
Préparée à l'Université Paris Dauphine

The multicommodity flow blocker problem:
Polyhedral analysis and algorithms

Soutenue par
Isma BENTOUMI
Le 08 juillet 2024

École doctorale no543
SDOSE

Spécialité
Informatique

Composition du jury :

Ivana LJUBIC
ESSEC Business School de Paris Rapporteur

Alain QUILLIOT
Université Clermont-Auvergne Rapporteur

Roland GRAPPE
Université Paris Dauphine Examinateur

Nancy PERROT
Orange Labs France Examinatrice

Fatiha BENDALI
Université Clermont-Auvergne Examinatrice

Ibrahima DIARRASSOUBA
Université Le Havre Normandie Membre invité

Ali Ridha MAHJOUB
Université Paris Dauphine Directeur de thèse

Fabio FURINI
Sapienza Université de Rome Co-directeur

Sébastien MARTIN
Huawei Technologies France Co-encadrant

Contents

Introduction 19

1 Preliminaries and State-of-the-art 23
1.1 Combinatorial optimization . 23
1.2 Computational complexity . 24
1.3 Elements of polyhedral theory . 26
1.4 Algorithms for combinatorial optimization problems 28

1.4.1 Branch-and-Bound algorithm . 28
1.4.2 Cutting plane method and Branch-and-Cut algorithm 29
1.4.3 Column generation and Branch-and-Price 32

1.5 Network flow problems . 34
1.5.1 Graph theory . 34
1.5.2 Flow notations . 35
1.5.3 State-of-the-art on network flow problems 35

1.6 State-of-the-Art on bilevel problems . 40
1.6.1 Bilevel programming . 40
1.6.2 Interdiction problems . 41
1.6.3 Blocker problems . 48

2 Network flow blocker problems and their applications in Telecommu-
nication Networks 51
2.1 Resilience analysis . 52

2.1.1 Networks architecture . 52
2.1.2 Routing in telecommunication networks 54
2.1.3 Anomalies in telecommunication networks 55
2.1.4 Resilience analysis with network flow blocker 55

2.2 Network-wide sketching . 58
2.2.1 Network-wide monitoring and related works 58

1

2.2.2 The Flow-Sketch assignment problem 62
2.2.3 An ILP formulation for the FSAP 65
2.2.4 A bilevel approach for the FSAP 68
2.2.5 A greedy algorithm for the FSAP 74

2.3 Concluding remarks . 75

3 The maximum flow blocker problem : Formulations and algorithms 77
3.1 The maximum flow blocker problem . 78
3.2 Natural ILP models for the MFBP . 79

3.2.1 A bilevel formulation . 79
3.2.2 A first single-level ILP model for the MFBP 81
3.2.3 Separation of the Benders cuts 82
3.2.4 A second single-level ILP model for the MFBP 83
3.2.5 Separation of the target-flow inequalities 84
3.2.6 Comparison of the strength of the LP relaxations of the natural

formulations . 86
3.2.7 A third single-level ILP model for the MFBP 86

3.3 A compact ILP model for the MFBP . 87
3.3.1 A fourth compact ILP model for the MFBP 87
3.3.2 Solving the MFBP via the MFIP 89
3.3.3 Comparison of the strength of the LP relaxations of the formulations 95
3.3.4 Complexity results for the MFBP and the MFIP 96

3.4 Extensions . 97
3.4.1 Continuous interdiction and blocker 97
3.4.2 Vertex interdiction and blocker problems 100
3.4.3 The maximum cardinality bipartite matching blocker problem . . 101

3.5 Concluding remarks . 102

4 The maximum flow blocker problem : Computational experiments 103
4.1 Computational experiments . 104

4.1.1 Implementation’s features . 104
4.1.2 Benchmark set of MFBP instances 104

4.2 Computational performance of the natural formulations 107
4.2.1 Computational performance of the natural formulation n-ILPTF . 107
4.2.2 Computational performance of the natural formulations n-ILPB

and n-ILPB+TF . 112

2

4.2.3 Comparison between the natural formulation and the state-of-
the-art technique . 113

4.3 Comparison of the effectiveness of the natural and the compact formulation115
4.3.1 Resolution of the compact formulation 115
4.3.2 Comparison between the natural and the compact formulation . . 118

4.4 Gaps . 122
4.5 Testing the limits of the compact formulation 123
4.6 Concluding remarks . 125

5 The multicommodity flow blocker problem : Formulations and poly-
hedral analysis 127
5.1 The multicommodity flow problem . 128

5.1.1 An ILP formulation for the MCFP 129
5.1.2 An ILP formulation for the UMCFP 130
5.1.3 Graphical illustrations . 131

5.2 The multicommodity flow blocker problem 132
5.2.1 Description of the problem . 132
5.2.2 Complexity . 134
5.2.3 Relation between the MCFBP and the UMCFBP 136

5.3 Formulations . 137
5.3.1 A bilevel formulation for the multicommodity flow blocker problem137
5.3.2 A second single-level ILP formulation for the MCFBP 139
5.3.3 An ILP formulation for the multicommodity flow blocker problem 141

5.4 Polyhedral analysis . 142
5.4.1 Associated polytopes . 142
5.4.2 Trivial inequalities . 144
5.4.3 target profit inequalities . 145

5.5 Concluding remarks . 148

6 A Branch-and-Cut algorithm for the multicommodity flow blocker
problem 149
6.1 The splittable multicommodity flow blocker problem 150

6.1.1 Separation of target profit inequalities 150
6.1.2 Branch-and-Cut algorithm . 152

6.2 The unsplittable multicommodity flow blocker problem 156
6.2.1 Separation of u-target profit inequalities 158

3

6.2.2 Branch-and-Cut algorithm . 159
6.3 Computational results . 163

6.3.1 Benchmark set of instances . 164
6.3.2 Computational performance of the Branch-and-Cut for the MCFBP167
6.3.3 Computational performance of the Branch-and-Cut for the UM-

CFBP . 178
6.3.4 Comparison of the effectiveness of the natural formulation and

the state-of-the-art technique . 182
6.4 Concluding remarks . 186

7 The multicommodity flow blocker problem: vertex variant 187
7.1 The multicommodity flow vertex blocker problem 188

7.1.1 Definition . 188
7.1.2 Relationship between vertex and arc blocker variants 189
7.1.3 An ILP formulation for the V-UMCFBP 192

7.2 Polyhedral analysis . 193
7.3 A Branch-and-Cut algorithm to solve the V-UMCFBP 195

7.3.1 Separation of the V-target profit inequalities 195
7.3.2 Branch-and-Cut algorithm . 196

7.4 Computational results . 198
7.4.1 Computational performance of the Branch-and-Cut for the V-

UMCFBP . 198
7.5 Concluding remarks and perspectives . 202

Conclusion 203

4

Remerciements

Au travers de ces quelques lignes, je souhaite remercier toutes les personnes
qui, par leur soutien, leurs conseils et leurs encouragements, ont contribué à
l’aboutissement de cette thèse.
Je tiens tout d’abord à exprimer ma profonde gratitude à mes directeurs de
thèse, Monsieur Ridha Mahjoub, Monsieur Fabio Furini et Monsieur Sébastien
Martin, pour m’avoir offert l’opportunité de réaliser cette thèse sous leur
direction.
Je tiens à exprimer mes sincères remerciements à Monsieur Ali Ridha Mahjoub,
professeur émérite à l’Université Paris Dauphine PSL, pour avoir partagé avec
moi son savoir et son expérience précieuse.
Je suis extrêmement reconnaissante envers Monsieur Fabio Furini, professeur
à Sapienza, Université de Rome. J’aimerai le remercier pour les (très) longues
sessions de travail que nous avons partagé ainsi que pour sa disponibilité et
son engagement constant tout au long de la thèse. Je le remercie pour m’avoir
enseigné la rigueur, la réflexion, la rédaction. J’ai beaucoup appris à ses côtés,
tant au niveau scientifique qu’au niveau personnel. Fabio, grazie mille.
Je remercie infiniment Monsieur Sébastien Martin, ingénieur de recherche à
Huawei Paris Research Center, pour m’avoir permis de réaliser ce projet de
thèse en collaboration avec Huawei. Son soutien, sa bienveillance et son aide
précieuse ont été déterminants pour l’aboutissement de mon travail. Je le
remercie pour ses conseils avisés mais aussi pour m’avoir toujours incité à
repousser les limites de mes connaissances, notamment en me challengeant
sur des sujets divers de l’optimisation combinatoire.
Je souhaiterai remercier Madame Ivana Ljubic, professeur à l’ESSEC Business
School of Paris, pour m’avoir fait l’honneur de rapporter ma thèse. Je la
remercie pour ses conseils ainsi que pour ses corrections méticuleuses.
Je remercie également Monsieur Alain Quilliot, professeur émérite à l’Université
de Clermont-Ferrand, pour avoir accepté de rapporter ma thèse, ainsi que pour
l’intérêt qu’il a porté à mon travail et ses suggestions pertinentes.
Ma gratitude va également à Madame Fatiha Bendali, professeur à l’Université
de Clermont-Ferrand, d’avoir accepté de présider le jury de ma thèse.
Enfin, je remercie Monsieur Roland Grappe, professeur à l’Université Paris
Dauphine PSL, Madame Nancy Perrot, ingénieur de recherche à Orange
Labs, ainsi que Monsieur Ibrahima Diarrassouba, Maitre de conférences à

5

l’Université du Havre, pour m’avoir fait l’honneur de faire partie de mon jury
de thèse et pour leurs interventions pertinentes durant la soutenance.
Je tiens également à remercier chaleureusement tous les membres de l’équipe
RO à Huawei Paris Research Center. Je les remercie pour leur soutien et leurs
conseils durant les trois premières années de ma thèse. Leur expertise fut très
enrichissante. Je remercie plus particulièrement Youcef pour nos discussions
scientifiques approfondies autour de l’analyse polyèdrale ainsi que Pierre et
Anne pour des sujets un peu plus légers.
Je remercie également tous les membres du LAMSADE. En particulier, les
doctorants des bureaux C603bis, C602 et C605 pour leur accueil et les bons
moments passés en leur compagnie. Merci notamment à Charles pour nos
discussions enrichissantes autour de l’optimisation et à la team de la cité
universitaire, Sébastien, Manolis, Virginia et Sofia pour les longues sessions
de travail dans la bibliothèque (week-ends inclus) et pour les tout aussi longues
pauses passées sur la pelouse.
Enfin, je tiens à remercier tous mes amis, d’Alger à Paris Dauphine, en passant
par Paris Diderot et Polytech, pour avoir rendu toutes ces années d’études si
agréables.
Pour finir, mes remerciements vont à ma famille, sans qui l’aboutissement
de cette thèse ainsi que chaque étape qui l’ont précédé, n’auraient jamais pu
être possible. Merci du fond du cœur à mon père et ma mère pour avoir été
des modèles aussi inspirants, pour leur soutien inconditionnel et pour m’avoir
transmis les valeurs essentielles du travail et de la persévérance. Un immense
merci à mes sœurs, Tinhinane, Kahina et Ines, ainsi qu’à mon beau-frère Seif,
pour leur soutien, leur aide, leurs conseils et pour leur capacité à toujours
trouver les mots justes pour m’encourager.

6

Abstract

Telecommunication networks are complex systems in which hard combina-
torial optimization problems must be solved. With the increasing demand,
telecommunication networks have to be efficient, especially in terms of time
lag and failure tolerance. In this context, this thesis will focus on the re-
silience analysis of a network. More precisely, the primary goal of this study
is to determine the maximum number of anomalies that may occur in the
network while guaranteeing its functionality depending on a crucial property
that needs to be maintained.
This challenge belongs to a class of optimization problems called network
flow blocker problems. The initial purpose of this work is to focus on multi-
commodity flow problems arising in telecommunication networks with com-
plex demand satisfaction constraints. We are interested in demands, also
called commodities, having different shapes of traffic and predicted with ma-
chine learning methods. The associated network flow blocker problem is called
multicommodity flow blocker problem (MCFBP). To tackle this challenge, we
use combinatorial optimization tools, delving into various approaches includ-
ing bilevel techniques that exploit the bilevel nature of network flow blocker
problems, a polyhedral approach and branching algorithms.
We first focus on the maximum flow blocker problem (MFBP), which is a
particular case of the MCFBP. To solve the MFBP, we propose several In-
teger Linear Programming (ILP) formulations and a technique derived from
a theoretical result that establishes a structural link between the MFBP and
another problem existing in the literature. We then expand our work to ad-
dress the blocker notion of the multicommodity flow problem, covering several
variants. For this problem, we introduce an ILP formulation featuring an ex-
ponential number of constraints and solved using a tailored branch-and-cut
algorithm. In addition, we enhance the model’s robustness by studying its
polyhedra. Performance of the exact methods proposed to solve the MFBP
and the MCFBP are evaluated through an extensive computational campaign
involving a set of synthetic and real-world instances.
Keywords : Combinatorial optimization, maximum flow, multicommodity
flow, blocker, interdiction, bilevel optimization

7

Résumé

Les réseaux de télécommunication sont des systèmes complexes dans lesquels
s’inscrivent des problèmes d’optimisation combinatoire difficiles. Face à une
demande croissante, l’efficacité de ces réseaux devient cruciale, notamment
en termes de délai et de résilience face aux anomalies. Cette thèse se concen-
tre sur l’analyse de la résilience des réseaux, avec pour objectif principal de
déterminer le nombre maximal d’anomalies que le réseau peut supporter tout
en maintenant sa fonctionnalité selon des critères spécifiques.
Ce défi relève d’une classe de problèmes d’optimisation connus sous le nom de
problèmes de bloqueur sur les flots. Notre travail se focalise particulièrement
sur les problèmes de multiflots rencontrés dans les réseaux de télécommu-
nication, caractérisés par des contraintes complexes de satisfaction des de-
mandes. Nous nous intéressons aux demandes ayant différentes formes de
trafic et prédites avec des méthodes d’apprentissage automatique. Le prob-
lème étudié est appelé problème de bloqueur sur les multiflots. Pour répondre
à cette problématique, nous utilisons des outils d’optimisation combinatoire,
explorant diverses approches, y compris les techniques bi-niveau, l’approche
polyèdrale et les algorithmes de branchement.
Nous abordons initialement le problème du bloqueur sur le flot maximal. Pour
le résoudre, nous proposons plusieurs formulations de programmation linéaire
entière, ainsi qu’une technique dérivée d’un résultat théorique établissant un
lien structurel avec un problème existant dans la littérature. Par la suite,
nous étendons notre travail pour traiter la notion de bloqueur sur les multi-
flots, en couvrant plusieurs variantes. Pour ce faire, nous introduisons une
formulation avec une famille exponentielle de contraintes, résolue à l’aide d’un
algorithme de branchement et de coupes. De plus, nous développons une ap-
proche polyèdrale pour renforcer la robustesse du modèle. Les performances
des méthodes exactes proposées pour résoudre le deux problèmes décrits sont
évaluées à travers une étude expérimentale approfondie.
Mots clés : Optimisation combinatoire, flot maximum, multiflots, bloqueur,
interdiction, optimisation biniveau

8

Résumé long

Introduction

L’industrie des Télécommunications est un secteur en pleine expansion, poussé
par une demande croissante et confronté à l’émergence de nouveaux défis.
L’une des dernières innovations est la technologie 5G, visant à garantir un
niveau élevé de fiabilité de la communication. Cependant, la question des
pertes de signal dans la transmission de trafic reste une préoccupation cri-
tique qui nécessite une attention particulière. Ainsi, les réseaux de télécom-
munications modernes constituent des systèmes complexes, nécessitant la ré-
solution efficace de problèmes d’optimisation combinatoire difficiles dans des
délais de calcul courts. Ces problèmes relèvent de la catégorie des problèmes
d’optimisation dans les réseaux. Parmi les plus connus de cette catégorie fig-
urent le problème de flot maximum et le problème de flot multi-commodités,
qui constituent l’objectif principal de cette thèse.
Les réseaux de télécommunications se composent de dispositifs de communi-
cation interconnectés et d’infrastructures conçues pour faciliter le routage et
la transmission d’informations. Ces réseaux peuvent être modélisés comme
des graphes, où les sommets représentent des routeurs reliés par des arcs, sym-
bolisant des liens de transmission. Les liens de transmission, cruciaux pour le
processus de routage et facilitant le flux de données, incluent des informations
supplémentaires, telles que la capacité des arcs, indiquant le volume de don-
nées maximal pouvant être transmis à travers chaque arc. Le routage au sein
de ces réseaux implique la transmission de données d’une source à une desti-
nation, correspondant généralement à une demande à satisfaire, aussi appelé
commodité. Dans des situations réelles, ces réseaux présentent des dimensions
étendues et peuvent être accompagnés d’un volume significatif de demandes.
Néanmoins, souvent, les réseaux de télécommunications sont confrontés à des
anomalies et des pannes.
Différents types d’anomalies peuvent survenir dans un réseau de télécommu-
nications et affecter ses performances. La congestion du réseau, un événe-
ment courant, se produit lorsque la demande dépasse la capacité du réseau,
entraînant une réduction de la vitesse de transfert de données. Les pannes
d’équipement, qu’elles soient dues à des dysfonctionnements matériels ou à
des facteurs environnementaux, peuvent perturber la transmission du signal
et compromettre la fiabilité du réseau. Les cyberattaques et les violations de

9

sécurité introduisent des anomalies délibérées, compromettant la confidential-
ité des données et l’intégrité du réseau. Les interférences de signal provenant
de sources externes, telles que les radiations électromagnétiques ou des ob-
stacles physiques, peuvent entraîner des pertes de signal. De plus, des bugs
logiciels et des erreurs de configuration peuvent déclencher des comportements
inattendus et provoquer des interruptions de service. La complexité de ces
anomalies met en évidence la nécessité d’intégrer des systèmes de détection
d’anomalies capables d’évaluer la capacité du réseau à y faire face. Ainsi,
des stratégies robustes peuvent être élaborées pour renforcer la résilience du
réseau, réduire les pannes et assurer une communication fluide. Aussi, les
opérateurs de réseaux sont souvent confrontés à la question d’identifier la
partie la plus vitale (également appelée la plus vulnérable ou la plus critique)
du réseau, qui correspond à un sous-ensemble de sommets (ou d’arcs), dont
le dysfonctionnement empêche le bon fonctionnement du réseau dans son en-
semble.
Dans ce contexte, ce travail se concentre sur l’analyse de la résilience d’un
réseau. Plus précisément, l’objectif principal de cette étude est de déterminer
le nombre maximal d’anomalies pouvant survenir dans le réseau tout en garan-
tissant son bon fonctionnement en fonction d’une propriété cruciale qui doit
être maintenue (ou atteinte). Cette propriété peut englober divers aspects du
réseau, incluant des contraintes telles que le routage d’un volume spécifique
de données ou le respect d’un budget de routage. Ce défi appartient à une
classe de problèmes d’optimisation appelée problèmes de bloqueur dans les
réseaux.
D’un point de vue d’optimisation combinatoire, les anomalies peuvent être
modélisées avec la notion de bloqueur. Celle-ci permet de déterminer le
nombre minimum de perturbations nécessaires pour détruire une structure
spécifique. Ici, les perturbations représentent les anomalies, et la structure
spécifique correspond à un réseau. Plus formellement, dans un réseau où
chaque arc (ou sommet) est associé à un coût de suppression, un problème de
bloqueur dans le réseau vise à trouver un ensemble d’arcs (ou de sommets)
à supprimer du graphe, avec un coût minimal, de sorte que le réseau ne soit
plus fonctionnel, c’est-à-dire qu’il ne satisfasse plus une propriété spécifique.
Les arcs (ou sommets) supprimés représentent les anomalies pouvant survenir
dans le réseau et détruire les liens de transmission (ou les routeurs). Par
conséquent, la résolution d’un problème de bloqueur dans un réseau fournit
le nombre maximal d’anomalies que le réseau peut supporter tout en main-
tenant sa fonctionnalité. Plus précisément, le nombre maximal d’anomalies
est équivalent à la valeur de la solution du bloqueur moins un.
L’objectif initial de ce travail est de se concentrer sur les problèmes de flot
multi-commodités qui se posent dans les réseaux de télécommunications avec
des contraintes complexes de satisfaction de la demande. Nous nous intéres-
sons aux demandes, également appelées commodités, présentant différentes
formes de trafic et prédites par des méthodes d’apprentissage automatique.
Le problème de bloqueur associé est appelé problème de bloqueur de flot

10

multi-commodités (MCFBP), où le réseau est représenté par un problème
de flot multi-commodités sur lequel un problème de bloqueur est appliqué.
Dans ce contexte, nous supposons qu’un réseau est opérationnel s’il existe un
flot multi-commodités dans le réseau satisfaisant une propriété donnée. Le
problème de bloqueur de flot multi-commodités évalue le poids maximal des
anomalies qui peuvent survenir dans le réseau sans qu’il échoue. Ainsi, une
solution au problème de bloqueur de flot multi-commodités est un indicateur
définissant la tolérance d’un réseau face aux anomalies, ce qui constitue un
élément central pour améliorer l’efficacité du routage. Nous étudions égale-
ment un cas particulier du MCFBP, qui est le problème de bloqueur de flot
maximum (MFBP). Dans le MFBP, le réseau est représenté par un prob-
lème de flot maximum dont l’objectif est d’envoyer une quantité maximale
de données d’une source unique à une destination unique. Pour aborder ces
problèmes, nous utilisons des outils d’optimisation combinatoire, en explo-
rant diverses approches, notamment des techniques bi-niveaux qui exploitent
la nature bi-niveau des problèmes de bloqueur dans les réseaux, l’approche
polyèdrale initiée par Edmonds [1965] et les algorithmes de branchement.
Pour le MFBP, nous présentons plusieurs formulations de Programmation
Linéaire en Nombres Entiers (PLNE) conçues pour la première fois afin de
traiter ce problème. Les premières formulations, comportant un nombre expo-
nentiel de contraintes, sont résolues à l’aide d’algorithmes de Branch-and-Cut
adaptés. Un autre modèle PLNE, avec un nombre polynomial de variables
et de contraintes, est résolu à l’aide d’un solveur PLNE. Cette dernière for-
mulation établit une connexion structurelle entre le problème de bloqueur de
flot maximum et un autre problème proche existant dans la littérature, ap-
pelé problème d’interdiction de flot maximum. Cette relation introduit une
approche novatrice permettant d’obtenir des solutions pour chaque problème
à partir de l’autre. Les méthodes exactes proposées sont comparées à travers
une étude expérimentale poussée impliquant un ensemble d’instances synthé-
tiques et réelles, visant à évaluer leurs performances.
Nous étendons ensuite notre recherche pour aborder la variante du problème
de bloqueur de flot multi-commodités. À cet effet, nous introduisons une
formulation comprenant une famille exponentielle de contraintes. Celle-ci est
résolue à l’aide d’un algorithme de Branch-and-Cut sur mesure. De plus, nous
renforçons la robustesse du modèle en développant une approche polyédrale.
Plusieurs variantes du problème ont été explorées, y compris une concernant
une instance spécifique du problème où le flot est dit discret, c’est-à-dire qu’il
est contraint d’être routé via un seul chemin pour chaque commodité. Une
autre variante est la variante de bloqueur sur les sommets, qui consiste à sup-
primer des sommets du graphe à la place des arcs. Tous les algorithmes exacts
conçus pour le problème de bloqueur de flot multi-commodités et ses variantes
sont évalués expérimentalement sur un ensemble d’instances synthétiques et
réelles.
Cette thèse explore également plusieurs applications étroitement liées aux
réseaux de télécommunications. En outre, dans le cadre de notre étude sur

11

l’analyse de la résilience des réseaux, nous avons approfondi une application
spécifique liée à la surveillance du réseau. Cela implique de déterminer le
placement optimal de structures de données, appelées sketches, pour surveiller
efficacement le trafic.

Preliminaries and State-of-the-art

Le premier chapitre est dédié à la présentation des notions préliminaires
concernant l’optimisation combinatoire, l’analyse polyédrale, les problèmes
d’optimisation dans les réseaux ainsi que l’optimisation bi-niveau. Précisé-
ment, nous fournissons un aperçu des méthodes bien connues utilisées en
optimisation combinatoire, telles que les algorithmes de Branch-and-Bound,
Branch-and-Cut et Branch-and-Price. Après avoir introduit quelques élé-
ments fondamentaux de théorie des graphes, nous présentons des notations
relatives aux problèmes de flot dans les réseaux. Ces notations seront utilisées
tout au long du document. Nous donnons ensuite un aperçu de la program-
mation bi-niveau avec un état de l’art sur certains problèmes bi-niveau, tels
que le problème d’interdiction et le problème de bloqueur.

Network flow blocker problems and their applica-
tions in telecommunication networks

Dans ce chapitre, nous examinons en profondeur l’architecture des réseaux de
télécommunications et les anomalies auxquelles ils peuvent être confrontés.
Nous explorons ensuite les applications pratiques liées aux problèmes de blo-
queur dans les réseaux en nous concentrons principalement sur la détection des
anomalies. Plus précisément, nous démontrons une corrélation directe entre
le nombre maximal d’anomalies pouvant survenir dans le réseau et la solution
d’un problème de bloqueur dans ce réseau. Par la suite, nous nous plongeons
dans le domaine de la surveillance des réseaux, et plus particulièrement dans
le placement de structures de données de surveillance appelées sketches. Dans
ce contexte, nous examinons le problème d’attribution de sketches, un prob-
lème d’optimisation visant à placer stratégiquement les sketches au sein d’un
réseau. Pour traiter ce problème, nous proposons une formulation bi-niveau
qui sera ensuite résolue à l’aide d’un algorithme glouton.
Comme expliqué dans ce chapitre, les problématiques abordées dans cette
thèse présentent une importance particulière pour les opérateurs de réseau,
qui cherchent à optimiser l’utilisation des ressources, garantir une connectivité
fiable et offrir un service de haute qualité à leurs utilisateurs.

12

The maximum flow blocker problem: Formulations
and algorithms

Dans ce chapitre, nous étudions le problème de bloqueur de flot maximum
(MFBP).
Etant donné un graphe constitué d’un ensemble de nœuds et d’un ensemble
d’arcs, chaque arc possède une capacité ainsi qu’un coût de suppression. Le
problème de bloqueur de flot maximum (MFBP) consiste à déterminer un
ensemble d’arcs dont le coût de suppression est minimal, de manière à ce que
le flot maximal restant dans le graphe soit inférieur à un seuil prédéfini, appelé
flot cible.
Ce problème peut être modélisé comme un problème d’optimisation biniveau.
Le problème de premier niveau, également appelé leader, est un problème de
bloqueur qui a pour but de retirer des arcs dans le graphe. Le problème de
second niveau, également appelé follower, est un problème de flot maximum.
En utilisant la formulation bi-niveau naturelle du problème, nous avons in-
troduit quatre nouvelles formulations de programmation linéaire entière afin
de résoudre le MFBP.
Les trois premières formulations, qui impliquent uniquement les variables na-
turelles associées aux arcs, sont résolues à l’aide d’algorithmes de séparation
et de coupes (Branch-and-cut).
La quatrième et dernière formulation est un modèle compacte résolue à l’aide
d’un solveur ILP. Celle-ci comporte un nombre polynomiale de variables et
de contraintes.
Les formulations naturelles (non compactes) présentent deux familles expo-
nentielles de contraintes. La première, dont la séparation est polynomiale
pour les solutions fractionnaires et entières, est appelée coupes de Benders.
Pour la seconde famille d’inégalités, appelé inégalité de flot cible, la séparation
des solutions fractionnaires est NP-difficile. En utilisant ces résultats, nous
avons développé un algorithme Branch-and-Cut amélioré avec des coupes de
Benders et des inégalités de flot cible.
En utilisant la formulation compacte, nous avons établi la première connexion
entre le problème de bloqueur de flot maximum et le problème d’interdiction
de flot maximum.
Etant donné un graphe constitué d’un ensemble de nœuds et d’un ensemble
d’arcs, chaque arc possède une capacité ainsi qu’un coût de suppression. Le
problème d’interdiction de flot maximum (MFIP) consiste à trouver un en-
semble d’arcs à retirer du graphe, de manière à minimiser le flot maximal
restant et tel que le cout total de suppression des arcs ne dépassent pas un
budget prédéfini.
Nous avons démontré que les solutions d’un MFBP peuvent être obtenues
à partir des solutions d’un MFIP, et réciproquement. Cette propriété a été

13

étendue à plusieurs variantes du problème, notamment la variante continue
du bloqueur et la variante de bloqueur sur les sommets, qui consiste à retirer
des sommets du graphe plutôt que des arcs.
Par ailleurs, nous avons réalisé une étude pour comparer la robustesse des
relaxations linéaires des formulations proposées.

The maximum flow blocker problem: Computa-
tional experiments

Dans le chapitre précédent, nous avons présenté et comparé théoriquement
plusieurs formulations pour aborder le MFBP. Nous avons d’abord conçu trois
formulations naturelles. Ces formulations présentent un nombre exponentiel
de contraintes et sont résolues par des algorithmes de Branch-and-Cut. Nous
avons ensuite présenté une autre formulation ayant un nombre polynomial de
variables et de contraintes, désignée comme formulation compacte. Celle-ci
est résolue à l’aide d’un solveur ILP.
Dans ce chapitre, une analyse computationnelle approfondie a été réalisée
pour évaluer la performance des formulations conçues pour le MFBP.
Nos tests ont montré que les algorithmes proposés dans cette thèse sur-
passent de manière significative l’utilisation directe d’un solveur bi-niveau,
qui représente la technique actuelle existant dans la littérature pour traiter
le MFBP. De plus, la formulation compacte s’est avérée être la plus efficace,
surpassant les formulations naturelles et démontrant sa capacité à gérer des
instances de grande taille de manière efficace dans un temps raisonnable.

The multicommodity flow blocker problem: For-
mulations and polyhedral analysis

Dans ce chapitre, nous approfondissons le problème de bloqueur de flot multi-
commodités, en explorant à la fois ses variantes continues (MCFBP) et dis-
crètes (UMCFBP). La variante continue concerne le cas où le flot de chaque
commodité peut être réparti sur plusieurs chemins, tandis que dans la vari-
ante discrète, le flot de chaque commodité est contraint de passer entièrement
par un seul chemin reliant la source à la destination.
Considérons un graphe constitué d’un ensemble de nœuds et d’arcs. Chaque
arc est défini par une capacité, un coût de flot correspondant au routage d’une
unité de flot à travers cet arc, ainsi qu’un coût de suppression. Nous prenons
également en compte un ensemble de commodités, chacune étant caractérisée
par un nœud source, un nœud destination, une bande passante représentant
la quantité de flot à acheminer entre ces deux nœuds, et une récompense
associée au routage d’une unité de flot. L’objectif du problème de second
niveau, qui est un problème de flot multi-commodités, consiste à satisfaire un

14

maximum de commodités en acheminant une quantité de flot proche de la
bande passante, afin de maximiser le gain total, calculé comme la somme des
récompenses moins le coût de routage. Le problème de premier niveau est
un problème de bloqueur dont l’objectif est de réduire le gain du flot multi-
commodités restant dans le graphe après suppression des arcs, jusqu’à ce qu’il
soit inférieur à seuil prédéfini.
Avant de résoudre ce problème, nous menons une analyse complète de la
complexité du problème associée aux deux variantes, la variante continue et
la variante discrète. Nous établissons par ailleurs une corrélation entre leurs
solutions.
L’approche de résolution que nous proposons se base d’abord sur une for-
mulation biniveau pour aborder ces défis, ainsi qu’une reformulation à un
seul niveau. Nous présentons ensuite une formulation plus générale de pro-
grammation linéaire en nombres entiers (ILP) avec un nombre exponentiel
de contraintes. Afin d’améliorer la robustesse du modèle, nous introduisons
une étude polyédrale, visant à décrire les polyèdres des solutions pour chaque
problème et à identifier les conditions nécessaires et suffisantes pour que les
inégalités définissent des facettes.
Pour de futures recherches, l’exploitation de la formulation biniveau et de sa
reformulation pourrait s’avérer bénéfique pour améliorer les modèles proposés
en y intégrant de nouvelles inégalités valides.

A Branch-and-cut algorithm for the multicommod-
ity flow blocker problem

Ce chapitre présente des algorithmes conçus pour résoudre les problèmes
MCFBP et UMCFBP, en se focalisant sur des méthodes de type Branch-
and-Cut. Ces algorithmes sont décrits en détail et soumis à une évaluation
expérimentale rigoureuse.
Pour chaque variante, nous explorons en profondeur le problème de séparation
lié à la famille exponentielle de contraintes proposée, et introduisons diverses
approches pour séparer ces inégalités. Pour les solutions fractionnaires, où
le problème de séparation est NP-complet, nous proposons une heuristique
basée sur des calculs successifs de plus courts chemins.
De plus, pour la variante discrète du problème (UMCFBP), nous développons
un algorithme reposant sur la génération de colonnes afin de séparer les points
entiers infaisables.
Pour évaluer l’efficacité des différentes méthodes proposées et la performance
de l’algorithme Branch-and-Cut, nous réalisons une étude computationnelle
approfondie sur un ensemble d’instances synthétiques et réelles. Cette étude
met en évidence l’efficacité des heuristiques, particulièrement sur des graphes
de grande taille.

15

The multicommodity flow blocker problem: vertex
variant

Dans les chapitres précédents, notre travail s’est concentré sur la variante arc
du problème de bloqueur sur le flot maximum et sur le flot multi-commodités.
Pour ces deux problèmes, l’objectif est de détruire des arcs du graphe afin de
réduire respectivement le flot maximum et le flot multi-commodités.
Ce chapitre introduit une nouvelle variante du problème de bloqueur, qui
consiste à supprimer des sommets plutôt que des arcs. Pour cela, nous nous
intéressons plus spécifiquement au flot multi-commodités discret. Ce prob-
lème est appelé V-UMCFBP.
Après avoir décrit formellement le V-UMCFBP, nous établissons un lien entre
les solutions de la variante du problème de bloqueur sur les arcs et celles de la
variante sur les sommets, par le biais d’une transformation de graphe. Nous
proposons ensuite une formulation de programmation linéaire en nombres
entiers pour aborder ce problème. Cette formulation, qui comporte un nom-
bre exponentiel de contraintes, est une adaptation naturelle de celle conçue
pour la variante du problème de bloqueur sur les arcs appliqué au flot multi-
commodités discret (UMCFBP). Nous poursuivons avec une analyse polyé-
drale de ce modèle, offrant des perspectives sur la structure du polytope et sur
ses solutions. Comme la formulation proposée n’utilise que des variables dites
naturelles, elle est résolue à l’aide d’un algorithme de type Branch-and-Cut.
Enfin, nous présentons plusieurs tests expérimentaux visant à évaluer la per-
formance de cette formulation pour la variante du bloqueur sur les sommets.
Nous observons, par ailleurs, que cette variante est résolue plus rapidement
que la variante sur les arcs.

Conclusion

Dans cette thèse, nous nous intéressons aux problèmes de bloqueur dans les
réseaux. Plus précisément, nous nous concentrons sur les problèmes de blo-
queur appliqués au flot multi-commodités et à ses variantes.
Au début de la thèse, nous présentons des applications pratiques pour l’étude
des problèmes de bloqueur dans les réseaux, avec un accent particulier sur
les réseaux de télécommunications. Plus précisément, une application directe
vise à renforcer la résilience face aux anomalies afin d’assurer la robustesse
et la fiabilité des réseaux de télécommunications. Ainsi, nous concevons dans
cette thèse des algorithmes adaptés à cet objectif. De plus, nous élargissons
notre champ d’application pour inclure un autre cas d’usage, connu sous le
nom de surveillance à l’échelle du réseau. Dans ce contexte, nous étudions le
problème d’affectation de sketches et proposons des méthodes de résolution.
Dans la première partie de la thèse, nous nous penchons sur le problème
de bloqueur de flot maximum (MFBP). La motivation derrière l’étude de ce

16

problème est multiple. Premièrement, il constitue un cas particulier du prob-
lème de bloqueur de flot multi-commodités. Deuxièmement, son importance
provient de la structure spécifique du sous-problème, qui est un problème
de flot maximum. Troisièmement, la vaste littérature existante sur ce su-
jet souligne son intérêt et son potentiel pour des recherches supplémentaires.
Pour aborder ce problème, nous proposons plusieurs formulations de pro-
grammation linéaire en nombres entiers. Certaines comportent une famille
exponentielle de contraintes et sont donc résolues à l’aide d’un algorithme
Branch-and-Cut, adapté spécifiquement pour ce problème. Une autre for-
mulation, avec un nombre polynomial de variables et de contraintes, a été
conçue. Ces formulations sont comparées théoriquement en étudiant la force
des relaxations linéaires et à travers une étude computationnelle approfondie.
Aussi, nous démontrons un lien structurel entre les solutions du problème de
bloqueur et celles de la variante d’interdiction du problème de flot maximum.
C’est la première fois qu’une relation entre un problème de bloqueur et un
problème d’interdiction appliqué à un autre problème d’optimisation est mise
en lumière. Ce résultat théorique nous permet de dériver un autre algorithme
pour résoudre le MFBP.
Dans la seconde partie de la thèse, nous nous penchons sur le problème de
bloqueur de flot multi-commodités, en distinguant deux scénarios : l’un où
le flot est continu (MCFBP), et l’autre où le flot est discret, c’est-à-dire qu’il
est routé par un chemin unique pour chaque commodité (UMCFBP). Pour
aborder ce challenge, nous introduisons une formulation concise qui s’inscrit
dans l’espace naturel des variables de bloqueur. Cette formulation, compor-
tant un nombre exponentiel de contraintes, peut être adaptée à plusieurs
versions du problème de bloqueur de flot multi-commodités. Pour chaque
variante (continue et discrète), nous étudions le problème de séparation asso-
cié et proposons plusieurs approches. Ensuite, nous présentons un algorithme
Branch-and-Cut spécialement conçu pour résoudre le MCFBP et l’UMCFBP.
En outre, afin de renforcer la robustesse du modèle, nous réalisons une anal-
yse polyédrale complète. Les différentes approches et améliorations poten-
tielles des algorithmes Branch-and-Cut sont comparées à travers une anal-
yse expérimentale approfondie sur des ensembles d’instances synthétiques et
réelles. L’objectif principal de cette étude est d’évaluer, pour chaque variante
du problème, la performance de la formulation proposée et d’identifier les
caractéristiques des instances qui peuvent être résolues de manière optimale.
Enfin, dans la troisième partie de la thèse, nous étendons notre recherche à la
variante du problème de bloqueur sur les sommets, qui se concentre plus par-
ticulièrement sur le flot multi-commodités discret. Ce problème est désigné
par V-UMCFBP. Dans cette variante, l’objectif est de supprimer des som-
mets du graphe au lieu de retirer des arcs. Nous démontrons, par ailleurs,
l’existence d’une relation entre les deux variantes en utilisant des transforma-
tions de graphes. Plus précisément, nous démontrons que résoudre l’une des
variantes équivaut à résoudre l’autre dans un graphe transformé. De plus,
nous introduisons un modèle spécifique pour le V-UMCFBP, comportant un

17

nombre exponentiel de contraintes. Ce modèle est résolu à l’aide d’un algo-
rithme Branch-and-Cut. Enfin, nous examinons les propriétés du polyèdre
associé.
De nombreuses pistes de recherche peuvent être explorées à partir des travaux
de cette thèse. Pour le problème de bloqueur de flot maximum, une étude
approfondie des polyèdres des formulations proposées permettrait d’identifier
les conditions dans lesquelles les inégalités définissent des facettes, ainsi que
de découvrir de nouvelles inégalités valides. De plus, une exploration plus
poussée de la relation entre les problèmes de bloqueur et d’interdiction pour-
rait fournir des informations précieuses, avec la possibilité d’étendre leur ap-
plicabilité à d’autres problèmes d’optimisation.
Pour le problème de bloqueur de flot multi-commodités, les travaux futurs
pourraient se concentrer sur deux axes principaux. Le premier concerne
l’aspect algorithmique, qui implique d’améliorer les heuristiques existantes
ou de mettre en œuvre des stratégies de branchement plus avancées. Le sec-
ond axe est plus théorique et consiste en une exploration plus approfondie des
polyèdres associés aux formulations proposées pour les différentes variantes
du problème. Une première piste de recherche pourrait consister à développer
davantage les travaux réalisés sur la variante du bloqueur sur les sommets, en
évaluant dans un premier temps l’efficacité des inégalités valides identifiées,
puis en les adaptant pour la variante du bloqueur sur les arcs.
Enfin, des pistes prometteuses pour de futures recherches incluent l’intégration
de contraintes du monde réel issues des réseaux de télécommunications. Plus
précisément, cela pourrait impliquer de généraliser les anomalies pour tenir
compte des pics de trafic, par exemple, ou d’incorporer des contraintes supplé-
mentaires liées à la surveillance du réseau. De plus, proposer des stratégies de
routage optimales qui prennent en compte les anomalies constitue une autre
option à explorer. Cela pourrait notamment nécessiter de redéfinir les actions
du bloqueur.

