisfied by 2!". We are going to show that there is at least one 4-path-
cut or 4-path-node-cut violated by z*. Let G be the graph induced by F and P, a
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shortest st-path (in number of hops) in Gr. In what follows, we are going to discuss
different cases with respect to the length of F.

If |Py| = 1, that is Py = (st) with st € [s,t], then P, is the only 4-st-path in Gp. In
fact, if there exists a 4-st-path P different from st, then P would be node-disjoint from
st, a contradiction. Therefore, in Gr — st, since the st-cut inequalities are satisfied,
there must exist an st-path, of length at least 5. Let us define V;, i = 0,...,4, as the
subset of nodes at distance ¢ from s in Gy —st, and V5 = N\(Uf:0 V;). By the previous
remarks, it is clear that the V;’s are nonempty, and that s € Vj; and t € V5. Moreover,
by construction, no edge of Gr — st is in the corresponding 4-path-cut 7', and hence,
zk_,(T) = 0. Therefore, in G, we obtain that z*(T") = 1, which is a violated 4-path-
cut inequality.

If |Py| = 2, that is Py = (su,ut) with u € N\{s,t}, since F' is not a solution to the
problem, all the other 4-st-paths of G must go through u. Therefore, in G — u, since
the st-node-cut inequalities are satisfied, there exists an st-path, of length at least 5.
Let us define a 4-path-cut 7" in G — u along the same way as in the previous case. By
construction, no edge of Gp — v is in T, and hence, zZ_,(T) = 0. This implies that
the 4-path-node-cut inequality corresponding to 7" and u is violated.

If |Py| = 3, that is Py = (su, uv,vt) with u,v € N\{s,t}, u # v, then all the other
4-st-paths of G must go through either u, or v, or both. Suppose that there exist at
least one 4-st-path P, going through u, but not v, and at least one 4-st-path P, going
through v, but not u. Let P} (resp. P§) be the subpath of P, between u and ¢ (resp.
s), and Py (resp. Pj) the subpath of P, between s (resp. t) and v. Clearly, |Pf| < 3
and |P;| < 3. Moreover, since Py is a shortest st-path, we have that |Pf| > 2 and
|P5| > 2. Hence, 1 < |Pf| <2 and 1 < |P}| < 2. Now, since F' is not feasible, P, and
P, must intersect each other in a node w different from s, u,v,t. If w € Pf N P;, then
Py and the 4-st-path consisting of the subpath of P, from s to w, and of the subpath of
P, from w to t, are node-disjoint, a contradiction. Therefore, either w € P§ or w € Pj.
Suppose that w € P} (the other case follows by symmetry). Then |Pf| = 2 and hence
|P}| = 2. Let Py* be the subpath of P, between v and w. Clearly, |Py*| < 2. But then,
we have two node-disjoint 4-st-paths in G, namely su, P}, and sw, Py* vt. And this
contradicts the infeasibility of the solution. Consequently, there cannot be at the same
time 4-st-paths going only through u, or through v. Suppose w.l.o.g. that u belongs to
all 4-st-paths of G (the other case is symmetric). Therefore, there exists no 4-st-path
in G —u and, by constructing the 4-path-node-cut 7" as before, we get a contradiction.



6.2 Formulation for the node THPP when L =4 135

Now suppose that |Py| = 4, that is Py = (s, u, v, w,t) with u,v,w € N\{s,t}, u,v,w
different from each other. Then all the other 4-st-paths of G must go through either
u, Or v, Or w.

Claim. There does not exist a 4-st-path going through u which does not use neither v
nor w.

Proof. Assume the contrary, and let P be a 4-st-path that contains u, but neither v,
nor w. Since F, is a shortest path, we have that P must contain three edges between
u and t. Let v/, w’' be the nodes along this subpath, different from v and ¢. Now,
suppose that there exists a 4-st-path P’ not going through w, but through v or w.
Thus, P’ must also intersect P in either v' or w’. Since P, is a shortest st-path, it
is not hard to see that we have either P’ = (s,u/,v',w,t) or P’ = (s,u/,v,w',t), with
u € N\{s,u,v,w,v',w' t}. But then, the graph induced by Py, U P U P’ contains two
node-disjoint 4-st-paths, a contradiction. Consequently, there cannot exist a 4-st-path
not going through u, and hence, all 4-st-paths of G use w. This implies that Gp — u
does not contain 4-st-paths. We can then get a contradiction in a similar way as
before. ¢

By the claim above, all 4-st-paths in Gz go through v or w. Suppose there is a
4-st-path P going through w, but not v. If P does not contain u, we can show along
the same line that all 4-st-paths use w, and get a violated 4-path-node-cut inequality.

So suppose that P contains u. We may also suppose that there are two further 4-st-
paths P, and P, such that P; (resp. P) uses u but not w (resp. w but not u). For
otherwise, we would have that either each 4-st-path contains u or each 4-st-path con-
tains w. In both cases, we would get as before a violated 4-path-node-cut. Moreover,
P, and P, must go through v, for otherwise, we would get two node-disjoint 4-st-paths,
a contradiction. Hence, P; is of the form (s, u,v, P{) where P} is a vt-path of length 2
not going through w, and P, is of the form (Py, v, w, t) where P; is a sv-path of length 2
not going through w. But then, we obtain two node-disjoint 4-st-paths, namely Ps U P
and P, which is a contradiction.

In consequence, all 4-st-paths go through v. As before, we obtain a violated 4-path-
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node-cut inequality.

If | Ry| > 5, there exists no 4-st-path in G . Thus, we can build directly an adequate
partition in G and get a violated 4-path-cut inequality. O

If this result clearly holds for L. = 2, 3 by doing a similar proof, this is not the case for
L = 5. Consider indeed the integer solution in Figure 6.1. We have that its incidence
vector satisfies inequalities (6.1)-(6.6). However, this solution is clearly infeasible for
the node THPP with L = 5.

Figure 6.1: An infeasible solution to the node THPP for L = 5, but satisfying system
(6.1)-(6.6)

6.3 Formulation for the edge THPP when L =4

In Chapter 2, we have shown that the linear system of inequalities (6.1),(6.3),(6.5),(6.6),
along with the integrality constraints, is sufficient to formulate the edge THPP for
L = 2,3. However, this is not the case when L = 4, as illustrated by Figure 6.2. One
can verify that all those inequalities are satisfied, while the solution is not feasible for
the edge THPP with L = 4.

@ @ @
S t

Figure 6.2: An infeasible solution to the edge THPP for L = 4, but satisfying inequal-
ities (6.1),(6.3),(6.5),(6.6)
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In [16], Dahl and Gouveia describe the following class of valid inequalities for the
L-hop-constrained path problem. Let V{, ..., V.., be a partition of N such that r > 1,
s € Vo and t € Vi y,. Then, the generalized jump inequality is

Z min(|i — j| — 1,7) z(e) > r.

ec|Vi,Vjl,i#j

These inequalities can be easily extended to the edge THPP, as follows,

Z min(|i — j| — 1,7) z(e) > 2r.

e€[V3, Vil id

Note that these inequalities generalize the L-path-cut inequalities (by setting r = 1).
Moreover, they permit to eliminate the previous counterexample, namely by taking
r = 2 and each V; singleton. However, adding this class is still not sufficient to formu-
late the edge THPP for L = 4. See for example Figure 6.3. Clearly, this solution is
not feasible for the edge THPP with L = 4. However, it is not difficult to check that,
besides all st-cut and trivial constraints, its incidence vector also satisfies all general-
ized jump inequalities.

Figure 6.3: An infeasible solution to the edge THPP for L. = 4, but satisfying the
previous system plus the generalized jump inequalities

So, in order to formulate the edge THPP for I. = 4, we propose the following new
class of inequalities, which we call two-layered 4-path-cut inequalities. Let Vo, Vi, ..., Vg,
Wi, ..., Wy be a two-layered partition of NV such that s € Vj) and t € V5. See Figure
6.4 for an illustration. We have that all the V;’s are nonempty, and that the W,’s may
be empty or not. The associated inequality is denoted by

ax > 4, (6.7)
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with
a(e) = min(ji — j| - 1,2), Ve € [Vi, Vil #
ale) = 2, Ve € [W;, W], i — j| > 2,
a(e) =2, Ve e [V;,W;],j—i>2o0ri—j>3,
a(e) =1, Ve € [Vi, Wi, (i,5) = (2,3),(3,1), (3,4), (4,2),
ale) =0, if not.

In Figure 6.4, the edges with coefficient 1 are in solid lines, while those with coefficient
2 are in bold. The edges with zero coefficient do not appear in the figure.