18

Introduction

In the fast-changing world of telecommunications, driven by increasing demand, new
possibilities and challenges have appeared. One of the latest innovations is the 5G
technology. The 5G connection aims to guarantee a high level of communication relia-
bility. It can provide hundreds of billions of connections and ensure 90% more energy
efficiency and 99.9% ultra-reliability (Barakovic et al. [2017]). However, among these
remarkable accomplishments, the issue of signal losses in traffic transmission remains a
critical concern that necessitates meticulous attention. Hence, modern telecommunica-
tion networks are extremely complex systems in which hard combinatorial optimization
problems must be effectively solved in a short computing time.These problems belong
to the class of network optimization problems. Among the most well-known problems in
this class are the maximum flow problem and the multi-commodity flow problem which
constitute the primary focus of this thesis.
Telecommunication networks consist of interconnected communication devices and in-
frastructures designed to facilitate the routing and transmission of information. These
networks can be seen as graphs, where vertices represent routers connected by arcs, sym-
bolizing transmission links. Transmission links, crucial for the routing process and facil-
itating the flow of data, include additional information, such as arc capacity, indicating
the maximum data volume that can be transmitted through each link. Routing within
these networks entails the transmission of data from a source to a destination. This
process usually involves satisfying a demand, also called a commodity. In real-world
scenarios, these networks exhibit extensive dimensions and they can be accompanied
by a significant volume of demands. However, telecommunication networks are often
confronted with anomalies and failures.
Different kinds of anomalies may arise on a telecommunication network and affect its
performance. Network congestion, a common occurrence, arises when data demand
exceeds network capacity, resulting in delays and reduced data transfer speeds. Equip-
ment failures, whether due to hardware malfunctions or environmental factors, can dis-
rupt signal transmission and compromise network reliability. Cyberattacks and security
breaches introduce deliberate anomalies, compromising data confidentiality and network
integrity. Signal interference from external sources, such as electromagnetic radiation
or physical obstacles, can lead to signal loss. Moreover, software bugs and configuration
errors can trigger unexpected behaviors and cause service interruptions. We refer the
interested reader to Junior et al. [2019] for a more detailed description of network anoma-
lies. The complexity of these anomalies highlights the need for comprehensive anomaly
detection systems capable of assessing the network’s ability to confront anomalies. By
understanding the part of the network where anomalies and failures can arise, robust

19

strategies can be developed to enhance network resilience, minimize outages, and en-
sure seamless communication. Hence, decision-makers managing Telecommunication
Networks are often faced with the question of identifying the most vital (also called
most vulnerable or most critical) part of the network, which corresponds to a subset of
vertices (or edges) of limited size, whose malfunctioning prevents the functionality of
the network as a whole.
In this context, this work will focus on the resilience analysis of a network. More pre-
cisely, the primary goal of this study is to determine the maximum number of anomalies
that may occur in the network while guaranteeing its functionality depending on a cru-
cial property that needs to be maintained (or achieved). This property may encompass
various network aspects, including constraints such as routing a specific volume of data
or respecting a routing budget. This challenge belongs to a class of optimization prob-
lems called network flow blocker problems.
From a combinatorial optimization point of view, anomalies can be modeled with blocker
notion (see Laroche et al. [2020]). Blocker notion allows to determine the minimum num-
ber of perturbations for a specific structure to be destructed. Here, the perturbations
represent the anomalies, and the specific structure is a feasible solution for the network
flow problem. More formally, in a network where each arc (or vertex) is associated
with a removal cost, a network flow blocker problem aims to find a minimum-cost set
of arcs (or vertices) to remove from the graph, rendering the network non-operational.
The removed arcs (or vertices) serve as a representation of anomalies that may occur in
the network and destroy transmission links (or routers). Therefore, the resolution of a
network flow blocker problem provides the maximum number of anomalies the network
can accommodate while still maintaining functionality. More precisely, the maximum
number of anomalies is equivalent to the blocker solution value minus one.
The initial purpose of this work is to focus on multi-commodity flow problems arising
in telecommunication networks with complex demand satisfaction constraints. We are
interested in demands, also called commodities, having different shapes of traffic and
predicted with machine learning methods. The associated network flow blocker problem
is called multi-commodity flow blocker problem (MCFBP), where the network is repre-
sented by a multi-commodity flow problem on which a blocker problem is applied. In
this context, we assume that a network is operational if there exists a multi-commodity
flow in the network with a given property. The multi-commodity flow blocker problem
evaluates the maximum weight of anomalies that may arise in the network so that it
does not fail. Hence, a solution of the multi-commodity flow blocker problem is an
indicator to define the tolerance of a network to face anomalies, which constitutes a
core element for improving routing efficiency. We also study a particular case of the
MCFBP, which is the maximum flow blocker problem (MFBP). In the MFBP, the net-
work is represented by a maximum flow problem that aims to send a maximum amount
of data from a unique source to a unique destination. To tackle these problems, we use
combinatorial optimization tools, delving into various approaches including bilevel tech-
niques that exploit the bilevel nature of network flow blocker problems, the polyhedral
method initiated by Edmonds [1965] and branching algorithms.
For the maximum flow blocker problem, we present several Integer Linear Programming

20

(ILP) formulations designed for the first time to address this problem. The first models,
featuring an exponential number of constraints, are solved through tailored Branch-
and-Cut algorithms. Another ILP model with a polynomial number of variables and
constraints is solved using a state-of-the-art ILP solver. The latter formulation estab-
lishes a structural connection between the maximum flow blocker problem and another
related problem existing in the literature called the maximum flow interdiction prob-
lem. This introduces a novel approach to obtaining solutions for each problem from the
other. The exact methods proposed are compared through an extensive computational
campaign involving a set of synthetic and real-world instances, aiming to evaluate their
performance.
We then expand our research to address the blocker variant of the multicommodity flow
problem. For this purpose, we introduce an ILP formulation featuring an exponential
family of constraints. This formulation is a set-covering formulation derived specifically
for the multicommodity flow blocker problem and solved using a tailored branch-and-cut
algorithm. Additionally, we enhance the model’s robustness by developing a polyhedral
approach. Several variants of the problem have been explored, including one concerning
a specific instance of the multicommodity flow problem wherein the flow is considered
unsplittable, meaning it is constrained to be routed through a single path for each
commodity. Another variant is the vertex blocker variant of this problem, which involves
removing vertices from the graph instead of arcs. All exact algorithms designed for the
multicommodity flow blocker problem and its variants are computationally evaluated
on a set of synthetic and real-world instances.
This thesis presents several direct applications related to Telecommunication networks.
Additionally, as part of our investigation into network resilience analysis, we explored
another application known as network-wide monitoring. This involves determining the
optimal placement of data structures, called sketches, to monitor traffic effectively. This
application can be formulated as the flow-sketch assignment problem, which is examined
within this study, along with a proposed solution approach.
This dissertation is structured as follows. Chapter 1 provides notations, basic defi-
nitions, and concepts related to combinatorial optimization. Additionally, we offer a
comprehensive overview of network flow problems and the blocker notion. In Chap-
ter 2, we introduce the practical context of the problems treated in this thesis and
present a solution approach for the flow-sketch assignment problem. Chapter 3 intro-
duces formulations and algorithms to address the maximum flow blocker problem. The
experimental results are detailed in Chapter 4. Chapter 5 gives a formal definition of
the multicommodity flow blocker problem and presents models to solve it to proven
optimality. Subsequently, in Chapter 6, we delve into the branch-and-cut algorithms
developed to address the multicommodity flow blocker problem and its unsplittable vari-
ant. Chapter 7 focuses specifically on the vertex blocker variant of the multicommodity
flow problem. Finally, we conclude the report with a summary of the works already
done for the maximum flow blocker problem and the multi-commodity flow blocker prob-
lem. We also discuss future works, especially around the multi-commodity flow blocker
problem and its applications to telecommunication networks.

21

Chapter 1

Preliminaries and State-of-the-art

Contents
1.1 Combinatorial optimization . 23
1.2 Computational complexity . 24
1.3 Elements of polyhedral theory . 26
1.4 Algorithms for combinatorial optimization problems 28

1.4.1 Branch-and-Bound algorithm . 28
1.4.2 Cutting plane method and Branch-and-Cut algorithm 29
1.4.3 Column generation and Branch-and-Price 32

1.5 Network flow problems . 34
1.5.1 Graph theory . 34
1.5.2 Flow notations . 35
1.5.3 State-of-the-art on network flow problems 35

1.6 State-of-the-Art on bilevel problems 40
1.6.1 Bilevel programming . 40
1.6.2 Interdiction problems . 41
1.6.3 Blocker problems . 48

This chapter is dedicated to the presentation of preliminary notions concerning combina-
torial optimization, computational complexity, polyhedral theory, network flow problems
and bilevel optimization. Precisely, we provide an overview of well known methods used
in combinatorial optimization, as the Branch-and-Bound algorithm, the Branch-and-Cut
algorithm, the Branch-and-Price algorithm. After giving some elements of graph theory,
we give some notations related to network flow problems. These notations will be used all
along the document. We then give an overview of bilevel programming with a state-of-the
art on some bilevel problems such as the interdiction problem and the blocker problem.

1.1 Combinatorial optimization

Combinatorial optimisation is a type of mathematical optimization, combining ap-
plied mathematics and theoretical computer science. It is a branch of Operations re-
search on which feasible solutions of the problem are integer solutions. In other words,

23

the term combinatorial optimization problem refers to the discrete structure of the fea-
sible solutions of the problem. Due to the significant size of real-life problems, such a
problem is then considered as a hard problem. Exhaustive search can not be considered
and effective algorithms should be used. Algorithms and tools are developed to solve
large-scale decision problems in an efficient time. These algorithms will permit to go
through the decision tree efficiently by focusing on ways to exclude partial solutions in
order to reach more quickly the optimal solution.
Many problems from graph theory problems are combinatorial optimization problems.
For instance, let’s consider the very known Travelling Salesman Problem (TSP). In
the TSP, A salesman should visit N cities and then returns to the starting point, by
reducing either total travel cost or total travel time. This problem can be modelled as
a graph where vertices represent cities. If there exists a path between two cities, then it
is represented by an arc on which the time and/or the cost of travel is mentioned. The
TSP has been widely studied in combinatorial optimization and operations research.
Typically, the problems concerned with combinatorial optimization are those formulated
as follows. Let A = a1, · · · , an be a finite set called basic set where each element ai is
associated with a weight ω(ai). Let F be a family of subsets of A. If F ∈ F , then
ω(F) = ∑

ai∈F ω(ai) denotes the weight of F . The problem consists in identifying an
element F ∗ of F whose weight is minimum or maximum. In other words,

min(or max){ω(F) : F ∈ F}. (1.1)

Such a problem is called combinatorial optimization problem. The set F represents the
set of feasible solutions of the problem.
Figure 1.1 represents the set of feasible solutions of an optimization problem containing
two vector variables x and y and two family of constraints, represented by two red lines.
For a combinatorial optimization problem, all feasible solutions, marked with red circles,
are integer. If decision variables can take fractional values, the set of feasible solutions
in represented by a green surface.

Many approaches have been developed in order to solve efficiently combinatorial opti-
mization problems based on graph theory, linear and non linear integer programming,
constraint programming or polyhedral approach. Combinatorial optimization is closely
related to algorithm theory and computational complexity theory as well. In the next
sections, we introduce computational issues of combinatorial optimization and present
some common methods used to solve combinatorial optimization problems.

1.2 Computational complexity

Computational complexity theory, emerging from the foundations of computability the-
ory through contributions by Cook [1971], Edmonds Edmonds [1971] and Karp Karp
[1972], constitutes a segment of theoretical computer science and mathematics. Its pri-
mary objective is the classification of problems based on their level of complexity. We
refer the interested reader to Garey and Johnson [1979] for a complete presentation of

24

x

y

Figure 1.1: Representation of the space search of an optimization problem.

NP-completeness theory.

A problem entails a query characterized by input parameters, with the objective of
seeking a solution. The problem is defined by its parameters and the specific criteria
that solutions must fulfill. An instance of the problem is established by assigning distinct
values to its input parameters.
Given an instance of a problem, an algorithm is a sequence of elementary operations
that allows to solve the problem. We call the size of a problem the number of input
parameters necessary to describe an instance. An algorithm is said to be polynomial
if its execution time is either given by a polynomial on the size of the input, or if the
number of elementary operations necessary to solve an instance of size n is bounded by a
polynomial function in n. Problems that can be solved by a polynomial-time algorithm
are called ”easy” or ”tractable” problems. We define the class P as the class gathering
all the problems for which there exists some polynomial algorithm for each problem
instance.

A decision problem is a problem with a yes or no answer. Let D be a decision problem
and I the set of instances such that their answer is yes. D belongs to the class NP
(Nondeterministic Polynomial) if there exists a polynomial algorithm allowing to check
if the answer is yes for all the instances of I. It is clear that a problem belonging to the
class P is also in the class NP. Although the difference between P and NP has not been
shown, it is a highly probable conjecture. In the class NP, we distinguish some prob-
lems that may be harder to solve than others. This particular set of problems is called
NP-complete. To determine whether a problem is NP-complete, we need the notion of
polynomial reducibility. A decision problem D1 can be polynomially reduced into an
other decision problem D2 , if there exists a polynomial function f such that for every
instance I of D1, the answer is ”yes” if and only if the answer of f(I) for D2 is ”yes”.

25

A problem D in NP is also NP-complete if every other problem in NP can be reduced
into D in polynomial time. The first problem that has been shown to be NP-complete
is the Satisfiability Problem (SAT) (see Cook [1971]).

With every combinatorial optimization problem is associated a decision problem. Fur-
thermore, an optimization problem is said to be NP-Hard if its decision problem is
NP-Complete. Note that most of combinatorial optimization problems are NP-Hard.
One of the most efficient approaches developed to solve those problems is the so-called
polyhedral approach.

1.3 Elements of polyhedral theory

The polyhedral method was initiated by Edmonds [1965] for a matching problem. It
consists in describing the convex hull of problem solutions by a system of linear inequal-
ities. The problem reduces then to the resolution of a linear program. In most of the
cases, it is not straightforward to obtain a complete characterization of the convex hull
of the solutions for a combinatorial optimization problem. However, having a system
of linear inequalities that partially describes the solutions polyhedron may often lead
to solve the problem in polynomial time. This approach has been successfully applied
to several combinatorial optimization problems. In this section, we present the basic
notions of polyhedral theory. The reader is referred to works of Schrijver [2003].
In the following, we recall some definitions and properties related to polyhedral theory.

A polyhedron P is the set of solutions of a finite linear system Ax ≤ b, i.e,

P = {x ∈ Rn : Ax ≤ b} (1.2)

Where A is a matrix m× n, b ∈ Rm, m and n are two positive integers.
A bounded polyhedron is called polytope. In other words, a polyhedron P ⊆ Rn is a
polytope if it exists x1, x2 ∈ Rn such that x1 ≤ x ≤ x2 for all x ∈ P .

Let n be a positive integer and x ∈ Rn. We say that x is a linear combination of
x1, x2, · · · , xm ∈ Rn if there exists m scalar λ1, λ1, · · · , λm such that x = ∑

i∈m λixi. If∑
i∈m λi = 1, then x is said to be a affine combination of x1, x2, · · · , xm. Moreover, if

λi ≥ 0, for all i ∈ {1,m}, we say that x is a convex combination of x1, x2, · · · , xm.
Given a set S = {x1, · · · , xm} ∈ Rm×n, the convex hull of S is the set of points x ∈ Rn

which are convex combination of x1, · · · , xm, that is

conv(S) = {x ∈ Rn|x is a convex combination of x1, · · · , xm} (1.3)

Figure 1.2 represents the convex hull of a set S.
The points x1, · · · , xm ∈ Rn are linearly independents if the unique solution of the sys-
tem ∑m

i=1 λixi = 0 is λi = 0 for all i ∈ {1,m}. They are affinely independents if the
unique solution solution of the system ∑m

i=1 λixi = 0, ∑m
i=1 λi = 1 is λi = 0 for all

26

conv(S)

Element of S

Figure 1.2: A convex hull

i ∈ {1,m}.

A polyhedron P is said to be of dimension k if it has at most k+ 1 affinely independent
solutions. We note dim(P) = k. We also have that dim(P) = n− rank(A=), where A=

is the submatrix of A of inequalities that are satisfied with equality by all the solutions
of P . The polyhedron P is full dimensional if dim(P) = n.

Considering a polyhedron P ⊆ Rn. A linear inequality ax ≤ α is valid if for every
solution x ∈ P , we have ax ≤ α. If ax ≤ α is a valid inequality, the polyhedron

F = {x ∈ P : ax = α} (1.4)

is called a face of P . We also say that F is a face induced by ax ≤ α.
By convention, P and ∅ are faces of P . However, if F ̸= ∅ or F ̸= P , then F is a
proper face of P.

If F is a proper face and dim(F) = dim(P) − 1, then F is called a facet of P . We also
say that ax ≤ b induces a facet of P or is a facet defining inequality.

If P is full dimensional, then ax ≤ α is a facet of P if and only if F is a proper
face and there exists a facet of P induced by bx ≤ β and a scalar ρ ̸= 0 such that
F ⊆ {x ∈ P |bx = β} and b = ρa. In reverse, if P is not full dimensional, then ax ≤ ρ
is a facet of P if and only if F is a proper face and there exists a facet of P induced by
bx ≤ β, a scalar ρ ̸= 0 and λ ∈ Rq×n (where q is the number of lines of matrix A=) such
that F ⊆ {x ∈ P |bx = β} and b = ρa+ λA=.

A point x of a polyhedron P is an extreme point if it does not exist two solutions x1

and x2 of P , x1 ̸= x2 such that x = 1
2x

1 + 1
2x

2. A point x ∈ P is an extreme point of P
if and only if x is a face of dimension 0. The polyhedron P can also be described by its
extreme points.

Figure 1.3 represents a polyhedron P with extreme points, faces and facets.

27

Non proper face

Proper face

Facet

P

Extreme point

Figure 1.3: Faces, facets and extreme points

1.4 Algorithms for combinatorial optimization problems

1.4.1 Branch-and-Bound algorithm

In computer science, a Divide-and-conquer algorithm is a well-known algorithm that
consists in dividing a problem into sub-problems, solve recursively each of them and
then combine them to find a solution to the initial problem.

A Branch-and-Bound algorithm is based on a Divide and Conquer method for solving
combinatorial optimization problems. The general idea is to find an optimal solution
without exploring all the nodes. To prune some solutions, the algorithm uses bound on
the optimal value. It falls into two parts. The first part is the branching that consists in
dividing the problem into sub-problems. The second part is the bounding that consists
in computing a bound of the optimal solution. The goal of this process is to ignore
partial solutions.
During a Branch-and-Bound algorithm, at every node of the decision tree, the linear
relaxation is solved. We recall that for an integer minimisation problem, the solution
of the linear relaxation is less than or equal to the optimal integer solution. On the
opposite, for an integer maximisation problem, the solution of the linear relaxation is
greater than or equal to the optimal integer solution.

For a minimisation integer problem, the Branch-and-Bound method consists of several
operations. At initialisation, the algorithm solve the linear relaxation of the initial
problem. If an integer solution has been found, then a feasible solution has been found.
Otherwise, a lower bound equal to the relaxed solution and a upper bound equal to the
rounded-up integer solution, have been found. The next stage is the branching. A vari-
able with the greatest fractional value, denoted x∗

i , is selected from the one found by the
resolution of the linear relaxation. Afterwards, two new constraints for this variable are

28

created; xi ≤ ⌊x∗
i ⌋ or xi ≥ ⌈x∗

i ⌉ and two child nodes for each constraint are created. The
last stage consists in solving the linear relaxation problem for each child node, consider-
ing the new constraint. At each node, a lower bound and an upper bound to the integer
optimal solution are set. As before, the lower bound corresponds to the solution of the
linear relaxation, and the upper bound corresponds to the existing minimum solution.
The latter two steps are repeated until the optimal solution is found, i.e the smallest
integer solution found during the exploration of the decision tree.

For minimization integer problems, the Branch-and-Bound method consists of several
operations. At initialisation, the algorithm solves the linear relaxation of the initial
problem. If an integer solution has been found, then a feasible solution is reached.
In instances where an integer solution isn’t achieved, a lower bound corresponding to
the relaxed solution and an upper bound equal to the rounded-up integer solution are
established. The subsequent step involves branching. From the variables identified
through the linear relaxation resolution, the one with the most significant fractional
value, denoted as x∗

i , is selected. Afterwards, two new constraints are introduced for
this variable: xi ≤ ⌊x∗

i ⌋ or xi ≥ ⌈x∗
i ⌉, generating a pair of child nodes for each constraint.

The final stage consists n solving the linear relaxation problem’s solution for each child
node, taking into account the recently introduced constraint. Within each node, both
a lower bound and an upper bound for the integer-optimal solution are defined. The
latter two steps are repeated until the optimal solution is found, i.e the smallest integer
solution found during the exploration of the decision tree.
The Branch-and-Bound algorithm is not efficient when the number of constraints is
exponential. Therefore, another algorithm, also based on branching have been devel-
oped. It’s called the Branch-and-Cut algorithm, that we will use further to solve our
problem. This algorithm is explained in the next section.

1.4.2 Cutting plane method and Branch-and-Cut algorithm

To explain Branch-and-Cut algorithm, the cutting plane method and notion of
separation should be introduced.

Cutting plane method

Let D be a combinatorial optimization problem, A its basic set, ω the weight function
associated with the variables of D and S the set of feasible solutions. Suppose that D
consists in finding an element of S whose weight is maximum. If F ⊆ A, then the 0 − 1
vector xF (a) ∈ RA such that xF (a) = 1 if a ∈ F and xF (a) = 0 otherwise, is called the
incidence vector of F . The polyhedron P (S) = conv{xS|S ∈ S} is the polyhedron of
the solutions of D. D is thus equivalent to the linear program max{cx|x ∈ P (S)}. It
is worth noticing that the polyhedron P (S) can be described by a set of facets defin-
ing inequalities. And when all the inequalities of this set are known, then solving S is
equivalent to solve a linear program.

29

x∗

ax ≤ α

Figure 1.4: Separation process.

The polyhedral approach to addressing combinatorial optimization problems seeks to
simplify the resolution of D by transforming it into the resolution of a linear program.
This shift initiates a comprehensive investigation into the polyhedron associated with D.
Characterizing this polyhedron using a system of linear inequalities is generally complex.
This challenge becomes particularly pronounced when dealing with NP-hard problems,
making the prospect of achieving such a characterization quite limited. Furthermore,
the number of inequalities required to define this polyhedron often becomes exponential.
Consequently, even if a comprehensive description of the polyhedron can be obtained,
the practical resolution remains challenging due to the large number of inequalities.
Thankfully, Fortunately, a technique called the cutting plane method can be used to
overcome this difficulty. This method is described in what follows.
The cutting plane method is based on the so-called separation problem. This consists,
given a polyhedron P of Rn and a point x∗ ∈ Rn, in verifying whether if x∗ belongs to
P , and if this is not the case, to identify an inequality aTx ≤ b, valid for P and violated
by x∗. In the later case, we say that the hyperplane aTx = b separates P and x∗ (see
Figure 1.4).
Grötschel, Lovász and Schrijver (Grötschel et al. [1981]) have established the close re-
lationship between separation and optimization. In fact, they prove that optimizing a
problem over a polyhedron P can be performed in polynomial time if and only if the
separation problem associated with P can be solved in polynomial time. This equiv-
alence has permitted an important development of the polyhedral methods in general
and the cutting plane method. More precisely, the cutting plane method consists in
solving successive linear programs, with possibly a large number of inequalities, by us-
ing the following steps. Let LP = max{cx,Ax ≤ b} be a linear program and LP ′ a
linear program obtained by considering a small number of inequalities among Ax ≤ b.
Let x∗ be the optimal solution of the latter system. We solve the separation problem
associated with Ax ≤ b and x∗. This phase is called the separation phase. If every
inequality of Ax ≤ b is satisfied by x∗, then x∗ is also optimal for LP . If not, let ax ≤ α
be an inequality violated by x∗. Then we add ax ≤ α to LP ′ and repeat this process
until an optimal solution is found. The following algorithm summarizes the different
cutting plane steps.
It is worth noticing that a cutting-plane algorithm might not always achieve an optimal

30

Algorithm 1 A cutting plane algorithm
Input: A linear program LP and its system of inequalities Ax ≤ b
Output: Optimal solution x∗ of LP
Consider a linear program LP ′ with a small number of inequalities of LP ;
Solve LP ′ and let x∗ be an optimal solution;
Solve the separation problem associated with Ax ≤ b and x∗;
if an inequality ax ≤ α of LP is violated by x∗ then

Add ax ≤ α to LP ′;
Repeat step 2;

else
x∗ is the optimal solution for LP ;
return x∗

end if

solution for the core combinatorial optimization problem. In this case, a Branch-and-
Bound algorithm can be used to tackle the issue. This leads to a Branch-and-Cut
algorithm, in which a series of separation problems are solved for each node of the
decision tree.

Branch-and-Cut algorithm

Consider again a combinatorial optimization problem D and suppose that D is equivalent
to:

max{cx|Ax ≤ b, x ∈ {0, 1}n}

Where Ax ≤ b has a large number of inequalities. A Branch-and-Cut algorithm starts
by creating a Branch-and-Bound tree whose root node corresponds to a linear program
LP0 = max{cx|A0x ≤ b0, x ∈ Rn}, where A0x ≤ b0 is a subsystem of Ax ≤ b having
a small number of inequalities. Then, we solve the linear relaxation of P that is LP =
{cx|Ax ≤ b, x ∈ Rn} using a cutting plane algorithm whose starting from LP0. Let x∗

0
denote its optimal solution and A′

0x ≤ b′
0 the set of inequalities added to LP0 at the end

of the cutting plane phase. If x∗
0 is integral, then it is optimal. If x∗

0 is fractional, then
we perform a branching phase. This step consists in choosing a variable, say x1, with
a fractional value and adding two nodes D1 and D2 in the Branch-and-Cut tree. The
node P1 corresponds to the linear program LP1 = max{cx|A0x ≤ b0, A

′
0x ≤ b′

0, x
1 =

0, x ∈ Rn} and LP1 = max{cx|A0x ≤ b0, A
′
0x ≤ b′

0, x
1 = 1, x ∈ Rn}. We then solve the

linear program LP1 = max{cx|Ax ≤ b, x1 = 0, x ∈ Rn} (resp. LP2 = max{cx|Ax ≤
b, x1 = 1, x ∈ Rn}) by a cutting plane method, starting from LP1 (resp. LP2). If the
optimal solution of LP1 (resp. LP2) is integral then, it is feasible for P. Its value is then
a lower bound of the optimal solution of D, and the node D1 (resp. D2) becomes a leaf
of the Branch-and-Cut tree. If the solution is fractional, then we select a variable with
a fractional value and add two children to the node D1 (resp. D2), and so on.
It is worth noticing that sequentially adding constraints of type xi = 0 and xi = 1 where
xi is a fractional variable, may lead to an infeasible linear program at a given node of
the Branch-and-Cut tree. Or, if it is feasible, its optimal solution may be worse than

31

the best known lower bound of the problem. In both cases, that node is pruned from
the Branch-and-Cut tree. The algorithm ends when all nodes have been explored and
the optimal solution of D is the best feasible solution given by the Branch-and-Bound
tree.
This algorithm can be improved by computing a good lower bound of the optimal
solution of the problem. This lower bound, once determined, serves as a criterion for
the algorithm to discard nodes that cannot lead to an enhancement of this established
lower bound. This would permit to reduce the number of nodes generated in the Branch-
and-Cut tree, and hence, reduce the time used by the algorithm. Moreover, this lower
bound can be improved through a process involving the comparison of a feasible solution
at each node within the Branch-and-Cut tree, particularly when the solution derived at
the root node is fractional. This technique is commonly known as a primal heuristic.
Its purpose is to generate a viable solution for D based on the solution acquired at a
specific node within the Branch-and-Cut tree. This approach is especially useful when
the solution at this node is fractional, and hence infeasible for D. Moreover, the weight
of this solution must be as best as possible. When the computed solution surpasses the
current best-known lower bound, it may significantly reduce the number of generated
nodes, as well as the CPU time. This also guarantees to have an approximation for the
optimal solution of D before visiting all the nodes of Branch-and-Cut tree, for example
when a CPU time limit has been reached.
The Branch-and-Cut approach has proven highly effective in addressing a range of com-
binatorial optimization problems that are typically regarded as challenging. It is worth
noticing that a strong understanding of the problem’s associated polyhedron, together
with efficient separation algorithms (both exact and heuristic), can significantly enhance
the efficiency of this approach. Additionally, the cutting plane method is efficient when
the number of variables remains polynomial. However, when the number of variables
is exponential, alternative strategies like column generation are more likely to be used.
An overview of this method is provided in the next section.

1.4.3 Column generation and Branch-and-Price

Column generation

Compact formulations of combinatorial optimization problems often provide a weak
linear relaxation. Those problems require then further formulations, whose linear relax-
ation is closer to the convex hull of feasible solutions. Those reformulations may have
a huge number of variables, so that one can not consider them explicitly in the model.
we describe a method that suits well to such reformulation, that is the so-called column
generation method.
Combinatorial optimization problems often give rise to compact formulations charac-
terized by a weak linear relaxation. As a consequence, these problems require further
formulations, whose linear relaxation is closer to the convex hull of feasible solutions.
These reformulations can potentially introduce a huge number of variables, that can
not be explicitly in the model. The column generation method proves to be particularly
well-suited for addressing such types of reformulations.

32

The column generation method is employed to tackle linear programs featuring an ex-
tensive set of variables, focusing only on a subset of these variables. This innovative
technique was first introduced by Dantzig and Wolfe in 1960 (Dantzig and Wolfe [1960]),
aimed at addressing challenges arising in order to solve problems that could not be han-
dled efficiently because of their size, encompassing considerations of CPU time and
memory consumption.
Column generation is generally used either for problems whose structure is suitable
for a Dantzig-Wolfe decomposition, or for problems with a large number of variables.
The overall idea of column generation is to solve a sequence of linear programs with a
restricted number of variables (also referred to as columns). The algorithm starts by
solving a linear program having a small number of variables, and such that a feasible
solution for the original problem may be identified using this basis. At each iteration
of the algorithm, we solve the so-called pricing problem whose objective is to identify
the variables which must enter the current basis. These variables are characterized by
a negative reduced cost. The reduced cost associated with a variable is computed using
the dual variables associated with the constraints of the problem. We then solve the
linear program obtained by adding the generated variables, and repeat the procedure
until no variable with reduced cost can be identified by the pricing problem. In this
case, the solution obtained from the last restricted program is optimal for the original
model. The main step of column generation procedure is summarized in Algorithm 2.

Algorithm 2 A column generation algorithm
Input: A linear program MP (Master Problem) with a huge number of variables
Output: Optimal solution x∗ of MP
Consider a linear program RMP (Restricted Master Problem) including only a small
subset of variables of the MP;

1. Solve RMP and let x∗ be an optimal solution
2. Solve the pricing problem associated with the dual variables obtained by the

resolution of the RMP
if there exists a variable x with a negative reduced cost then

add x to RMP;
go to step 2;

else
x∗ is the optimal solution for MP;
return x∗

end if

The column generation method can be seen as the dual of the cutting plane method since
it adds columns (variables) instead of rows (inequalities) in the linear program. Fur-
thermore, the pricing problem may be NP-hard. One can then use heuristic procedures
to solve it.

33

Branch-and-Price algorithm

The solution obtained by a column generation procedure may not be integer. There-
fore, to solve an integer programming problem, the column generation method has to be
integrated within a Branch-and-Bound framework. This is known a Branch-and-Price
algorithm. Branch-and-Price is similar to Branch-and-Cut approach, except that pro-
cedure focuses on column generation rather than row generation. In fact, generating
variables (pricing) and adding inequalities (cutting plane) are complementary opera-
tions to strengthen the linear relaxation of a integer programming formulation.

The Branch-and-Price procedure works as follows. Each node of the Branch-and-Bound
tree is solved by column generation, so that variables may be added to improve the
linear relaxation of the current LP. The branching phase occurs when no columns price
out to enter the basis and the solution of the linear program is not integer.

Note that, at each node of the Branch-and-Price tree, column generation may be com-
bined with cutting plane approach, to tighten the LP relaxation of the problem. In this
case, the algorithm is called Branch-and-Cut-and-Price algorithm. Such a method can
be difficult to handle, since adding valid inequalities to the initial model may change
the structure and complexity of the pricing problem.

1.5 Network flow problems

In this section, we present fundamental definitions and notations from graph theory that
are specifically utilized in the formulation of network flow problems.

1.5.1 Graph theory

A graph is denoted G = (V,E), where V is the set of vertices and E is the set of edges.
If e is an edge with a direction, i.e, e connects a vertex u to a vertex v, then the edge is
called an arc written a = (u, v) and the graph is said to be directed. In the remainder
of this document, we consider only directed graphs.
A directed graph is denoted G = (V,A) with m = |A| arcs and n = |V | vertices. Each
arc a ∈ A is associated with a positive integer capacity denoted ca ∈ Z+. We say that
a = (u, v) is an outgoing arc of u and an incoming arc of v. Two vertices are called
neighbors if they are connected by an arc. Given a vertex v ∈ V , N(v) designates
the neighbors of v, δ−(v) designates the incoming arcs of v and δ+(v) designates the
outgoing arcs of v, i.e,

δ−(v) = {a ∈ A|a = (u, v),∀u ∈ V }

δ+(v) = {a ∈ A|a = (v, u),∀u ∈ V }

We define a path p as an ordered set of |p| distinct vertices {v1, · · · , v|p|} such that
for all i ∈ {1, · · · , |p| − 1}, (vi, vi+1) is an arc. We denote by A(P) the set of arcs

34

(vi, vi+1), i ∈ {1, · · · , |p| − 1}. An s− t path is a path P that connects a vertex s ∈ V ,
called source, to a vertex t ∈ V , called destination. In other words, an s-t path, often
referred to as just a path, is a sequence of vertices such that v1 = s and v|p|−1 = t.

1.5.2 Flow notations

Given a directed graph G = (V,A) with a source s ∈ V and a destination t ∈ V , the
flow from s and t, also called s − t flow, is defined as a function f : A → R+ that
assigns to each arc a ∈ A a positive integer value such that f(a) ≤ ca and for every
vertex u that is not the source or the destination, ∑

a∈δ+(u) f(a) = ∑
a∈δ−(u) f(a). The

value of a flow f , denoted v(f), is equal to the sum of all values affected to the arcs
outgoing s, which is equal to the sum of all values affected to the arcs incoming t, i.e,
v(f) = ∑

a∈δ+(s) f(a) = ∑
a∈δ−(t) f(a).

A feasible flow from the source s to the destination t, or simply a flow, has two respect
two typologies of constraints, the capacity constraints and the flow conservation con-
straints. The capacity constraints impose that the value of the flow passing through an
arc a should be less than or equal to the maximum capacity ca of the arc, i.e.,

f(a) ≤ ca, ∀a ∈ A.

The flow conservation constraints impose that the total value of the flow entering a
vertex is equal to the total value of the flow outgoing this vertex, i.e.,

∑
a∈δ+(u)

f(a) =
∑

a∈δ−(u)
f(a), ∀u ∈ V.

Without loss of generality, we consider graphs in which the source has only one entering
arc from the destination, i.e., δ−(s) = {(t, s)} and the destination has only one outgoing
arc, i.e., δ+(t) = {(t, s)}.
A network is formally defined as a directed graph denoted by G = (V,A). It may contain
a distinct source node, denoted as s ∈ V , as well as a singular destination node, denoted
as t ∈ V . Furthermore, the network has the capability to accommodate multiple sets
of source and destination pairs, which are alternatively referred to as commodities. A
commodity, denoted k, is a quadruplet (sk, tk, bk, rk), where sk ∈ V is the source, tk ∈ V
is the destination, bk ∈ R+

∗ is the bandwidth and rk ∈ R+
∗ is a reward obtained when

sending one unit of flow from sk to tk. A commodity k is said to be fully satisfied if
there exists a flow fk from sk to tk such that v(f) = dk. We denote by K the set of
commodities. On the other hand, a commodity is said to be partially satisfied if v(f) is
striclty greater than 0 and strictly smaller than dk. Finally, if v(f) is equal to 0, then
the commodity is said to be unsatisfied.

1.5.3 State-of-the-art on network flow problems

Network flow problems are a class of optimization problems that aims to find feasible
flows in a network, according to a given objective. One of the most well known network
flow problem is the Maximum flow problem, presented below.

35

The Maximum Flow Problem, or Maximum s−t flow Problem, is one of the most studied
optimization problem, behind intense research since its introduction in the fiftieths. We
refer the interested reader to Schrijver [2002] for an historic overview on the MFP. The
problem has countless applications in several domains and it has been originally proposed
to compute the maximum flow, from a given city to another, on a rail network.
The MFP finds important applications also in telecommunication networks where an
optimal MFP solution allows to determine the maximum traffic (flow) that can be sent
between a given pair of origin destination router (a specific pair of vertices). This
problem is particularly important in the planning/strategical phase when, for a given
telecommunication network, the maximum amount of data that can be accepted needs
to be evaluated, see Ahuja et al. [1993].
Formally, given a directed graph G = (V,A) containing a source s and a destination t
(i.e., s, t ∈ V), the MFP calls for determining the maximum s-t flow, or simply flow,
in G from the source s to the destination t that respects the arc capacities. The MFP
can be solved in polynomial time and several efficient exact algorithms are proposed
in the literature, see e.g., Ahuja et al. [1993]. The first pseudo-polynomial labelling
algorithm is described in Ford and Fulkerson [1956]. It runs in O(nmC) where C is the
largest arc capacity. To avoid the dependency on C, two polynomial time algorithms
have been proposed in Edmonds and Karp [2003]. The first one, called the capacity
scaling algorithm runs in O(nm logC) and the second, called the successive shortest
path algorithm, runs in O(n2m). The most efficient algorithm in practice, especially
for dense and large graphs, is the highest-label preflow-push algorithm developed by
Goldberg and Tarjan [1988] which runs in O(n2m1/2) time.
Another way to solve the MFP is to use a Linear Programming (LP) formulation where
a continuous non-negative variable ya ≥ 0, defined for each arch a ∈ A, represents the
flow f(a) on the arc a. Therefore, the Maximum Flow Problem is equivalent to the
following LP model:

ζ(MFP) = max
∑

a∈δ+(s)
ya (1.5a)

∑
a∈δ+(u)

ya −
∑

a∈δ−(u)
ya = 0 u ∈ V, (1.5b)

ya ≤ ca a ∈ A, (1.5c)
ya ≥ 0 a ∈ A, (1.5d)

The objective function (1.5a) represents the flow from the source s to the destination t.
Constraints (1.5b) are the flow conservation constraints, imposing that for each vertex
u ∈ V the entering flow is equal to the leaving one. Constraints (1.5c) impose the
maximum capacity for the flow on each arc a ∈ A. Finally, constraints (1.5d) express
the definition set of the arc-flow variables y.

There exists an equivalence between the MFP and another very known optimization
problem, called the Minimum Cut Problem, see Ahuja et al. [1993]. This relation has

36

been largely reused since its discovery. First, in order to introduce the Minimum Cut
Problem (MCP), we denote by δ(U) a cut of a graph G = (V,A), which corresponds
to the set of arcs of G with the tail in U and the head in V \U . In this way, the
Minimum Cut Problem consists in finding a s − t cut δ(U) such that i) the source s
belongs to U ; ii) the destination t belongs to V \U ; iii) the sum of the capacities of
the arcs (u, v) ∈ δ(U) is minimum. For sake of brevity, we write cut for s − t cut.
Second, due to the equivalence between the MFP and the MCP, the MCP can also be
solved in polynomial time. Third, the dual of the MFP formulation (1.5) provides a
valid LP formulation for the MCP and the dual variables of the constraints of (1.5) take
integer values in any of its optimal solution. This is due to the fact that the system of
constraints (1.5b) and (1.5c) is Totally Unimodular (TU) see Schrijver [2003]. Precisely,
the dual of model (1.5) leads to find a cut δ(U). Let αu ∈ R (u ∈ V) be the dual variable
associated with constraint (1.5b). If the variable αu is equal to 1, then it indicates that
vertex u is in the subset U (otherwise vertex u belongs to V \U). Let βa ≥ 0 (a ∈ A)
be the non-negative dual variable associated with constraint (1.5c). If βa > 0, then arc
a belongs to the cut δ(U). The LP formulation of the MCP reads as follows:

ζ(MCP) = min
∑
a∈A

ca βa (1.6a)

βuv + αv − αu ≥ 0 (u, v) ∈ A, (1.6b)
αs − αt ≥ 1 (1.6c)

βa ≥ 0 a ∈ A. (1.6d)

We denote by ζ(MCP) the optimal solution value of formulation (1.6) and we recall
that variables α and β can also be casted as binary variables (as discussed above). The
objective function (1.6a) minimizes the total capacity of the arcs in the cut. Constraints
(1.6b) force an arc (u, v) to be in the cut, i.e., βuv = 1, if αu = 1 and αv = 0. Constraint
(1.6c) together with the objective function imposes that αt = 0 and αs = 1, i.e., the
source belongs to the subset U and the destination belongs to the subset V \U . Finally,
constraints (1.6d) express the nature of the dual variables β.
A fundamental min-max relation links the MFP to the MCP, see e.g., Ahuja et al.
[1993]. Precisely, the max-flow min-cut theorem states that the optimal value of the
MFP and the MCP coincides, i.e., ζ(MCP) = ζ(MFP). In addition, by duality, any
feasible MFP solution provides a valid lower bound for the MCP, and, vice versa, any
feasible MCP solution provides a valid upper bound for the MFP.

Figure 1.5 represents a graph with 9 vertices and 17 arcs. For each arc a ∈ A, the figure
reports two values separated by “/”. The first one in blue (to the left of “/”) corresponds
to the flow on the arc of an optimal MFP solution. The second one in black (to the right
of “/”) is the capacity ca of the arc. The minimum cut δ(U) is represented by thicker
red lines and the grey shaded surface surrounds, on both sides of the minimum cut, the
set of vertices U and V \U . In this example, we have: ζ(MFP) = ζ(MCP) = 36, δ(U)
is given by the set of arcs (v1, v5), (v4, v6), (v4, v7) and (v3, v7), U is the set of vertices
{s, v1, v2, v3, v4} and V \U = {v5, v6, v7, v8}.

37

s

v1

v2

v3

v5

v6

v7

tv49/11

12/15

7/7

10/10

3/4

3/3

2/12

1/150/6

9/11

3/315/15

19/20

9/9

9/9

3/3

15/15

Figure 1.5: An example of Maximum flow and Minimum Cut.

Another very known network flow problem is the minimum cost flow problem, which
is a generalization of the maximum flow problem. In the minimum cost flow problem,
we are given a directed graph G = (V,A), where each arc a ∈ A has a positive integer
capacity ca and a positive integer flow cost ωa, and a flow value denoted by F . As
previously, a minimum cost s − t flow problem assigns to each arc a ∈ A a flow value,
respecting the flow conservation constraints and the capacity constraints. The cost of a
flow f , denoted by p(f), is then defined by summing the cost per unit of flow for each
arc in the network, i.e,

p(f) =
∑
a∈A

ωaf(a).

The minimum cost s−t flow problem, or simply the minimum cost flow problem, aims to
find a flow of value F between the source s and the destination t such that the total cost
p(f) is minimum. Using the continuous non-negative variables ya introduced previously,
for each arc a ∈ A, the minimum cost flow problem can be modeled by the following
LP formulation:

min
 ∑

a∈A

ya ωa : (1.5b), (1.5c),
∑

a∈δ+(s)
ya = F, ya ≥ 0, ∀ a ∈ A

 . (1.7)

The model presents the same constraints as Model (1.5), i.e., the flow conservation
constraints and the capacity constraints, with an additional constraint ∑

a∈δ+(s) ya = F
imposing the value of the flow. The objective function minimizes the total flow cost.
Let us go back to the example graph used in Figure 1.5 to represent a maximum flow
and a minimum cut. The next figure represents the same graph and it is used to show
the solution of a minimum cost flow problem. As previously, for each arc a ∈ A, the
figure reports two values separated by “/”. The first one in blue corresponds to the flow
on the arc of an optimal solution for the minimum cost flow problem and the second
one in black is the capacity ca of the arc. A third value is added, separated from the
others by a semicolon “; ” and representing the cost per unit of flow passing though the
arc. The flow value is set to F = 25. Figure 1.6 represents a flow of value 25 with a
minimum total cost, equal to 133.

38

s

v1

v2

v3

v5

v6

v7

tv40/11; 10

15/15; 1

7/7; 2

3/10; 3

0/4; 1

0/3; 6

2/12; 4

0/15; 80/6; 10

0/11; 7

1/3; 510/15; 2

15/20; 1

9/9; 2

1/9; 5

0/3; 6

15/15; 2

Figure 1.6: An example of Minimum Cost Flow.

The generalization of network flow problems involves the incorporation of multiple
sources and destinations, giving rise to what is known as multicommodity flow prob-
lems.

Multicommodity flow problems

Multi-commodity flow problems (MCFPs) are widely studied network flow problems
arising in telecommunication networks. Given a set of commodities, a MCFP aims to
find a set of flows to satisfy a collection of commodities, respecting a specified objective
function. A multicommodity flow problem (MCFP) is said to be unsplittable if, for
each commodity, the flow is routed through a unique path connecting the source to the
destination. In this case it is denoted by uMCFP. Otherwise, if the flow can be split
into several paths, the MCFP is said to be splittable.
In literature, many articles deal with the multi-commodity flow problem, and how to
solve it in an efficient way. Indeed, MCFPs have been the object of interest since the
1960s, when they were introduced in Ford and Fulkerson [1962] and Hu [1963]. Their
applications are diverse, encompassing transportation, logistics and telecommunication
networks (see Zhang et al. [2023]). There are two broad categories of multi-commodity
flow problems. The first category (min-MCFP) aims to minimize the total cost while
routing bk units of flow for each commodity k ∈ K from the source sk to the destination
tk. The second category (max-MCFP) aims to maximize the total flow between all pairs
of sources and destinations. The MCFP can generally be solved in polynomial time,
see Tardos [1986]. However, it can be NP-Hard under some routing properties. This is
the case of the uMCFP, which is NP-Complete in its decision version and accordingly,
N P-hard in its optimization version, see e.g., Kleinberg [1996] and Dinitz et al. [1998].
In 1978, two surveys were published on multi-commodity flow problems, see e.g., Assad
[1978] and Kennington [1978]. In Assad [1978], several methods have been proposed to
solve MCFPs with linear and non-linear routing costs. For a min-MCFP with linear
costs, the author used primal-dual methods, which involve constructing a feasible dual
solution and iteratively improving it until a primal solution is found. Another method
has been presented to solve a max-MCFP. The latter is based on a formulation of the

39

MCFP where each commodity is associated with a set of paths that can be used to
route the commodity. This formulation has an exponential number of variables and it is
solved using column generation and decomposition algorithms. As explained previously,
in a column generation algorithm, only a subset of the variables, i.e., paths, are initially
considered, and additional variables are generated iteratively as needed to improve the
solution until the optimal solution is found. Decomposition algorithms decompose the
problem into smaller subproblems that can be solved more efficiently. In Kennington
[1978], the author mostly focuses on subgradient methods and partitioning techniques
to solve the MCFP with linear costs. Another survey is dedicated only to non-linear
convex multi-commodity flow problems, see Ouorou et al. [2000], for further details. The
algorithms mentioned in this survey include flow deviation methods, projection methods,
cutting plane algorithms and the proximal decomposition method. More recently, the
survey conducted by Wang [2018a] presents the min-MCFP along with a review of its
applications. The follow-up extension of this survey, see Wang [2018b], covers various
methods to solve the MCFP with linear costs. In addition to the conventional methods
mentioned previously, this paper presents some new techniques to solve the MCFP and
the uMCFP, including heuristics, approximation algorithms or interior-point methods.
These methods can be used to find good quality solutions to the MCFP, especially for
large-scale problems. Lately, a constraint-programming based branch-and-price-and-cut
framework has been developed in Zhang et al. [2024] to solve bipath multicommodity
flow problems. On the other hand, many works in the literature have also been dedicated
to the uMCFP. In Barnhart et al. [2000], the authors propose a Branch-and-Cut-and-
Price approach to solve the uMCFP. This algorithm was further improved in Alvelos
and Carvalho [2003], where a Dantzig-Wolfe decomposition is used to solve the LP
relaxations more efficiently. The Dantzig-Wolfe decomposition involves decomposing
the original LP into smaller subproblems, which can be solved in parallel using a master
problem and a set of pricing problems. In addition, numerous approximation algorithms
have been investigated in the literature. For a comprehensive survey of approximation
algorithms for the uMCFP, we refer the interested reader to Kolliopoulos and Stein
[2001]. Lately, the unsplittable multicommodity flow problem have been solved via
quantum computing in Martin and Martin [2023].

1.6 State-of-the-Art on bilevel problems

This section focuses on bilevel programming, specifically exploring two classes of prob-
lems, namely the interdiction problems and the blocker problems.

1.6.1 Bilevel programming

A bi-level optimization problem is an optimization problem in which one of the
constraint is also an optimization problem. We refer the interested reader to Kleinert
et al. [2021] and Beck et al. [2023] for surveys on bilevel optimization.
A bi-level problem contains two problems; the upper-level optimization problem also
called master problem and the lower-level optimization problem, also called follower

40

problem. The global mathematical formulation of a bi-level problem is as follows :

min
s.t

F (x, y)

Gi(x, y) ≤ 0, i = {1, · · · , I}
y ∈ argmin{f(x, y)|gj(x, y) ≤ 0, j = {1, · · · , J}}

(1.8)

where F (x, y) and f(x, t) are the upper-level objective function (leader) and lower-
level objective function (follower), respectively. Gi(x, y) and gj(x, y) are the inequality
constraints of the upper and lower level problems, respectively. Finally x and y are
respectively the master and the follower decision variable vectors.
Bilevel optimization has received a lot of attention recently, due to its intricate nature
and wide-ranging applications. Indeed, bilevel optmization can appear in many practical
problems in several fields such as transportation, economics, defense, and many others.
It is also often used in network design problems.
A notable example of bilevel optimization can be found in the context of Stackelberg
games, which are used to model hierarchical decision-making scenarios. In a Stackelberg
game, one player, known as the leader, makes decisions first, taking into account the
actions of another player, the follower. The leader aims to optimize its objective function
while considering the follower’s response. On the other hand, the follower seeks to
optimize its objective function, based on the leader’s decisions. The Stackelberg game
is a concept of game theory where the two players interact strategically. In literature,
many techniques have been developed to solve complex Stackelberg games efficiently.
We refer the interested reader to Stackelberg [1952] for further explanations regarding
this concept and the solution approaches.
In the following sections, we focus on two specific class of bilevel optimization problems,
the interdiction problems and the blocker problems.

1.6.2 Interdiction problems

An interdiction problem is a bi-level optimization problem that consists in performing
a set of operations in the underlying problem to destruct its structure. The cost of
the operations is bounded by a budget. As an illustrative example, we examine a
class of interdiction problems known as network interdiction problems, which involves
applying an interdiction problem to a network flow problem. The master variable vector,
referred to as the interdictor variable vector, aims to minimize the network’s profit while
respecting the constraint imposed by the interdiction budget.
Interdiction problems have been widely studied in literature. Some relevant applications
of interdiction problems include the firefighting problem (García-Martínez et al. [2015]),
the control of infections in hospitals (Assimakopoulos [1987]), the allocation of protective
resources (Cappanera and Scaparra [2011]), the protection and analysis of supply chain
disruptions (Snyder et al. [2016]), or the detection of drug smuggling (Wood [2011]). As a
consequence, interdiction problems have been applied to several well known optimization
problems, such as the maximum flow problem (see Wood [1993]), the maximum clique
problem (see Furini et al. [2019]), the shortest path problem (see Israeli and Wood

41

[2002a]). In what follows, we describe more formally some interdiction problems that
have been studied in the literature. Specifically, we present the works already done on
the maximum flow interdiction problem, the multi-commodity flow interdiction problem
and the maximum clique interdiction problem.

The maximum flow interdiction problem

In this section, we introduce the maximum flow interdiction problem (MFIP), present-
ing its principal structural properties and mathematical programming formulations from
the literature.

The MFIP can be formally described as follows. Given a directed graph G = (V,A)
containing a source s ∈ V and a destination t ∈ V , a set of capacities ca ∈ Z+, a set of
interdiction costs qa ∈ Z+ associated to each arc a ∈ A and an interdiction budget Ψ,
the problem consists in finding a subset of arcs of a cost no larger than Ψ and such that
the maximum flow between the source and the destination in the interdicted graph is
minimum.
Let w be a vector of binary variables associated with the set of arcs A of a graph G,
each variable encoding whether the corresponding arc is interdicted or not. The entire
set of feasible interdiction policies reads as follows

W =
w ∈ {0, 1}m :

∑
a∈A

qa wa ≤ Ψ
 . (1.9)

A binary realization w ∈ {0, 1}m of the first-level variables, is called an interdiction
policy and it generates a non-interdicted graph GNI(w) =

(
V,ANI(w)

)
, i.e., the graph

induced by the set of non-interdicted arcs a ∈ A with wa = 0 (denoted ANI(w)).
In Wood [1993], the author presents a bilevel model to solve the MFIP and proposes a
procedure to obtain an ILP formulation from the bilevel model.
The MFIP can be stated as the following bilevel optimization model:

ζ(MFIP) = min
w∈{0,1}m

ϑ(w) (1.10a)

∑
a∈A

qa wa ≤ Ψ (1.10b)

where ϑ(w) = max
y ∈ Qm

+

∑
a ∈ δ+(s)

ya (1.10c)

∑
a ∈ δ+(u)

ya −
∑

a ∈ δ−(u)
ya = 0, ∀ u ∈ V, (1.10d)

ya ≤ ca (1 − wa), ∀ a ∈ A. (1.10e)

ya ≥ 0, ∀ a ∈ A. (1.10f)

42

In this model, the leader (or first level) problem is given by the first 0 − 1 program
stated by Equation ((1.10a)-(1.10b)) and the follower (or second level) problem is given
by the inner maximization program stated by ((1.10c)-(1.10f)). The leader permits to
determine the set of interdicted arcs, while the follower aims at computing the maximum
flow in GNI(w). The variable ϑ(w) represents the value of the maximum flow in the
non-interdicted graph GNI(w). This value is obtained as the optimal value of the fol-
lower problem. Constraint (1.10b) guarantees that the interdiction budget is respected.
Constraints (1.10d) are the flow conservation constraints (as in (1.5)) and constraints
(1.10e) prevent the flow to be routed on interdicted arcs.
In order to obtain a compact ILP single level model, a well-known technique, used
when the follower problem can be modelled as a linear program, consists in dualizing it.
To this end, we have first to remove the dependency of the w variables in constraints
(1.10e). In other words; the link between the leader and the follower problems must be
only expressed in the objective function. More precisely, given an interdiction policy
w ∈ W , Theorem 2 of Cormican et al. [1998] shows that the follower problem can be
restated as follows:

ϑ(w) = max
{ ∑

a∈δ+(s)
ya −

∑
a∈A

wa ya : (1.5b), (1.5c), (1.5d)
}

(1.11)

The new objective function of problem (1.11) penalizes the use of the interdicted arcs by
subtracting their flow from the maximum flow φ. As shown in Cormican et al. [1998],
this is de facto sufficient to have an optimal follower solution in which the interdicted
arcs are not used. We refer to Cormican et al. [1998] for further details on this topic.
By dualizing (1.11) and using LP duality, we obtain the following equivalent single-level
ILP formulation:

ζ(MFIP) = min
∑
a∈A

ca βa (1.12a)

βuv + wuv + αv − αu ≥ 0 (u, v) ∈ A, (1.12b)

αs − αt ≥ 1 (1.12c)∑
a∈A

qa wa ≤ Ψ (1.12d)

αu ∈ {0, 1} u ∈ V, (1.12e)
βa ∈ {0, 1} a ∈ A, (1.12f)
wa ∈ {0, 1} a ∈ A. (1.12g)

It is worth noticing that in any optimal solution, for a given arc a ∈ A, we can have
either βa = 1 or wa = 1 but not both. This is due to the fact that ca > 0, ∀a ∈ A.
If wa = βa = 1, then the solution obtained by setting βa = 0 and keeping other
values unchanged is still feasible and does not increase the objective function value.
For this reason and due to the nature of constraints (1.12b) and (3.20d), an optimal
solution of (1.12) is a cut in the graph G, denoted by δ(UG(w)), which depends on an
optimal interdiction policy w (see also Royset and Wood [2007]). More precisely, the

43

cut δ(UG(w)) is given by the arcs a ∈ A where βa = 1 or wa = 1 and it is the union of
the set of non-interdicted arcs such that βa = 1 and xa = 0 and the set of interdicted
arcs such that wa = 1 and βa = 0. If a variable αu is equal to 1, it indicates that vertex
u is in the subset UG(w) containing the source s and if it is equal to 0, it indicates that
vertex u is in the subset V \UG(w) containing the destination t. The objective function
(1.12a) minimizes the sum of the capacities of the non-interdicted arcs contained in the
cut δ(UG(w)). Constraints (1.12b) forces an arc (u, v) to be in the cut if αu = 1 and
αv = 0 and accordingly β(u,v) = 1 or w(u,v) = 1. Constraint (1.12c) imposes that αs = 1
and αt = 0, i.e., the source belongs to the set UG(w) and the destination belongs to
the set V \ UG(w). Constraints (1.12b) and (1.12c) extend the classical constraints of
the MCP (see Schrijver [2002]), allowing the use of a variable wa instead of a variable
βa when αu = 1 and αv = 0. For a given arc (u, v) ∈ A, setting the variable w(u,v) to 1
allows to set the variable β(u,v) to 0 even if u is in UG(w) and v is in V \UG(w), i.e., to
reduce the objective function value by c(u,v) but it generates an interdiction cost q(u,v)
which consumes a portion of the interdiction budget Ψ.
Any optimal solution (w,β,α) of Model (1.12) contains the minimum cut denoted by
δ(UGNI (w)) in the non-interdicted graph GNI(w) which is given by the non-interdicted
arcs a ∈ ANI(w) such that βa = 1. This is due to the fact that constraints (1.12b) of
Formulation (1.12) can be equivalently rewritten as follows:

βuv + αv − αu ≥ 0, ∀ (u, v) ∈ ANI(w), (1.13)

where ANI(w) are the arcs of GNI(w). Together with constraints (1.12c), they are the
standard MCP constraints for the non-interdicted graph GNI(w).
Let us consider again the network of Figure 1.5 with a maximum flow equal to 36. Fig-
ure 1.7 displays on this network an optimal MFIP solution, with an interdiction cost
Ψ = 11. For each arc a ∈ A, three associated values are shown in the same configuration
as in Figure 3.1. As previously, the interdicted arcs are depicted with dashed blue lines
and the thicker line, together with the grey shaded surface, define the minimum cut in
the non-interdicted graph. In the depicted optimal MFIP solution, there are two inter-
dicted arcs (s, v1) and (s, v2), with a total interdiction cost equal to 11. The optimal
value ζ(MFIP) is equal to 15. This example shows that with an interdiction budget
equal to Ψ = 11, the maximum flow can be reduced from 36 to 15.

It is worth noticing that the optimal solution represented in Figure 1.7 for the MFIP
is contained in the cut δ(UG(w)) of G given by the set of arcs {(s, v1), (s, v2), (s, v3)},
where U = {s}. We recall that wsv1 = wsv2 = 1 and βsv3 = 1. All other variables
of vectors w and β are set to value 0. Moreover, the cut δ(UG(w)) is not the min-
imum cut in G. In fact, in Figure 1.7, the minimum cut is given by the set of arcs
{(v1, v5), (v4, v6), (v4, v7), (v3, v7)}. A solution of the interdiction problem consists in re-
moving either one arc from the minimum cut or the arcs (v1, v5) and (v4, v6). For these
combinations of interdicted arcs, the maximum flow remaining in the non-interdicted
graph obtained is at least equal to 18, which is greater than 15, the optimal solution
value.

44

s

v1

v2

v3

v5

v6

v7

tv4

3
0/7

9
0/10

7
0/4

7
3/3

5
0/12

2
0/15

4
0/6

9
15/20

7
0/9

9
0/3

4
0/9

4
0/3

2
0/11

10
15/15

β = 0 w = 1
6

0/15
β = 0 w = 1

5
3/11

β = 1 w = 0
10

12/15

Figure 1.7: An optimal MFIP solution with an interdiction budget Ψ = 11.

The multi-commodity flow interdiction problem

We now present a generalization of the maximum flow interdiction problem, called the
multi-commodity flow interdiction problem (MCFIP). The MCFIP is a bilevel problem
where the leader is an interdiction problem and the follower is a multicommodity flow
problem. The MCFIP can be formally described as follows. Given a directed graph
G = (V,A) and a set of commodities K, the multi-commodity flow interdiction prob-
lems aims to find a subset of arcs to be removed from the graph in order to deteriorate
as much as possible the objective of the multi-commodity flow problem.

In Lim and Smith [2007b], the authors propose a bilevel model to solve the multi-
commodity flow interdiction problem. In the problem treated, the follower is a multi-
commodity flow problem solved in a graph G = (V,A), where each arc a ∈ A has a
positive profit value rk

a for routing one unit of flow for commodity k. The objective of
the follower problem is to find a multi-commodity flow with a maximum profit. There-
fore, the goal of the MCFIP is to remove a set arcs from the graph in order to minimize
the profit of the multicommodity flow remaining in the non-interdicted graph.
Using the notations provided in Section 1.5.2, the bilevel formulation to solve the MC-
FIP, presented in Lim and Smith [2007b], is given by Model (1.14).

45

ζ(MCFIP) = min max
∑

k∈K

∑
a∈A

(yk
a bk) rk

a (1.14a)

∑
a∈δ+(u)

yk
a −

∑
a∈δ−(u)

yk
a =

dk if u = sk

0 if u ∈ Ṽk

−dk if u = tk

u ∈ V, k ∈ K

(1.14b)∑
k∈K

dk · yk
a ≤ ca(1 − wa) a ∈ A,

(1.14c)
yk

a ∈ [0, 1] a ∈ A, k ∈ K
(1.14d)∑

a∈A

qa · wa ≤ R (1.14e)

wa ∈ {0, 1} a ∈ A
(1.14f)

We denote by ζ(MCFIP) the optimal solution value of Model (1.14). The objective
function (1.14a) represents the profit value of the multi-commodity flow remaining in
the non-interdicted graph. Constraints (1.14b) are the flow conservation constraints
that also ensure that all commodities are satisfied. Constraints (1.14c) are the capacity
constraints that take into account the action of the interdiction problem. Constraints
(1.14e) is the interdiction budget constraint. Finally, constraints (1.14d) and constraints
(1.14f) express the definition set of variables y and w.

In Lim and Smith [2007a], two techniques are presented for solving the MCFIP. The
initial approach involves the reformulation of Model (1.14) into a mixed-integer bilinear
programming problem. This transformation relies on the fact that, for any solution
ŵ of the interdiction, the follower problem can be characterized as a multicommodity
flow problem. Consequently, by holding the interdiction variables at fixed values, it
becomes feasible to substitute the follower’s problem with its dual, resulting in a mixed-
integer bilinear programming problem. This problem can be tackled using standard
linearization techniques, leading to the derivation of a linear mixed-integer program-
ming problem featuring |V ||K| + 2|A| continuous variables, |A| binary variables, and
|A|(|K| + 2) + 1 structural constraints. The second approach is based on a penalty
formulation, in which the leader’s variables appear only in the objective function, pe-
nalizing the follower’s use of interdicted arcs. This reformulation asks for determining
a large constant representing the penalization term of the interdiction variables in the
objective function. Subsequently, as in the previous approach, the penalty formulation
is replaced in the master problem by its dual reformulation, resulting in a mixed-integer
programming problem featuring |V ||K| + |A| continuous variables, |A| binary variables,
and |A||K| + 1 structural constraints.The two methods are compared through an exten-
sive computational study, demonstrating the effectiveness of the penalty formulation in

46

contrast to the first approach.

The shortest path interdiction problem

Another network interdiction problem consists of an interdiction problem that applies to
the shortest path problem, which is called the shortest path interdiction problem (SPIP).

Given a network G = (V,A) where a length la ∈ R+ is affected to every arc a ∈ A, the
shortest path problem, or shortest s− t path problem aims to find an s− t path P that
minimizes the sum of lengths of the arcs in A(P). The shortest s− t path problem has
been largely studied and many polynomial algorithms have been developed to solve this
problem (see Ahuja et al. [1993]). This problem has also been studied in many variants
(see Grappe et al. [2023], Benhamiche et al. [2023], Martin et al. [2022]).

Let q and Ψ be respectively, the interdiction cost vector and the interdiction budget,
introduced previously. Let da be a delay factor affected to every arc a ∈ A, the Shortest
path interdiction problem (SPIP) consists in finding a subset of arcs for which the length
will be extended by the affected delay, whose does not exceed the budget and so that
the shortest path between s and t is maximized. In this case, an interdicted arc refers
to an arc for which the length has been extended.
In Israeli and Wood [2002a], the authors propose a bilevel formulation to solve this
problem. Let µa be a variable affected to each arc a ∈ A where µa takes value 1 if arc a
belongs to the shortest path. Otherwise, µa takes value 0. Given an interdiction vector
w ∈ W , the integer linear formulation to solve the SPIP is given by model (1.15).

ζ(SPIP) = max ϑ(w) (1.15a)
∑
a∈A

qa wa ≤ Ψ (1.15b)

wa ∈ {0, 1} a ∈ A, (1.15c)

where ϑ(w) = min
∑
a∈A

(la + wada)µa (1.15d)

∑
a∈δ+(u)

x(u,v) −
∑

a∈δ−(u)
µ(u,v) =

1 if u = s

0 if u ∈ Ṽ

−1 if u = t

u ∈ V, (1.15e)

µa ≥ 0 a ∈ A. (1.15f)

In this bilevel model, the leader problem is given by the first 0 − 1 program stated by
((1.15b)-(1.15c)); and the follower problem is given by the inner minimization program
stated by ((1.15d)-(1.15f)). As previously, the leader permits to determine the set of

47

interdicted arcs. The follower aims at finding the shortest path in the non-interdicted
graph, i.e, the graph induced by the set of non-interdicted arcs a ∈ A with wa = 0. The
variable ϑ(w) represents the length of the shortest path in the non-interdicted graph.
Constraint (1.15b) guarantees that the interdiction budget is respected and constraints
(1.15e) are the path constraints.

A single level reformulation of Model 1.15 has been presented in the article. It is
obtained by fixing the interdiction variable values w, take the dual of the follower
problem ((1.15d)- (1.15f)) and then release w. This leads to the following MIP:

ζ(SPIP) = max
w∈{0,1}m

πt − πs (1.16a)

πv − πu − da wa ≤ 0 a = (u, v) ∈ A, (1.16b)
πs = 0 (1.16c)∑

a∈A

qa wa ≤ Ψ (1.16d)

πu unrestricted u ∈ V (1.16e)

where π are the dual variables associated with Constraints (1.15e).
However, in Israeli and Wood [2002b], the authors solves the bilevel problem using
decomposition algorithms. More precisely, the algorithm is based on Benders decom-
position for which integer cutting planes are added to the master problem. A second
approach consists in a reformulation of the master problem into a set-covering master
problem.

1.6.3 Blocker problems

A blocker problem is a bi-level optimization problem that consists in performing a set
of operations in the underlying problem to destruct its structure. The objective of this
problem is to minimize the cost of the operations. In this work, we study the blocker
problem applied to the maximum flow problem and to the multi-commodity flow prob-
lem.

The notion of interdiction is very close to the blocker notion. However, it is important
to keep the two processes apart. The blocker problem aims to destruct the sub-problem
with a minimum cost while the interdiction problem tries to deteriorate as much as
possible the sub-problem, respecting the budget constraint.

In what follows, we present a specific blocker problem that applies to the shortest path
problem. This problem is denoted by the most vital vertices for the shortest path
problem (MVVSPP) and it has been studied in Magnouche and Martin [2020].

48

The most vital vertices for the shortest path problem

In the most vital vertices for the shortest path problem, the blocker problem aims to
remove from a network a set of vertices with a minimum cost, called blocker cost. This
blocker problem applies to a shortest path problem.

More formally, given a directed graph G = (V,A) with a source s ∈ V and a destination
t ∈ V , where every vertex v ∈ V has a blocker cost bv ∈ Z+, and every arc a ∈ A has a
length la ∈ Z+, the MVVSPP consists in finding a set of vertices with a minimum total
cost whose removal involve that the shortest path remaining in the graph is greater than
or equal to a target length value denoted by ξ.
Let z be a vector of binary variables associated with the set of vertices V of a graph G,
each variable encoding whether the corresponding vertex is removed from the graph or
not. A natural formulation for the MVVSPP reads as follows:

min
∑
v∈V

bvzv (1.17a)
∑
v∈P

zv ≥ 1, p ∈ Pl, (1.17b)

zv ∈ {0, 1} v ∈ V, (1.17c)

where Pl is a collection of paths from s to t with a length less than or equal to the target
length value ξ. It is worth noticing that this formulation has an exponential number of
constraints that consists in removing from every feasible path, i.e., every path with a
length less than or equal to ξ, at least one vertex.
We denote by PMV V SP P (G) the polytope of this problem, i.e,

PMV V SP P (G) = conv({z ∈ {0, 1}m : z satisfies (1.17)}. (1.18)

In Magnouche and Martin [2020], the authors conducted a polyhedral analysis to en-
hance Model (1.17). More precisely, they have shown that the polytope PMV V SP P (G)
is integer.

49

Chapter 2

Network flow blocker problems and
their applications in
Telecommunication Networks

Contents
2.1 Resilience analysis . 52

2.1.1 Networks architecture . 52
2.1.2 Routing in telecommunication networks 54
2.1.3 Anomalies in telecommunication networks 55
2.1.4 Resilience analysis with network flow blocker 55

2.2 Network-wide sketching . 58
2.2.1 Network-wide monitoring and related works 58
2.2.2 The Flow-Sketch assignment problem 62
2.2.3 An ILP formulation for the FSAP . 65
2.2.4 A bilevel approach for the FSAP . 68
2.2.5 A greedy algorithm for the FSAP . 74

2.3 Concluding remarks . 75

In this chapter, our focus lies in exploring the practical applications of network flow
blocker problems, with a specific emphasis on its relevance within the Telecommunication
industry. To this end, we first give a complete description of a telecommunication
network, including its architecture and the routing process. Then, our initial application
centers on the evaluation of telecommunication network resilience. Following this, we
delve into the realm of network monitoring, and more in particular, the placement of
approximate monitoring data structures called sketches. Within this context, we study
the Flow-Sketch assignment problem, for which we develop a bilevel approach and a
greedy algorithm to effectively tackle this problem.

51

2.1 Resilience analysis

Modern Telecommunication Networks (see Gutierrez-Estevez et al. [2019]) are extremely
complex systems in which hard combinatorial optimization problems must be effectively
solved in a short computing time. Indeed, the emergence of 5G enables a broad set of
diverse services characterized by complex and potentially conflicting demands (see Mar-
tin et al. [2021], Krolikowski et al. [2021a], Huin et al. [2023]). In this section, we
delve into a comprehensive examination of the management and structure of telecom-
munication networks in the context of modern real-world scenarios. We then focus on
the routing process, explaining the mechanisms that govern the efficient transmission
of data within these networks. Finally, we address the potential anomalies that may
arise in these networks. Indeed, unexpected disruptions, anomalies, or deviations from
anticipated standards can affect the reliability and stability of telecommunication ser-
vices. By identifying and understanding these anomalies, solutions can be developed to
enhance the resilience of modern telecommunication networks.

2.1.1 Networks architecture

Telecommunication networks are dynamic and complex systems composed of a large
number of devices such as switches or routers and numerous types of Service Functions
(SFs) such as firewalls, deep packet inspections (DPIs), web proxies, media gateways, etc.
These SFs are used as middleboxes on the Service Provided Networks, operating within
the network infrastructure to perform specific tasks like routing, filtering, or processing
data. Positioned strategically between the sender and the receiver, they deliver a range
of services without compromising the integrity of end-to-end communication. SFs are
deeply linked to the efficient satisfaction of the demand and their optimization is strongly
connected to demand peaks and anomalies. Indeed, these SFs play a crucial role in
ensuring the seamless operation of telecommunication networks by adjusting to diverse
demands and addressing potential irregularities to achieve optimal performance.
Software Defined Networking (SDN) is an innovative paradigm in which the overall be-
havior of the network is directed by a central software program known as a controller.
In SDN, network devices simply forward packets, with the control logic embedded in
the controller. More precisely, SDN has two key components: the controller and the
switches. The SDN controller is responsible for managing the entire network, while net-
working switches operate based on instructions deployed through the SDN controller.
Unlike traditional networks, where the entire system requires reconfiguration for up-
grades, only the software needs updating in SDN. Moreover, in SDNs, Network Function
Virtualization enables the virtualization of Service Functions (SFs). This disassociation
of SFs from the physical elements of the network allows them to be installed as soft-
ware. This ensures a centralized control of network resources in which the controller
has visibility over the entire network and has a complete view of the network topology.
Figures 2.1 and 2.2 illustrate the difference between the traditional networking architec-
ture and SDN architecture. Note that a router’s primary role is to facilitate the routing
of data between different networks while a switch is employed to connect devices within

52

Figure 2.1: Traditional network architecture

Figure 2.2: SDN architecture

the same local area network (LAN). In SDN, there is a distinct separation of the ap-
plication plane, data plane, and control plane. The application plane is responsible for
the network’s specific functionalities and services, such as routing decisions and security
policies. The data plane handles the actual transmission of data packets within the

53

network, focusing on packet forwarding and switching. The control plane manages the
overall network by making decisions based on the information received from the data
plane and application plane. It determines how data packets should be forwarded and
updates the network accordingly. By decoupling these planes, SDN allows for a more
flexible and programmable network architecture, enhancing adaptability and manage-
ment capabilities.

2.1.2 Routing in telecommunication networks

A telecommunication network is a complex system that allows data to be transmitted
over long distances. Routers and switches play a pivotal role by directing data packets
efficiently from their source to their destination. These data packets are transmitted
along transmission links, which can be physical cables or wireless connections, at high
speeds.
Routing refers to the process by which routers determine the optimal path for each data
packet to traverse from its source to its designated destination. This task involves com-
plex decision-making. Routers evaluate multiple factors, including network congestion,
available bandwidth and latency, to make routing decisions in real-time, ensuring that
data packets are efficiently guided along the transmission links.
Segment routing (see Polverini et al. [2018]) is a new routing concept that can be used
to steer traffic from a source along any arbitrary path in the network. It is often
based on precomputing several paths for each path in the network. Also, it allows
the operators to efficiently load balance traffic while meeting low latency and failure
tolerance performance targets.
Telecommunication networks find a natural representation as graphs. In these graphs,
vertices typically represent the network elements such as routers, while edges represent
the transmission links connecting them. This graph-based representation simplifies the
analysis and management of the network. By studying the graph, network adminis-
trators can gain insights into its structure, identify potential bottlenecks, and optimize
routing paths. It allows for a clear visualization of how data flows through the network,
making it an invaluable tool for ensuring efficient and reliable communication in modern
telecommunications systems.
o

Figure 2.3: Routing process

54

Figure 2.3 depicts a graph representation of a routing process between two terminals,
passing through routers. The routing is illustrated by curved blue arcs.

2.1.3 Anomalies in telecommunication networks

Anomalies in telecommunication networks, whether arising on routers or transmission
links, can significantly disrupt the smooth flow of data and compromise the reliability
of communication systems. Routers, as critical network components, are susceptible to
various anomalies, including hardware failures, software glitches, or configuration errors.
These anomalies can lead to routing loops, where data packets circulate endlessly within
the network, causing congestion and packet loss. Transmission links, whether physical or
wireless, are equally susceptible to anomalies such as signal interference, cable damage,
or bandwidth saturation. We refer the interested reader to Junior et al. [2019] for
further details on telecommunication network anomalies. These issues can result in
data degradation, increased latency, or even complete link failures.
Identifying and addressing these anomalies is of vital importance for network adminis-
trators. To tackle this issue, many tools are employed such as monitoring tools, anomaly
detection algorithms, and redundancy mechanisms. Anomalies in routers or transmis-
sion links can disrupt the overall network performance. Therefore, proactive mainte-
nance and robust contingency plans are essential to ensure uninterrupted and reliable
telecommunication services.

2.1.4 Resilience analysis with network flow blocker

The key purpose behind investigating network flow blocker problems lies in evaluating
the performance of a telecommunication network, particularly to analyze its resilience
against anomalies.
A network flow blocker problem refers to a blocker problem applied to a network flow
problem. Here, the network flow problem is a representation of the telecommunication
network, essentially defining its structure and operational characteristics. The blocker
problem represents the potential anomalies that can manifest within the network, sub-
sequently influencing the routing process.
Telecommunication Networks are often faced with the question of identifying the most
vital (also called most vulnerable or most critical) part of the network, which corre-
sponds to a subset of vertices (or edges) of limited size, whose malfunctioning prevents
the functionality of the network as a whole. Depending on the crucial property that
needs to be maintained (or achieved) in the network, different vertices may be perceived
as the most important ones. In some applications, one might ask for the most critical
vertices that may affect or destroy connectivity of the network, see, e.g. Lalou et al.
[2018]. Moreover, as explained previously, using Software Defined Networks (SDNs),
SFs can be disassociated from the physical infrastructure and operated as software, al-
lowing a centralized control of network resources. In this context, studying network
resilience allows a better understanding of the behavior of the telecommunication net-
works and their control especially taking into account the important decisions linked

55

to demand anomalies and Services Functions (SFs). In addition, the correct function-
ing of telecommunication networks frequently depends on a small number of important
vertices whose malfunctioning can significantly degrade the performance of the whole
network.
In this thesis, we focus on two classes of network flow problems. The first one consists
of a single commodity that aims to maximize the amount of data from a source to a
destination, as illustrated in Figure 2.3. The associated network flow blocker problem
is called the maximum flow blocker problem (MFBP). The second one consists of multi-
commodity flow problems arising in telecommunication networks with segment routing
concepts and complex demand satisfaction constraints. More precisely, we are inter-
ested in demands having different shapes of traffic and predicted with machine learning
methods. The associated network flow blocker problem is called multi-commodity flow
blocker problem (MCFBP).
Let us illustrate how a blocker problem can assess the resilience of a network with a
single commodity, specifically the maximum flow blocker problem. In telecommunication
networks, the flow routed on an arc represents the amount of data sent from the source
to the destination and passing through that arc. Malfunctioning arcs can be modeled
by reducing the capacity of the arc to 0 or more generally by removing the arc from
the graph. These situations are due to anomalies, failures, or packet loss caused by
congestion. The MFBP corresponds to the blocker variant of the maximum flow problem
in which each arc is also given a blocker cost. It consists of finding a minimum-cost subset
of arcs to be removed from the graph in such a way that the maximum flow value in the
remaining graph is no larger than a given threshold. In this context, MFBP optimal
solutions allow analyzing the network resilience in case of malfunctioning arcs.
In the case where all blocker costs are equal to one, a network is said to be resilient to f
simultaneous arc failures, with respect to a target flow Φ, if after the removal of any set
of at most f arcs, there exists a flow of value larger than Φ. An optimal MFBP solution
is a set of arcs of minimum cardinality ζ(G) such that the network is not resilient to ζ(G)
simultaneous arc failures with respect to a target flow Φ. By considering f = ζ(G) − 1,
since ζ(G) is the minimum size of the set of arcs, removing any set of arcs of size at most
ζ(G) − 1 (maximum simultaneous malfunctioning arcs) ensures that the maximum flow
value in the remaining graph is larger than Φ. Let us consider a network represented
by the graph shown in Figure 2.4, with all blocker costs equal to one. We report on
each arc its blocker cost shown in red above the flow of the arc in the remaining graph
separated by “/” with the arc capacity. The threshold, denoted by Φ is set to 10. The
optimal solution is represented with dashed blue arcs, (v6, t) and (v7, t), and its value
is equal to 2. The consequence of removing these arcs results in a graph containing a
maximum flow value of 7. Accordingly, for any single malfunctioning arc, the remaining
graph has a maximum flow value larger than 10. The MFBP solution is represented in
Figure 2.4.
Moreover, always in telecommunication networks with general blocker costs, MFBP
solutions determine the minimum-cost subset of arcs to monitor all flows of value strictly
larger than Φ. More precisely, for each subset of arcs guaranteeing a flow strictly greater
than Φ, at least one of them is monitored. The blocker costs in this case represent the

56

s

v1

v2

v3

v5

v6

v7

tv4
1

0/11
1

12/15

1
0/7

1
3/4

1
3/3

1
0/12

1
0/15

1
3/9
1

0/3

1
6/15

1
0/9

1
0/11

1
3/3

1
15/15

9
15/20

1
3/10

Figure 2.4: An optimal MFBP solution with a threshold equal to 10.

costs of installing the monitor devices on the arcs. We refer the interested reader to
Ghafir et al. [2016] for further details on network monitoring.
The multi-commodity flow blocker problem, in the context of analyzing the resilience
of telecommunication networks, follows a comparable line of reasoning. The distinction
between the MFBP and the MCFBP depends mostly on the characteristics of the net-
works. For instance, in the context of a network with multiple commodities, it may
pursue various objectives to optimize flow routing, such as maximizing the number of
satisfied commodities, minimizing the total routing cost, or maximizing the flow be-
tween each commodity. Moreover, the definition of network functionality depends on
several factors and can be aligned with specific applications of the multi-commodity
flow blocker problem (MCFBP).
In what follows, we provide a detailed example illustrating the application of a multi-
commodity flow blocker problem, with a specific focus on anomalies occurring on net-
work vertices. This problem is referred to as V-MCFBP. In real-world applications,
networks often accommodate multiple commodities, each necessitating the transfer of
specific data between distinct terminal pairs. Routers, therefore, assume a crucial role
in managing and routing these flows, thereby ensuring efficient network-wide commu-
nication. In this context, optimal solutions of the MCFBP offer valuable insights into
assessing network resilience in the face of router malfunctions. The disruption caused
by malfunctioning routers can be effectively modeled by the removal of corresponding
vertices from the network graph. Such malfunctions might occur due to a variety of
reasons, including deliberate attacks by malicious entities, network congestion, hard-
ware failures, or equipment damages. We refer the interested reader to G. Fernandes
[2019] and Li et al. [2018] for further details on router anomalies and how to diagnose
them. As for the MFBP, in a V-MCFBP where blocker costs are set to 1 on the vertices
of the graph, the solution represents the maximum allowable number of router failures
within the network, while maintaining a routing profit exceeding the specified threshold.
Alternatively, different blocker cost values can represent the installation of monitoring
devices on the routers.
In the next section, we broaden the primary goal of the thesis, aiming to analyze the

57

resilience of a network. For this purpose, we explore an additional application specifically
designed for telecommunication networks. As we strive to enhance overall network
performance and implement effective network monitoring strategies, our focus turns to
another closely related issue, known as the sketch assignment problem.