Figure 6.4: Support graph of a two-layered 4-path-cut inequality

Theorem 6.3.1. Inequalities (6.7) are valid for the edge THPP polytope when L = 4.

Proof. Consider a two-layered 4-path-cut inequality ax > 4, whose coefficients can be
seen as weights on the edges. It is easily seen that the total weight of any 4-st-path is at
least 2. Since any feasible solution to the edge THPP with L = 4 must contain at least
two such edge-disjoint paths, we have that its incidence vector satisfies ax > 4. O

Observe that, when the WW;’s are all empty, these inequalities correspond to the gener-
alized jump inequalities with » = 2. But now, the counterexample presented in Figure
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6.3 can be cut off by the two-layered 4-path-cut inequality obtained from the partition
with all the sets being single nodes.

We are now going to show that the linear system consisting of inequalities (6.1),(6.3),
(6.5),(6.6),(6.7), along with the integrality constraints, is sufficient to formulate the
edge THPP with L = 4.

Theorem 6.3.2. The edge THPP for L = 4 is equivalent to the integer program
Min {cx : x satisfies (6.1),(6.3),(6.5),(6.6),(6.7), x € ZF}.

Proof. Necessity. By Theorem 6.3.1 together with the fact that the st-cut, L-path-
cut, and trivial constraints are valid for the edge THPP polytope, we have that the
incidence vector of any solution to the edge THPP for L = 4 satisfies inequalities
(6.1),(6.3),(6.5),(6.6),(6.7).

Sufficiency. Suppose there exists a solution F' whose incidence vector z!" satisfies
the st-cut, 4-path-cut and trivial inequalities, but that is not feasible for the edge
THPP with L = 4. We will show that there exists a two-layered 4-path-cut inequality
ar > 4 violated by z¥. Let G be the graph induced by F and P, a shortest st-path
in Grp. We have the following claims.

Claim 1. For every edge e, there is at least one 4-st-path in G — e.

Proof. Suppose this is not the case. Let ey be an edge such that Gr — ey does not
contain any 4-st-path. Since xf satisfies all the st-cut inequalities, there must still
exist an st-path in G — e, of length at least 5. Let us consider a partition Vg, ..., V;
of N such that V;, i =0,...,4, contains all the nodes at distance 7 from s in G — e,
and V5 contains all the other nodes. By the previous remark, we have that each V; is
nonempty, s € V), and t € V5. Let T be the associated 4-path-cut. By construction,
zé_o,(T) = 0, and hence, 2" (T') < 1, a contradiction. ¢

Claim 2. The path F, is of length at least 3.

Proof. Suppose this is not the case, that is, either |Py| = 1, or |P| = 2.
If |Py| =1, then Py = (st). By Claim 1, there is a 4-st-path that does not contain st.
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But this implies that Gz contains two edge-disjoint 4-st-paths, a contradiction.

Thus |Py| = 2. Let Py = (e1,e2). By Claim 1, there is a 4-st-path P; that does not
contain e;. Then ey € P;. Let P} be the subpath of P, between s and v, where v is
the end node of e; different from s. Hence |P7| < 3. Similarly, there is a 4-st-path P,
such that e; € P, and ey ¢ P». Let P} be the subpath between v and t. We also have
that | P3| < 3.

If Pf and P! do not intersect in some edge, then the paths e;, P} and P§, e, are of
length at most 4 and edge-disjoint, a contradiction.

Let w be the first node common to P§ and P}, w # v. Let P} be the subpath of P}
between w and ¢. Clearly, |P!| < 2. Similarly, let P§ be the subpath of P; between s
and w. We also have |P?| < 2. Now let P be the path P;U P!. We have that |P}| < 4
and Py N P} = ¢, a contradiction. ¢

Claim 3. The path P, is of length exactly 3.

Proof. By Claim 2, we already have that |Py| > 3. Also, it is clear that |Fy| < 4. If
not, this would contradict Claim 1 for any edge e. Suppose now, by contradiction, that
[Pyl = 4.

Let Py = (svq,v1v02, 0903, v3t) with vy, ve,v3 € N\{s,t}, v1,vs,vs different from each
other. By Claim 1, there must exist a 4-st-path P; not containing sv;, and another
one, P, not containing vst. Since P, is a shortest path, P, and P, are both of length
exactly 4. Let P§ (resp. Pj) be the subpath of P; (resp. P,) from s (resp. t) to the first
node common with Fy. Note that, if this node is v;, then |P§| =i (resp. |Pi| =4 —1).
Moreover, note that P; and P do not intersect P in any edge.