2.2 Network-wide sketching

Internet Service Providers (ISPs) often need to monitor the network traffic to perform
some tasks based on observed metrics, such as identifying the longest flows. This pro-
cess involves recognizing Distributed Denial of Service (DDoS) attacks within a network.
DDoS detection mechanisms are implemented to identify patterns or anomalies in net-
work traffic that may indicate such an attack. Once detected, appropriate measures
can be taken to mitigate and counteract the impact of the attack, helping to ensure the
availability and normal operation of the targeted services.
Due to the hardware limitations of network devices, such measurements are nowadays
performed using an approximate data structure known as sketches. These sketches offer
approximate per-flow statistics at a sublinear memory cost and with a certain error
bound. Consequently, the strategic placement of these sketches is a complex challenge,
requiring a comprehensive understanding of network topology and traffic. The goal
of strategically placing these sketches is to achieve effective and balanced monitoring
without imposing unnecessary resource requirements and while minimizing potential
errors.
In this context, this section proposes a method to tackle the problem of network-wide
monitoring, for which statistics are collected jointly by multiple network devices and
aggregated to obtain measurements for an entire network perspective.

2.2.1 Network-wide monitoring and related works

Network monitoring and measurement play integral roles in effective network manage-
ment. The capability to monitor network traffic in real-time and at a broad scale is
essential for a variety of tasks, including traffic engineering and the identification of at-
tacks and anomalies (see Zhang [2013]). Each such management task requires accurate
and timely statistics on diverse metrics, such as flow size distribution, entropy measures
(Lall et al. [2006]), and the identification of changes in traffic patterns. A first technique
to estimate these metrics relies on generic flow monitoring, in which traffic measure-
ments are performed on flows that are collected by network devices including routers
and switches. Note that a flow is defined as a set of packets matching some attributes
(e.g., IP address, port, protocol). Accordingly, flow monitoring is typically performed
by means of packet sampling, which can be less accurate for fine-grained metrics, as
demonstrated in many studies (see Pescapé et al. [2010]). This leads to an alternative
technique based on sketching algorithms. Moreover, the increased programmability of
network elements (e.g., programmable switches in SDNs) enables significant progress in
sketch-based monitoring techniques, leading to the achievement of precise and detailed
network-wide monitoring.

58

Definition of sketch-based monitoring

Sketch-based monitoring techniques rely on the usage of approximate data structures
to represent network traffic in a compact matter; such data structures are then used
to extract traffic metrics with certain error bounds. We refer the interested reader to
Cormode [2013] and Cormode [2017] for further details on sketch-based data structures.
A sketch is a synopsis data structure typically used in algorithms that process data
streams, which are also known as data streaming algorithms. Sketches are designed to
provide concise summaries of large volumes of data with a limited amount of memory,
making them particularly useful for scenarios where maintaining the entirety of the data
is impractical or infeasible. Computations can then be applied to this compact summary
instead of the original data stream. Sketches typically involve the use of hash functions
to map elements of the data to a fixed-size array or set of counters.
In Figure 2.5, we provide an illustrative example of the Count-Min sketch (refer to
Cormode [2009]). The Count-Min sketch is a data structure represented as an array of
counters, organized into d hash tables (referred to as h1, h2, h3), each of the size of w.
Each hash function maps has a certain incoming flow (e.g., specific 5-tuple) to a counter
of the hash table (sketch row). This structure is particularly useful for approximating
frequency counts of elements in a data stream. At update time, i.e., whenever a packet
of a flow is received, every counter associated with that flow is incremented by one. At
query time, the size of a flow can be estimated with the minimum counter among those
the flow is mapped to in the sketch. Within the context of the sketch, each row in the
array is associated with a specific hash function selected from a universal class of hash
functions (as detailed in Dietzfelbinger [2018]). These hash functions play a crucial role
in mapping elements to the respective counters, facilitating efficient and space-conscious
approximations in scenarios like streaming data analysis.

Figure 2.5: Count Min Sketch representaton

Figure 2.6 provides a visual representation of how sketches are integrated and utilized
within the SDN framework.
Each sketch features a certain approximation error or estimation error, that depends on
the sketch size and the overall number of packets counted. More precisely, as outlined
earlier, a sketch generally demands w × d memory units, where w denotes the sketch
width, and d represents its depth. For the purpose of our analysis, we assume a fixed
depth for all sketches, focusing on the width parameter, denoted as w. Consequently,
the memory capacity of a device v ∈ V is characterized by its maximum supported

59

Figure 2.6: Sketches in SDN architecture

width, referred to as Wv. Accordingly, we denote by εv the sketch relative error that
depends on the width w of the sketch.
It is worth noticing that sketches perform measurements in a distributed fashion, mean-
ing that data processing is spread across multiple devices. This helps reduce collisions
on the single device, increase overall capacity and reduce measurement error.
In Figure 2.7, we show a simple network with four terminals (S1, T1, S2, T2) and three
sketches sk1, sk2, sk3. We compare the measurement error using single devices or mul-
tiple devices. On each flow, the error is bounded by the quantity ε × NS,T where
S is the source, T the destination and NS,T is the number of packets going from S
to T . Using single device, the overall error is computed as follows: ε × 4(NS1,T1 +
NS1,T2 +NS2,T1 +NS2,T2), while using multiple devices, the overall error is computed as
ε× 2(NS1,T1 +NS1,T2) + ε× 2(NS2,T1 +NS2,T2).
The trade-off in using sketch data structures is that they offer approximate results with
controlled error bounds, making them well-suited for applications where the computa-
tional cost or memory requirements of exact solutions are prohibitive. Moreover, the
flexibility and resource-efficient nature of sketches enables them to be deployed every-
where, whether in edge computing, IoT devices, or distributed networks.

Prior art

Sketch monitoring has received lots of interest recently, focusing on the objective of
measuring and summarizing complex data structures within flows. In this context, we
introduce three frameworks from the literature that address this goal. One of these
frameworks, namely DISCO, (see Bruschi et al. [2020]), is specialized in collecting mea-
sures from devices along a single path. These measures are then processed on a controller
that acts like a single sketch. It is worth noticing that the goal of this framework is to

60

Figure 2.7: Illustration of sketch placement strategies

reduce the error by exploiting counters on multiple devices. However, it only manages
a single path. In contrast to DISCO, another framework named UnivMon is designed
in Liu et al. [2016] to accommodate multiple paths, seeking a generic measurement al-
gorithm. This framework, as the framework HeteroSketch presented in Agarwal et al.
[2022], does not minimize the measurement error. Indeed, HeteroSketch presents an
automated solution for sketch placement that focuses on the heterogeneity in devices.
This approach combines an automated sketch-based device profiler with a hierarchical
optimizer designed for efficient flow-device assignment.

Contributions and solution approach

As mentioned earlier, implementing network-wide monitoring through sketches presents
various challenges that require careful consideration. One key challenge involves ensur-
ing the proper assignment of existing flows, such as distinct TCP/IP communications, to
the various sketches distributed across network devices. The second challenge relies on
the fact that a commodity may use multiple paths. In this context, maintaining trans-
parency in network routing is critical. In other words, the monitoring system should
not depend on specific routing paths and must seamlessly support multi-path routing
configurations. Finally, the optimization of flow assignment is essential to accommodate
fluctuating traffic trends effectively. Adapting the assignment strategy in response to
changing traffic patterns ensures that the distribution of measurement tasks remains
optimized.
However, as mentioned previously, the use of a sketch features an approximation error.
Therefore, monitoring all devices on every path increases the approximation error, espe-

61

cially when dealing with huge amounts of flow. In addition, ignoring some paths leads
to partial-coverage error. Finding a balance between these two aspects is not trivial,
especially for a significant volume of traffic. Accordingly, we propose in this chapter a
monitoring system based on a method for distributed sketch assignment with the goal
of minimizing the total approximation error.
Our approach facilitates dynamic optimization of the assignment between network flows
and monitoring devices taking into account traffic fluctuations and supporting previ-
ously unknown flows that possibly span across multiple network paths. This adaptive
approach ensures efficiency and accuracy despite the constantly changing nature of
network traffic. Unlike prior art, this solution approach designs a system that can dy-
namically schedule the assignments between network flows and devices. This dynamic
scheduling allows to properly benefit from the distributed monitoring system, e.g., by
constantly seeking the optimal assignment that minimizes measurement error. A patent
has been granted for this invention to Castellano et al. [2023] and is currently in the
process of publication.
The overall idea of our solution approach involves strategically placing a set of sketches
within the network, ensuring that each flow is assigned to the most appropriate device
along each of its paths. As previously explained, the placement of sketches introduces
an error known as sketch estimation error. This error is characterized by the estimation
error on each sketch per flow that depends on the total number of packets counted
by the sketch. In order to reduce in-sketch overlaps and enhance accuracy, it might
be convenient to deliberately ignore certain paths occasionally. Consequently, on such
paths, a flow remains unassigned to any device, resulting in a new error known as
uncovered paths error. Consequently, achieving an optimal placement requires a balance
between minimizing sketch estimation error and uncovered paths error. The challenge
lies in finding a placement strategy that effectively navigates this trade-off.
To implement this solution approach we introduce the Flow-Sketch Assignment problem
(FSAP), which constitutes the core challenge in efficiently managing the placement
of sketches within the network. After formally describing the problem, we present two
different models to address the FSAP. The first model is an Integer Linear Programming
(ILP) formulation. The second model is a bilevel formulation, offering an alternative
perspective. We then delve into a detailed discussion of the resolution methods for both
models.

2.2.2 The Flow-Sketch assignment problem

Notations

Let G = (V,E) be a directed graph representing the network. V is the set of n vertices
and E is the set of m edges. Let F be a set of Origin-Destination (OD) pairs, where
each pair f ∈ F is associated with a source node sf ∈ V and a destination node tf ∈ V .
Additionally, for each OD-pair, we assign a flow size parameter nf denoting the number
of packets associated with that specific pair. We denote by n(v) the total number of
packets counted by node v.

62

It is worth noticing that, based on the network topology G, each OD-pair may traverse
multiple paths. Moreover, as explained earlier, some flows on paths will be ignored
to prevent an increase in error that would result from counting them. Therefore, we
suppose that the flow sizes nf are initially unknown, and our objective is to estimate
these sizes for each OD-pair f ∈ F . Therefore, we introduce the set of commodities K
where for each k ∈ K, sk is the source and tk is the destination. A commodity refers
to a source and a destination responsible for transferring data. Note that the source
sk (resp. the destination tk) corresponds to the source sf (resp. the destination tf) for
all OD-pairs f ∈ F . For every commodity k ∈ K, let P(k) be a function returning all
possible paths from sk to tk and V(P) be a function returning all nodes across path P .
We recall that εv corresponds to the sketch relative error.
In the next section, we present a particular case of the Sketch Assignment Problem,
called the The Min Error Sketch Assignment problem for which the flow size is fixed for
all OD-pairs.

The Min Error Sketch Assignment problem

The Min Error Sketch Assignment problem consists of finding a placement scheme for
sketches such that all packets from existing OD-pairs are covered (i.e., there is a ded-
icated sketch for each of their possible paths), and the overall estimation error is
minimized.
Note that multiple tasks may be necessary for each flow. This means that every packet
within the flow must be seen by multiple sketches, and the resources of a node may be
divided among these tasks. However, in our study, we focus on scenarios where there is
only one task per flow. Therefore, every node v ∈ V allocates a single sketch using all
the available memory Wv. In this particular problem, our objective is to determine the
optimal assignment of flows to nodes.
Let us introduce a vector x of binary variables, each variable xf,v is associated with a
flow f ∈ F and a node v ∈ V and it takes value 1 if and only if flow f is assigned to a
sketch on node v i.e., there are packets from the OD-pair f that are covered by a sketch
on node v.
The Min Error Sketch Assignment problem aims to find the assignment x that minimizes
the overall estimation error bound computed as follows:

∑
f∈F

∑
v∈V

xf,v εv n(v)

As mentioned earlier, the error term ϵv is associated with the sketch dimension. More-
over, it is worth noticing that when computing the overall estimation error, this relative
error ϵv is multiplied by the number of packets covered on node v.
We now present a graphical example to illustrate the Min Error Sketch Assignment
Problem thanks to the graph represented in Figure 2.8 with 7 vertices and 7 arcs. We
consider the following set of OD-pairs: {(1, 6), (1, 7), (2, 6), (2, 7)}. In the figure, we

63

1

2

3 4

5

6

7

Figure 2.8: Example graph for the Min Error Sketch Assignment problem

illustrate the paths corresponding to each OD-pair using distinct colors: red for the first
OD-pair, blue for the second, green for the third, and yellow for the fourth.
The goal of the Min Error Sketch Assignment problem is to assign each OD-pair to a set
of nodes that should monitor it. Based on the network topology, each OD-pair may be
assigned to different nodes. For instance, the first OD-pair (1, 6) can be either entirely
assigned to node 3, or split across nodes 5 and 4. The second OD-pair (1, 7) can be
entirely assigned to node 3 or to node 5. The third and fourth OD-pairs (2, 6) and (2, 7)
can be assigned to node 5. These assignments allow to count every packet exactly once.
We now analyze two possible solutions.
Solution 1. This solution consists of monitoring the first two OD-pairs (1, 6) and (1, 7)
on node 3. The last two OD-pairs (2, 6) and (2, 7) are monitored on node 5. Therefore,
we have:

x1,3 = x2,3 = x3,5 = x4,5 = 1,

while xf,v = 0 for any other OD-pair f ∈ F and node v ∈ V .
We assume that εv = ε,∀v ∈ V . The overall error is bounded by:

x1,3 ε n(3) + x1,4 ε n(4) + x1,5 ε n(5) +
x2,3 ε n(3) + x2,4 ε n(4) + x2,5 ε n(5) +
x3,3 ε n(3) + x3,4 ε n(4) + x3,5 ε n(5) +
x4,3 ε n(3) + x4,4 ε n(4) + x4,5 ε n(5) =

ε n(3) + ε n(3) + ε n(5) + ε n(5) =
2 ε n(3) + 2 ε n(5) = 2 ε (n1 + n2) + 2 ε (n3 + n4) = 2 εN

Solution 2. This solution consists in monitoring the first OD-pair (1, 6) on on nodes 4
and 5, the second OD-pair (1, 7) on node 3, and the last two pairs on node 5. Therefore,
we have:

x1,4 = x1,5 = x2,3 = x3,5 = x4,5 = 1,

while xf,v = 0 for any other OD-pair f ∈ F and node v ∈ V .

64

In this case, the overall error is given by:

x1,3 ε n(3) + x1,4 ε n(4) + x1,5 ε n(5) +
x2,3 ε n(3) + x2,4 ε n(4) + x2,5 ε n(5) +
x3,3 ε n(3) + x3,4 ε n(4) + x3,5 ε n(5) +
x4,3 ε n(3) + x4,4 ε n(4) + x4,5 ε n(5) =

ε n(4) + ε n(5) + ε n(3) + ε n(5) + ε n(5) =
ε n(3) + ε n(4) + 3 ε n(5) =

ε n2 + ε n1(4) + 3 ε (n1(5) + n3 + n4) = 2 ε (N/2 + n3 + n4 + n1(5)),

where nf (v) is the flow of the OD-pair f routed on node v, ∀f ∈ F, v ∈ V .
It is worth noticing that these two distinct solutions result in different estimation errors.
In the next section, we propose an integer linear programming (ILP) formulation to
solve the sketch assignment problem for which some paths of a flow will be ignored, i.e.,
all packets will not be covered.

2.2.3 An ILP formulation for the FSAP

In this section, we first focus on a version of the Flow-Skecth assignment problem (FSAP)
with the objective of minimizing the estimation error. We introduce an ILP model to
address this problem. We then extend the ILP model to optimize the trade-off between
the estimation error associated with sketches and the error originating from uncovered
paths.

Flow-Sketch Assignment problem

Let K be a set of commodities where for each k ∈ K, sk is the source and tk is the
destination. For each commodity k ∈ K, we introduce a parameter Ψk, corresponding
to a flow-size threshold. The goal of the flow-sketch assignment problem (FSAP) is to
find the smallest estimation error such that for each k ∈ K all flows between sk and tk
of size greater than Ψk are covered by a sketch.
Let us introduce a vector x ∈ {0, 1}|K|×|V | of |K| × |V | binary variables, each variable
xk,v equals to 1 if a sketch is installed on v to monitor the flow between sk and tk and
0, otherwise.
A model for the FSAP reads as follows:

min
∑

k∈K

∑
v∈V

εvCk(v)xk,v

∑
k′∈K

xk′,v (2.1a)

∑
v∈V(F)

xk,v ≥ 1 ∀k ∈ K, F ∈ Fk(Ψk) (2.1b)

xk,v ∈ {0, 1} ∀k ∈ K, v ∈ V, (2.1c)

65

where V(F) is a function returning the set of vertices covered by at least one unity of
flow F and Fk(Ψk) is the set of flows between sk and tk with a size greater than Ψk

and Ck(v) is the node capacity, i.e., Ck(v) gives the maximum observable load (or traffic
flow) from commodity k on node v. It is worth noticing that ∑

k′∈K xk′,v takes the value
of n(v), as it corresponds to the total number of packets that are yet counted by node
v.
Model (2.1) has a quadratic objective function. Therefore, optimizing or solving this
model may involve dealing with non-linearities, for which specialized algorithms tai-
lored for quadratic optimization problems may be more suitable (see Fathi and Bevrani
[2019]). Alternatively, linearization techniques can be employed to facilitate the opti-
mization process.
To linearize the objective function, the traditional way is to introduce a new set of
variables zk,k′,v = xk′,v ×xk,v, ∀k, k′ ∈ K, v ∈ V that is linked to the variables x through
the following constraints:

xk′,v + xk,v ≤ 1 + zk,k′,v, ∀ k, k′ ∈ K, v ∈ V. (2.2)

Therefore, we obtain an ILP formulation for the FSAP that reads as follows:

min
∑

k∈K

∑
v∈V

∑
k′∈K

εvCk(v) zk,k′,v (2.3a)

xk′,v + xk,v ≤ 1 + zk,k′,v ∀k, k′ ∈ K, v ∈ V, (2.3b)∑
v∈V(F)

xk,v ≥ 1 ∀k ∈ K, F ∈ Fk(Ψk), (2.3c)

xk,v ∈ {0, 1} ∀k ∈ K, v ∈ V, (2.3d)
zk,k′,v ∈ {0, 1} ∀k, k′ ∈ K, v ∈ V. (2.3e)

Flow-Sketch Assignment problem with trade-off between the estimation er-
ror and the uncovered paths error

We now present an ILP model for the Flow-Sketch Assignment problem that balances
two objectives; minimizing the estimation error and minimizing the error due to uncov-
ered paths.
In the context of OD-pair communication across multiple paths, a strategic approach
involves selectively applying sketches to only some paths, rather than all of them. By
constraining the packet count on chosen paths, there is a possibility of reducing overlap,
leading to a decrease in estimation errors for each sketch. However, the decision to ignore
packets on specific paths introduces an additional source of error, called partial-coverage
error.
Given the binary variables xk,v, previously introduced, which are associated with every
commodity k ∈ K, on every node v ∈ V , an ILP formulation for the FSAP with a
trade-off between the sketch estimation error and the partial-coverage error reads as

66

follows:

min
∑

k∈K

 ∑
v∈V

εvxk,v

∑
k′∈K

xk′,vCk(v) +
∑

P ∈P(k)

∏
v′∈V(P)

(1 − xk,v′)Cπ(P)
 (2.4a)

xk,v ∈ {0, 1}, ∀k ∈ K, v ∈ V, (2.4b)

where Cπ(P) is the path capacity, i.e., Cπ(P) gives the maximum possible load that
can cross path P .
In the objective function (2.4a) , the left addendum is the estimation error on deployed
sketches, called sketch estimation error or simply sketch error, while the right one is the
overestimation due to uncovered paths, called the coverage error. It is worth noticing
that this function depends on the node capacity Ck(v), which is an upper bound on
the number of packets we may expect to see on node v from flow k. In our model,
we do not minimize the actual error, but an upper bound instead. Indeed, the actual
error would depend on the number of packets per flow that traverse each node, which
is not known in advance. However, if the number of packets that traverse certain nodes
is significantly lower than the chosen upper bound, the error could vary considerably
and more precisely, the trade-off between the two real errors could behave differently
from the trade-off between their upper bounds. In particular, the sketch error and
the coverage error behave in an opposite way with regard to the actual number of
packets. Specifically, the sketch error increases as the number of packets rises, whereas
the coverage error decreases. This is due to the fact that we consistently overestimate
the number of packets (Ck(v)) on uncovered paths to prevent underestimations. It is
worth noticing that an alternative would be to limit the sum of flows on a node according
to its capacity. This option will be discussed later. Moreover, one could consider that
no packets are routed (flowing) through that path. In this case, the error will be at
its maximum. Therefore, the right addendum in (2.4a) can be replaced by its upper
bound (Ck(v)). In this way, the two errors will both be proportional to the number of
packets traversing the node, hence the trade-off between them would be better estimated
through a trade-off between their upper bounds.
Let us introduce a new binary variable yk,v associated with every commodity k ∈ K
and every node v ∈ V . This variable is used to identify paths for which a commodity
k is not covered by any flow. More precisely, for every commodity k ∈ K, given a path
P ∈ P(k), if no flow is monitored on any node of the path, then for one node v of P ,
i.e. v ∈ V(P), the variable yk,v takes value 1. Otherwise, yk,v is equal to 0. We model
such a relationship as: ∑

v∈V(P)
xk,v + yk,v = 1, ∀ k ∈ K, P ∈ P(k). (2.5)

Moreover, for every two commodities k, k′ ∈ K and for every node v ∈ V , we con-
sider again the binary variable zk,k′,v. Therefore, the sketch assignment problem can be
modeled using the following formulation:

67

min
∑

k∈K

∑
v∈V

εv

∑
k′∈K

zk,k′,v + yk,v

Ck(v) (2.6a)

s.t.
∑

v∈V(P)
xk,v + yk,v ≥ 1 ∀ k ∈ K,P ∈ P(k), (2.6b)

xk,v + xk′,v ≤ 1 + zk,k′,v ∀ k, k′ ∈ K, v ∈ V, (2.6c)
zk,k′,v ≤ xk,v ∀ k, k′ ∈ K, v ∈ V, (2.6d)
xk,v, yk,v ∈ {0, 1} ∀ k ∈ K, v ∈ V, (2.6e)
zk,k′,v ∈ {0, 1} ∀ k, k′ ∈ K, v ∈ V. (2.6f)

The objective function (2.6a) minimizes the error. Constraints (2.6b) links variables x
to variables y. In other words, these constraints, together with the objective function,
ensure that for every commodity k ∈ K, given a path P ∈ P(k), if at least one node
of P monitors traffic flow, then sketches will be affected to vertices of P according
to the placement decided by variables xk,v. Otherwise, yk,v is equal to 1 for only one
node of P , according to the optimization sense (minimization) of the objective function.
Constraints (2.6c) corresponds to Equation 2.5 where the equality has been replaced
by ≥ 1, due to the objective sense. Constraints (2.6d) come from the linearization of
Model (2.1) containing a quadratic objective function.
It is worth noticing that constraints (2.6b) are in exponential number. Therefore, to
solve Model (2.6), one needs to implement a Branch-and-Cut algorithm with an efficient
strategy to separate inequalities (2.6b).

Separation problem of inequalities (2.6b) The separation problem for inequalities
(2.6b) consists, given a solution (x∗,y∗, z∗) with x∗ ∈ R|K|×|V |, y∗ ∈ R|K|×|V | and
z∗ ∈ R|K|×|K|×|V |, provided by the linear relaxation of Model (2.6), in determining
for every commodity k ∈ K if there exists a path P ∗

k between sk and tk such that∑
v∈V(P ∗

k) x
∗
k,v+y∗

k,v < 1 and, if not, in finding an inequality that is violated by (x∗,y∗, z∗).
The identified inequalities are added to the current linear program, which is solved again.
This procedure is repeated until no violated inequality is found. The final solution is
then optimal for the linear relaxation of the ILP formulation (2.6).
Therefore, for fractional and integer values of x∗ and y∗, the separation problem consists
in finding a path P ∗

k for every commodity k, that minimizes ∑
v∈V(P ∗

k) x
∗
k,v + y∗

k,v. Hence,
separate inequalities (2.6b) can be done in polynomial time by solving a shortest path
problem for every commodity.

2.2.4 A bilevel approach for the FSAP

In the previous section, we presented a formulation for which the worst-case traffic is
based on the capacity of each node. In particular, all flows on each node are assumed
to be equal to the node capacity. However, in reality, this cannot be true since the sum
of the flows is bounded by the node capacity. Hence, we propose in this section, a more

68

realistic model where the sum of the flows in a node is bounded by its capacity. To
achieve this, we adopt a bilevel approach aimed at representing a worst-case feasible
traffic scenario. This involves integrating our previous model with a maximum flow
subproblem.
Therefore, we present the bilevel model associated with the FSAP. The first level permits
to determination of the sketch assignment while minimizing the error. The second level
aims at maximizing the error while computing a multi-commodity maximum flow. This
corresponds to the worst-case routing strategy. In other words, the follower problem
aims at finding the routing that generates the biggest error.
There are two sets of decision variables in bilevel models, the first-level decision vari-
ables associated with the so-called leader problem which affect the second-level decision
variables associated with the so-called follower problem. For the FSAP, the general idea
of the bilevel formulation is to model the worst-case scenario. In this case, the leader
problem aims to determine the sketch assignment while minimizing the error. The fol-
lower problem aims at maximizing the error while routing the flow for each OD-pairs.
This corresponds to the worst case of routing.
In the following, we first linearize the bilevel model by adding new variables. Second,
thanks to the primal-dual relationship, we reformulate the problem as a single-level
model.
Let us introduce the leader variables:

• xk,v ∈ {0, 1} for k ∈ K, v ∈ V : equals to 1 if the flow k is assigned to a sketch on
node v, 0 otherwise.

• yk,v ∈ {0, 1} for k ∈ K, v ∈ V : equals to 1 if the flow k is not assigned on any of
the paths that cross node v.

Let P(k) be a set of paths from sk to tk for commodity k ∈ K. Let us introduce the
follower variables:

• αP,k for k ∈ K,P ∈ P(k) is a continuous variable representing the amount of flow
routed through path P for commodity k

• Ck(v) for k ∈ K, v ∈ V is a continuous variable representing the maximum ob-
servable load on node v for commodity k

A bilevel formulation for the FSAP reads as follows:

min
x, y

∑
k∈K

∑
v∈V

[
εv

∑
k′∈K

xk,vxk′,v + yk,v

]
Ck(v) (2.7a)

∑
v∈V(p)

xk,v + yk,v ≥ 1 ∀ k ∈ K, p ∈ P(k) (2.7b)

xk,v, yk,v ∈ {0, 1} ∀ k ∈ K, v ∈ V (2.7c)

69

max
C

∑
k∈K

∑
v∈V

[
εv

∑
k′∈K

xk,vxk′,v + yk,v

]
Ck(v) (2.7d)

∑
k∈K

∑
P ∈P(k):e∈P

αP,k ≤ ce ∀ e ∈ E (2.7e)
∑

P ∈P(k):v∈V(P)
αP,k = Ck(v) ∀ v ∈ V, k ∈ K (2.7f)

∑
k∈K

x
(t−1)
k,v Ck(v) ≤ C(v) ∀ v ∈ V (2.7g)

∑
k∈K

(1 − x
(t−1)
k,v)Ck(v) ≤ C̄(v) ∀ v ∈ V (2.7h)

αP,k ≥ 0 ∀ k ∈ K,P ∈ P(k) (2.7i)
Ck(v) ≥ 0 ∀ k ∈ K, v ∈ V (2.7j)

where xt−1
k,v is a parameter corresponding to the value affected to xk,v at a previous time

(t − 1), C(v) and C̄(v) are two bounds on the maximum observable load on node v,
respectively for assigned and ignored flows. In this bilevel model, the leader problem is
given by the first program stated by ((2.7a)-(2.7c)). The objective function (2.7a) aims
to minimize the overall error. Constraints (2.7b) of the leader problem link variables x
to variables y. Constraints (2.7c) express the definition set of the leader variables x and
y. The follower is given by the inner maximization problem stated by ((2.7d)-(2.7j)).
The objective function (2.7d) of the follower problem aims to maximize the overall error.
Constraints (2.7e) are the capacity constraints imposing that the total flow routed on an
edge through paths P ∈ P(k), for all commodities k ∈ K, does not exceed the capacity
of the edge. Constraints (2.7f) ensure that for every commodity k ∈ K, the load of a
node v ∈ V is equal to the total flow routed through paths P ∈ P(k) that contain this
node v. Constraints (2.7g) and (2.7h) set limits on the load of a node v, based on the
previous sketch assignment (at time t − 1). Constraints (2.7i) and (2.7j) express the
definition set of the follower variables α and C.
We remark that for fixed values of x and y, the follower problem is a linear program.
To linearize the leader problem, we consider additional variables zk,k′,v = xk,vxk′,v for all
k, k′ ∈ K and v ∈ V . The leader problem can be rewritten as follows:

min
∑

k∈K

∑
v∈V

εv

∑
k′∈K

zk,k′,v + yk,v

Ck(v) (2.8a)

s.t.
∑

v∈V(P)
xk,v + yk,v ≥ 1 ∀ k ∈ K,P ∈ P(k), (2.8b)

∑
v∈V(P)

yk,v ≤ 1 ∀ k ∈ K,P ∈ P(k), (2.8c)

xk,v + xk′,v ≤ 1 + zk,k′,v ∀ k, k′ ∈ K, v ∈ V, (2.8d)
zk,k′,v ≤ xk,v ∀ k, k′ ∈ K, v ∈ V, (2.8e)
xk,v, yk,v ∈ {0, 1} ∀ k ∈ K, v ∈ V, (2.8f)
zk,k′,v ∈ {0, 1} ∀ k, k′ ∈ K, v ∈ V, (2.8g)

By introducing the additional variables z, we transform Model (2.7) into a linear bilevel
model. However, the main challenge in tackling this model lies in reformulating it into

70

a single-level model suitable for efficient solvers. This difficulty arises from the min-max
relationship, originating from the follower problem, which is a maximization problem
while the leader problem involves minimization.
The traditional approach to solving bilevel models, (see Dempe [2020]), involves du-
alizing the follower problem to determine the objective value to inject into the leader
problem. However, this method is unsuitable for our case because we require fixing
values of Ck(v) for every commodity k ∈ K and every node v ∈ V . Therefore, we inves-
tigate an alternative approach, also based on the dualization of the follower problem.
Considering four vectors of continuous variables β ∈ R|E|, β̄ ∈ R|V |×|K|, β1 ∈ R|V | and
β2 ∈ R|V |, the dual model of the follower problem ((2.7d)-(2.7j)) is given below:

min
∑
e∈E

ceβe +
∑
v∈V

C(v)(β1
v + β2

v) (2.9a)

−β̄v,k +
∑
v∈V

(x(t−i)
k,v)β1

v +
∑
v∈V

(1 − x
(t−i)
k,v)β2

v ≥ εv

[∑
k′∈K

zk,k′,v + yk,v

]
, ∀v ∈ V, ∀k ∈ K,

(2.9b)∑
e∈P

βe +
∑

v∈V(P)
β̄v,k ≥ 0 ∀k ∈ K, ∀P ∈ P(k),

(2.9c)
βe ≥ 0 ∀e ∈ E,

(2.9d)
β̄v,k ≥ 0 ∀k ∈ K, ∀v ∈ V

(2.9e)
β1

v ≥ 0 ∀v ∈ V,
(2.9f)

β2
v ≥ 0 ∀v ∈ V.

(2.9g)

The variables β, β̄,β1 and β2 are the dual variables associated respectively to Con-
straints (2.7e), (2.7f), (2.7g), and (2.7h) of the follower problem. Constraints (2.9b) and
(2.9c) are associated respectively to variables C and α of the follower problem.
In what follows, we propose to simultaneously consider both the primal model and dual
model of the follower problem by setting their objective value to equality and injecting
this model into the leader problem. This results in a reformulation of the follower
problem without an objective function, as presented below:

71

∑
k∈K

∑
v∈V

[
εv

∑
k′∈K

zk,k′,v + yk,v

]
Ck(v) =

∑
e∈E

ceβe +
∑
v∈V

C(v)(β1
v + β2

v) (2.10a)

−β̄v,k +
∑
v∈V

(x(t−i)
k,v)β1

v +
∑
v∈V

(1 − x
(t−i)
k,v)β2

v ≥ εv

[∑
k′∈K

zk,k′,v + yk,v

]
∀v ∈ V, ∀k ∈ K

(2.10b)∑
e∈P

βe +
∑

v∈V(P)
β̄v,k ≥ 0 ∀k ∈ K, ∀P ∈ P(k)

(2.10c)∑
k∈K

∑
P ∈P(k):e∈P

αP,k ≤ ce ∀ e ∈ E

(2.10d)∑
P ∈P(k):v∈V(P)

αP,k = Ck(v) ∀ v ∈ V, k ∈ K

(2.10e)∑
k∈K

x
(t−1)
k,v Ck(v) ≤ C(v) ∀ v ∈ V

(2.10f)∑
k∈K

(1 − x
(t−1)
k,v)Ck(v) ≤ C̄(v) ∀ v ∈ V

(2.10g)
αP,k ≥ 0 ∀ k ∈ K,P ∈ P(k)

(2.10h)
Ck(v) ≥ 0 ∀ k ∈ K, v ∈ V

(2.10i)
βe ≥ 0 ∀e ∈ E,

(2.10j)
β̄v,k ≥ 0 ∀k ∈ K, ∀v ∈ V

(2.10k)
β1

v ≥ 0 ∀v ∈ V,
(2.10l)

β2
v ≥ 0 ∀v ∈ V.

(2.10m)

This model can be added directly to the linearized leader problem ((2.8a)-(2.8g)), which
leads to the following single model for the FSAP:

72

min
∑

k∈K

∑
v∈V

εv

∑
k′∈K

zk,k′,v + yk,v

Ck(v) (2.11a)
∑

v∈V(P)
xk,v + yk,v ≥ 1 ∀ k ∈ K,P ∈ P(k),

∑
v∈V(P)

yk,v ≤ 1 ∀ k ∈ K,P ∈ P(k),

xk,v + xk′,v ≤ 1 + zk,k′,v ∀ k, k′ ∈ K, v ∈ V,

−β̄v,k +
∑
v∈V

(x(t−i)
k,v)β1

v +
∑
v∈V

(1 − x
(t−i)
k,v)β2

v ≥ εv

[∑
k′∈K

zk,k′,v + yk,v

]
∀v ∈ V, ∀k ∈ K,

∑
e∈P

βe +
∑

v∈V(P)
β̄v,k ≥ 0 ∀k ∈ K, ∀P ∈ P(k),

∑
k∈K

∑
P ∈P(k):e∈P

αP,k ≤ ce ∀ e ∈ E,

∑
P ∈P(k):v∈V(P)

αP,k = Ck(v) ∀ v ∈ V, k ∈ K,

∑
k∈K

x
(t−1)
k,v Ck(v) ≤ C(v) ∀ v ∈ V,

∑
k∈K

(1 − x
(t−1)
k,v)Ck(v) ≤ C̄(v) ∀ v ∈ V

zk,k′,v ≤ xk,v ∀k, k′ ∈ K, v ∈ V,

xk,v, yk,v ∈ {0, 1} ∀ k ∈ K, v ∈ V,

zk,k′,v ∈ {0, 1} ∀ k, k′ ∈ K, v ∈ V,

αP,k ≥ 0 ∀ k ∈ K,P ∈ P(k),
Ck(v) ≥ 0 ∀ k ∈ K, v ∈ V,

βe ≥ 0 ∀e ∈ E,

β̄v,k ≥ 0 ∀k ∈ K, ∀v ∈ V,

β1
v ≥ 0 ∀v ∈ V,

β2
v ≥ 0 ∀v ∈ V.

Discussion

Due to the intricate nature of the bilevel formulation for the FSAP, particularly charac-
terized by a quadratic objective function and nonlinear constraints, deriving a straight-
forward single-level model is not trivial, and, more specifically, its resolution might be
challenging. It is worth noticing that in the literature, some works have been done
to address a bilevel optimization problem with non-linear constraints and quadratic
objective functions. More precisely, there is a class of bilevel optimization, called gen-
eralized bilevel programming that allows more flexibility and generality in the modeling
of certain problems. Some common features of generalized bilevel programming include
non-continuous lower level problem, non differentiable functions and non-convexity, i.e.,
the upper level and the lower level may be non-convex. We refer the interested reader

73

to Marcotte and Zhu [1996] and Labbé et al. [1998] for further details on generalized
bilevel programming, addressing especially quadratic objective functions and non-linear
constraints.
Instead of directly solving the bilevel model or its single-level reformulation, i.e., Model
(2.11), we develop a heuristic tailored to address the FSAP, leveraging its inherent
bilevel structure.

2.2.5 A greedy algorithm for the FSAP

The general idea of the heuristic proposed to address the FSAP is to use the follower
problem from the bilevel model (2.7) to evaluate the solution built from greedy fashion.
In what follows, we give a detailed description of the algorithm, see Algorithm 3.
The algorithm starts with no sketches assigned and a set of uncovered paths for each
commodity (P̄(k)). At each iteration, it evaluates the errors introduced by covering a
path with a sketch or by not covering a path with a sketch (uncovered paths). These er-
rors, denoted by βv,k and β̄v,k, respectively, are obtained by solving the follower problem
((2.7d)-(2.7j)). More precisely, βv,k is the error introduced by covering with a sketch
the paths crossing v for commodity k and β̄v,k is the error introduced by uncovering
the paths crossing v for commodity k. The algorithm then selects the optimal node v∗

and commodity k∗, i.e., the node and commodity that minimize βv,k and β̄v,k and it
installs a sketch if the covering is chosen, i.e., if βv,k is chosen. In other words, a sketch
is assigned on node v to monitor the flow of commodity k when the error introduced by
covering the selected path P ∈ P̄(k) is less than the error induced by not covering this
path. These steps are repeated until all uncovered paths for commodity k have been
examined.

Algorithm 3 Flow-Sketch assignment greedy algorithm
1: procedure Initialize
2: No sketch assigned. P̄(k) = P(k),∀k ∈ K.
3: end procedure
4: while ∃k ∈ K such that P̄(k) ̸= ∅ do
5: for all k ∈ K and v ∈ V covered by P̄(k) do
6: Evaluate: βv,k and β̄v,k by solving the follower problem.
7: end for
8: Select (v∗, k∗) minimizing βv∗,k∗ or β̄v∗,k∗.
9: if βv∗,k∗ is selected then

10: Install sketch on v∗ for k∗.
11: end if
12: Remove paths covered by v∗ from P̄ (k∗).
13: end while

74

2.3 Concluding remarks

In this chapter, we delve into a comprehensive understanding of telecommunication
network architecture and the anomalies they may encounter. We then explore the
practical applications related to network flow blocker problems, with a primary focus
on anomaly detection. Specifically, we demonstrate a direct correlation between the
maximum number of anomalies that may occur in the network and the solution of a
network flow blocker problem. We then focus on a second application known as network-
wide monitoring, which involves observing and analyzing the performance and activity
of an entire network infrastructure. By collecting and analyzing data from various
network components using sketches, network-wide monitoring enables quick detection
of anomalies. Within this context, we investigate the flow-sketch assignment problem,
an optimization challenge aimed at strategically placing sketches within a network. To
address this problem, we propose a bilevel formulation and a single-level reformulation,
followed by the presentation of a greedy algorithm as a solution approach. By solving
this problem, network operators aim to achieve efficient resource utilization, ensure
reliable connectivity, and deliver high-quality service to end-users.

75

Chapter 3

The maximum flow blocker problem :
Formulations and algorithms

Contents
3.1 The maximum flow blocker problem 78
3.2 Natural ILP models for the MFBP 79

3.2.1 A bilevel formulation . 79
3.2.2 A first single-level ILP model for the MFBP 81
3.2.3 Separation of the Benders cuts . 82
3.2.4 A second single-level ILP model for the MFBP 83
3.2.5 Separation of the target-flow inequalities 84
3.2.6 Comparison of the strength of the LP relaxations of the natural for-

mulations . 86
3.2.7 A third single-level ILP model for the MFBP 86

3.3 A compact ILP model for the MFBP 87
3.3.1 A fourth compact ILP model for the MFBP 87
3.3.2 Solving the MFBP via the MFIP . 89
3.3.3 Comparison of the strength of the LP relaxations of the formulations . 95
3.3.4 Complexity results for the MFBP and the MFIP 96

3.4 Extensions . 97
3.4.1 Continuous interdiction and blocker 97
3.4.2 Vertex interdiction and blocker problems 100
3.4.3 The maximum cardinality bipartite matching blocker problem 101

3.5 Concluding remarks . 102

In this chapter, we study the blocker variant of the maximum problem, namely the
maximum flow blocker problem (MFBP). We undertake a comprehensive study of several
integer linear programming (ILP) formulations. The first type of model, featuring an
exponential number of constraints, is solved through tailored Branch-and-Cut algorithms.
In contrast, the second type of ILP model, with a polynomial number of variables and
constraints, is solved via a state-of-the-art ILP solver. Using this formulation, we

77

establish a structural connection between the MFBP and the maximum flow interdiction
problem (MFIP). This result enables us to design a novel approach to obtaining solutions
for each problem from the other and derive complexity results for both the MFBP and
the MFIP.

3.1 The maximum flow blocker problem

In this section, we discuss the MFBP on a directed graph G = (V,A) containing a source
s ∈ V and a destination t ∈ V and where each arc a ∈ A is associated with a capacity
ca ∈ Z+ and a blocker cost ba ∈ Z+. For this study, as in Section 1.5.2, we focus on
graphs where the source is connected to the destination through a single entering arc.
The MFBP consists in finding a minimum-cost subset of arcs to be removed from the
graph G, i.e., blocked, in such a way that the maximum flow value between s and t in
the remaining graph is no larger than a given threshold. This threshold is a positive
integer value, called target-flow and denoted by Φ ∈ Z+. Without loss of generality, we
consider instances in which Φ is less than the maximum flow value in G, i.e, Φ < ψ(G).
Otherwise, clearly, an optimal MFBP solution is the empty subset of blocked arcs.
We introduce two vectors of m positive integer values, the arc-capacity vector c ∈ Zm

+
and the blocker cost vector r ∈ Zm

+ , containing respectively the capacities and blocker
costs associated with arcs of the graph G. Accordingly, an instance of the MFBP can
be represented as a tuple (G, c, r,Φ) and we denote by ζ(MFBP(G, c, r,Φ)) its optimal
solution value.
It is worth noticing that the MFBP is N P-hard and we provide in Section 3.3.4 a
reduction from the maximum flow interdiction problem (MFIP), which is N P-hard as
shown in Wood [1993].

Graphical illustration of MFBP optimal solutions

We illustrate in this section the features of optimal MFBP solutions thanks to the
example graph shown in Figure 1.5 with 9 vertices and 16 arcs. As previously, we do
not report the arc (t, s), assuming that the values c(t,s) and b(t,s) of its capacity and
blocker cost, respectively, are sufficiently large to have no impact on the maximum flow
value of the graph nor on the optimal solution value of the MFBP.
We recall that the graph G shown in Figure 1.5 has a maximum flow value of 36 and
the minimum cut is given by the set of arcs (v1, v5), (v4, v6), (v4, v7) and (v3, v7). It is
worth noticing that by removing all the arcs of the minimum cut in a blocker optic, no
flow can be routed from the source s to the destination t. In other words, an optimal
MCP solution provides a set of arcs of minimum capacity whose removal does not allow
any flow from the source to the destination.
The same graph is then used to illustrate an optimal MFBP solution in Figure 3.1. We
report on each arc two values separated by the symbol “/”: the first one, in blue, is the
flow of the arc in the remaining graph; the second one, in black, is the capacity of the
arc. Additionally, we report the blocker cost of the arc shown in red. We consider a

78

target-flow Φ = 23 (≈ 64% of the maximum flow value in G). In the optimal MFBP
solution shown, two arcs are blocked, (v1, v5) and (v2, v4), with a minimum total blocker
cost equal to 6. The blocked arcs are depicted with dashed blue lines. The maximum
flow value in the remaining graph is 18 ≤ Φ = 23. The figure shows with thicker lines
the arcs of the minimum cut in the remaining graph. It is worth noticing that not all
these arcs and the blocked arcs are contained in the minimum cut of G (see Section 3.3
for further comments on this important point).

s

v1

v2

v3

v5

v6

v7

tv4
5

0/11
10

12/15

3
0/7
9

3/10

7
3/4

7
3/3

5
0/12

2
0/15

9
15/20

7
3/9
9

0/3

6
6/15

4
0/9

2
0/11

4
3/3

10
15/15

Figure 3.1: An optimal MFBP solution with a target-flow Φ = 23.

3.2 Natural ILP models for the MFBP

In this section we introduce an MFBP model that belongs to the class of blocker models,
a special class of bilevel optimization formulations, see e.g., Dempe [2020]. This model
and its structural properties are the base of the natural ILP formulations developed
in Sections 3.2.2 and 3.2.4, each featuring an exponential family of constraints. These
formulations are presented in Bentoumi et al. [2023b] and Bentoumi et al. [2023a]. For
each family of constraints, we describe a separation procedure along with its complexity
(Sections 3.2.3 and 3.2.5). We also compare the strength of the LP relaxations of the
first two formulations (see Section 3.2.6). We then propose in Section 3.2.7 a third ILP
formulation featuring the two families of constraints together.

3.2.1 A bilevel formulation

There are two types of variables in blocker models, the first-level decision variables asso-
ciated with the so-called leader problem which affect the second-level decision variables
associated with the so-called follower problem. For the MFBP, the leader determines
a set of blocked arcs to be removed from the graph and the follower determines the
maximum flow value in the remaining graph. The leader anticipates the optimal fol-
lower’s solution to choose the minimum cost subset of arcs to be blocked that results in
a remaining graph having a maximum flow value no larger than Φ.

79

Let us introduce a vector x ∈ {0, 1}m of binary first-level variables m, each variable xa

is associated to an arc a ∈ A and takes the value 1 if and only if the arc a is blocked,
that is, removed from the graph G. A bilevel model for the MFBP reads as follows:

ζ(MFBP(G, c, r,Φ)) = min
x ∈ {0,1}m

{ ∑
a ∈ A

ra xa : ϑ(x) ≤ Φ
}
. (3.1)

The link between the leader problem and the follower problem is established by the value
function ϑ(x) which returns the maximum flow value in the graph containing only the
non-blocked arcs. This value is determined by the follower’s objective function which
also corresponds to the maximum flow value in the graph where the capacity of blocked
arcs is set to 0. As far as the leader problem is concerned, the objective function of
(3.1) minimizes the total cost of the blocked arcs under the constraint imposing that
the maximum flow value ϑ(x) is no larger than Φ.
Let us introduce a second vector y ∈ Qm

+ of m non-negative second-level variables, each
variable ya ≥ 0 is associated to an arc a ∈ A and it represents the value of the flow on
the arc. Therefore, the bilevel model (3.1) for the MFBP can be rewritten as follows:

ζ(MFBP(G, c, r,Φ)) = min
x ∈ {0,1}m

∑
a ∈ A

ra xa (3.2a)

ϑ(x) ≤ Φ, (3.2b)

where ϑ(x) = max
y ∈ Qm

+

∑
a ∈ δ+(s)

ya (3.2c)

∑
a ∈ δ+(u)

ya −
∑

a ∈ δ−(u)
ya = 0, ∀ u ∈ V,

(3.2d)

ya ≤ ca (1 − xa), ∀ a ∈ A.
(3.2e)

Constraints (3.2d) are the flow conservation constraints, see (1.5b), of the vertices.
Constraints (3.2e) model the capacity constraints of the arcs, see (1.5c), and they impose,
at the same time, a flow of value 0 on blocked arcs.
A binary realisation x ∈ {0, 1}m of the first-level variables is called a blocker policy and
it generates a non-blocked graph GNB(x) =

(
V,ANB(x)

)
, i.e., the graph with the same

vertex set of G and only the non-blocked arcs a ∈ A with xa = 0 (denoted ANB(x)). It is
worth noticing that ϑ(x) corresponds to the maximum value of the function φ(GNB(x)),
i.e., the maximum flow value in the non-blocked graph GNB(x).
In Theorem 2 of Cormican et al. [1998], an important structural property of the follower
problem is established. In particular, given a blocker policy x, it is proven that the
follower problem can be restated as follows:

ϑ(x) = max
y ∈Qm

+

{ ∑
a ∈ δ+(s)

ya −
∑

a ∈ A

xa ya : (1.5c), (1.5b).
}
. (3.3)

80

In this LP reformulation, constraints (3.2e) are replaced with the “standard” capacity
constraints (1.5c) for the arcs. The constraints of the follower do not depend anymore on
the first-level variables and a penalization term is added to the new objective function
to ensure that ϑ(x) is the maximum flow value in the non-blocked graph GNB(x).
In other words, Theorem 2 of Cormican et al. [1998] states that the maximum flow
value in GNB(x) is equal to the outgoing flow from the source minus the total flow on
the blocked arcs. It is worth noticing that the follower problem is an LP formulation
featuring totally unimodular system of constraints and accordingly its variables take
integer values in its optimal solutions. Moreover, Model (3.3) remains clearly valid also
for fractional solution x ∈ [0, 1]m.

3.2.2 A first single-level ILP model for the MFBP

In this section, we introduce the first ILP formulation for the MFBP using only the
vector x of binary variables, i.e., the natural variables associated with the arcs whose
binary realisations represent the blocker policies. The ILP model is obtained starting
from the bilevel model (3.2) and projecting out the variables y of the follower model
(3.3). This method is based on a Benders decomposition approach derived from the
work of Wood [2011] for general bilevel interdiction problems. In this section, we adapt
the approach to address the blocker variant of the MFP. Additionally, we introduce an
exact algorithm designed specifically to solve the ILP formulation.
The polytope of feasible solutions for the follower subproblem, which does not depend
on the leader variables as shown in (3.3), can be defined as follows:

Pf =
{

y ∈ Qm
+ :

∑
a ∈ δ+(s)

ya ≥ Φ + 1, (1.5c), (1.5b).
}
. (3.4)

We remark that only flows of value strictly larger than Φ are associated with the non-
dominated constraint (3.2b). This can be imposed by a “≥ Φ + 1” constraint since all
the capacities of the arcs are integer values. For this reason, Pf includes the constraint
imposing the lower bound on the value of the flow outgoing from the source. The model
(3.3) is valid for any (fractional) vector x ∈ [0, 1]m and, since the objective function
is linear, it is sufficient to optimize over the set of extreme points y of Pf (denoted
ext(Pf). The constraints (3.2b) can then be restated as follows:

ϑ(x) = max
y ∈ ext(Pf)

 ∑
a ∈ δ+(s)

ya −
∑

a ∈ A

xa ya

 ≤ Φ. (3.5)

Accordingly, by applying a Benders-like decomposition to the bilevel model (3.2), we
obtain the following single-level ILP reformulation for the MFBP:

ζ(MFBP(G, c, r,Φ)) = min
x ∈ {0,1}m

∑
a ∈ A

ra xa (3.6a)

∑
a ∈ δ+(s)

ya −
∑
a∈A

xa ya ≤ Φ, ∀ y ∈ ext(Pf). (3.6b)

81

where constraints (3.2b) are replaced with constraints (3.6b), called Benders cuts, an
exponential-size family of constraints, one for each extreme point of Pf . This ILP model
is called natural formulation since it features only the natural variables associated with
the arcs and it is denoted by n-ILPB in the remainder of the article.
To solve n-ILPB, we develop a Branch-and-Benders-Cut approach, i.e., a Branch-and-
Cut algorithm where Benders cuts (3.6b) are separated in the nodes of the branching
tree for integer and fractional solutions. This exact algorithm requires defining a relaxed
master problem (RMP) where the binary variables are replaced with continuous variables
taking values between 0 and 1. Only a subset of constraints are included in the RMP
in the initialization phase. To check that RMP solutions respect all the Benders cuts
or to determine one or more violated constraints which are then added to the RMP, we
propose the separation procedure described in the next section.

3.2.3 Separation of the Benders cuts

Given a (fractional) solution x ∈ [0, 1]m of the RMP in a Branch-and-Cut node, the
separation problem for the Benders cuts (3.6b) requires finding a vector y ∈ ext(Pf)
such that: ∑

a∈δ+(s)
ya −

∑
a∈A

xa ya > Φ (3.7)

or to prove that such a vector does not exist, i.e., that all Benders cuts are satisfied by
the solution x. Inequality (3.7) can be equivalently rewritten as follows:∑

a∈δ+(s)
(xa − 1) ya +

∑
a∈A\δ+(s)

xa ya < −Φ (3.8)

and accordingly, it is necessary to find a vector y ∈ ext(Pf) leading to the minimum
value of the left-hand-side of (3.8). Let us introduce the minimum cost circulation
problem (MCCP). The MCCP requires a vector g ∈ Qm where each element ga is the
cost per unit of flow on the arc a ∈ A and a vector b ∈ Qm where each element ba is
the lower bound on the flow value passing on the arc a ∈ A. The MCCP aims to find
a minimum cost flow respecting the capacity constraints (1.5c), the flow conservation
constraints (1.5b), and the lower bounds imposed on the flow of the arcs. By using the
vector of continuous variables y ∈ Qm

+ for the flow values on the arcs, the MCCP can
be modeled by the following LP formulation:

min
y ∈ Qm

+

 ∑
a ∈ A

ga ya : (1.5b), ba ≤ ya ≤ ca, ∀ a ∈ A

 . (3.9)

The constraints of this formulation imply the constraints of Pf and accordingly, the
MCCP is used to characterize the complexity of the separation problem in the proof of
the following proposition.

Proposition 1. The separation problem for the Benders cuts (3.6b) can be solved in
strongly polynomial time for (fractional) solutions x ∈ [0, 1]m of the RMP.

82

Proof. We construct a MCCP instance by setting ga = (xa − 1) for the arcs a ∈ δ+(s),
ga = xa for the arcs a ∈ A \ δ+(s), b(t,s) = Φ + 1, ba = 0 for every arc a ∈ A \
{(t, s)} and the same capacities on the arcs. An optimal solution y of this MCCP
instance respects, by construction, the capacity constraints (1.5c), the flow conservation
constraints (1.5b) and by setting b(t,s) = Φ + 1, we have ∑

a∈δ+(s) ya ≥ Φ + 1, i.e., all the
constraints of Pf are satisfied. If the optimal MCCP solution value is strictly smaller
than −Φ, then the Benders cut of maximum violation is found and it is associated with
y. Otherwise, all Benders cuts are satisfied by solution x. The MCCP can be solved in
strongly polynomial time, see e.g., Tardos [1985]. Accordingly, the separation problem
of the Benders cuts (3.6b) can be solved in strongly polynomial time for any (fractional)
solution x. □

3.2.4 A second single-level ILP model for the MFBP

In this section, we introduce a second ILP formulation using as previously only the
natural variables x associated with the arcs. The ILP model presented is a set-covering
type formulation that can be used for solving interdiction and blocker problems. We
refer the interested reader to Wei and Walteros [2022] for set-covering formulations of
the shortest path interdiction problem, the maximum clique vertex interdiction problem,
and the minimum spanning tree interdiction. We then describe the exact algorithm that
can be developed to solve this second ILP formulation to proven optimality.
For a given vector y ∈ ext(Pf), we define the subset of arcs AS(y) ⊆ A routing a strictly
positive flow in the extreme point y as follows:

AS(y) =
{
a ∈ A : ya > 0

}
.

These arcs induce the support graph GS(y) = (V,AS(y)) in which, by construction, the
maximum flow value ψ(GS(y)) is larger than or equal to Φ + 1. We now introduce the
following set of constraints called the target-flow inequalities:∑

a ∈AS(y)
xa ≥ 1, ∀ y ∈ ext(Pf). (3.10)

For any vector y ∈ ext(Pf), the associated constraint (3.10) is valid since it imposes to
block at least one arc in the subset AS(y) ⊂ A. In other words, the constraint prevents
having a flow of value strictly larger than Φ in the support graph GS(y). Clearly, it is an
exponential family of constraints, one for each extreme point y ∈ ext(Pf). Accordingly,
we obtain the following second natural formulation for the MFBP, denoted by n-ILPTF.
This formulation reads as follows:

ζ(MFBP(G, c, r,Φ)) = min
x ∈ {0,1}m

∑
a ∈ A

ra xa (3.11a)

∑
a ∈AS(y)

xa ≥ 1, ∀ y ∈ ext(Pf). (3.11b)

It is worth noticing that the target-flow inequalities share a similar combinatorial struc-
ture with the super-valid inequalities (SVI) for bilevel network interdiction models, pro-
posed in Wood [2011]. A technique to lift the right-hand-side (RHS) of the SVI is

83

described in Wood [2011]. A similar technique can be used to lift the RHS of the target-
flow inequalities (3.10), as well. For a given y ∈ ext(Pf), in case the following inequality
holds: ∑

a∈δ+(s)
ya − max

a,b ∈ AS(y)
{ya + yb} ≥ Φ + 1, (3.12)

the RHS of the target-flow inequality can be set to three. This is because blocking
the two arcs routing the maximum flow values in AS(y) is not sufficient to have a
maximum flow value ψ(GS(y)) smaller than or equal to Φ. If inequality (3.12) holds
by subtracting only the maximum flow value of the arcs, then the RHS can be set to
two. This lifting can be extended to subsets of three or more arcs. However, in our
computational experiments (see Chapter 4), only subsets of at most two arcs are found
with the desired properties. Since finding the largest two values in y can be done in
linear time, the lifting can be performed in a very efficient manner but our extensive
preliminary results show that it has a limited beneficial impact on the computational
performance.
In Wood [2011], the separation problem of the SVI (which is similar to the separation
problem of the target-flow inequalities) is not addressed nor is its computational com-
plexity. For this reason, in the next section, we present the separation problem of the
target-flow inequalities (3.10) and characterize its computational complexity. In the
computational study presented in Chapter 4, we discuss the impact on the performance
of n-ILPTF determined by different exact and heuristic separation procedures based on
the separation problem of the target-flow inequalities.

3.2.5 Separation of the target-flow inequalities

Given a (fractional) solution x ∈ [0, 1]m of the RMP in a Branch-and-Cut node, the
separation problem for the target-flow inequalities (3.10) requires finding a vector y ∈
ext(Pf) such that: ∑

a ∈ A(y)
xa < 1, (3.13)

or to prove that such a vector does not exist, i.e., that all target-flow inequalities are
satisfied by the solution x. Thus, it is necessary to find a vector y ∈ ext(Pf) leading
to the minimum value of the left-hand-side of (3.13). We distinguish two cases. The
first one is for integer RMP solutions and the second one is for fractional solutions.
For an integer solution x ∈ {0, 1}m, i.e., for a blocker policy, the separation problem
can be restated as an MFP and the next proposition characterizes its computational
complexity:

Proposition 2. The separation problem for the target-flow inequalities (3.10) can be
performed in strongly polynomial time for integer solutions x ∈ {0, 1}m of the RMP.

Proof. Since xa ∈ {0, 1},∀a ∈ A, a violated target-flow inequality can be found if and
only if an extreme point y ∈ ext(Pf) exists such that the subset of arcs A(y) ⊂ A does
not contain any blocked arcs, i.e., arcs a ∈ A for which xa = 1. Accordingly, finding a

84

violated target-flow inequality can be done by solving the MFP in the non-blocked graph
GNB(x) =

(
V,ANB(x)

)
. In case the maximum flow value ψ(GNB(x)) is ≥ Φ + 1, an

extreme point y ∈ ext(Pf) associated to a maximally violated target-flow inequality is
found since the left-hand-side of (3.10) is equal to 0. Otherwise, target-flow inequalities
are not violated by x. The MFP can be solved in strongly polynomial time, see e.g.,
Ahuja et al. [1993] and Olver and Vegh [2016], and accordingly, the separation problem
of the target-flow inequalities (3.10) can be solved in strongly polynomial time for any
integer RMP solution x.

□

For fractional RMP solutions x, let z ∈ {0, 1}m be a vector of binary variables where
each variable za is equal to 1 if and only if the arc a is in A(y), i.e., if the arc a is used
to route a flow in y ∈ ext(Pf). The separation problem for the target-flow inequalities
can be modeled by the following ILP problem:

min
z ∈ {0,1}m,

y ∈ ext(Pf)

 ∑
a∈A

xa za : ya ≤ ca za, ∀ a ∈ A

 . (3.14)

The objective function minimizes the left-hand side of (3.13). The constraints are the
ones of Pf with the additional constraints to impose to select an arc if it routes a flow
in y. If the optimal solution value is strictly smaller than 1, a target-flow inequality
maximally violated by x is found. Otherwise, no target-flow inequalities are violated by
x.
Let us introduce the minimum edge-cost flow problem (MECFP), which is used to char-
acterize the complexity of the separation problem for fractional RMP solutions. Given
an arc-price vector p ∈ Zm

+ and a flow-value bound R ∈ Z+, the MECFP requires
finding a minimum-price flow from s to t with a flow value larger than or equal to R.
The MECFP is N P-complete in its decision version, see Garey and Johnson [1979], and
accordingly, it is N P-hard in its optimization version. It is worth noticing that the
MECFP remains N P-hard also when pa is in [0, 1]. By reducing the MECFP to the
separation problem, the next proposition characterizes the computational complexity of
the latter one.

Proposition 3. The separation problem for the target-flow inequalities (3.10) is N P-
hard for fractional solutions x ∈ [0, 1]m of the RMP.

Proof. Starting from a MECFP instance, we set xa = pa (a value in [0, 1]) for every
arc a ∈ A and Φ = R − 1. Once the separation problem (3.14) is solved, its optimal
solution (y, z) corresponds to an optimal MECFP solution. Since y is in ext(Pf), all
the MECFP constraints are satisfied, i.e., the flow conservation constraints, the capacity
constraints and the requirement of having a flow value larger than or equal to R. The
variable values z correspond to the arcs with a minimum-price flow from s to t.

□

Following the idea in proposed in Wood [2011], a violated target-flow inequality (3.10)
can be derived from a violated Benders cut (3.6b), which are both associated with a

85

vector y ∈ ext(Pf). More precisely, if ∑
a∈AS(y) xa > 1, a violated target-flow inequality

is found and can be added to the RMP. This method for generating violated target-flow
inequalities for fractional and integer RMP solutions based on a violated Benders cut is
computationally effective, as shown by the tests reported in Chapter 4.

3.2.6 Comparison of the strength of the LP relaxations of the nat-
ural formulations

This section compares the strength of the LP relaxations of the two natural formulations
n-ILPB and n-ILPTF, for the MFBP, presented in the previous section. Let us introduce
the two polytopes Pn,B and Pn,TF, defined respectively by the Benders cuts (3.6b) and
the target-flow inequalities (3.10), which are formally defined as follows:

Pn,B = {x ∈ [0, 1]m : x satisfies (3.6b)}, Pn,TF = {x ∈ [0, 1]m : x satisfies (3.10)}.
The next proposition shows that the upper bounds on ζ(MFBP(G, c, r,Φ)) provided by
the optimal solution value of the LP relaxations of n-ILPB and n-ILPTF do not dominate
each other.
Proposition 4. There are instances of the MFBP for which, Pn,TF ⊂ Pn,B, and other
ones for which Pn,B ⊂ Pn,TF.
Proof. We consider the graph G represented in Figure 3.2 and we exhibit two instances,
one for which the LP relaxation of n-ILPTF is strictly stronger than the one of n-ILPB

and another for which the opposite holds.
Setting Φ = 7 (≈ 19% of the maximum flow), the optimal solution value of the LP
relaxation of n-ILPTF is equal to 16 with x(s,v3) = x(v1,v5) = x(v2,v4) = 1 and xa = 0
for all other arcs, which corresponds to an optimal MFBP solution. For the same
instance, the optimal solution value of the LP relaxation of n-ILPB is equal to 133

10 with
x(v1,v5) = x(v2,v4) = 1, x(v3,v7) = 73

100 and xa = 0 for all other arcs. Therefore, for this
instance, we have Pn,TF ⊂ Pn,B.
We now consider the graph G with different blocker costs and arc capacities. We asso-
ciate with the arcs (v1, v5) and (v3, v7) a capacity equal to 5. We associate with the arcs
(s, v1), (s, v2) and (s, v3) a blocker cost equal to 100. All other arcs have unitary blocker
costs and capacities. The maximum flow value is now 3. Setting Φ = 1 (≈ 34% of the
maximum flow), the optimal solution value of the LP relaxation of n-ILPTF is equal to 3

2 ,
with x(v5,t) = x(v6,t) = x(v7,t) = 1

2 and xa = 0 for all other arcs, while the optimal solution
value of the LP relaxation of n-ILPB is equal to 39

20 with x(v5,t) = x(v6,t) = x(v7,t) = 13
20 and

xa = 0 for all other arcs. For this second instance, we have Pn,B ⊂ Pn,TF. □

3.2.7 A third single-level ILP model for the MFBP

A third natural formulation for the MFBP can be obtained by using both families of
constraints, i.e, the Benders cuts (3.6b) and the target-flow inequalities (3.10). This
formulation is denoted by n-ILPB+TF and it reads as follows:

ζ(MFBP(G, c, r,Φ)) = min
x ∈ {0,1}m

 ∑
a ∈ A

ra xa : (3.6b), (3.10)
 . (3.15)

86

The performance of all three ILP formulations is empirically evaluated and the results
are discussed in the computational section of this manuscript (see Chapter 4). Moreover,
the strength of the natural formulations is discussed and compared with the additional
formulation introduced in the next paragraph (see Section 3.3.3).

3.3 A compact ILP model for the MFBP

In this section, we first present a compact ILP formulation for the MFBP. This formu-
lation, featuring a polynomial number of variables and constraints, is obtained through
the “dualize-and-combine” method (see Wei and Walteros [2022]) applied to the bilevel
model introduced in Section 3.2.1, i.e., Model (3.2) and it exploits the nature of the
follower problem. We then present a property that establishes a structural link between
solutions of the MFBP and solutions of the maximum flow interdiction problem (MFIP).
This result allows us to derive some complexity results for the MFBP and the MFIP.

3.3.1 A fourth compact ILP model for the MFBP

By using the vector of binary variables x ∈ {0, 1}m representing the blocked arcs, we
derive from Model (3.2), a single-level ILP formulation exploiting the nature of the value
function ϑ(x), as defined by Model (3.3), in which the dependency on the x variables
is in the objective function of the model.
Given x ∈ [0, 1]m, the objective function of (3.3) can be re-written as y(t,s) −∑

a ∈ A xa ya.
This is due to the fact that the flow on the arc (t, s) is equal to the outgoing flow from
the source s. Accordingly, the dual of Model (3.3) reads as follows:

ϑ(x) = min
γ ∈Qn

+,

µ ∈Qm
+

{ ∑
a ∈ A

ca µa : µuv + γv − γu ≥ −xuv, ∀ (u, v) ∈ A, γs − γt ≥ 1
}
. (3.16)

This dual LP model features a vector µ ∈ Qm
+ of m dual non-negative variables associ-

ated with the capacity constraints (1.5c) and a vector γ ∈ Qn
+ of n dual non-negative

variables associated with the flow conservation constraints (1.5b). The dual Model (3.16)
has a totally unimodular system of constraints and accordingly, all variables µ take bi-
nary values in any optimal dual solutions and there exists an optimal dual solution
where all variables γ take binary values.
By using in (3.2) the value function ϑ(x) as defined in (3.16) and two sets of binary
variables µ ∈ {0, 1}m and γ ∈ {0, 1}n, we obtain the following bilevel reformulation of
Model (3.2):

ζ(MFBP(G, c, r,Φ)) = min
x ∈ {0,1}m

∑
a ∈ A

ra xa (3.17a)

ϑ(x) ≤ Φ, (3.17b)

87

where ϑ(x) = min
γ ∈ {0,1}n,

µ ∈ {0,1}m

∑
a ∈ A

ca µa (3.17c)

µuv + γv − γu ≥ −xuv, ∀ (u, v) ∈ A
(3.17d)

γs − γt ≥ 1. (3.17e)

It is worth noticing that Constraints (3.17b) impose that the optimal solution value
of the follower problem ((3.17c)-(3.17e)) should not exceed the target-flow Φ. We can
replace ϑ(x) by the objective function value in (3.17c), i.e., “∑

a∈a caµa”, since by doing
so, we impose that there exists at least one solution of the follower problem ((3.17c) -
(3.17e)) whose value is smaller than Φ and accordingly, its optimal solution value is also
smaller than Φ.
Therefore, we obtain a compact ILP formulation for the MFBP, which reads as follows:

ζ(MFBP(G, c, r,Φ)) = min
x,µ ∈ {0,1}m,

γ ∈ {0,1}n

∑
a∈A

ra xa (3.18a)

∑
a∈A

ca µa ≤ Φ, (3.18b)

µuv + xuv + γv − γu ≥ 0, ∀ (u, v) ∈ A, (3.18c)

γs − γt ≥ 1. (3.18d)

This ILP formulation (3.18), denoted by c-ILP, is called compact formulation, since
it features a polynomial number of variables and constraints. Accordingly, it can be
directly solved using an ILP solver.
It is worth noticing that in any optimal solution, for a given arc a ∈ A, we can have
either µa = 1 or xa = 1 but not both. This is due to the fact that ra > 0, ∀a ∈ A. If
xa = µa = 1, then the solution obtained by setting µa = 0 and keeping other values
unchanged is still feasible and does not increase the objective function value. For this
reason and due to the nature of constraints (3.18c) and (3.18d), an optimal solution
of (3.18) is a cut in the graph G, denoted by δ(UG(x)), which depends on an optimal
blocker policy x. This cut δ(UG(x)) is given by the arcs a ∈ A where µa = 1 or xa = 1
and it is the union of the set of non-blocked arcs such that xa = 0 and µa = 1 and
the set of blocked arcs such that xa = 1 and µa = 0. If a variable γu is equal to 1, it
indicates that vertex u is in the subset UG(x) containing the source s and if it is equal
to 0, it indicates that vertex u is in the subset V \ UG(x) containing the destination t.
In addition, any optimal solution (x,µ,γ) of Model (3.18) contains the minimum cut
δ(UGNB(x)) in the non-blocked graph GNB(x) which is given by the arcs a ∈ ANB(x)
such that µa = 1 and UGNB(x) is a set of vertices containing the source s. This is due
to the fact that constraints (3.18c) of Formulation (3.18) can be equivalently rewritten
as follows:

µuv + γv − γu ≥ 0, ∀ (u, v) ∈ ANB(x), (3.19)

88

where ANB(x) are the arcs of GNB(x). Together with constraints (3.18d), they are the
standard MCP constraints for the non-blocked graph GNB(x).
Figure 3.2 illustrates the same optimal MFBP solution as Figure 3.2 with a target-
flow Φ = 23. In addition, we report on each arc the values of µ and x variables
associated with an optimal solution (x,µ,γ) of Model (3.18). The arcs of the minimum
cut δ(UGNB(x)) in the non-blocked graph GNB(x) are depicted with thick red lines, i.e.,
the arcs a ∈ A with µa = 1. The arcs of δ(UG(x)) are the arcs of δ(UGNB(x)) together
with the blocked arcs depicted with dashed blue lines, i.e., the arcs a ∈ A with xa = 1.

s

v1

v2

v3

v5

v6

v7

tv4
5

0/11
10

12/15

3
0/7
9

3/10

7
3/4

7
3/3

5
0/12

2
0/15

9
15/20

7
3/9
9

0/3

6
6/15

x = 1 µ = 0
4

0/9

x = 1 µ = 0
2

0/11

x = 0 µ = 1
4

3/3

x = 0 µ = 1
10

15/15

Figure 3.2: The cut δ(UG(x)) (red and blue dashed arcs) associated to an optimal
MFBP solution (x,µ,γ), composed by the blocked arcs (blue dashed arcs) and the
minimum cut δ(UGNB(x)) (red arcs) in the non-blocked graph GNB(x).

Figure 3.2 also shows that the cut δ(UG(x)) containing the optimal MFBP solution
does not necessarily correspond to the minimum cut in the graph. Specifically, in the
depicted example, the optimal MFBP solution is contained in a cut having a value
of 38 and composed by the arcs (v1, v5), (v1, v4), (v2, v4), and (v3, v7). In contrast, the
minimum cut in the same graph has a value of 36 and it is composed by the arcs
(v1, v5), (v4, v6), (v4, v7), and (v3, v7), as illustrated in Figure 1.5.
It is worth noticing that the structure of Model (3.18) exhibits a notable similarity to
the formulation introduced in Wood [1993] for the maximum flow interdiction problem
(MFIP). More precisely, the next section demonstrates the existence of a structural link
between the solutions of the MFIP and the solutions of the MFBP.

3.3.2 Solving the MFBP via the MFIP

Before discussing the link between the MFBP and the MFIP, we recall in this section
the compact ILP formulation for the MFIP, proposed in Wood [1993] (See Chapter 1).
Given a graph, together with arc-capacities, positive integer interdiction costs qa ∈ Z+
on the arcs a ∈ A and an interdiction budget denoted by Ψ, we recall that the MFIP
consists in finding a subset of arcs of total interdiction cost no larger than Ψ to be
removed from the graph, i.e., interdicted, in such a way that the maximum flow value

89

in the remaining graph is minimized. We introduce the interdiction cost vector q ∈ Zm
+

of m positive integer values containing the interdiction costs associated with the arcs of
G. Accordingly, an instance of the MFIP can be represented as a tuple (G, c, q,Ψ) and
we denote by ζ(MFIP(G, c, q,Ψ)) its optimal solution value.
Let us introduce w ∈ {0, 1}m, which is a vector of binary variables associated with the
set of arcs A of G, each variable wa takes value 1 if and only if the arc a is removed from
G, i.e., interdicted. A binary realization of variables w ∈ {0, 1}m is called an interdiction
policy and it generates a non-interdicted graph GNI(w) =

(
V,ANI(w)

)
, i.e., the graph

induced by the set of non-interdicted arcs a ∈ A with wa = 0 (denoted ANI(w)).
As explained in Chapter 1, in Wood [1993], the author employs a dualize-and-combine
approach to derive a compact ILP formulation for the MFIP starting from its bilevel
formulation. However, in contrast with the approach detailed in Section 3.2.1, the
compact formulation of the MFIP is obtained after computing the dual of the follower
problem, which is a MFP where the capacity constraints takes into account the action
of the leader. In other words, as for the MFBP, the “standard” capacity constraints
(1.5c) of the MFP are replaced by the capacity constraints “ya ≤ ca(1 − wa)” for all
arcs a ∈ A. By fixing values of the interdiction variables, the capacity constraints of
the follower problem become independent of the first-level variables, adopting the stan-
dard form with a right-hand side of ca(1 − wa). This allows to replace the follower
problem by its dual formulation, resulting in a single-level reformulation model featur-
ing a quadratic objective function and constraints of the MC. The author then uses
linearization techniques, taking advantage of the binary nature of the dual variables.
Using two additional sets of binary variables β ∈ {0, 1}m and α ∈ {0, 1}n, the compact
ILP formulation for the MFIP of Wood [1993] reads as follows:

ζ(MFIP(G, c, q,Ψ)) = min
w,β ∈ {0,1}m,

α ∈ {0,1}n

∑
a∈A

ca βa (3.20a)

∑
a∈A

qa wa ≤ Ψ, (3.20b)

βuv + wuv + αv − αu ≥ 0, ∀ (u, v) ∈ A, (3.20c)

αs − αt ≥ 1. (3.20d)
It is worth noticing that constraints (3.20c) and (3.20d) share the same structural form
as constraints (3.18c) and (3.18d), respectively. For this reason, an optimal solution
of (3.20) is also a cut in the graph G, denoted by δ(UG(w)), which depends on an
optimal interdiction policy w (see also Royset and Wood [2007]). More precisely, the
cut δ(UG(w)) is given by the arcs a ∈ A where βa = 1 or wa = 1 and it is the union
of the set of non-interdicted arcs ANI(w) such that βa = 1 and wa = 0 and the set
of interdicted arcs such that wa = 1 and βa = 0. The minimum cut δ(UGNI (w)) in
the non-interdicted graph GNI(w) is given by the arcs a ∈ ANI(w) such that βa = 1.
Constraint (3.20b) imposes that the total interdiction cost, i.e., the interdiction cost
induced by the set of interdicted arcs, does not exceed the interdiction budget Ψ.
The next proposition shows how to obtain an optimal MFBP solution starting from
an optimal MFIP solution, where the interdiction costs are set to the capacities of the

90

arcs, the capacities are set to the blocker costs and the interdiction budget is set to the
target-flow, by solving a MCP in the non-interdicted graph.

Proposition 5. Given an instance (G, c, r,Φ) of the MFBP, one of its optimal solution
is given by an optimal solution of the MCP in the non-interdicted graph GNI(w) given
by an optimal interdiction policy w of the MFIP instance (G, r, c,Φ).

Proof. Let (G, c, r,Φ) and (G, c, q,Ψ) be an instance of the MFBP and the MFIP,
respectively. We set qa = ca and ca = ra for every arc a ∈ A and Ψ = Φ. Once the MFIP
(see Model ((3.20a)-(3.20d))) is solved, its optimal solution (w,β,α) corresponds to an
optimal MFBP solution. Indeed, since w ∈ {0, 1}m,β ∈ {0, 1}m and α ∈ {0, 1}n, the
constraints of the MFIP, i.e, constraints (3.20b), (3.20c) and (3.20d) become identical to
the constraints of the MFBP, i.e, Constraints (3.18b), (3.18c) and (3.18d), respectively.
The variable values β corresponds to the blocked arcs, while the variable values w
corresponds to the arcs remaining in the cut δ(UG(β)). According to the objective
function (3.20a) of the MFIP, the total blocker cost of the blocked arcs will be minimized,
leading to the optimal solution value of the MFBP. Moreover, when solving a MFIP,
the variable values β corresponds to the arcs of the minimum cut in the non-interdicted
graph GNI(w), as explained previously. Accordingly, the blocked arcs corresponds to
the minimum cut in the non-interdicted graph GNI(w), which ends the proof.

□

The same reasoning can be used to prove, as stated in the next proposition, that an
optimal MFIP solution can be found starting from an optimal MFBP solution, where
the blocker costs are set to the capacities of the arcs, the capacities are set to the
interdiction costs and the target-flow is set to the interdiction budget, by solving a
MCP in the non-blocked graph.

Proposition 6. Given an instance (G, c, q,Ψ) of the MFIP, one of its optimal solution
is given by an optimal solution of the MCP in the non-blocked graph GNB(x) given by
an optimal blocker policy x of the MFBP instance (G, q, c,Ψ).

Proof. The proof of this proposition can be readily adapted from the proof developed
for Proposition 5. □

Finally, for the optimal solution values of the MFBP and the MFIP, we have the following
corollary:

Corollary 1. Given an instance (G, c, r,Φ) of the MFBP, its optimal solution value
ζ(MFBP(G, c, r,Φ)) is equal to the maximum flow value ψ(GNI(w)) in the non-interdicted
graph GNI(w) given by an optimal interdiction policy w of the MFIP instance (G, r, c,Φ),
i.e., we have:

ζ(MFBP(G, c, r,Φ)) = ψ(GNI(w)). (3.21)
Given an instance (G, c, q,Ψ) of the MFIP, its optimal solution value ζ(MFIP(G, c, q,Ψ))
is equal to the maximum flow value ψ(GNB(x)) in the non-blocked graph GNB(x) given
by an optimal blocker policy x of the MFBP instance (G, q, c,Ψ), i.e., we have:

ζ(MFIP(G, c, q,Ψ)) = ψ(GNB(x)). (3.22)

91

In Figure 3.3, we represent an optimal MFIP solution on the same graph shown in Figure
3.2, where the interdiction costs equal the capacities of the arcs and the capacities of
the arcs equal the blocker costs. We report on each arc a ∈ A, the interdiction cost in
red, the arc capacity in black and the maximum flow value of the non-interdicted graph
in blue. For the arcs in the cut δ(UG(w)) of G associated to an optimal MFIP solution
(w,β,α) with an interdiction budget Ψ = 23, we also report the values of the w and
β variables (without reporting the arcs). The arcs of the minimum cut δ(UGNI (w)) in
GNI(w) are depicted with thick red lines, i.e., the arcs (v1, v5) and (v2, v4). The arcs of
δ(UG(w)) are the arcs of δ(UGNI (w)) together with the interdicted arcs depicted with
dashed blue lines, i.e., the arcs (v1, v4) and (v3, v7).

s

v1

v2

v3

v5

v6

v7

tv4

7
3/3
10
3/9

4
0/7

3
0/7

12
1/5

15
0/2

20
0/9

9
0/7
3

0/9
15

0/10

15
4/6
11
2/5

µ = 0 w = 1
3

0/4

µ = 0 w = 1
15

0/10

µ = 1 w = 0
11
2/2

µ = 1 w = 0
9

4/4

Figure 3.3: The cut δ(UG(w)) (red and blue dashed arcs) associated to an optimal
MFIP solution (w,β,α) with an interdiction budget Ψ = 23 and the minimum cut
δ(UGNI (w)) (red arcs) in the non-interdicted graph GNI(w).