Suppose first that Py and P} intersect in some edge. Thus there is a node z common
to P§ and P, different from v, v9, v3. But then the subpaths of P¢, P} between z and
s, t, respectively, form a 4-st-path disjoint from F;, a contradiction. Therefore, P; and
P} are edge-disjoint.

Now remark that P} cannot go from s to vs. If this was the case, we would indeed have
|Pf| = 3, and hence, P, would be of the form sv}, v|v, vhvs, vst. But then, as vst ¢ P,
and P and P} are edge-disjoint, P»\ P must have an edge in common with P} (and
also with P,). Clearly, the only possibility is that P» is of the form (sv], vjvy, vav3, h) or
(sv1, v1vh, vhvg, h), with h € [vs, t]\{vst}. But this creates two edge-disjoint 4-st-paths,
a contradiction. Similarly, we have that P} cannot go from ¢ to v;.

Suppose now that P} goes from s to v,. Therefore, in order to not create two edge-
disjoint 4-st-paths, P must go from ¢ to vs. Recall that, in this case, P = (sv], vjvs)
and P} = (h) with h € [v3,t]\{vst}. Consequently, it is clear that vov3 must be com-
mon to Fy, P, P,. On the other hand, by Claim 1, there must exist a further 4-st-path
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not containing v,v3. However, since this one cannot intersect all the previous paths in
at least one edge, we obtain a contradiction.

Thus, P{ must go from s to v; and, by symmetry, Pi must go from ¢ to vs. Hence,
P = (g) with g € [s,v1]\{sv1}, and P} = (h) with h € [uvs, t]\{vst}. Note that a
4-st-path cannot intersect at the same time sv; and g, or vst and h. Therefore, if we
consider a 4-st-path not containing v,vy, it must use vov3. In the same way, a 4-st-path
not containing vov3 must use v;v,. Once again, we obtain two edge-disjoint 4-st-paths. ¢

In the rest of the proof, we let Py = (eq, ez, €3) = (s, v1, 09, 1).

Claim 4. Every 4-st-path of G contains at least two edges among ey, e, e3.

Proof. Let P be a 4-st-path different from Fy. Let us suppose that P does not intersect
{e1,e2}. Then e3 € P. Let P; be the subpath of P between s and the first node in
common with Fy. Suppose first that this node is v,. Since F, is a shortest st-path, it
follows that 2 < |P;| < 3. By Claim 1, there is a 4-st-path P’ that does not contain
es. Thus P’ intersects {ej,es}. Let P| be the subpath of P’ between ¢ and the first
node in common with Fy. Note that |P/| < 3. If P| contains another node of P, than
vy, say z, then the subpaths of P; between s and z, and of P| between z and t form
a 4-st-path edge-disjoint from P, a contradiction. So, P, and P| may only intersect
in vy. Moreover, if this is the case, since P’ must contain e; or ey, we then have that
1 < |P]| < 2. But this creates two edge-disjoint 4-st-paths, namely P; U {e;, e3} and
P, which is impossible. If P, and P do not intersect in a node, we have that P goes
from t to v;. But therefore, the paths P/ U {e;} and P, U {e3} are of length at most 4
and edge-disjoint, a contradiction.

Suppose now that the first node common to P; and F, is v;. Then P is either of the form
(P, v109, €3), with vyvy parallel to e; and 1 < |P;| < 2, or of the form (svy, viu, uvs, e3)
with sv; parallel to e; and u € N\{s,t,v1,vs}.

Case 1: P = P U {v1vq,e3} where v1vy is an edge of [vy,v5]\{e2}. By Claim 1,
there is a 4-st-path not containing es. But it is not hard to see here that there are two
edge-disjoint 4-st-paths, a contradiction.

Case 2: P = (sv1,viu,uvq, e3) with svy € [s,v1]\{e1} and u € N\{s,t,v1,02}.
Again, by Claim 1, there is a 4-st-path, say P», not containing e3. Since F' is not a
solution to the problem, P, must intersect all the 4-st-paths obtained from P, U P;.
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However, this is impossible without creating edge-disjoint 4-st-paths.

Therefore, P must intersect the set {ej,es}. By symmetry, P must also intersect
{ea,e3}. Now, to complete the proof of the claim, it suffices to show that P also inter-
sects {e1, e3}. Suppose the contrary. Then P contains ey, and hence P = PyU{es}U P,
where Pj is a path going from s to v; and P; is a path going from v, to ¢. (The other
case would immediately create two edge-disjoint 4-st-paths, namely, P, U {e3} and
{e1} U P,). Note that P, and P, must be either both of length 1, or one of length
1 and the other of length 2. In both cases, by considering a 4-st-path not containing
e, but intersecting all the previous paths, one would contradict the infeasibility of F'.4

Consider now the subgraph G’ of G obtained by deleting the three edges of F,.
Since F' is not feasible, we have that G’ does not contain any 4-st-path. Thus, if P} is
a shortest st-path in G', we have that |F}| > 5. Suppose first that |Pj| > 6. We will
show that there exists an inequality (6.7), with all the 1W;’s empty, violated by z*".

In G, let IT = (Vy, Vi, ..., Vg) be a partition of N such that V;, i = 1,...,5 contains
the nodes at distance ¢ from s, and Vj all the other nodes. Clearly, s € V;, and by
our current assumption, ¢t € V5. Moreover, we claim that each other V; is nonempty.
Suppose this is not the case, that is, there is some i € {1,...,5} such that V; = 0.
By definition, this means that there does not exist any node at distance 7 from s, and
hence, at distance 5 from s. Therefore V5 = ) and the st-cut 6(V5) is empty in G’
However, in G, we have by hypothesis that 2 (5(V;)) > 2. As any st-path intersects
any st-cut an odd number of times, we obtain that ej, e5, e3 must all belong to §(V4).
Therefore, v; € Vi and, as by Claim 4 there cannot exist a 4-st-path containing only
one edge from F,, we have that vy, € V. This also yields that all the V;’s, except Vs,
are nonempty. Consider now the 4-path-cut 7" obtained from II by collapsing V5 and
Vs. In Gp, it is clear that the only chord of T is e;, and hence, 27 (T) = 1, which is
again a contradiction.

Therefore, all the V;’s are nonempty, and II is an admissible partition for a two-
layered 4-path-cut inequality ax > 4 with the W;’s empty. Moreover, in G, we have
ax® = 0 by construction. Observe that we can suppose that Vg only contains ¢t. If
not, we can put all the other nodes of V4 in V5 without creating a chord. Now con-
sider this two-layered 4-path-cut in Gp. If a(e;) + a(es) + a(e3) < 3, we have that
ar® < 4 in Gp and we have then found a violated inequality of type (6.7). Thus,



6.3 Formulation for the edge THPP when L =4 143

a(er) + a(es) + a(ez) > 4. Since by Claim 4 no 4-st-path containing only e3 from P,
can exist in G, we have that vy, € V, U V5. Suppose first that vy € V. Thus a(e3) =1
and hence a(e;) + a(e2) > 3. The only possibility is that v; belongs to V5. But this is
impossible since Vg only contains t. Suppose now that vy € Vs. Therefore a(es) = 0
and a(e;) + a(eg) > 4. Clearly, this is also impossible.

Finally, suppose that the shortest st-path in G”. is of length exactly 5. We claim
that there exists an inequality (6.7), with at least one W; nonempty, violated by =’

By Claim 1, there exists in G a 4-st-path P; not containing e;, for each ¢ = 1, 2, 3.
Moreover, by Claim 4, the P;’s must contain Py\{e;}. Besides these two edges from F,
it is clear that each P, must contain two more edges. Indeed, if one P; was of length
3, this would create two edge-disjoint 4-st-paths in F', a contradiction. For the same
reason, the P;’s cannot have a node in common besides s, v, vo,t. As a consequence,
we have the graph of Figure 6.2 as a subgraph of Gr. Note that the st-path of this sub-
graph not intersecting F is of length 6. Let us denote its nodes by s, uy, vy, us, vo, us, t.
Remark that, as the shortest st-path of G’ is of length exactly 5, there must be in Gg
additional edges (and nodes) forming, eventually with edges of that path, an st-path
of length 5.