Figure 3.3 illustrates Proposition (5). Indeed, the minimum cut δ(UGNI (w)) corresponds
to the set of blocked arcs in the optimal MFBP solution represented in Figure 3.2. In
this MFBP example, the target-flow is equal to the interdiction budget, the blocker
costs are equal to the arc-capacities and the arc-capacities are equal to the interdiction
costs. Moreover, the optimal solution value of the MFBP example represented in Figure
3.2 is equal to 6. As stated by Corollary 1, this value corresponds to the maximum flow
remaining in the non-interdicted graph shown in Figure 3.3.

Discussion on the relationship between the MFBP and the MFIP

Proposition 5 and Proposition 6 establish a structural relationship between solutions
of the blocker and the interdiction variant of the MFP. More precisely, it proves that
solutions of the MFBP can be obtained using any exact algorithm designed for the
MFIP, and then solving a MCP in the non-interdicted graph, and vice versa. This is
due to the nature of the follower problem that is common for both variants. Indeed,
while the blocker problem and the interdiction problem always share the same decision
problem, a comparable structural link does not extend to other variants of blocker and
interdiction.

92

For instance, let us consider the blocker and the interdiction variant of the shortest path
problem.
Let G = (V,A) be a directed graph where every arc a ∈ A is associated with a length
la ∈ R+, a delay factor da ∈ R+ and an interdiction cost qa ∈ R+. Given an interdiction
budget Ψ, the shortest path interdiction problem (SPIP) consists in finding a subset
of arcs for which the length will be extended by the affected delay, without exceeding
the interdiction budget and so that the shortest path between a source s ∈ V and a
destination t ∈ V is maximized. We refer the reader to Chapter 1 for further details
on the shortest path interdiction problem (SPIP). Given an interdiction vector w, we
recall that a model for the SPIP reads as follows (see Chapter 1):

ζ(SPIP) = max
w∈{0,1}m

πt − πs (3.23a)

πv − πu − da wa ≤ 0 a = (u, v) ∈ A, (3.23b)
πs = 0 (3.23c)∑

a∈A

qa wa ≤ Ψ (3.23d)

πu unrestricted u ∈ V (3.23e)

Using the same directed graph G = (V,A) where every arc a ∈ A is associated with
a length la ∈ R+, a delay factor da ∈ R+ and a blocker cost ra ∈ R+, we consider a
target length Φ. The shortest path blocker problem (SPBP) consists in finding a subset
of arcs for which the length will be extended by the affected delay, so that the shortest
path between a source s ∈ V and a destination t ∈ V exceeds Φ. The total blocker cost
should be minimized.
Given a blocker vector x ∈ {0, 1}m, we now introduce a bilevel model to solve the
shortest path blocker problem (SPBP).

93

ζ(SPBP) = min
∑
a∈A

raxa (3.24a)

ϑ(x) ≥ Φ (3.24b)
xa ∈ {0, 1} a ∈ A, (3.24c)

where ϑ(w) = min
∑
a∈A

(la + wada)µa (3.24d)

∑
a∈δ+(u)

x(u,v) −
∑

a∈δ−(u)
µ(u,v) =

1 if u = s

0 if u ∈ Ṽ

−1 if u = t

u ∈ V,

(3.24e)

µa ≥ 0 a ∈ A.
(3.24f)

In this bilevel model, the leader problem is given by the first 0 − 1 program stated by
((3.24b)-(3.24c)); and the follower problem is given by the inner minimization program
stated by ((3.24d)-(3.24f)). As previously, the leader permits to determine the set of
blocked arcs. The follower aims at finding the shortest path in the non-blocked graph,
i.e, the graph induced by the set of non-blocked arcs a ∈ A with xa = 0. The variable
ϑ(w) represents the length of the shortest path in the non-blocked graph. Constraint
(3.24b) guarantees that this length is greater than or equal to Φ and constraints (3.24e)
are the path constraints.
Using the same approach as for the SPIP, we derive from this bilevel formulation, an
MIP for the SPBP that reads as follows:

ζ(SPBP) = max
x∈{0,1}m

∑
a∈A

raxa (3.25a)

πv − πu − da xa ≤ 0 a = (u, v) ∈ A, (3.25b)
πs = 0 (3.25c)

πt − πs ≥ Ψ (3.25d)
πu unrestricted u ∈ V (3.25e)

It is evident that the structural link established for the MFIP and the MFBP do not ap-
ply to the SPIP and the SPBP. Moreover, it is worth noticing that unlike the maximum
flow interdiction problem (MFIP) and the maximum flow blocker problem (MFBP), the
two models (Model (3.23) and Model (3.25)) for the shortest path interdiction problem
(SPIP) and the shortest path blocker problem (SPBP), respectively, do not share the
same set of constraints and objective functions. Furthermore, an optimal solution for
the SPIP and the SPBP might not be determined based on a specific structure. Hence,
establishing a similar relationship between these problems proves challenging.

94

3.3.3 Comparison of the strength of the LP relaxations of the for-
mulations

This section compares the strength of the LP relaxations of three ILP formulations for
the MFBP, presented in the previous sections, namely n-ILPB, n-ILPB+TF and c-ILP.
Let us consider the polytope Pn,B presented in Section 3.2.6 and let us introduce the
two polytopes Pn,B+TF and Pc defined by the constraints of n-ILPB+TF (3.15) and c-ILP
(3.18), respectively, which are formally defined as follows:

Pn,B+TF = {x ∈ [0, 1]m : x satisfies (3.6b) and (3.10)},

Pc = {x ∈ [0, 1]m,µ ∈ [0, 1]m,γ ∈ [0, 1]n : x,µ,γ satisfy (3.18b), (3.18c) and (3.18d)}.
The next proposition states that the upper bound on ζ(MFBP(G, c, r,Φ)) provided by
the optimal solution value of the LP relaxation of c-ILP is at least as strong as the
upper bound provided by the optimal solution value of the LP relaxation of n-ILPB

and there are instances in which it is strictly stronger. This is due to the fact that
the polytope Pc is strictly contained in the polytope Pn,B and accordingly, it provides a
tighter polyhedral description of the convex hull of the integer solutions.

Proposition 7. For every instance (G, c, r,Φ) of the MFBP, we have Pc ⊆ Pn,B and
this inclusion can be strict.

Proof. To prove that Pc ⊆ Pn,B, we consider a point (x̂, µ̂, γ̂) that belongs to Pc and we
show that x̂ is a feasible solution for the natural formulation n-ILPB (3.6). As explained
in the previous section (Section 3.3.1), since (x̂, µ̂, γ̂) belongs to Pc, it defines a cut in
the graph G. This cut is given by the arcs a ∈ A with x̂a = 1 or µ̂a = 1. Let y ∈ ext(Pf)
representing a flow in G. More precisely, for every arc a ∈ A, ya is the value of the flow
on the arc a. Since the value of a flow in a graph is always less than or equal to the
capacity of any cut, we have the following inequality:∑

a∈A : µ̂a=1
ca +

∑
a∈A : x̂a=1

ca ≥
∑

a∈δ+(s)
ya. (3.26)

Moreover, as the vector of variables µ̂ satisfies Inequality (3.18b), it follows that ∑
a∈A ca µ̂a ≤

Φ. Accordingly, we have:

Φ +
∑

a∈A : x̂a=1
ca ≥

∑
a∈A : µ̂a=1

ca +
∑

a∈A : x̂a=1
ca ≥

∑
a∈δ+(s)

ya,

and this can be rewritten as follows:∑
a∈δ+(s)

ya −
∑

a∈A : x̂a=1
ca ≤ Φ. (3.27)

Finally, as for every arc a ∈ A, we have ca ≥ ya, from Equation (3.27), we obtain the
following inequality: ∑

a∈δ+(s)
ya −

∑
a∈A : x̂a=1

yax̂a ≤ Φ, (3.28)

which corresponds exactly to Inequality (3.6b). This shows that x̂ is a feasible solution
for Model (3.6) and thus x̂ is a point of Pn,B.

95

To prove that the inclusion can be strict, let us go back to the graph example of Figure
3.2. We consider a target-flow Φ = 14. Let x be an optimal solution of the linear
relaxation of the natural formulation n-ILPB (3.6), with x(v1,v5) = 19

20 , x(v2,v4) = 81
100 ,

x(v7,t) = 1
5 and xa = 0 for all other arcs a ∈ A. The value of this solution is equal to 361

50 .
On the other hand, the optimal solution value of the linear relaxation provided by the
compact formulation c-ILP (3.18) is equal to 42

5 > 361
50 . Accordingly, the point x belongs

to Pn,B but does not belong to Pc, which shows that the inclusion can be strict.
□

The next proposition shows that the upper bounds on ζ(MFBP(G, c, r,Φ)) provided by
the optimal solution value of the LP relaxations of c-ILP and n-ILPB+TF do not dominate
each other.

Proposition 8. There are instances of the MFBP for which, Pc ⊂ Pn,B+TF and other
ones for which Pn,B+TF ⊂ Pc.

Proof. Let us first consider the graph G represented in Figure 3.2. Setting Φ equal to
7 (≈ 19% of the maximum flow), the optimal solution value of the LP relaxation of the
compact formulation c-ILP is equal to 63

5 , with x(v1,v5) = x(v2,v4) = 1, x(v7,t) = 66
5 and

xa = 0 for all other arcs. For the same instance, the optimal solution value of the LP
relaxation of n-ILPB+TF is equal to 15, with x(v1,v5) = x(v2,v4) = x(v7,t) = 1 and xa = 0 for
all other arcs, which corresponds to an optimal MFBP solution. This proves that for
this MFBP instance, we have Pn,B+TF ⊂ Pc.
We now consider the same graph G with different values for the arc-capacities and the
blocker costs. As previously (see Section 3.2.6), the arcs (v1, v5) and (v3, v7) have a
capacity equal to 5, the arcs (s, v1), (s, v2) and (s, v3) have a blocker cost equal to 100
and all other arcs have unitary blocker costs and capacities. Setting Φ = 1, the optimal
solution value of the LP relaxation of n-ILPB+TF is equal to 39

20 , with x(v5,t) = x(v6,t) =
x(v7,t) = 13

20 and xa = 0 for all other arcs. For the same instance, the optimal solution
value of the LP relaxation of c-ILP is equal to 2 with x(v1,v5) = x(v6,t) = 1 and xa = 0
for all other arcs, which corresponds to an optimal MFBP solution. This proves that
for this second MFBP instance, Pc ⊂ PB+TF.

□

3.3.4 Complexity results for the MFBP and the MFIP

We now investigate the complexity of the MFIP and the MFBP depending on the values
of the capacities, the blocker costs, and the interdiction costs on the arcs.
It is worth noting that the MFIP and the MFBP have the same decision problem, which
can be expressed as follows: Given a directed graph G = (V,A) with a source s ∈ V
and a destination t ∈ V , where each arc a ∈ A has a positive integer capacity ca and a
positive integer cost qa, and two positive integer values Ψ and Φ, there exists a subset
of arcs A ⊆ A such that ∑

a∈A qa ≤ Ψ and whose removal does not allow a flow between
s and t of value greater than Φ. Consequently, any complexity result for the MFIP also
holds for the MFBP and vice versa.

96

The next proposition characterizes the computational complexity of the MFBP.

Proposition 9. The MFBP is strongly N P-hard, even if all arcs have the same blocker
cost.

Proof. In Wood [1993], the author proves that the decision problem of the MFIP is
strongly N P-complete even if all arcs have the same interdiction cost. By setting ra = qa

for all arcs a ∈ A, since the MFIP and the MFBP have the same decision problem, the
MFBP is also strongly N P-complete in its decision version and accordingly, it is strongly
N P-hard in its optimization version. □

Using Proposition 5, the next proposition provides additional complexity results for the
MFIP and the MFBP.

Proposition 10. The MFIP and the MFBP are strongly N P-hard, even if all arcs have
the same capacity.

Proof. Let (G, c, q̂,Ψ) be an MFIP instance, where q̂ ∈ Zm
+ is an interdiction cost vector

with all values being identical. By Proposition 5, an optimal solution for the MFBP
instance (G, q̂, c,Ψ) can be found in polynomial time by solving a MCP in the non-
interdicted graph associated to an optimal solution for the MFIP instance (G, c, q̂,Ψ).
In Wood [1993], the MFIP has been shown to be strongly N P-hard even if all arcs
have the same interdiction cost. Accordingly, since the MFBP instance (G, q̂, c,Ψ) is a
MFBP where all arcs have the same capacity, we can deduce that the MFBP is strongly
N P-hard, even if all arcs have the same capacity.
Moreover, as the MFIP and the MFBP share the same decision problem, the MFIP is
also strongly N P-hard, even if all arcs have the same capacity.

□

3.4 Extensions

This section focuses on variants of the MFBP. Specifically, we are interested in the
continuous form of blocker and interdiction problems, which involve the reduction of arc
capacities. Additionally, we explore the vertex blocker and interdiction variant, where
vertices are removed instead of arcs. Furthermore, we study the blocker problem applied
to the maximum cardinality bipartite matching problem, which is called the maximum
cardinality bipartite matching blocker problem. More precisely, we demonstrate that
the equivalence property we previously established between the blocker and interdiction
problems remains applicable to these particular variants.

3.4.1 Continuous interdiction and blocker

The previous sections deal with the MFIP and the MFBP, where the master problem
aims at removing arcs from the graph. This implies complete destruction of interdicted
and blocked arcs. In this case, both the interdiction and blocker problems are said to be

97

discrete. However, a variant of these problems arises when the master problem aims at
reducing the arc-capacities in the graph, resulting in partial destruction of interdicted
and blocked arcs. In this context, the interdiction and blocker problems are said to
be continuous. We denote by MCFBP (resp. MCFIP) the continuous blocker (resp.
interdiction) problem applied to the MFP.

Given a directed graph G = (V,A) containing a source s ∈ V and a destination t ∈ V ,
a set of capacities ca ∈ Z+, a set of interdiction costs qa ∈ Z+ associated with each arc
a ∈ A and an interdiction budget Ψ, the MCFIP consists in decreasing capacities of arcs
such that the maximum flow in the non-interdicted graph is minimum. To solve this
problem, we associate with each arc a ∈ A, a variable w̄a ∈ [0, 1] corresponding to the
percentage of destruction of the arc. If w̄a is equal to 0, then the capacity of arc a re-
mains the same. If w̄a is equal to 1, then the arc has been removed. Otherwise, capacity
and interdiction cost of arc a is equal respectively to ca ×(1− w̄a) and ba ×(1− w̄a). It is
worth noticing that the interdiction cost ba is that of completely destructing arc a. More-
over, the non-interdicted graph, denoted by GNI(w̄), is identical to the graph G; that is,
GNI(w̄) and G share the same set of vertices and arcs, yet with new lower arc capacities.

To address the MCFIP, we can employ the identical bilevel model as used for the MFIP,
specifically Model (1.10). The follower problem remains unchanged. The only distinc-
tion arises from the master problem’s variables w̄, which now take values in the set
[0, 1]m. Using the same notations as previously, a bilevel model for the MCFIP reads
as follows:

ζ(MCFIP) = min
w̄∈[0,1]m

ϑ(w̄) (3.29a)

∑
a∈A

qa w̄a ≤ Ψ (3.29b)

where ϑ(w̄) = max
y ∈ Qm

+

∑
a ∈ δ+(s)

ya (3.29c)

∑
a ∈ δ+(u)

ya −
∑

a ∈ δ−(u)
ya = 0, ∀ u ∈ V, (3.29d)

ya ≤ ca (1 − w̄a), ∀ a ∈ A. (3.29e)

ya ≥ 0, ∀ a ∈ A. (3.29f)

Applying the same technique as the one employed for the MFIP, we can reformulate
Model (3.29) as a compact single-level formulation. This leads to the following model
for the continuous interdiction.

98

ζ(MCFIP) = min
∑
a∈A

ca βa (3.30a)

β̄uv + w̄uv + αv − αu ≥ 0 (u, v) ∈ A, (3.30b)

αs − αt ≥ 1 (3.30c)∑
a∈A

qa w̄a ≤ Ψ (3.30d)

αu ∈ {0, 1} u ∈ V, (3.30e)
β̄a ∈ [0, 1] a ∈ A, (3.30f)
w̄a ∈ [0, 1] a ∈ A. (3.30g)

This model is similar to Model (3.20). The difference lies in the definition set of variables
β and β̄, as well as w and w̄.
It is worth noticing that for an arc a ∈ A, variable αa can take value 0 or 1. Thus, we
can have either β̄a + w̄a = 0 or β̄a + w̄a = 1. Therefore, as for the MFIP, any feasible
solution can be interpreted as a cut δ(UG(w̄)) in the graph G, given by arc a where
β̄a + w̄a = 1. Consequently, Theorem 5 is still valid for the continuous version of the
blocker and the interdiction problems applied to the MFP.
For every arc a ∈ A, let x̄a be a continuous variable taking values between 0 and 1.
Using the same notations as the one employed in Section 3.3, a model for the MCFBP
reads as follows:

ζ(MCFBP) = min
x̄,µ̄ ∈ {0,1}m,γ ∈ {0,1}n

∑
a∈A

ba x̄a (3.31a)

x̄uv + µ̄uv + γv − γu ≥ 0, ∀ (u, v) ∈ A, (3.31b)

γs − γt ≥ 1, (3.31c)∑
a∈A

ca µ̄a ≤ Φ. (3.31d)

As for the MCFIP, this model is similar to Model (3.18). The difference lies in the
definition set of variables µ and µ̄, as well as x and x̄.
In Burch et al. [2006], the authors study the MCFIP under the name Network Inhibition
Problem and show that the problem is strongly N P-Hard, which leads to the following
result.

Proposition 11. The MCFBP are strongly N P-Hard.

Proof. As for the discrete interdiction and blocker problem, the MCFBP and the MC-
FIP have the same decision problems. Since the MCFIP has been shown to be N P-Hard,
the MCFBP is also N P-Hard. □

99

3.4.2 Vertex interdiction and blocker problems

In this section, we discuss the vertex variant of the blocker problem and the interdiction
problem, called maximum flow vertex blocker problem (V-MFBP) and maximum flow
vertex interdiction problem (V-MFIP), respectively. In this variant, the master problem
seeks to destruct vertices instead of arcs.

A closely related problem, called the n Most Vital Vertices Problem is addressed in
Corley and Chang [1974]. This problem asks to find a subset of exactly n vertices
to be interdicted in order to minimize the maximum flow. This problem is similar to
the V-MFIP except that it features a single cardinality constraint instead of a budget
constraint and unitary interdiction costs. The variant of finding the n most vital arcs
is studied in Ratliff et al. [1975]. In Corley and Chang [1974], the authors show that
finding the n most vital arcs is equivalent to finding the n most vital vertices. More
specifically, they propose a method to transform a graph G into an augmented graph
G∗ such that any solution of the n most vital vertices in G corresponds to a solution of
the n most vital arcs in G∗.

Given a directed graph G = (V,A), we introduce the augmented graph G∗ = (V ∗, A∗)
constructed from G = (V,A) as follows. For each vertex v ∈ V , we define one vertex
v′ ∈ V ∗ such that (v, v′) ∈ A∗ with q(v,v′) = qv and c(v,v′) = max{c(u,v) : (u, v) ∈ A}.
Each arc (v, u) ∈ A is replaced in the augmented graph by an arc (v”, u) ∈ A∗ with
q(v”,u) = M and c(v”,u) = c(v,u), where M is an integer value that is strictly greater than
Ψ, the interdiction budget.

The next proposition shows that this transformation also holds when affecting costs on
the vertices of the graph.

Proposition 12. Solving the V-MFIP in a graph G leads to solve a MFIP in the
augmented graph G∗.

Proof. We now show that solving a V-MFIP in G is equivalent to solve a MFIP in G∗.
Solving a MFIP in G∗ leads to find a minimum subset of arcs to remove from G∗ in such
a way that the total interdiction cost is less than or equal to the interdiction budget.
It is worth noticing that only arcs (v, v′) ∈ V ∗ with q(v,v′) < M can be interdicted.
Otherwise, the interdiction budget is exceeded. However, these arcs are represented by
a set of vertices in G. Moreover, the maximum flow computed in G∗ is equal to the
maximum flow value computed in G. Therefore, any feasible solution for the V-MFIP
solved in G can be found by solving a MFIP in G∗.

□

This proposition leads to the following corollary regarding the MFBP and the V-MFBP.

Corollary 2. Solving the V-MFBP in a graph G leads to solve a MFBP in the augmented
graph G∗.

100

From Proposition (12) and Corollary (2), we can extend Theorem (5) for the continuous
variant of interdiction and blocker. Which leads to Theorem (1).

Theorem 1. Given an optimal solution (w,β,α) of Model (3.20) for the MFIP instance
(G∗,b, c,Φ), an optimal solution for the V-MFBP instance (G, c,b,Φ) is given by the
vertices v ∈ V with β(v,v′) = 1 for every arc (v, v′) ∈ A∗.

Finally, the following corollary derives directly from Proposition (12) and Corollary (2).

Corollary 3. The V-MFIP and the V-MFBP are strongly NP-Hard.

3.4.3 The maximum cardinality bipartite matching blocker problem

Given an undirected graph G = (V,E), a matching is a set of edges with no common
vertices. The maximum cardinality matching problem aims at finding a matching with
maximum cardinality.

The interdiction version of this problem, called the matching interdiction problem (MIP),
has been studied in Zenklusen [2010]. The author shows that this problem is NP-
Complete even when all arcs have the same weight or interdiction cost. He proposes
a pseudo-polynomial algorithm to solve the MIP. The MIP finds a set of arcs to be
removed from a graph, with respect to the interdiction budget, in order to minimize the
cardinality of the maximum matching. The blocker version of this problem consists in
finding a minimum set of arcs to be destructed in such a way that the number of arcs
in the maximum matching is no larger than a given value.

Let G = (V1 ∪ V2, E) be a bipartite graph, i.e, a graph whose vertices can be divided
into two independents sets V1 and V2 such that every edge e ∈ E connects one vertex in
V1 to one vertex in V2. A particular case of the maximum cardinality matching problem
consists in considering as input a bipartite graph. This problem is called maximum
cardinality bipartite matching problem (MCBMP). A well-known result shows that the
MCBMP can be reduced to a MFP using a simple graph transformation, see Ahuja
et al. [1993]. Hence, solving a maximum cardinality bipartite matching interdiction or
blocker problem leads to solving a MFIP or a MFBP. Therefore, as for the interdic-
tion and blocker problems applied to the MFP, there exists an equivalence between
interdiction and blocker problems applied to the MCBMP. This equivalence is given by
Theorem 5.

Finally, the maximum cardinality bipartite matching interdiction problem and the max-
imum cardinality bipartite matching blocker problem can be formulated as Model (3.20)
and Model (3.18), respectively.

101

3.5 Concluding remarks

In this chapter, we studied the maximum flow blocker problem. Utilizing the natural
bilevel formulation for the problem, we introduced four linear integer programming for-
mulations designed for the first time to address the MFBP. The first three formulations,
involving only the natural variables associated with the arcs, are solved using the ex-
act algorithms described in the paper. The fourth and last formulation is a compact
version solved using a state-of-the-art ILP solver. The natural (non-compact) formu-
lations feature two exponential families of constraints. The first one, with separation
being polynomial for fractional and integer solutions, is referred to as Benders cuts.
The second one, with separation being N P-hard for fractional solutions, is referred to
as target-flow inequalities. Using these results, we developed a tailored Branch-and-Cut
algorithm enhanced with Benders cuts and target-flow inequalities. Additionally, using
the compact formulation, we established the first connection between the maximum flow
blocker problem and the maximum flow interdiction problem. In particular, we have
shown that solutions of one problem can be found using solutions of the other. This
property has been extended to several variants of the problem, in particular the con-
tinuous blocker variant and the vertex blocker variant. Furthermore, we conducted a
study to compare the strength of the LP relaxations of the proposed ILP formulations.
In the next chapter, we present a comprehensive computational analysis aimed at com-
paring performance of the formulations proposed.

102

Chapter 4

The maximum flow blocker problem :
Computational experiments

Contents
4.1 Computational experiments . 104

4.1.1 Implementation’s features . 104
4.1.2 Benchmark set of MFBP instances . 104

4.2 Computational performance of the natural formulations 107
4.2.1 Computational performance of the natural formulation n-ILPTF 107
4.2.2 Computational performance of the natural formulations n-ILPB and

n-ILPB+TF . 112
4.2.3 Comparison between the natural formulation and the state-of-the-art

technique . 113
4.3 Comparison of the effectiveness of the natural and the compact

formulation . 115
4.3.1 Resolution of the compact formulation 115
4.3.2 Comparison between the natural and the compact formulation 118

4.4 Gaps . 122
4.5 Testing the limits of the compact formulation 123
4.6 Concluding remarks . 125

In the previous chapter, we presented and theoretically compared several formulations to
address the maximum flow blocker problem (MFBP). We first designed three natural for-
mulations, namely n-ILPB (see Model (3.6)), n-ILPTF (see Model (3.11)) and n-ILPB+TF

(see Model (3.15)). These formulations feature an exponential number of constraints and
they are solved through tailored Branch-and-Cut algorithms. We then presented another
formulation having a polynomial number of variables and constraints. This formulation,
referred to as c-ILP (see Model (3.18)), is solved via a state-of-the-art ILP solver. In this
chapter, the exact methods proposed for the MFBP are compared thanks to an extensive
computational campaign on a set of real-world and synthetic instances. Our tests aim
at evaluating the performance of the exact algorithms and at determining the features of
the instances which can be solved to proven optimality.

103

4.1 Computational experiments

In this chapter, we present the results of our computational campaign for solving the
MFBP. The aim is to assess the performance of the ILP formulations for the MFBP
presented in this article, i.e., the natural formulations n-ILPB (see Model (3.6)), n-
ILPTF (see Model (3.11)), n-ILPB+TF (see Model (3.15)) and the compact formulation
c-ILP (see Model (3.18)). The first three models feature an exponential number of
constraints. Accordingly, they are solved via a Branch-and-Cut algorithm. The last
model has a polynomial number of variables and constraints. It is solved directly using
an ILP solver. Moreover, since there are no exact algorithms existing in the literature
for addressing the blocker variant of the MFP, the current state-of-the-art approach
involves employing an online-accessible solver designed for bilevel programs. Therefore,
we compare this technique to the ILP formulations proposed in the paper.
The specific goals of our computational campaign are threefold. The first is to assess
the best configuration of the Branch-and-Cut algorithms for the natural formulations
n-ILPB and n-ILPTF and to determine the potential effectiveness of enhancing n-ILPB

with a second set of constraints, namely the target-flow inequalities (3.10) (see Model
n-ILPB+TF (3.15)). The second involves conducting performance comparisons between
the best Branch-and-Cut algorithm for the natural formulations and the direct use
of an ILP solver on the compact formulation c-ILP. In addition, we computationally
analyze the quality of the MFBP lower bounds provided by the Linear Programming
(LP) relaxations of n-ILPB, n-ILPTF, n-ILPB+TF and c-ILP. The third and final goal
is to determine the maximum size of MFBP instances that can be solved to proven
optimality using the exact methods presented in this paper. Specifically, we investigate
the practical computational difficulty of the main features of MFBP instances.

4.1.1 Implementation’s features

The experiments are conducted on a processor Intel Core i5-3340M CPU of 2.70GHz ×
4. To tackle the two ILP formulations, we use CPLEX12.6.3.0 (called CPLEX for brevity)
in C++, one of the state-of-the-art commercial solvers for ILP problems. The Branch-
and-Cut for n-ILP is implemented using the CONCERT TECHNOLOGY of CPLEX and c-ILP
is directly solved using this solver. In our experiments, all computations are performed
in a single-thread mode with default values for all CPLEX parameters. We employ the
open-source C++ library, called LEMON for the implementation of graph data structures.
This library offers a comprehensive set of efficient components specifically designed for
graphs and network algorithms. For example, we use LEMON to solve maximum flow
problems.

4.1.2 Benchmark set of MFBP instances

To the best of our knowledge, this is the first article that presents exact methods to solve
the MFBP and no instances can be found in the literature. We have created synthetic
MFBP instances and produced some starting from instances of a related problem, i.e.,

104

the MFIP, that have been proposed in Royset and Wood [2007]. The new MFBP
instances are characterized by two main components: i) the graph-structural features
and ii) the flow-blocker features. Creating a well-diversified and representative set of
MFBP instances is a challenging task. We explain in what follows the specific choices
we adopted in creating our benchmark set of MFBP instances. The graph-structural
features of MFBP instances concern the characteristics of the input directed graph
G = (V,A) on which the MFBP is addressed. The two principal ones are the number n
of vertices in V and the number m of arcs in A. The arc set A is also characterized by
an arc-density d(G) = |A|/(n2 − n). In addition, it is necessary to determine a source
node s ∈ V and a destination node t ∈ V. MFBP instances, as well as MFIP instances,
have capacities on the arcs. The distribution of the arc capacities determines the value
ψ(G) of the maximum flow between the source s and the destination t. The flow-blocker
features of MFBP instances consist in determining the blocker cost ba ∈ Z+ for each
arc a ∈ A and the target-flow Φ ∈ Z+. We have chosen to determine the target-flow
by setting it as a percentage λ ∈ [0, 1] of the maximum flow value ψ(G) in the given
instances. By opting for this approach, we can conduct an analysis of the computational
complexity of MFBP instances based on the maximum flow value allowed in the non-
blocked graph, which is determined as a percentage of the maximum flow value in the
original graph G. It is worth noticing that if λ = 0, the value of the target-flow Φ is
equal to 0, which implies that no flow between s and t should remain in the non-blocked
graph. In this case, the MFBP can be reduced to a MCP. On the other hand, if λ = 1,
the value of the target-flow Φ is equal to the maximum flow value in G, i.e., Φ = ψ(G),
implying that there is no need to remove any arcs from G. The distribution of the
blocker costs on the arcs determines the value of the optimal solution for the MFBP.
As far as the graph-structural features of MFBP instances are concerned, we consider
three classes of instances: i) GRID graphs, ii) REAL-NETWORKS graphs, iii) SYNTHETIC
graphs.
The first two classes are the instances used in the computational study conducted in
Royset and Wood [2007]. The third class was generated from a random graph generator
that we implemented in Python 3.8.10.

1. The GRID class consists in rectangular grid networks. In other words, the set of
vertices are connected by the set of arcs in the form of a grid of n1 rows and n2
columns such that n= n1n2 + 2 and |A| = 2n1 + 2((n2 − 1)n1 + (n1 − 1)n2). The
source s and the destination t are on both sides of the grid. Figure 4.1 illustrates an
instance from this class. Infinite capacities are assigned to the arcs connecting the
source or the destination. All the other arcs have a capacity drawn randomly from
the discrete uniform distribution on [1, 49]. In the same manner, the arcs outgoing
the source or entering the destination cannot be interdicted. For all other arcs, the
interdiction costs are generated by drawing a number from the discrete uniform
distribution on [1, 3]. This class contains a total of 85 graphs.
This class contains a total of 17 graphs.

2. The REAL-NETWORKS class consists of networks representing highways and roads
of two cities in the northeastern United States. In these instances, there are

105

v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

s t

(∞)
∞

(∞)
∞

(∞)
∞

(1)
12

(2)
13

(3)
41

(2)
33

(3)
14

(3)
12

(1)
11

(2)
1

(3)
27

(3)
16

(3)
25

(1)
21

(5)
10

(2)
17

(3)
39

(1)
7

(3)
2

(2)
11

(1)
31

(3)
45

(3)
14

(2)
3

(1)
44

(∞)
∞

(∞)
∞

(∞)
∞

Figure 4.1: Example of a grid network with n1 = 3 and n2 = 4

multiple source vertices and destination vertices, connected respectively to a super-
source s and a super-destination t with infinite blocker costs and infinite capacities.
This class is categorized into two types, denoted as Type A and Type B featuring
the same graph structure of 3670 vertices and 9876 arcs but different source and
destination vertices. Each type consists of seven instances, with distinct values
assigned to the blocker costs and capacities on the arcs. For every arc that is not
connected to the super-source or to the super-destination, the blocker cost can
take three possible values; 1, 2, or 3 and the capacity is drawn randomly from the
discrete uniform distribution [1, 49]. This class contains a total of 14 graphs.

3. The SYNTHETIC class consists of Erdős-Rényi random graphs denoted as G(n, p),
where the parameter p determines the probability of including each arc. In this
case, the value of p is set to 0.5, meaning that each arc has a 50% chance of
being included in the graph. We consider a large set of instance sizes based on the
number of vertices n in the graph ranging from 20 to 2000. Specifically, n takes the
following values: 20, 30, 40, 50, 60, 100, 300, 500, 700, 900, 1000, 1100, 1200, 1300,
1400 and 1500. The size of the instances also varies depending on the arc densities
d(G), which range from 0.1 to 0.9 with a step size of 0.1. For each combination
of n and d(G), we create a total of 5 distinct Erdős-Rényi graphs using different
random seed generators. The source s and the destination t are randomly selected
between the vertices of the graphs such that s and t are linked by at least three
consecutive arcs. As for the two previous classes, the arcs outgoing s or entering t
have infinite capacities and blocker costs. All the other arcs have a capacity value
(resp. blocker cost value) generated by drawing a number from the range [1, 49]
(resp. [1, 3]) uniformly at random and rounding it to the nearest integer value.
This class contains a total of 420 graphs.

It is worth noticing that, as stated at the beginning of the paper, all instances have
an arc (t, s) connecting the destination t to the source s. This arc is given a large

106

capacity, which can be established by summing the capacities of the arcs outgoing the
source. Accordingly, this arc does not impact the value of the maximum flow in the
graph. Moreover, it has an infinite blocker cost, ensuring that it cannot be blocked.
Consequently, the arc (t, s) does not affect the solution of the MFBP.
In the remainder of this paper, all computing times are expressed in seconds. We impose
a CPU time limit of 600 seconds for every instance. If this time limit is exceeded, it is
denoted as t.l. in the reported results. Detailed results as well as the instances can be
found on GitHub1.

4.2 Computational performance of the natural formula-
tions

In this section, we study and discuss the computational performance of the natural
formulations n-ILPB (3.6), n-ILPTF (3.11) and n-ILPB+TF (3.15). The aim of this section
is to determine the best Branch-and-Cut algorithm to solve a natural formulation for
the MFBP.

4.2.1 Computational performance of the natural formulation n-ILPTF

In the case of n-ILPTF, the separation problem for target-flow inequalities is N P-hard for
fractional solutions (see Proposition 26). Consequently, an efficient separation procedure
is crucial. In light of this, we have explored several strategies to separate target-flow
inequalities (3.10). The first approach involves separating fractional solutions by solving
the exact separation problem (see Model (3.14)). Additionally, alternative methods have
been considered, wherein a feasible solution of the separation problem (3.14) is obtained
instead of the optimal solution. To this end, we can use an approximation algorithm
with a performance guarantee of Φ+1 designed in Krumke et al. [1999] for the MECFP.
The general idea of this approximation algorithm relies on solving a MCCP in the graph.
Lastly, we investigate an algorithm to heuristically separate fractional solutions. This
algorithm is a heuristic based on successive resolutions of shortest path problems (SPP).
The strategies implemented are explained more in detail below.

Integer separation of target-flow inequalities (3.10) One way to implement the
Branch-and-Cut algorithm is to separate the target-flow inequalities only for integer LP
relaxation points, since modern MIP solvers guarantee that fractional points are cut
off by the standard branching procedure strengthen with cutting plane mechanisms. As
stated in Proposition 2, this can be done in polynomial time by solving a MFP. However,
an efficient separation strategy for fractional points can help improve performance of a
Branch-and-Cut based approach.

1https://github.com/ismabentoumi/MaximumFlowBlockerProblem

107

https://github.com/ismabentoumi/MaximumFlowBlockerProblem

Exact separation of target-flow inequalities (3.10) Given a fractional solution
x∗ of the RMP, we solve a MECFP where pa = x∗

a for every arc a ∈ A, as explained in
Proposition 26. Let (ŷ, ẑ) be the optimal solution of this MECFP obtained by solving
Model (3.14) using a MIP solver. In case the optimal solution value is strictly smaller
than 1, then we have detected a violated target-flow inequality (3.10) and the following
cut is added to the RMP: ∑

a∈A(ŷ)
xa ≥ 1.

However, as stated in Proposition 26, the MECFP is N P-hard. Accordingly, the exact
separation of target-flow inequality may be time consuming.

Approximation separation of target-flow inequalities (3.10) We also explored
the possibility of considering a feasible solution of the MECFP instead of the optimal
solution. Precisely, instead of optimally solve Model (3.14), we consider an approxima-
tion algorithm with performance R = Φ + 1, designed in Krumke et al. [1999]. The
general idea of this approximation algorithm consists in solving a MCCP in the graph
G where each arc a ∈ A has a capacity ca, a lower bound ba and a flow cost pa = pa

ca
.

For the arc (t, s), values of the capacity and the lower bound are set to Φ + 1. All
other arcs a ∈ A \ {(t, s)} have the original capacities and a lower bound ba = 0. If
the optimal solution value of this MCCP is strictly smaller than 1, then a target-flow
inequality is found and it is constructed from the optimal solution ŷ of the MCCP
instance. Otherwise, no target-flow inequality has been found. As solving the MCCP
is an approximation algorithm for the separation problem of the target-flow inequali-
ties (3.10), it does not provide the optimal solution and accordingly, there might be a
target-flow inequality that has not been found. Therefore, the approximation algorithm
allows to find a target-flow inequality in a record time. However, when no target-flow
inequality is found, it does not ensure that all target-flow inequalities are satisfied by
x∗.

Heuristic separation of target-flow inequalities (3.10) based on shortest paths
Finally, we investigate an algorithm to heuristically generate target-flow inequalities
(3.10). Accordingly, we developed an heuristic, based on successive resolutions of short-
est path problems, for the MECFP. We recall that a path p is defined as an ordered
set of |p| distinct vertices {v1, · · · , v|p|} such that for all i ∈ {1, · · · , |p| − 1}, (vi, vi+1)
is an arc and we denote by A(p) the set of arcs {(vi, vi+1) ∈ A, i ∈ {1, · · · , |p| − 1}}.
The general idea of the heuristic is to define a flow as a set of s − t paths that will
be found iteratively. At initialization, all arcs have a cost x∗

a and a capacity ca. Note
that if x∗

a = 1, then ca = 0. At each iteration, for every arc a of the s − t path found,
its capacity ca is reduced by the flow value of the path and its cost is set to 0. The
algorithm stops when the total flow value of all paths found exceeds Φ or when no path
has been found.
Therefore, we distinguish four different configurations of the Branch-and-Cut algo-
rithm for n-ILPTF based on the separation strategy: i) INT_SEP ii) EXACT_SEP, iii)
APPROX_SEP, iv) HEU_SEP. In the first configuration, we consider only separation of inte-
ger infeasible points using the LP interface of LEMON to solve the MFP. In the three other

108

configurations, we consider separation of all LP-Relaxation points (integer and frac-
tional). In EXACT_SEP, fractional LP-Relaxation points are separated using CPLEX MIP
Solver applied to the exact separation problem given by model (3.14). In APPROX_SEP,
the separation model is replaced by the approximation algorithm presented in Krumke
et al. [1999], solved using CPLEX MIP Solver. In HEU_SEP, the heuristic presented pre-
viously separates LP relaxations fractional points. This heuristic relies on LEMON LP
interface used as a black-box shortest path solver. Note that we consider a time limit of
600 seconds for every resolution of the separation problem and for the total computing
time of the Branch-and-Cut algorithm.