Consider the partition IT = (V,..., Vs, Wi, ..., W,) in G defined as follows. We
set Vo = {s}, Vi = {w}, Vo = {vi}, V3 = {ua}, Vi = {va}, V5 = {us}, and V5 = {t}.
All the other nodes are distributed to the /s through a breadth first search from
s in Gp. See Figure 6.5 for an illustration. Note that some W;’s may be empty,
but not all of them by our previous remark. Let £ = (Uj iz or ijmslVis Wil) U
(Uij)=2.3).3.1).3.4),(4.2)[Vis W), that is, the set of edges between the two layers of the
partition IT that have a positive coefficient in the corresponding inequality (6.7). We
claim that G does not contain any edge from E. Suppose this is not the case. If
there was an edge of Gp in [V;, W,] with j — ¢ > 2, then its end node in W; would be
at distance i + 1 from s, and hence, it should have been put in W, ; by construction.
The same contradiction holds for edges of G in [Va, W3] U [V3, Wy]. Now, assume there
is an edge e of Gp in [V;, W;] with ¢ — j > 3. Thus, by construction, there exists in
Gr a subpath P, from s to the end node of e in W}, of length exactly j. But then,
G contains the graph of Figure 6.2, P and e, and hence, two edge-disjoint 4-st-paths,
which is impossible. Finally, if G uses some edge from [V3, Wi] U [Vy, Ws], we get a
similar contradiction.
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Figure 6.5: Possible edges in the constructed partition II

Consequently, the only edges of G between the two layers of partition II have
coefficient zero in the corresponding inequality (6.7). Moreover, by construction, the
lower partition cannot contain chords, and the upper one has for only chords ey, e, e3.
Since these three edges have a coefficient 1, we obtain that ax’ = 3 < 4, and the proof
is complete. O

6.4 Concluding remarks

In this chapter, we have considered the Two edge-disjoint Hop-constrained Paths Prob-
lem, along with the node-disjoint version of this problem, when L = 4. For both
versions, we have presented new families of valid inequalities, and obtained an integer
programming formulation in the space of the design variables. These theoretical re-
sults can also be useful in practice, for example for verifying whether a given solution
is feasible or not for the THPP with L = 4. From the proofs of Theorems 6.2.1 and
6.3.2, one could indeed derive separation procedures for an integer solution relatively
to the constraints of the formulations, as stated by the following theorem.

Theorem 6.4.1. Given an integer solution x*, the problem of finding whether or not x*
satisfies system (6.1)-(6.6) ((6.1),(6.3),(6.5),(6.6),(6.7)) can be solved in polynomial
time.

Theorem 6.4.1 is very important from a practical point of view. Indeed, in many
approaches like cutting planes approaches, one has to solve the feasability problem for
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a given (integer) solution. If the solution is feasible for the underlying problem, then it
is optimal. By Theorem 6.4.1, this problem can be solved in polynomial time for both
the node and edge THPP.

Of course, it would be interesting to know separation procedures for these inequali-
ties relatively to any solution (integer or not). Indeed, if the st-cut (and st-node-cut)
inequalities can always be separated exactly in polynomial time, it is already not the
case for the L-st-path-cut (and L-st-path-node-cut) inequalities. More precisely, in [25],
Fortz et al. propose a polynomial-time separation of these inequalities when L = 2, 3,
and show that it becomes N P-hard for L > 12. In particular, the complexity of the
separation problem associated to the 4-st-path-cut inequalities remains an open ques-
tion (see [56]). Moreover, we still need to investigate how to separate the two-layered
4-path-cut inequalities.

Since the THPP for L = 4 can be solved in polynomial time by enumeration (at least
in simple graphs), from the equivalence between optimization and separation, it follows
that inequalities (6.3) and (6.4), as well as inequalities (6.7), can be separated in poly-
nomial time among a system of inequalities describing the THPP polytope in that case.

Also, a natural question that may be posed is whether or not these formulations are
complete, that is whether or not their linear relaxation is integral. Unfortunately, for
the node version, this is not the case as shown by the following example.

Consider the graph GG = K§g of Figure 6.6, where the edges in solid lines have value
1/2, the ones in bold have value 1, and the remaining edges have value zero. It is easy
to verify that this solution is a fractional extreme point of the polyhedron given by the
linear relaxation of the node THPP with L =4 and D = {{1,6}}. This point can be
cut off by the following valid inequality

2x(eg) +x(e3) +x(eq) + 2x(es) + x(eg) + x(er) + 2x(eg) + x(e11) + x(e14) + 2x(e15) > 3.

Moreover, this inequality is facet-defining for the polytope on this graph.