In Table 4.1, we compare the four configurations of the Branch-and-Cut algorithm. The
set of instances considered is composed by networks of 20 vertices from the SYNTHETIC
class. Each row corresponds to 5 instances of this set grouped by the number of arcs
m ∈ {40, 54, 86, 116, 146, 208} and value λ ∈ {0.2, 0.4, 0.6, 0.8}. For each configuration,
we report the following values: the number of instances solved to optimality per group
(#opt), the average computing time and the maximum computing time in seconds; t.l.
is reported when the average or the maximum computing time exceeds the time limit
set to 600 seconds, the average number of nodes explored in the branching tree (nodes).
For INT_SEP, the table reports the average number of constraints generated to separate
integer infeasible points (#lazy). For EXACT_SEP, APPROX_SEP and HEU_SEP, the ta-
ble reports the number of constraints generated to separate fractional infeasible points
(#user). It also indicates the average and maximum time to generate one constraint
(time user), computed as the total time consumed to solve the separation problem di-
vided by the total number of constraints generated. We recall that separate integer
infeasible points is done in polynomial time, as it is equivalent to solve a maximum flow
problem.

Table 4.1 shows that INT_SEP solves only 58 instances out of 20 to proven optimality.
The algorithm starts facing difficulties for graphs of 20 vertices and 54 arcs. When the
size of the graph increases, the number of lazy constraints needed to solve the problem
become huge and may be as high as 25498 for m= 86 and λ = 0.2. Which contributes
to increase the number of nodes explored in the branching tree that can reach 18558
for m= 208. This explains the large computing times obtained with INT_SEP. On the
other hand, separating fractional unfeasible points is considerably helpful to find the
optimal solution of the MFBP. However, the separation strategy has a major impact
on efficiency of the Branch-and-Cut algorithm. Indeed, separate LP-Relaxation frac-
tional points through the exact separation problem decreases the computing time and
thus increases the number of instances optimally solved (89 instead of 58). However,
we can see that this configuration of the algorithm is not as efficient as APPROX_SEP
and HEU_SEP. This is mainly due to complexity of the exact separation problem, given
by model (3.14). Hence, the average computing time to separate a unique fractional
unfeasible point varies between 0.3 and 0.9 seconds for graphs larger than 20 vertices
and 116 arcs. As a result, the maximum average number of constraints that can be
generated by the exact separation problem before the time limit, is 934 for m= 146 and
λ = 0.4. On the opposite, the average computing time to generate one constraint using

109

the approximation algorithm or the heuristic algorithm, is nearly zero. This allows to
separate a large set of unfeasible fractional points in a short time. In APPROX_SEP (resp.
HEU_SEP), the average number of constraints generated can reach 112286 (resp. 21076)
for m= 208 and λ = 0.2. Finally, we observe that for some instances, APPROX_SEP
struggles to converge to the optimal solution. For example, for graphs with m= 208 and
λ = 0.2, the average number of unfeasible fractional points separated is 12239, while
the number of explored nodes in the branching tree is 837. The computing time is on
average 294.4 seconds. In contrast for the same inputs parameters, HEU_SEP separates
on average 5872 fractional points, while exploring more nodes (1987), with a computing
time of 131 seconds. This shows that HEU_SEP proposes a better cutting plane strategy
in the sense that the Branch-and-Cut algorithm converges to the optimal solution faster.
Hence, using the shortest-path based heuristic to solve the separation problem provides
the best results for the Branch-and-Cut algorithm. This is probably due to the fact that
the heuristic constructs a flow through several paths computed iteratively according to
an updated capacity, whereas the approximation algorithm compute a flow at one time.

Therefore, we can conclude that using the shortest-path based heuristic represents the
best separation strategy for target-flow inequalities. However, the results provided by
this approach remain relatively limited. An alternative approach involves separating
only Benders cuts and adding a target-flow inequality each time a Benders cut is found.
In what follows, we will see that considering a natural formulation where Benders cuts
are separated at every node of the branching tree allows to radically decrease the com-
puting time of the natural formulation.

110

IN
T_

SE
P

EX
AC

T_
SE

P
AP

PR
OX

_S
EP

HE
U_

SE
P

tim
e

#
la

zy
no

de
s

tim
e

#
us

er
tim

e
us

er
no

de
s

tim
e

#
us

er
tim

e
us

er
no

de
s

tim
e

#
us

er
tim

e
us

er
no

de
s

m
λ

#
#

op
t

av
g.

m
ax

av
g.

av
g.

#
op

t
av

g.
m

ax
av

g.
av

g.
m

ax
av

g.
#

op
t

av
g.

m
ax

av
g.

av
g.

m
ax

av
g.

#
op

t
av

g.
m

ax
av

g.
av

g.
m

ax
av

g.
40

0.
2

5
5

0.
1

0.
3

92
.6

41
.4

5
0.

0
0.

1
0.

6
0.

0
0.

0
0

5
0.

0
0.

0
2.

4
0.

0
0.

0
0

5
0.

0
0.

0
0.

6
0.

0
0.

0
0

0.
4

5
5

0.
0

0.
1

61
.0

27
.4

5
0.

0
0.

0
0.

4
0.

0
0.

0
0

5
0.

0
0.

0
1.

4
0.

0
0.

0
0

5
0.

0
0.

0
0.

4
0.

0
0.

0
0

0.
6

5
5

0.
0

0.
0

3.
2

0
5

0.
0

0.
0

0.
2

0.
0

0.
0

0
5

0.
0

0.
0

0.
2

0.
0

0.
0

0
5

0.
0

0.
0

0.
2

0.
0

0.
0

0
0.

8
5

5
0.

0
0.

0
2.

2
0

5
0.

0
0.

0
0.

0
0.

0
0.

0
0

5
0.

0
0.

0
0.

0
0.

0
0.

0
0

5
0.

0
0.

0
0.

0
0.

0
0.

0
0

54
0.

2
5

4
12

1.
1

t.l
.

68
66

.8
36

47
.6

5
0.

1
0.

3
3.

8
0.

0
0.

0
0

5
0.

0
0.

0
11

.4
0.

0
0.

0
3.

8
5

0.
0

0.
0

3.
4

0.
0

0.
0

0
0.

4
5

5
1.

0
4.

6
65

4.
2

26
9.

4
5

0.
1

0.
1

2.
2

0.
0

0.
0

0
5

0.
0

0.
0

6.
6

0.
0

0.
0

4.
6

5
0.

0
0.

0
2.

2
0.

0
0.

0
0

0.
6

5
5

0.
0

0.
1

42
.4

18
.8

5
0.

0
0.

1
1.

0
0.

0
0.

0
0

5
0.

0
0.

0
2.

2
0.

0
0.

0
1

5
0.

0
0.

0
1.

6
0.

0
0.

0
0

0.
8

5
5

0.
0

0.
0

12
.2

4.
4

5
0.

0
0.

0
0.

2
0.

0
0.

0
0

5
0.

0
0.

0
0.

2
0.

0
0.

0
0

5
0.

0
0.

0
0.

2
0.

0
0.

0
0

86
0.

2
5

0
t.l

.
t.l

.2
54

98
.4

10
87

8
5

7.
5

18
.6

41
.6

0.
1

0.
2

19
.4

5
0.

3
0.

5
20

6.
6

0.
0

0.
0

17
.6

5
0.

1
0.

2
42

.6
0.

0
0.

0
27

.4
0.

4
5

1
49

3.
4

t.l
.2

27
42

.2
13

93
7

5
19

.0
56

.3
67

.8
0.

2
0.

3
21

.2
5

0.
3

0.
6

18
1.

0
0.

0
0.

0
29

.8
5

0.
2

0.
4

66
.6

0.
0

0.
0

34
.8

0.
6

5
4

13
6.

5
t.l

.
81

95
.4

47
35

.8
5

10
.7

33
.1

35
.2

0.
3

0.
3

15
.6

5
0.

2
0.

4
94

.4
0.

0
0.

0
22

.6
5

0.
1

0.
2

36
.4

0.
0

0.
0

21
.8

0.
8

5
5

0.
1

0.
2

59
.4

36
.6

5
4.

0
15

.3
12

.2
0.

2
0.

4
4.

4
5

0.
0

0.
1

6.
4

0.
0

0.
0

2
5

0.
1

0.
1

6.
8

0.
0

0.
0

5

11
6

0.
2

5
0

t.l
.

t.l
.2

19
87

.2
93

31
5

15
0.

3
34

7.
3

33
0.

8
0.

5
0.

8
38

.6
5

5.
6

8.
3

19
87

.0
0.

0
0.

0
21

2.
4

5
1.

2
1.

7
40

8.
2

0.
0

0.
0

10
1.

6
0.

4
5

0
t.l

.
t.l

.2
18

20
.6

12
38

5.
8

5
22

4.
9

51
5.

9
56

7.
6

0.
3

0.
4

38
.4

5
9.

6
17

.2
27

69
.6

0.
0

0.
0

22
0.

2
5

1.
7

3.
1

44
7.

6
0.

0
0.

0
96

.4
0.

6
5

0
t.l

.
t.l

.2
19

08
.0

15
45

9.
2

3
37

9.
5

t.l
.

70
8.

2
0.

5
0.

6
21

.6
5

2.
9

6.
0

12
13

.2
0.

0
0.

0
11

1.
6

5
0.

9
1.

9
17

8.
2

0.
0

0.
0

61
.2

0.
8

5
5

1.
2

1.
9

80
3.

4
58

6.
4

3
24

5.
0

t.l
.

37
2.

8
0.

5
0.

7
12

.8
5

0.
1

0.
1

20
.6

0.
0

0.
0

4.
2

5
0.

1
0.

3
19

.4
0.

0
0.

0
10

14
6

0.
2

5
0

t.l
.

t.l
.2

06
18

.4
11

69
9.

2
3

32
4.

7
t.l

.
62

9.
8

0.
5

0.
7

37
3

24
9.

4
t.l

.
12

23
9.

8
0.

0
0.

0
83

7.
8

5
13

1.
0

55
4.

8
58

72
.2

0.
0

0.
0

19
87

0.
4

5
0

t.l
.

t.l
.2

05
99

.2
12

79
3.

2
2

48
3.

0
t.l

.
93

4.
4

0.
5

0.
6

46
.6

3
27

1.
9

t.l
.

13
29

2.
0

0.
0

0.
0

62
9.

2
3

24
7.

8
t.l

.
92

52
.4

0.
0

0.
0

14
73

.6
0.

6
5

0
t.l

.
t.l

.2
17

05
.2

17
07

3.
6

3
35

8.
6

t.l
.

66
0.

4
0.

5
0.

6
50

.8
4

22
1.

6
t.l

.
10

08
1.

0
0.

0
0.

0
51

7
4

13
4.

5
t.l

.
53

82
.6

0.
0

0.
0

68
4

0.
8

5
4

19
1.

7
t.l

.
78

60
.4

68
73

4
13

7.
4

t.l
.

24
7.

8
0.

4
0.

6
24

.2
5

3.
6

15
.1

88
5.

2
0.

0
0.

0
77

.4
5

3.
7

10
.4

34
7.

0
0.

0
0.

0
75

.6

20
8

0.
2

5
0

t.l
.

t.l
.1

65
24

.2
81

68
.6

0
t.l

.
t.l

.
96

7.
0

0.
6

0.
7

11
.8

0
t.l

.
t.l

.1
12

28
6.

4
0.

0
0.

0
44

4
0

t.l
.

t.l
.2

10
76

.2
0.

0
0.

0
16

50
.4

0.
4

5
0

t.l
.

t.l
.1

69
90

.2
87

28
.6

0
t.l

.
t.l

.
79

2.
6

0.
8

0.
9

16
.2

0
t.l

.
t.l

.
19

17
0.

0
0.

0
0.

0
41

3.
4

0
t.l

.
t.l

.1
82

35
.2

0.
0

0.
0

10
14

.2
0.

6
5

0
t.l

.
t.l

.1
63

24
.4

10
28

4
0

t.l
.

t.l
.

74
9.

4
0.

9
1.

4
43

.4
0

t.l
.

t.l
.

18
48

3.
8

0.
0

0.
0

46
6.

8
0

t.l
.

t.l
.1

59
65

.2
0.

0
0.

0
10

45
.2

0.
8

5
0

t.l
.

t.l
.1

90
19

.8
18

55
8.

6
1

59
4.

2
t.l

.
70

5.
4

0.
8

0.
9

48
4

22
1.

2
t.l

.
95

85
.2

0.
0

0.
0

40
7.

6
5

56
.8

91
.6

28
33

.8
0.

0
0.

0
39

8.
6

To
ta

l
12

0
58

89
99

10
2

Ta
bl

e
4.

1:
Pe

rfo
rm

an
ce

co
m

pa
ris

on
of

th
e

Br
an

ch
-a

nd
-C

ut
al

go
rit

hm
us

ed
to

so
lv

e
th

e
na

tu
ra

l
fo

rm
ul

at
io

n
n-

IL
P T

F
(3

.1
1)

on
SY

NT
HE

TI
C

in
st

an
ce

s
of

20
ve

rt
ic

es
gr

ou
pe

d
by

va
lu

e
λ

111

4.2.2 Computational performance of the natural formulations n-
ILPB and n-ILPB+TF

In the remainder of this section, we study the computational performance of the nat-
ural formulation n-ILPB (3.6) with Benders cuts (3.6b) and the natural formulation
enhanced with target-flow inequalities (3.10). This latter formulation is denoted by
n-ILPB+TF. The aim is to determine the best Branch-and-Cut algorithm to solve the
natural formulation for the MFBP.
The natural formulation n-ILPB is solved using a Branch-and-Benders-Cut algorithm
where Benders cut are separated at every node of the branching tree and added to the
RMP. As explained in Section 3.2.3, this can be done by solving a MCCP, see Model
(3.9), using CPLEX ILP solver. It is worth noticing that the RMP is initialized with one
Benders cut that is associated with the maximum flow in G. This flow is, by definition,
a flow of value greater than Φ. We denote by BENDERS this Branch-and-Cut algorithm.
In the case of n-ILPB+TF, we observed that the performance of the Branch-and-Cut
algorithm is negatively impacted by the separation of the target-flow inequalities as
the results of n-ILPTF have shown. However, further use of target-flow inequalities
can derive from the separation of the Benders cuts. Indeed, it is worth noticing that
the separation of target-flow inequalities (3.10) as well as the separation of Benders cuts
(3.6b) require finding a flow of value greater than Φ. Consequently, for every Benders cut
generated, one may check if the associated target-flow inequality is violated. If so, then
this target-flow inequality is added to the RMP. We denote by n-ILPB+TF∗ the natural
formulation featuring Benders Cuts (3.6b) and target-flow inequalities (3.10), solved by
separating Benders Cuts and incorporating target-flow inequalities within the Branch-
and-Cut algorithm. This Branch-and-cut algorithm is referred to as BENDERS_TF.
Table 4.2 compares performance of the two Branch-and-Cut algorithms presented, i.e.,
BENDERS and BENDERS_TF. The instances used for this analysis consist of graphs with
40, 60 and 100 vertices from the SYNTHETIC class with density values of 0.2, 0.4, 0.6 and
0.8. We consider three values of the target-flow defined by λ = 0.2, λ = 0.6 and λ = 0.9.
Each row in the table reports the results of a group of tests conducted on five simi-
lar graphs (same vertices and arcs) with distinct blocker costs and capacities on the
arcs. The column # reports the total number of instances per row. For each Branch-
and-Cut algorithm, we report the following values computed for every group of tests:
the number of instances solved to proven optimality (#opt), the average (avg.) and
maximum (max) computing time (time) in seconds and the average number of Benders
constraints generated to separate integer and fractional infeasible points (#benders).
For BENDERS_TF, we also report the average number of target-flow inequalities gen-
erated (#TF). Table 4.2 illustrates that BENDERS_TF achieves better computational
performance than BENDERS. Indeed, BENDERS_TF manages to solve 159 instances out
of 180 against 156 for BENDERS. This result is also supported by the consistently lower
computing time of BENDERS_TF compared to BENDERS. Furthermore, we observe that
incorporating target-flow inequalities into the Branch-and-Cut algorithm reduces the
number of Benders cuts generated and allows us to reach the optimal solution faster.
As an illustrative example, for graphs of 40 vertices with a density of 0.6, when using
the algorithm BENDERS, the average number of Benders cut generated is approximately

112

232. By adding 20 target-flow inequalities, this number reduces to 165 (slightly more
than half of the original amount). For graphs of 60 vertices with a density of 0.6, using
the algorithm BENDERS_TF leads to a reduction of 423 Benders cuts while adding 95
target-flow inequalities. In addition, for graphs of 40 and 60 vertices, the average time
spent on the separation of Benders cuts is approximately 0.01 seconds. For graphs of
100 vertices, this value averages 0.05 seconds, which is still relatively short. However,
it is important to consider that for some instances, a significant number of Benders
cuts need to be generated to reach the optimal solution. This contributes to an overall
increase in the total computing time. It is worth noticing that all Benders cuts are
not generated in the root node of the branching tree. Moreover, the separation of Ben-
ders cuts is always performed with a violation tolerance of 10−6. To conclude, Table 4.2
shows that the most efficient algorithm to solve the natural formulation for the MFBP is
BENDERS_TF, which corresponds to a Branch-and-Cut algorithm that separates Benders
cuts (3.6b) at every node of the branching tree and incorporates target-flow inequalities
when violated. In the remainder of this paper, we consider this algorithm to solve a
natural formulation for the MFBP and it is denoted by n-ILP.

BENDERS BENDERS_TF
time #benders time #benders #TF

n d(G) # #opt avg. max avg. #opt avg. max avg. avg.
40 0.2 15 15 0 0.1 19 15 0 0.10 18 2

0.4 15 15 0.12 0.53 54 15 0.21 0.51 45 8
0.6 15 15 1.19 7.9 232 15 0.86 4.21 165 20
0.8 15 15 3.13 12.77 349 15 3 10.91 341 43

60 0.2 15 15 0.49 3.97 91 15 0.42 4.12 79 18
0.4 15 15 4.64 35.72 329 15 5.37 40.59 314 84
0.6 15 14 91 t.l. 1441 15 40.56 169.91 1018 95
0.8 15 14 147.65 t.l. 1399 14 124.55 t.l. 1258 91

100 0.2 15 13 108.42 t.l. 1395 14 77.88 t.l. 1168 282
0.4 15 11 181.84 t.l. 1142 11 184.25 t.l. 1033 93
0.6 15 8 317.21 t.l. 1787 8 321.15 t.l. 1526 105
0.8 15 6 363.14 t.l. 1229 7 351.33 t.l. 1207 142

Total 180 156 159

Table 4.2: Performance comparison of the Branch-and-Cut algorithms for n-ILPB and
n-ILPB+TF∗, i.e. BENDERS and BENDERS_TF, on SYNTHETIC instances

4.2.3 Comparison between the natural formulation and the state-of-
the-art technique

We now compare the performance of the natural formulations against the direct use
of a state-of-the-art exact solver for mixed-integer bilevel linear programs (MIBLPs),

113

available online2. This solver is associated with the work of Fischetti and Ljubic [2017],
where the authors propose a proof-of-concept exact MIBLP solver based on a Branch-
and-Cut MILP approach, strengthened with new families of cuts, namely intersection
cuts (see Fischetti et al. [2018]) and hypercube intersection cuts. Additionally, the solver
incorporates a preprocessing procedure and many other features including heuristics,
propagations, multi-threading support, and LP parametrization. For our experiments,
we use the setting MIX++, which represents the robust default setting for the Branch-
and-Cut algorithm employed by the solver. MIX++ separates intersection cuts at each
separation call using the separation procedure described in Fischetti and Ljubic [2017]
and the extended bilevel-free set of Xu [2012]. It also applies preprocessing to the
follower problem. By the tests made with the natural formulations, the solver is used
in a single-thread mode. This resolution method is denoted by BISOLVER.
Table 4.3 compares performance of the bilevel solver, i.e, BISOLVER, and the two Branch-
and-Cut algorithms for solving n-ILPB and n-ILPB+TF∗, i.e., BENDERS and BENDERS_TF.
The instances used for this analysis are the same as the one used in Table 4.2.
Table 4.3 illustrates that the two Branch-and-Cut algorithms proposed for n-ILPB and
n-ILPB+TF∗ outperform the direct use of the bilevel solver. Indeed, with BISOLVER, only
28 instances out to 180 have been solved to proven optimality, which constitutes less
than 16% of the instances. The time limit is reached even for instances with 40 vertices
and a density of 0.4. In the meanwhile, the two natural formulations begin to encounter
challenges for graphs with 60 vertices and a density of 0.6. Remark that, at this stage,
the bilevel solver fails to solve any instance.

BENDERS BENDERS_TF BISOLVER
time #B time #B #TF time

n d(G) # #opt avg. max avg. #opt avg. max avg. avg. #opt avg. max
40 0.2 15 15 0 0.1 19 15 0 0.10 18 2 15 4.53 19.31

0.4 15 15 0.12 0.53 54 15 0.21 0.51 45 8 4 495.17 t.l.
0.6 15 15 1.19 7.9 232 15 0.86 4.21 165 20 1 592.99 t.l.
0.8 15 15 3.13 12.77 349 15 3 10.91 341 43 0 t.l. t.l.

60 0.2 15 15 0.49 3.97 91 15 0.42 4.12 79 18 8 t.l. t.l.
0.4 15 15 4.64 35.72 329 15 5.37 40.59 314 84 0 t.l. t.l.
0.6 15 14 91 t.l. 1441 15 40.56 169.91 1018 95 0 t.l. t.l.
0.8 15 14 147.65 t.l. 1399 14 124.55 t.l. 1258 91 0 t.l. t.l.

100 0.2 15 13 108.42 t.l. 1395 14 77.88 t.l. 1168 282 0 t.l. t.l.
0.4 15 11 181.84 t.l. 1142 11 184.25 t.l. 1033 93 0 t.l. t.l.
0.6 15 8 317.21 t.l. 1787 8 321.15 t.l. 1526 105 0 t.l. t.l.
0.8 15 6 363.14 t.l. 1229 7 351.33 t.l. 1207 142 0 t.l. t.l.

Total 180 156 159 28

Table 4.3: Performance comparison of the Branch-and-Cut algorithms BENDERS and
BENDERS_TF and the bilevel solver (BISOLVER) on SYNTHETIC instances.

2https://msinnl.github.io/pages/bilevel.html

114

https://msinnl.github.io/pages/bilevel.html

4.3 Comparison of the effectiveness of the natural and
the compact formulation

In this section, we compare the computational performance of our best Branch-and-Cut
algorithm for the natural formulation n-ILP, i.e., BENDERS_TF against c-ILP solved by
CPLEX MIP Solver.
Due to the combinatorial nature of integer programs, the latest versions of CPLEX perform
some operations to improve the branching algorithm. This is done automatically in the
default setting. However, CPLEX has many parameters that allow the user to customize
resolution of the problem. We will study the effectiveness of these parameters in the
next section.

4.3.1 Resolution of the compact formulation

In the following, we identify two settings that may affect performance of c-ILP. The
first one decides whether CPLEX applies presolve during preprocessing. The presolve
process performs several reductions to eliminate some variables and thus reduce the size
of the problem. The second one sets the upper limit on the number of cutting plane
passes performed by CPLEX in the root node. Therefore, we consider four variants for
c-ILP, that we detail below.

1. c-ILP default: In this variant, all CPLEX parameters are set to default values

2. c-ILP presolve: In this variant, CPLEX does not use presolve and all other param-
eters are set to default values

3. c-ILP cuts: In this variant, CPLEX does not perform any cutting plane passes in
the root node and all other parameters are set to default values

4. c-ILP presolve cuts: In this variant, CPLEX uses neither presolve nor cutting
plane strategy and all other parameters are set to default values.

For this comparison, we consider SYNTHETIC instances. As in the previous experi-
ments, a time limit of 600 seconds is set for each run. The results of these tests
are reported in Table 4.4. In this table, we compare results of n-ILP and all con-
figurations of c-ILP on instances of the SYNTHETIC class with n ∈ {50, 100, 300, 500}.
For a given number of vertices, each row corresponds to 55 instances grouped by the
density d(G) ∈ {0.2, 0.4, 0.6, 0.8}. We consider different target-flow values defined by
λ ∈ {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.999}. For each formulation, we report
the following values: the number of instances optimally solved on each group (“#opt”),
the average computing time, the maximum computing time and the number of nodes
in the branching tree. As previously, t.l. is reported if the computing time exceeds the
time limit. Table 4.4 directly shows that c-ILP outperforms n-ILP independently of the
input graph or CPLEX features. Indeed, we first focus on instances of 50 and 100 vertices.
All configurations of c-ILP finds the optimal solution within a very short time (from 0.0
to 0.4 seconds). In reverse, even for this category of instances, n-ILP struggles to solve

115

the MFBP. For example, for graphs of 50 vertices with a density 0.2, n-ILP finds the
optimal solution of 15 out of 55 instances only. Note that the number of nodes in the
branching tree increases with the size of the graph and can reach 1086.6, while c-ILP
always finds the optimal solution in the root node. Increase of the number of vertices
(e.g., n = 100) leads to a fall in efficiency of the formulation; only 5 instances solved for
each density value. We now investigate performance of the two formulations for graphs
of 300 and 500 vertices. As expected, n-ILP is not able to solve at optimality any in-
stance. In addition, for instances with a size greater than 300 vertices with a density 0.2,
the number of nodes in the branching tree is equal to 0. This shows that even finding
a feasible solution in the root node is time consuming. However, it is interesting to
see that for this category of instances, performance of c-ILP varies according to CPLEX
features. First, using default CPLEX parameters provides the best results for c-ILP. In
fact, c-ILP default solves to proven optimality all the 880 instances in a reasonable
time; the maximum computing time for an instance of 500 vertices with a density 0.8 is
237.6 seconds. Second, the presolve parameter impact the most performance of c-ILP.
By performing any preprocessing, efficiency of c-ILP significantly deteriorates. This can
be seen through the average computing time that have increased; from 1 second to 25
seconds for instances of 300 vertices with a density 0.2. This can also be seen though
the number of instances solved to proven optimality, that have decreased; from 880 to
858. The number of cutting plane passes also slightly affects performance of c-ILP; 3
instances from the 880 instances have not been solved to proven optimality with c-ILP
cuts. Finally, using neither presolve nor cutting plane passes is the worst configuration
of c-ILP with 857 instances solved to proven optimality out of 880. Remark that for
c-ILP presolve, c-ILP cuts and c-ILP presolve cuts, the number of nodes in the
branching tree radically increases; from 0 to respectively 3249, 3634 and 4173 for in-
stances of 300 vertices with a density 0.2. This shows the effect of CPLEX improvements
for c-ILP, especially in the root node.
In conclusion, c-ILP default holds the best configuration to solve the MFBP through
the compact formulation (3.18). In the rest of this computational study, we consider
c-ILP default configuration for c-ILP.

116

c-
IL

P
de

fa
ul

t
c-

IL
P

pr
es

ol
ve

c-
IL

P
cu

ts
c-

IL
P

pr
es

ol
ve

cu
ts

n-
IL

P
tim

e
no

de
s

tim
e

no
de

s
tim

e
no

de
s

tim
e

no
de

s
tim

e
no

de
s

n
d(

G
)

#
#

op
t

av
g.

m
ax

av
g.

#
op

t
av

g.
m

ax
av

g.
#

op
t

av
g.

m
ax

av
g.

#
op

t
av

g.
m

ax
av

g.
#

op
t

av
g.

m
ax

av
g.

50
0.

2
55

55
0.

0
0.

0
0

55
0.

0
0.

0
0.

0
55

0.
0

0.
0

0.
0

55
0.

0
0.

0
0.

0
15

45
0.

1
t.l

.
49

4.
9

0.
4

55
55

0.
0

0.
1

0
55

0.
0

0.
1

0.
0

55
0.

0
0.

0
0.

0
55

0.
0

0.
1

0.
0

5
54

5.
5

t.l
.

24
3.

2
0.

6
55

55
0.

0
0.

2
0

55
0.

0
0.

2
0.

0
55

0.
0

0.
1

0.
0

55
0.

0
0.

2
0.

0
5

54
5.

6
t.l

.
59

2.
4

0.
8

55
55

0.
0

0.
1

0
55

0.
0

0.
1

0.
0

55
0.

0
0.

1
0.

0
55

0.
0

0.
1

0.
0

5
54

5.
6

t.l
.

10
86

.6

10
0

0.
2

55
55

0.
1

0.
1

0
55

0.
1

0.
1

0.
0

55
0.

1
0.

1
0.

0
55

0.
1

0.
1

0.
0

5
54

5.
6

t.l
.

11
17

.0
0.

4
55

55
0.

1
0.

2
0

55
0.

1
0.

2
0.

0
55

0.
1

0.
2

0.
0

55
0.

1
0.

2
0.

0
5

54
6.

5
t.l

.
15

83
.2

0.
6

55
55

0.
2

0.
3

0
55

0.
2

0.
2

0.
0

55
0.

2
0.

2
0.

0
55

0.
2

0.
3

0.
0

5
54

7.
0

t.l
.

14
17

.0
0.

8
55

55
0.

3
0.

4
0

55
0.

3
0.

4
0.

0
55

0.
3

0.
4

0.
0

55
0.

3
0.

4
0.

0
5

t.l
.

t.l
.

10
36

.4

30
0

0.
2

55
55

1.
1

1.
8

0
53

25
.0

t.l
.

32
49

.8
53

24
.7

t.l
.

36
34

.2
53

24
.8

t.l
.

41
73

.6
0

t.l
.

t.l
.

17
9.

7
0.

4
55

55
3.

3
5.

0
0

55
13

.8
28

.9
0.

0
55

3.
4

5.
5

0.
0

55
11

.4
23

.5
0.

0
0

t.l
.

t.l
.

0.
0

0.
6

55
55

6.
5

10
.9

0
55

31
.1

70
.7

0.
0

55
6.

6
11

.2
0.

0
54

34
.1

t.l
.

60
7.

2
0

t.l
.

t.l
.

0.
0

0.
8

55
55

9.
2

16
.1

0
55

63
.5

14
6.

2
0.

0
55

9.
4

17
.6

0.
0

54
62

.4
t.l

.
35

3.
4

0
t.l

.
t.l

.
0.

0

50
0

0.
2

55
55

6.
1

11
.1

0
54

39
.1

t.l
.

58
3.

9
54

21
.9

t.l
.

64
5.

0
54

39
.2

t.l
.

59
0.

7
0

t.l
.

t.l
.

0.
0

0.
4

55
55

17
.2

65
.4

0
55

10
1.

6
28

0.
8

0.
0

55
14

.5
29

.8
0.

0
55

10
0.

6
28

0.
5

0.
0

0
t.l

.
t.l

.
0.

0
0.

6
55

55
33

.2
74

.0
0

52
29

0.
7

t.l
.

0.
0

55
23

.3
48

.8
0.

0
52

29
4.

1
t.l

.
0.

0
0

t.l
.

t.l
.

0.
0

0.
8

55
55

51
.0

23
7.

6
0

39
45

7.
3

t.l
.

0.
0

55
35

.3
91

.1
0.

0
40

46
2.

2
t.l

.
0.

0
0

t.l
.

t.l
.

0.
0

To
ta

l
88

0
88

0
85

8
87

7
85

7
50

Ta
bl

e
4.

4:
Pe

rfo
rm

an
ce

co
m

pa
ris

on
be

tw
ee

n
al

lc
on

fig
ur

at
io

ns
of

c-
IL

P
an

d
n-

IL
P

on
SY

NT
HE

TI
C

in
st

an
ce

s

117

4.3.2 Comparison between the natural and the compact formulation

We now consider the same results presented in Table 4.4, focusing only on c-ILP and
n-ILP and considering three values of the target-flow defined by λ ∈ {0.2, 0.6, 0.9}, in
order to highlight the difference in performance of the two models. Table 4.5 shows, as
previously, that c-ILP outperforms n-ILP. For the smallest graphs (n = 50), c-ILP solves
all instances in record time; less than 0.1 seconds for all densities. For the same group of
instances, n-ILP manages to solve all instances in a reasonable time, i.e., at most 27.88
seconds for a density of 0.8. However, for larger graphs, the performance spread between
the two formulations is exacerbated. More precisely, we observe that for graphs of 100
vertices with a density of 0.4, n-ILP fails to solve three instances to proven optimality.
This number increases to seven instances for a density d(G) equal to 0.8. Subsequently,
for graphs of 300 vertices and a density larger than 0.2, none of the instances were solved
to proven optimality within the time limit. In addition, for the natural formulation n-
ILP, the number of nodes explored in the branching tree tends to increase as the size
of the graph grows. In particular, for graphs with 50 vertices and a density of 0.8,
the maximum number of explored nodes reaches an approximate value of 190 while
for graphs with 100 vertices, this number averages around 530. For larger instances,
such as graphs of 300 vertices with a density greater than or equal to 0.6, no nodes are
explored within the time limit. This observation highlights that the linear relaxation of
n-ILP requires a substantial amount of time. Furthermore, based on the results from
previous instances, it can be inferred that the time invested in the linear relaxation does
not contribute to an overall reduction in the computing time of the Branch-and-Cut
algorithm for n-ILP. In contrast to n-ILP, c-ILP successfully solves all instances with 100
and 300 vertices at the root node, achieving a maximum computing time of 2.13 seconds.
As explained previously, it is worth noticing that the high performance of c-ILP comes
essentially from enhancements made by the solver, especially when performing presolve
and adding cuts to the model. This can be explained by the structure of the compact
formulation c-ILP. More precisely, in Section 3.3, it has been shown that the solution of
the MFBP is contained in a cut of the graph and constraints (3.18c) and(3.18d) of c-ILP
are constraints defining a cut. Furthermore, constraint (3.18b) belongs to a well-known
optimization problem, namely the knapsack problem (see Garey and Johnson [1979]
for further details). This shows that solution of the MFBP can be found by solving a
knapsack problem in a specific cut of the graph. Hence, constraints of c-ILP are familiar
to CPLEX, that will be able to perform good preprocessing and general improvements.

118

n-ILP c-ILP
time nodes time nodes

n d(G) # # opt avg. max avg. # opt avg. max avg.
50 0.2 15 15 0.02 0.07 7 15 0.01 0.01 0

0.4 15 15 0.18 0.61 37.53 15 0.03 0.06 0
0.6 15 15 0.7 2.65 71.33 15 0.04 0.05 0
0.8 15 15 3.41 27.88 189.67 15 0.05 0.08 0

100 0.2 15 14 77.8 t.l. 214 15 0.05 0.08 0
0.4 15 11 184.2 t.l. 462.87 15 0.06 0.08 0
0.6 15 8 321.1 t.l. 263.73 15 0.08 0.09 0
0.8 15 7 351.3 t.l. 530.87 15 0.11 0.21 0

300 0.2 15 5 469.73 t.l. 251.6 15 0.26 0.41 0
0.4 15 0 t.l. t.l. 2.27 15 0.53 0.92 0
0.6 15 0 t.l. t.l. 0 15 0.94 1.51 0
0.8 15 0 t.l. t.l. 0 15 1.48 2.13 0

Total 180 105 180

Table 4.5: Performance comparison between c-ILP and n-ILP on SYNTHETIC instances

Table 4.6 presents a comparison of c-ILP and n-ILP applied to instances from the
GRID class and the REAL-NETWORKS class. The first six rows correspond to instances
of the GRID class grouped by the size, written as n1 × n2. We count 17 grid graphs
with distinct blocker costs and capacities including two grid graphs of size 10 × 20
and 30 × 60, one grid graph of size 20 × 160 and 80 × 40, five grid graphs of size
20 × 40 and six grid graphs of size 40 × 80. The last two rows correspond to instances
of the REAL-NETWORKS class grouped by the type, i.e., Type A or Type B. As for the
SYNTHETIC instances, Table 4.6 demonstrates that c-ILP outperforms n-ILP by several
orders of magnitude. For small GRID instances (grids of size 10 × 20, 20 × 40 and
30 × 60), c-ILP reaches an optimal solution in less than 2 seconds, while n-ILP takes an
average of approximately 334 seconds for grids of size 20 × 40 and around 529 seconds
for grids of size 30 × 60. The same performance disparities can be observed for the
remaining instances in the GRID class. For instances of Type A and Type B from the
REAL-NETWORKS class, n-ILP requires an average computing time of 259 seconds and
318 seconds, respectively, while c-ILP solves all REAL-NETWORKS instances in less than
10 seconds (≈ 9.62 seconds). Moreover, it is worth noticing that c-ILP manages to
solve all the 93 instances considered for this study, while n-ILP is only able to solve
41 instances to proven optimality (slightly more than 44%). Finally, we observe that
on average, for GRID instances and REAL-NETWORKS instances, c-ILP finds an optimal
solution at the root node, while n-ILP tends to explore a much larger number of nodes
(up to 4630.80). Therefore, as for the SYNTHETIC instances (see Table 4.5), c-ILP finds
an optimal solution of the MFBP very quickly compare to n-ILP and in most cases
at the root node, resulting in a better global computational performance. Table 4.6

119

reveals that our best Branch-and-Cut algorithm for the natural formulation n-ILP does
not solve all instances from Royset and Wood [2007].

n-ILP c-ILP
time nodes time nodes

Class Size\Type # # opt avg. max avg. # opt. avg. max avg.

GRID 10 × 20 6 6 8.55 25.86 1643.17 6 0.07 0.09 0.00
20 × 160 3 1 542.46 t.l. 1621.00 3 3.99 5.89 0.00
20 × 40 15 8 334.17 t.l. 4630.80 15 0.37 0.67 0.00
30 × 60 6 1 529.97 t.l. 3247.00 6 1.37 2.81 0.00
40 × 80 18 0 t.l. t.l. 1466.33 18 4.12 8.11 0.00
80 × 40 3 1 462.97 t.l. 543.33 3 3.24 3.28 0.00

REAL-NETWORKS Type A 21 13 259.97 t.l. 2355.76 21 1.65 9.62 0.00
Type B 21 11 318.57 t.l. 2759.90 21 2.06 8.14 0.48

Total 93 41 93

Table 4.6: Performance comparison between c-ILP and n-ILP on GRID and
REAL-NETWORKS instances

In Figure 4.2, we discuss more precisely the impact of graph-structural features and
flow-blocker features on the performance of c-ILP and n-ILP (corresponding to Formu-
lation n-ILPB+TF∗). Figure 4.2 gives the computing time boxplots of the two formulations
grouping the instances from the SYNTHETIC class by the number of vertices in the graph
n, the density d(G) and value λ for the target-flow. We graphically show the time spent
by each formulation through their quartiles. The lines extending vertically from the
boxes indicate the variability outside the upper and lower quartiles. Above the upper
quartile, the outliers are plotted as individual points. The y-axis is the computing time
(in logarithmic scale) and the x-axis represents the group of instances. On the top part
of the figure, we report, for each group, the total number of instances solved to proven
optimality (#Opt). In the top-left corner, we report #Opt/k, where k is replaced by
the total number of instances in each group of tests for a given parameter (n, d(G),
and λ). These boxplots provide evidence that c-ILP is the best-performing model to
solve the MFBP, independently of the size of the graph and the target-flow. However,
for both formulations, we observe that the computing time increases as the size of the
network grows. Indeed, the number of vertices and the density of the graph are directly
correlated to the number of variables and constraints of the two models (see (3.18) for
the compact formulation c-ILP and (3.15) for the natural formulation n-ILP). As an
illustrative example, for graphs of 500 vertices, the natural formulation does not reach
an optimal solution within the time limit. Regarding graph densities, we observe that
n-ILP successfully solves 65 instances with a density of 0.2, which decreases to 57 and
51 for greater densities. On the other hand, for graphs of up to 500 vertices, c-ILP

120

reaches an optimal solution with a very reasonable computing time, i.e., almost half of
the time limit. Finally, Figure 4.2 illustrates that n-ILP is more efficient for large values
of the target-flow. For example for λ = 0.9, 85 instances out of 120 have been solved
to proven optimality within the time limit, while for λ = 0.2, n-ILP manages to solve
only 66 instances. This is consistent with the constraints of the natural formulation n-
ILPB+TF∗. Indeed, due to the structure of Benders cuts (3.6b), when increasing the value
of the target-flow, the left member decreases, which makes the problem easier to solve.
In conclusion, Table 4.5, Table 4.6 and Figure 4.2 demonstrate that c-ILP outperforms
n-ILP, regardless of the graph-structural features or the flow-blocker features.

Figure 4.2: Computing time boxplots of n-ILP (n-ILPB+TF∗) and c-ILP on SYNTHETIC
instances

121

Since n-ILPB+TF∗ (3.15) and c-ILP (3.18) share a family of variables, i.e., x variables
which correspond to the blocker decision variables, the target-flow inequalities (3.10)
and the Benders cuts (3.6) are valid inequalities for the compact formulation. These
inequalities can be employed to further enhance the performance of c-ILP. Hence, we
performed some experiments on instances from the SYNTHETIC class to evaluate the
impact of these constraints in the compact formulation. However, the addition of these
cuts does not yield any noticeable computational enhancements, even in larger instances.
This can be explained by the optimizations performed by CPLEX ILP solver that offers
high computing performance.