An interesting question would be to see whether the linear relaxation of the edge
version is integral.
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Figure 6.6: Fractional extreme point for the node THPP with L =4

Finally, we would like to obtain such an integer programming formulation for any
greater values of L, starting from L = 5. Note that, from our experience regarding
L = 4, it seems that the node THPP is simpler than the edge THPP for that matter.
A starting point would be, for example, to find how to cut off the infeasible solution of
Figure 6.1. This work could also be extended to the more general problems discussed in
the previous chapters, that is, when more than two paths are required or when several
demands have to be linked. For example, the formulations given in this chapter can
be easily generalized to the case where more than one pair of terminals is considered.
Here, for each version, the formulation is given by the inequalities related to every
pair {s,t} of terminals, together with the integrality constraints. Hence, an efficient
separation algorithm for inequalities (6.3), (6.4) and (6.7) would be of great interest
for solving the multiple demands case by cutting planes.



Conclusion

In this thesis, we considered the k-edge connected L-hop-constrained network design
problem. More precisely, we studied several particular cases of this problem according
to the values taken by the parameters k£ and L, along with the kind of demand pairs
(single, rooted, arbitrary). We also considered the node connected case.

In the case of a single demand {s,t} € D, we were able to obtain a complete and
minimal description of the associated polytope for any & > 2 when L = 2, and for
k = 2 when L = 3. Moreover, since all the underlying inequalities (st-cut and L-st-
path-cut inequalities) are separable in polynomial time when L = 2,3, we devised an
effective cutting plane algorithm to solve the problem in that case. This one was indeed
a lot better in practice than the enumerative procedure. The computational results
also appeared to confirm that the previous description is still complete for any k > 2
when L = 3 (Conjecture 2.8.1). In addition, we noticed that the problem gets more
complicated when k is about half the number of nodes in the graph.

When the set of demands is not reduced to a single pair, we have shown that the
problem is strongly N P-hard, for £ = 2 and all fixed value of L > 2, even when these
demands have one root node in common. If the st-cut and L-st-path-cut inequalities
(written for all {s,¢} € D) no longer suffice to completely describe the associated poly-
tope, they still constitute an integer programming formulation of the problem when
L = 2,3. Also, we gave several new classes of valid inequalities, adapted first to
rooted demands, and then to disjoint ones. For the former ones, we studied necessary
and sufficient conditions for them to be facet-defining. Finally, we embedded sepa-
ration procedures for those different classes into the framework of a Branch-and-Cut
algorithm, and presented extensive computational results for both random and real
instances.
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From this experimental study, it appeared that the problem for L = 3 is a lot more
difficult to solve in practice than that for L. = 2. However, the additional classes of valid
inequalities that we introduced were more effective in the former case than in the latter
one, where only separating the constraints of the formulation was often satisfactory. In
particular, the best improvements of the gaps, thanks to those new inequalities, were
made for real instances with L = 3.

Finally, we came back to the case where there is only a single demand and k& = 2,
since at first we were not able to find an integer programming formulation, in the space
of the design variables, when L > 4. After some work, we obtained several new classes
of valid constraints for the problem, not only when the two required L-st-paths must
be edge-disjoint, but also when they need to be node-disjoint. In each case, we then
gave such a formulation when L = 4. Note that this one can be easily extended to
a non-singleton set D by writing together the constraints for each demand. Unfor-
tunately, in the node-disjoint case, the proposed formulation appeared to be neither
sufficient for L. > 5, nor complete to describe the associated polytope for L = 4. These
two questions also remain open in the edge-disjoint case.

In the future, it would be interesting to pursue this study in the following directions.
As already mentioned, Conjecture 2.8.1 remains to be proved regarding L. = 3. On the
other hand, we still lack a natural formulation for all values of L > 5. Actually, for
L = 4, we would like to know if the natural formulation we found completely describes
the associated polytope or not. It would also be interesting to know how to separate
the so-called two-layered 4-path-cut inequalities, and how to extend them to any L.

In the case of multiple demands, some additional work needs to be done, especially in
the case of arbitrary pairs. Our Branch-and-Cut algorithm could indeed be improved
to always give better results. When L = 3, the final gaps observed after 5 hours are
quite large for the biggest random instances. If some improvement could be made
regarding the lower bounds by devising new facet-defining inequalities to separate, the
construction of good heuristical solutions for the upper bounds also needs to be ad-
dressed.
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