4.4 Gaps

In this section, we are interested in the quality of the LP relaxation of n-ILPB, n-ILPTF,
n-ILPB+TF and c-ILP. The LP relaxation of c-ILP is solved using the LP solver of CPLEX.
Solution of the LP relaxation of n-ILPB and n-ILPB+TF involves separating the Benders
cuts by solving the separation problem, i.e., Model (3.9) (see Section 3.2.3). In the
LP relaxation of n-ILPTF and n-ILPB+TF, the target-flow inequalities are separated by
solving Model (3.14). In the case of n-ILPB+TF, a solution of the LP relaxation is found
when all Benders cuts and all target-flow inequalities are separated.
This study focuses on instances derived from the SYNTHETIC class, including graphs of
20, 40 and 50 vertices with a density of 0.2, 0.4, 0.6 and 0.8. To broaden our analysis,
we extend the range of λ values. Specifically, we consider 9 values of λ ranging from
0.1 to 0.9 with a step size of 0.1. The results are reported in Table 4.7, where each
row presents tests conducted on 45 graphs sharing the same number of vertices and
density. For each formulation, we report the average and maximum value of lp gap, the
optimality gap of the LP relaxation. For each instance, lp gap is computed according
to the optimal solution value opt as 100 × opt−lpval

opt , where lpval is the value of the linear
programming relaxation of the corresponding formulation. For n-ILPB, n-ILPTF and n-
ILPB+TF, we also report the average and maximum number of cuts generated to solve
the LP relaxation (#B for Benders cuts and #TF for target-flow inequalities). Finally,
for n-ILPTF and n-ILPB+TF, we report the number of instances solved for which the lp
relaxation solution has been found within the time limit set to 1800 seconds (#optLP).
It is worth noticing that instances for which the LP relaxation has not been found are
not considered in the computation of lp gap, #B and #TF.
For n-ILPB and c-ILP, all LP relaxation values are computed within the time limit.
Specifically, computing the LP relaxation of c-ILP takes only seconds. In the case of
n-ILPB, the average computing time does not exceed 600 seconds, although it may be
greater than that of c-ILP. On the other hand, the computation of the LP relaxation
of n-ILPTF is time-consuming. Indeed, only 278 instances out of 540 (less than half of
the instances) were successfully solved. The number of instances solved decreases with
the size of the graph, as evidenced in the table, where only 2 instances were solved
for graphs featuring 50 vertices and a density of 0.8. This is due to the N P-hardness
of the separation problem (3.14) for the target-flow inequalities. In the same line, for
n-ILPB+TF, the separation of target-flow inequalities results in an increase in computing

122

time compared to n-ILPB, and some instances have not been solved within the time
limit (31 instances).
Section 3.2.6, shows that n-ILPB and n-ILPTF do not dominate each other. In other
words, there are instances for which the LP relaxation of n-ILPB is strictly stronger than
the one of n-ILPTF, and vice versa. This is highlighted by Table 4.7, where the average
and maximum lp gap values computed with n-ILPB can either be smaller or greater
than those computed with n-ILPTF for a specific group of instances. As an illustrative
example, for the smallest instances of 20 vertices with a density 0.2, the maximum lp gap
computed with n-ILPB reaches 90, while for the same group of instances, the maximum
lp gap of n-ILPTF is equal to 84.44. On the contrary, with an equal number of vertices
and a higher density (0.6), n-ILPB exhibits a smaller maximum lp gap (84.67) compared
to that obtained with n-ILPTF (90.00). It is worth noticing that the small values of lp
gap computed by n-ILPTF for large instances (2.78, 2.76, 0.00) are due to the exclusion
of unsolved instances from the computations.
In Section 3.3.3, we demonstrate that c-ILP dominates n-ILPB in terms of LP relaxation
(see Proposition 7). Table 4.7 also supports this result. Specifically, the average value
and the maximum value of lp gap for c-ILP are always smaller than the one obtained
with n-ILPB. We are now interested in measuring the extent to which c-ILP outperforms
n-ILPB. For the instances considered, the difference between the average values of lp
gap is relatively close. As an illustrative example, when considering graphs with 40
vertices and a density of 0.2, the LP relaxation quality provided by c-ILP surpasses that
of n-ILPB by approximately 11%. Regarding the maximum computed values of lp gap,
this difference becomes more noticeable. Specifically, for graphs with 20 vertices and a
density of 0.6, the maximum LP gap value peaks at 70.14 for n-ILPB, whereas this value
stands at 58.57 for c-ILP (≈ 17% better).
Finally, this table illustrates that c-ILP and n-ILPB+TF are not directly comparable in
terms of LP relaxation, as shown in Proposition 7. Indeed, on average, the lp gap
of n-ILPB+TF consistently outperforms the average lp gap value computed by c-ILP.
However, it is worth noticing that in specific instances, the maximum lp gap is smaller
for c-ILP. For example, when considering graphs with 20 vertices and a density of 0.6,
the maximum LP gap value for n-ILPB+TF is 70.14, while the corresponding value for
c-ILP is 58.57.

4.5 Testing the limits of the compact formulation

In this section, we test the efficiency of c-ILP in solving large-scale graphs. More pre-
cisely, we are seeking to achieve the limits of the compact formulation (3.18). By doing
so, we can determine the maximum size of instances that can be solved to proven opti-
mality within a fixed amount of CPU time limit of 600 seconds, similar to the previous
experiments. To this end, we include a more extensive set of instances derived from the
SYNTHETIC class, including graphs with a wide range of values for the number of vertices
n. As in our previous experiments, we focus on four specific arc densities: 0.2, 0.4, 0.6,

123

n-ILPB n-ILPTF n-ILPB+TF c-ILP
#B lp gap #TF lp gap #B #TF lp gap lp gap

n d(G) # avg. avg. max. #optLP avg. avg. max. #optLP avg. avg. avg. max. avg. max.
20 0.2 45 1.0 50.0 90.0 45 21.6 76.2 84.4 45 1.0 51.3 13.3 90.0 41.9 88.9

0.4 45 7.0 29.1 84.7 45 542.0 53.1 90.0 45 53.2 77.5 4.7 71.6 25.4 80.0
0.6 45 9.8 20.0 70.1 42 1530.5 63.8 87.2 45 116.4 127.0 6.3 70.1 18.3 58.6
0.8 45 26.6 22.8 63.9 35 2641.1 59.4 80.4 45 166.9 178.6 6.0 46.3 19.8 61.5

40 0.2 45 22.3 26.7 80.5 41 2072.3 56.8 89.3 45 226.3 249.8 8.8 80.5 23.8 76.2
0.4 45 75.8 20.6 65.7 13 997.2 25.6 80.7 44 610.4 621.1 4.1 48.7 18.0 64.3
0.6 45 72.7 10.1 30.0 12 818.2 14.0 90.0 44 355.0 305.5 3.5 27.3 9.1 26.5
0.8 45 177.5 11.0 42.7 6 684.8 2.8 16.7 38 357.5 353.9 4.8 37.6 9.9 40.0

50 0.2 45 50.3 26.2 80.8 23 1301.5 36.2 84.9 45 520.3 529.0 4.8 80.8 24.4 76.4
0.4 45 153.5 22.1 70.5 10 1462.6 2.8 14.3 36 593.5 545.1 8.7 70.5 19.6 66.7
0.6 45 127.6 10.3 57.5 4 608.5 0.0 0.0 37 390.5 392.4 5.9 57.5 9.2 55.0
0.8 45 355.1 9.2 37.4 2 793.5 0.0 0.0 40 785.7 780.6 3.5 19.5 8.1 37.4

Total 540 278 509

Table 4.7: Performance comparison between LP relaxations of n-ILPB, n-ILPTF, n-
ILPB+TF and c-ILP on SYNTHETIC instances

and 0.8. Furthermore, to broaden our analysis, we extend the range of λ values. Specifi-
cally, we consider 9 values of λ, ranging from 0.1 to 0.9 with a step size of 0.1. In Figure
4.3, we present the computing time boxplot of c-ILP for 11 groups of 180 instances,
where each group has the same number of vertices n. As in Figure 4.2, we graphically
represent the computing time using quartiles and we report the number of instances
solved to proven optimality (#opt) for each group out of the total number of instances
in the group (180). As expected, we observe a direct correlation between the computing
time of c-ILP and the number of vertices in the graph. Specifically, for graphs with up
to 700 vertices, c-ILP reaches an optimal solution in a reasonable time (less than 300
seconds for the worst case). For graphs with 900 vertices, the average computing time
increases with one instance approaching the time limit at 590 seconds. The compact
formulation encounters difficulties when dealing with graphs of 1000 vertices, where ten
instances remain unsolved. Subsequently, the number of instances solved to proven
optimality decreases to 141 out of 180 for n = 1100. The most significant disparity is
observed for graphs of 1200 vertices, with only 34 instances (slightly less than a quarter
of the total) achieving proven optimality. Lastly, for graphs of 1400 vertices, this num-
ber decreases to 18 and for larger graphs (1500 vertices), no instances have been solved
to proven optimality within the time limit. It is worth noticing that in cases where
instances have not been solved to proven optimality, the solver encounters difficulties
in establishing good lower and upper bounds.

124

Figure 4.3: Computing time boxplot of c-ILP on SYNTHETIC instances

300 500 700 900 1000 1100 1200 1400 1500

0
10

0
20

0
30

0
40

0
50

0
60

0

n

C
om

pu
tin

g
tim

e
(s

ec
)

c-ILP

#Opt/180 180 180 180 180 170 141 34 18 0

4.6 Concluding remarks

In this chapter, an extensive computational analysis was performed to evaluate the
performance of the formulations designed for the MFBP. The experiments have shown
that the algorithms proposed in this dissertation significantly outperform the direct use
of a bilevel solver, representing the current state-of-the-art technique for addressing the
MFBP. Moreover, the compact formulation proves to be the most efficient, surpassing
the natural formulations and demonstrating its ability to handle large-sized instances
efficiently within a reasonable time.

125

Chapter 5

The multicommodity flow blocker
problem : Formulations and polyhedral
analysis

Contents
5.1 The multicommodity flow problem 128

5.1.1 An ILP formulation for the MCFP . 129
5.1.2 An ILP formulation for the UMCFP 130
5.1.3 Graphical illustrations . 131

5.2 The multicommodity flow blocker problem 132
5.2.1 Description of the problem . 132
5.2.2 Complexity . 134
5.2.3 Relation between the MCFBP and the UMCFBP 136

5.3 Formulations . 137
5.3.1 A bilevel formulation for the multicommodity flow blocker problem . . 137
5.3.2 A second single-level ILP formulation for the MCFBP 139
5.3.3 An ILP formulation for the multicommodity flow blocker problem . . 141

5.4 Polyhedral analysis . 142
5.4.1 Associated polytopes . 142
5.4.2 Trivial inequalities . 144
5.4.3 target profit inequalities . 145

5.5 Concluding remarks . 148

In this chapter, we provide a formal definition of the multicommodity flow blocker prob-
lem. We begin in Section 5.1 with a comprehensive overview of the multicommodity flow
problem, exploring both its splittable and unsplittable variants. Specifically, we discuss
the particular versions of the problem addressed in this thesis, along with graphical il-
lustrations for clarity. Additionally, we introduce mathematical models that have been
developed to effectively tackle this problem. Following this, in Section 5.2, we delve into
the blocker variant of the multicommodity flow problem, known as the multicommodity
flow blocker problem. In this section, we also examine a closely related problem, namely

127

the multicommodity flow interdiction problem, which has been previously investigated
in the literature. Using a reduction to the multicommodity flow interdiction problem,
we demonstrate the N P−hardness of the multicommodity flow blocker problem. For
the splittable and unsplittable variants of the multicommodity flow problem, graphical
illustrations and a complexity analysis are provided. We further explore the relationship
between the two variants. We then introduce in Section 5.3 two mathematical formula-
tions for solving the multicommodity flow blocker problem to proven optimality. The first
formulation leverages the bilevel nature of the problem, while the second is an Integer
Linear Programming (ILP) formulation, characterized by an exponential family of con-
straints applicable to each variant. This ILP formulation uses only the design variables
of the problem and therefore it is solved using a Branch-and-Cut algorithm that will be
further described in Chapter 6. Finally, in Section 5.4, a polyhedral analysis of the ILP
formulation is conducted, offering deeper insights into its structure and solutions.

5.1 The multicommodity flow problem

This section provides a formal definition of the multi-commodity flow problem, along
with mathematical models and a comprehensive example. It serves to clarify the specific
variants of the multicommodity flow problem that we will focus on throughout the rest
of this study.
As mentioned in Chapter 1, the multi-commodity flow problem is a well-known opti-
mization problem largely studied in the literature. The multicommodity flow problem
(MCFP) involves the efficient routing of multiple commodities through a network. In
this optimization problem, a directed graph is used to depict the network, with nodes
representing routers and arcs representing the connections or links between them. Each
commodity is associated with a specific source node, destination node, and a bandwidth
corresponding to the quantity of data to be routed.
The objective of the multicommodity flow problem is to determine the optimal flow
of each commodity through the network while respecting various constraints. These
constraints typically include capacity limits on the arcs, ensuring that the total flow
on any arc does not exceed its capacity. Additionally, for each commodity conservation
constraints are imposed at each node, excluding the source and the destination, ensuring
that the total incoming flow is equal to the total outgoing flow.
In this study, our focus centers on routing a set of commodities with the objective of
maximizing a specified profit function. This profit function is formulated by computing
the gains obtained from routing one unit of flow from the source to the destination for
each commodity, along with a cost function representing transportation costs, commu-
nication delays, or other relevant factors.
A variant of the multicommodity flow problem involves routing the entire bandwidth
of the commodities through a single path, for each commodity. This specific variant
is referred to as the unsplittable multicommodity flow problem (UMCFP). Conversely,
when the multicommodity flow allows to split the flow for a commodity into multiple
paths, it is said to be splittable. It is worth noticing that in the splittable variant, the

128

bandwidth corresponds to the maximum quantity of data to be routed, whereas in the
unsplittable variant, the entire bandwidth must either be entirely routed, or no flow is
routed at all.
In the following sections, we present mathematical formulations to address the multi-
commodity flow problem, distinguishing the splittable and unsplittable variants. To this
end, we consider a directed graph G = (V,A) with m = |A| arcs and n = |V | vertices.
Each arc a ∈ A has a capacity ca ∈ Z+ and a routing cost (or flow cost) pa ∈ Z+, which
corresponds to the cost for routing one unit of flow on arc a. We consider a set of d
commodities K where a commodity k = (sk, tk, bk,Γk) is defined by a source sk ∈ V ,
a destination tk ∈ V , a bandwidth bk ∈ Z∗

+ and a reward Γk ∈ Z∗
+ corresponding to a

reward obtained when sending one unit of flow from sk to tk.

5.1.1 An ILP formulation for the MCFP

Let yk,a be a continuous variable between 0 and 1 representing for each commodity
k ∈ K, the proportion of bandwidth bk routed on an arc a ∈ A. A multi-commodity
flow (MCF) has to respect the following two topologies of constraints. The first set of
constraints are called the capacity constraints, for the arcs:∑

k∈K

bk yk,a ≤ ca, ∀ a ∈ A. (5.1)

The capacity constraints ensure that the total flow value on an arc does not exceed its
capacity. The second set of constraints is called the flow-conservation constraints, for
the vertices of the graph:

∑
a ∈ δ+(u)

bk yk,a −
∑

a ∈ δ−(u)
bk yk,a =

λk if u = sk,

0 if u ∈ V \{sk, tk},
−λk if u = tk

∀k ∈ K, ∀u ∈ V. (5.2)

where λk ∈ Z+ is the value of the flow routed for commodity k ∈ K. Note that, by
definition, λk ≤ bk. The flow-conservation constraints impose that for every commodity
k ∈ K, the flow entering into a vertex that is not the source sk or the destination tk
is equal to the total flow outgoing that vertex. In addition, they ensure that the flow
outgoing the source sk is equal to the flow entering into the destination tk. For every
commodity k ∈ K, if λk = 0, then commodity k is said to be unsatisfied. If λk = bk,
then k is said to be fully satisfied. Finally, if 0 < λk < bk, then commodity k is said to
be partially satisfied and only a portion of the bandwidth is routed from sk to tk.
Let Ω(G) be the function returning the total routing profit of an MCF in a graph G:

Ω(G) =
∑

k∈K

Γk λk −
∑
a∈A

bk pa yk,a.

An MCF is characterized by a positive routing profit. Moreover, the maximum profit
of a multi-commodity flow, i.e., the maximum value of the function Ω(G) is denoted by
Ψ(G).

129

In this study, we focus on a particular case of multicommodity flow problems, that
asks to determine an MCF with a maximum profit Ψ(G). Therefore a model for the
multicommodity flow problem (MCFP) reads as follows:

ζ(MCFP) = max
y∈[0,1]d×m,λ ≥0

{
Ω(G) : (5.1), (5.2)

}
. (5.3)

It is worth noticing that the multicommodity flow problem described in this section is
said to be splittable. In other words, for each commodity, the flow can be routed across
multiple paths. A specific case of the MCFP consists in routing the flow of a commodity
through a single path. In this scenario, the MCFP is said to be unsplittable. A detailed
description of this problem is given in the next section.

5.1.2 An ILP formulation for the UMCFP

Let yk,a be a binary variable associated to a commodity k ∈ K and an arc a ∈ A that
takes value 1 if and only if the arc a is routing bk units of flow for commodity k. As
the MCFP, an unsplittable multi-commodity flow (UMCF), has to respect the capacity
constraints for the arcs, i.e., constraints (5.1), the flow conservation constraints, i.e.,
constraints (5.2) and a positive profit value. It is worth noticing that in the UMCFP, a
commodity can be either fully satisfied of unsatisfied. Accordingly, for every commodity
k ∈ K, λk can take values 0 or bk.
As for the MCFP, the UMCFP asks to determine the multi-commodity flow with a
maximum profit Ψ(G). Therefore, a model for the UMCFP reads as follows:

ζ(UMCFP) = max
y∈{0,1}d×m,λ ≥0

{
Ω(G) : (5.1), (5.2)

}
. (5.4)

It is worth noticing that by definition of a UMCF, it can be defined as a set of paths
{p0, · · · , pd} such that for every commodity k ∈ K, pk is a path between sk and tk
associated to k. If k is satisfied, then the entire bandwidth bk is routed through the
path pk. Otherwise, if k is unsatisfied, then pk is represented as an empty set.
Despite the similarities between the MCFP and the UMCFP, where both problems
share the same objective function and constraints, the critical distinction between the
two problems lies in the allowable range of values for the flow variables y. In the
UMCFP, for each commodity k ∈ k and for every arc a ∈ A, the variables yk,a are
binary. In contrast, the MCFP allows continuous values of yk,a within the range [0, 1].
Accordingly, while any solution of the UMCFP is also a solution for the MCFP, the
reverse is not necessarily true. This distinction is highlighted by the following remarks,
which are a direct consequence of the classical relationship between linear programming
(LP) and integer linear programming (ILP).

Remark 1. Any solution of the UMCFP is a solution of the MCFP.

Remark 2. Any solution of the MCFP is not necessarily a solution of the MCFP.

130

Indeed, let Sumcf be a solution of an unsplittable multicommodity flow problem solved
in the graph G. For each satisfied commodity, the entire bandwidth is routed through
a single path from the source to the destination. It is easy to see that this solution
is also a solution for the splittable variant. First, since Sumcf is a solution of the
UMCFP, it satisfies all constraints of the unsplittable variant, meaning that for each
satisfied commodity, the entire bandwidth is routed along a single path. This implies
that the solution Sumcf satisfies the flow conservation constraints as well as the capacity
constraints, which also corresponds to constraints of the splittable variant. Therefore,
Sumcf is a solution for the MCFP solved in G. However, any solution of the MCFP
is not necessarily a solution of the UMCFP. For instance, the splittable variant of the
MCFP does not ensure that for every satisfied commodity, the entire bandwidth is
routed through a single path.

Remark 3. Any solution of the MCFP provides an upper bound for the UMCFP.

In the next section, we give an illustrative example of a multi-commodity flow problem,
in its splittable and unsplittable variant.

5.1.3 Graphical illustrations

We illustrate in this section the features of optimal MCFP solutions thanks to an ex-
ample graph with 8 vertices and 12 arcs shown in Figures 5.1 and 5.2. We consider two
commodities k1 = (s1, t1, b1 = 8,Γ1 = 6) and k2 = (s2, t2, b2 = 10,Γ2 = 35). We report
on each arc two values separated by the symbol “; ”: the first one, in bold, is the routing
cost and the second one, is the capacity of the arc. The curved arcs represent a solution
of the MCFP. The red ones are the arcs routing flow for commodity k1 and the blue
ones are the arcs routing flow for commodity k2. Above these arcs, we report (in red or
in blue) the amount of flow routed.

s1

k1 = (s1, t1, 5, 6)

s2

k2 = (s2, t2, 8, 35)

v1

v2

v3

v4

t1

t2

2; 8

17; 8

18; 8

2; 10

8

8

5

5

3

5

5 5

17;12 5;
10

1; 8

5; 11

2; 8

9; 1 6; 12

10; 3

Figure 5.1: An optimal MCFP solution

In Figure 5.1, the two commodities are fully satisfied. The flow for commodity k1 is
routed through a unique path composed by the arcs (s1, v1), (v1, v3) and (v3, t1). The
flow for commodity k2 is split into two paths; 8 units of flow are routed through the
arcs (s2, v2) and (v2, v4), 5 units of flow are routed through the arcs (v4, v3) and (v3, t2)

131

s1

k1 = (s1, t1, 5, 6)

s2

k2 = (s2, t2, 8, 35)

v1

v2

v3

v4

t1

t2

2; 8

17; 8

18; 8

2; 10

8

8

8

85

5 5

17;12 5;
10

1; 8

5; 11

2; 8

9; 1 6; 12

10; 3

Figure 5.2: An optimal UMCFP solution

and 3 units of flow are routed through the arc (v4, t2). The total routing cost is equal
to 144.
On the other hand, Figure 5.2 represents a UMCFP solution. Indeed, for each com-
modity, k1 and k2, the bandwidth is routed through a set of arcs composing a path;
{(s1, v1), (v1, v3), (v3, t1)} for commodity k1 and {(s2, v2), (v2, v4), (v4, v3), (v3, t2)} for
commodity k2. As previously, the two commodities are fully satisfied. The total routing
profit of the multi-commodity flow represented in this figure is equal to 141.
Remark that these two examples outcome results of Proposition 1 and Corollary 3 since
the solution of the UMCFP is equal to 141, which is less than 144, the solution of the
MCFP. Moreover, it is easy to see that the solution of the UMCFP is also a solution for
the MCFP.

5.2 The multicommodity flow blocker problem

In the previous section, we introduced and described the multi-commodity flow problem.
We now focus on the blocker problem applied to the multi-commodity flow problem,
which is called the multicommodity flow blocker problem (MCFBP). In what follows,
we formally define the problem, emphasizing both the splittable and the unsplittable
variants. We recall that in this thesis, we are interested in the Maximum-Profit multi-
commodity flow problem, which aims to route traffic through the graph G, with respect
to the commodities K while maximizing a total routing profit.

5.2.1 Description of the problem

Given a directed graph G = (V,A) and a set of commodities K, we assign to every arc
a ∈ A, a positive integer blocker cost ra ∈ Z+, corresponding to the cost for removing
the arc a from the graph.
The multicommodity flow blocker problem (MCFBP) consists in finding a minimum-cost
subset of arcs to be removed from the graph G, i.e., blocked, in such a way that the
maximum profit of the MCFP in the remaining graph, also called non-blocked graph,

132

is no larger than a given threshold. The threshold is called the target profit, a positive
integer value denoted by Φ ∈ Z+. Without loss of generality, we consider instances in
which Φ < Ω(G), where Ω(G) is the maximum MCF profit in G, otherwise, clearly, an
optimal MCFBP solution is the empty subset of blocked arcs.
We now introduce a variant of the multi-commodity flow blocker problem known as the
unsplittable multicommodity flow blocker problem (UMCFBP), wherein the blocker
problem is applied to an unsplittable multi-commodity flow problem (UMCFP) rather
than a splittable MCFP. Consequently, the distinction between the splittable and un-
splittable variants of the MCFBP lies in the definition of the MCFP. As the MCFBP,
the UMCFBP aims to identify a minimum-cost subset of blocked arcs in such a way
that the maximum profit of the UMCFP in the remaining graph does not exceed the
target profit.

Graphical illustrations

We illustrate in this section the features of optimal MCFBP and UMCFBP solutions
thanks to the example graph shown in Figures 5.1 and 5.2. The target profit Φ is set
to 10. We report on each arc three values. The first one on top is the blocker cost.
The two others, on bottom are separated by the symbol “; ”: the first one, in bold, is
the routing cost and the second one, is the capacity of the arc. The blocked arcs are
depicted with dashed lines. The curved arcs represent solution of the MCFP in the
non-blocked graph. As previously, the red ones are the arcs routing flow for commodity
k1 and the blue ones are the arcs routing flow for commodity k2. Above these arcs, we
report (in red or in blue) the amount of flow routed.

s1

k1 = (s1, t1, 5, 6)

s2

k2 = (s2, t2, 8, 35)

v1

v2

v3

v4

t1

t2

10
2;8

7
17;8

8
18;8

62;10

5

5 5

5
17;12 3 5;

10

7
1;8

1
5;11

9
2;8

11
9;1

26;12

8
10;3

Figure 5.3: An optimal MCFBP solution

Figure 5.3 represents an optimal MCFBP solution with 2 blocked arcs, (v2, v4) and
(v3, t2), having a total blocker cost of 3. Only one commodity, k1, is fully satisfied in the
remaining graph. The second commodity k2 is not satisfied. The total routing profit

133

of the multi-commodity flow remaining in the non-blocked graph after the removal of
these two arcs is equal to 5, which is less than the target profit Φ set to 30.

s1

k1 = (s1, t1, 5, 6)

s2

k2 = (s2, t2, 8, 35)

v1

v2

v3

v4

t1

t2

10
2;8

7
17;8

8
18;8

62;10

5

5 5

5
17;12 3 5;

10

7
1;8

1
5;11

9
2;8

11
9;1

26;12

8
10;3

Figure 5.4: An optimal UMCFBP solution

On the other hand, Figure 5.4 represents a UMCFBP solution for the same target profit
value, i.e., Φ = 10. Only one arc is blocked, the arc (v3, t2) with a total blocker cost
equal to 2. The MCF remaining in the non-blocked graph is a UMCF since the complete
bandwidth of commodity k1 is routed through a single path. Note that, as previously,
commodity k2 is unsatisfied. The total profit is equal to 5 < 10.
It is worth noticing that for the MCFBP, two arcs need to be blocked. Specifically, if the
arc (v2, t1) remains in the network, another MCFP with a profit exceeding 10 persists
in the network. In contrast, a UMCFP with a profit greater than 10 cannot remain in
the same graph.

5.2.2 Complexity

This section delves into the complexity of the multicommodity flow blocker, examining
both its splittable and unsplittable variants. Beginning with the unsplittable variant,
the next proposition investigates the decision problem of the UMCFBP following an
analysis of its optimization problem. At the end on the section, our focus turns to the
splittable variant of the MCFBP.

Proposition 13. The decision problem of the UMCFBP is not in N P.

Proof. Given a subset of blocked vertices and a target profit value Φ, the task of
determining whether the remaining graph, i.e., the graph remaining after removal of the
blocked arcs does not support a UMCF with a total profit exceeding Φ requires solving
the decision problem of the UMCFP, which is known to be N P−complete (see Even
et al. [1975]).

□

134

We now introduce the most vital edges for the shortest path problem (MVESPP). Let
G = (V,A) be a directed graph with two distinct vertices s ∈ V and t ∈ V . Each arc
a ∈ A is associated with an edge-length la ∈ Z+. The MVESPP asks to determine a
minimum set of edges to remove from the graph in such a way that there does not exist
a path between s and t whose total edge length is less than or equal to L. This problem
is N P-hard, as shown in Khachiyan et al. [2008].
By reducing the MVESPP to the UMCFBP, the next proposition characterizes the
computational complexity of the latter one.

Proposition 14. The UMCFBP is N P-hard.

Proof. Starting from a MVESPP instance, we set ra = la, ca = pa = 1, for every arc
a ∈ A. We consider a single commodity k0 = (s, t, b0,Γ0), with b0 = 1 and Γ0 = M ,
where M is a large constant value. The target flow value Φ is set to value L. Once the
UMCFBP is solved, its optimal solution corresponds to an optimal MVESPP solution.
Indeed, solving a UMCFP in the non-blocked graph leads to finding a path between
s and t, since all arcs have unitary capacities. In addition, given the large reward Γ0
associated with the single commodity k0, maximizing the overall routing profit leads to
minimizing the total routing cost along the chosen path. Finally, as all blocker costs
are unitary, finding the minimum-cost subset of blocked arcs leads to finding the most
vital edges. Therefore, the optimal solution of the UMCFBP corresponds to an optimal
solution of the MVESPP. This shows that the UMCFBP is N P-hard. □

In the remainder of this section, our focus is directed toward the investigation of the
computational complexity of the UMCFBP in instances where the target profit value is
set to zero, implying that no UMCF exists in the non-blocked graph.
For this purpose, we introduce the minimum multicut problem (MMP). Given a directed
graph G = (V,A) where all arcs a ∈ A have a positive weight ωa, and a set of d source-
destination pairs of vertices {(si, ti), i ∈ [0, d − 1], si, ti ∈ V }, the MMP aims to find a
minimum weight set of arcs A′ ⊆ A such that the removal of A′ disconnects each pair.
The MMP is N P-hard for d ≥ 3, as proved in Dahlhaus et al. [1992]. By reducing the
MMP to the MCFBP, the next proposition characterizes the computational complexity
of the latter one.

Proposition 15. For |K| ≥ 3 the UMCFBP is N P-hard even if Φ = 0.

Proof. Starting from an instance of the MMP, we set pa = ωa and we define a set
of commodities K as a set of d source-destination pairs of vertices {(si, ti), i ∈ [0, d −
1], si, ti ∈ V } with a bandwidth bk = 1 and a reward Γk = M , where M is a large
constant value, for each k ∈ K. By setting the target profit Φ to zero, it follows that no
flow can be routed in the non-blocked graph. Accordingly, once the UMCFBP is solved,
its optimal solution corresponds to the minimum weight set of arcs A′ ⊆ A for which
there is no flow of value at least 1 between any pair of sources and destinations (sk, tk)
for all commodities k ∈ K. In other words, the set of arcs A′ disconnects each pair of
vertices and therefore it is an optimal solution of the MMP.

□

135

It is worth noticing that, given an MCFBP instance, if bk = 1 for a commodity k ∈ K,
then this commodity can be either routed through a unique path or unsatisfied. Ac-
cordingly, if bk = 1 for all commodities k ∈ K, the follower problem of the MCFBP is a
UMCFP and therefore solving the MCFBP reduces to solving the UMCFBP. Accord-
ingly, the next proposition characterizes complexity of the MCFBP.
Proposition 16. The MCFBP is N P-hard, even if Φ = 0.
Proof. Starting from an instance of the UMCFBP, we set bk = 1 for all commodities
k ∈ K. Once the MCFBP solution is solved, its optimal solution corresponds to an
optimal UMCFBP solution. Which shows that the MCFBP is N P-hard.

□

Proposition 16 demonstrates the N P-hardness of the MCFBP thanks to a reduction
from the UMCFBP. In the next section, we delve deeper to establish a connection
between solutions of the MCFBP and solutions of the UMCFBP.

5.2.3 Relation between the MCFBP and the UMCFBP

As mentioned earlier, the distinction between the MCFBP and the UMCFBP lies in the
definition of the multicommodity flow problem. As shown in Section 5.1, the splittable
and unsplittable variants of the MCFP exhibit a close relationship. Consequently, the
corresponding blocker problems for both variants also share a strong connection. More
precisely, a relationship exists that links solutions of both problems, as demonstrated in
this section.
The next proposition and corollary exhibit a relationship between solutions of the
MCFBP and solutions of the UMCFBP.
Indeed, based on Remark 1 and Remark 3, it can be established that all solutions of the
MCFBP are feasible solutions for the UMCFBP. However, the converse is not necessarily
true. This observation leads to the following proposition.
Proposition 17. Any solution of the MCFBP is a solution of the UMCFBP.
Proof. Let S be a solution for the blocker variant of an MCFP solved in G. Since any
solution of the UMCFP is a solution for the MCFP (see Proposition 1), S is also a
solution for the blocker variant of a UMCFP solved in G. Therefore, any solution of the
MCFBP is a solution for the UMCFBP.

□

It is worth noticing that the reverse of Proposition 17 does not hold, i.e., any solution of
the UMCFBP is not necessarily a solution of the MCFBP. Indeed, the blocker variant
of the UMCFP ensures that it does not exist a UMCF with a profit greater than Φ in
the remaining graph, i.e., the graph remaining after the removal of the blocked arcs.
However, it does not guarantee the absence of a splittable MCF with a profit greater
than Φ, since any solution of the MCFP is not necessarily a solution of the UMCFP.
According to Proposition 17, the next corollary establishes a relationship between solu-
tion values of the MCFBP and the UMCFBP.
Corollary 4. Solution of the MCFBP provides an upper bound for the UMCFBP.

136

5.3 Formulations

In this section, we first introduce a bilevel formulation designed for the MCFBP and
the UMCFBP. We then present an ILP formulation to solve both variants (Bentoumi
et al. [2023c]).

5.3.1 A bilevel formulation for the multicommodity flow blocker
problem

We recall that the continuous vector y ∈ [0, 1]d×m is the flow vector associated with an
MCF.
As for the maximum flow blocker problem (MFBP) studied in Chapter 3, we introduce
a vector x, called blocker vector, of m binary decision variables, each variable xa ∈ {0, 1}
is associated to an arc a ∈ A and it takes value 1 if and only if the arc a is blocked. We
denote by A(x) the set of blocked arcs and GNB(x), the non-blocked graph which is the
graph remaining after removal of the blocked arcs, i.e. the graph GNB(x) = (V,A\A(x)).
The MCFBP aims to find a set of blocked arcs A(x), with a minimum total blocker cost
and such that the total profit of the MCF remaining in the non-blocked graph GNB(x)
is no larger than Φ, i.e., Ψ(GNB(x)) ≤ Φ. In this bi-level problem, there are two types
of variables. The first-level decision variables, corresponding to the blocker vector x,
are associated with the so-called leader problem. These variables affect the second-level
decision variables, corresponding to the flow variables y and associated with the so-
called follower problem. The leader determines a set of blocked arcs to be removed from
the graph and the follower determines the maximum profit of the MCF remaining in the
non-blocked graph. The leader anticipates the optimal follower’s solution with the goal
of choosing the minimum cost subset of arcs to be blocked that results in a remaining
graph having an MCF with a maximum profit no larger than Φ. Accordingly, a bi-level
formulation for the MCFBP reads as follows:

min
x ∈ {0,1}m

∑
a ∈ A

ra xa (5.5a)

ϑ(x) ≤ Φ, (5.5b)

where ϑ(x) = max
y∈[0,1]d×m

{
Ψ(G) : (5.2),

∑
k∈K

bkyk,a ≤ ca(1 − xa), ∀ a ∈ A.

}
(5.5c)

The link between the leader problem ((5.5a)-(5.5b)) and the follower problem given by
(5.5c) is established by the value function ϑ(x) which returns the maximum routing
profit in the non-blocked graph. This value is determined by the follower objective
function Ψ(G) which corresponds to the maximum routing profit in the graph where
the capacity of blocked arcs is set to 0. Constraint ∑

k∈K bk yk,a ≤ ca(1 − xa) models
the capacity constraint of the arc a ∈ A, see (5.1), and impose, at the same time, a
flow of value 0 on blocked arcs. As far as the leader problem is concerned, the objective
function (5.5a) minimizes the total blocker cost and constraint (5.5b) imposes that the
maximum routing profit ϑ(w) is no larger than Φ.

137

We define a feasible MCFBP solution as a set of arcs A(x) ⊆ A whose removal results
in no MCF with a profit greater than Φ existing in the non-blocked GNB(x).

A first single-level reformulation for the MCFBP

In this section, we present a first reformulation of the bilevel model (5.5) for the MCFBP
into a single-level model, using a “dualize-and-combine” method (see Wei and Walteros
[2022]).
We recall that given any blocker solution x̂, the follower problem is a multi-commodity
flow problem. Therefore, for fixed x̂, the dual model of the follower problem (5.5c) reads
as follows:

min
∑

a ∈ A

Θa ca (1 − x̂a) (5.6a)

πk
tk

− πk
sk

≤ Γk ∀k ∈ K, (5.6b)
πk

v − πk
u − Θa ≤ p(u,v) ∀k ∈ K, ∀(u, v) ∈ A, (5.6c)

πk
u unrestricted ∀k ∈ K, ∀u ∈ V, (5.6d)

Θa ≥ 0, ∀a ∈ A. (5.6e)

where πk
u is the dual variable associated with Equality (5.2) and Θa is the dual variable

associated with constraint “∑
k∈K yk,abk ≤ ca (1 − xa)”. By using this reformulation

of the follower problem in the bilevel Model (5.5), we obtain the following single-level
formulation to solve the MCFBP.

min
x ∈ {0,1}m

∑
a ∈ A

ra xa (5.7a)

∑
a ∈ A

Θa ca (1 − xa) ≤ Φ (5.7b)

πk
tk

− πk
sk

≤ Γk ∀k ∈ K, (5.7c)
πk

v − πk
u − Θa ≤ p(u,v) ∀k ∈ K, ∀(u, v) ∈ A, (5.7d)

πk
u unrestricted ∀k ∈ K, ∀u ∈ V, (5.7e)

Θa ≥ 0, ∀a ∈ A. (5.7f)

It is worth noticing that Model (5.7) is a mixed-integer bilinear programming model that
can be addressed using standard linearization techniques. However, a similar approach
was developed in Lim and Smith [2007a] for the multi-commodity flow interdiction
problem, but it proved to be inefficient in practice. Hence, we introduce an alternative
single-level reformulation of the bilevel problem in the next section.

138

5.3.2 A second single-level ILP formulation for the MCFBP

In this section, we introduce a second reformulation of the bilevel model (5.5) for the
MCFBP, using a penalty formulation. In other words, for a given blocker policy x̂,
for each arc a ∈ A and for each commodity k ∈ K, let Mk

a be a large constant value
that serves as a penalization term in the objective function of the follower problem.
This penalty represents the cost for routing one unit of flow for commodity k through
a blocked arc a, i.e., an arc a for which x̂a = 1. Therefore, the follower problem can be
reformulated as follows:

ϑ(x) = max
y∈[0,1]d×m

{
Ψ(G) −

∑
k∈K

∑
a∈A

Mk
a x̂a yk,a : (5.2), (5.1)

}
. (5.8)

In this reformulation, constraints “∑
k∈K yk,abk ≤ ca (1 − xa)” of the follower problem

are replaced with the “standard” capacity constraints (5.1) for the arcs. The constraints
of the follower do not depend anymore on the first-level variables and a penalization
term is added to the new objective function.
Two approaches could be explored based on the penalty formulation (5.8) of the fol-
lower problem. One approach involves investigating the dual of the follower problem as
presented in Model (5.8). Alternatively, given that the feasible region of the follower
problem remains unchanged for various blocker values x, another approach consists in
applying a Benders cutting plane algorithm in which the master program is a mixed-
integer programming problem with binary blocker variables and additional continuous
variable coming from the follower problem that is a multicommodity flow problem.
In what follows our focus will be on the Benders cut approach. Consequently, the
objective is to address the mixed-integer master problem by incorporating Benders cuts
at each iteration.
To this end, let us introduce the polytope Pmcf of feasible solutions for the follower
subproblem which does not depend on the leader variables as shown in Model (5.8):

Pmcf =
{

y ∈ [0, 1]m : Ω(y) ≥ Φ + 1, (5.1), (5.2).
}
, (5.9)

where Ω(y) returns the total routing profit of the MCF defined by vector y.
We remark that only multicommodity flows of value strictly larger than Φ are associated
with Constraint (5.5b) of the bilevel model for the MCFBP, i.e, Model (5.5). This can
be imposed by a “≥ Φ + 1” constraint since all the capacities of the arcs are integer
values. The model (5.8) is valid for any (fractional) vector x ∈ [0, 1]m and, since the
objective function is linear, it is sufficient to optimize over the set of extreme points y
of Pmcf (denoted ext(Pmcf)). The constraints (5.5b) can then be restated as follows:

ϑ(x) = max
y ∈ ext(Pf)

Ω(y) −
∑

k∈K

∑
a∈A

Mk
axayk,a

 ≤ Φ. (5.10)

Accordingly, by applying a Benders-like decomposition to the bilevel model (5.5), we

139

obtain the following single-level ILP formulation for the MCFBP:

min
x ∈ {0,1}m

∑
a ∈ A

ra xa (5.11a)

∑
k∈K

Γk λk −
∑
a∈A

bk pa yk,a −
∑

k∈K

∑
a∈A

Mk
a xa yk,a ≤ Φ, ∀ y ∈ ext(Pmcf). (5.11b)

where constraints (5.5b) are replaced with constraints (5.11b), called Benders cuts, an
exponential-size family of constraints, one for each extreme point of Pmcf .
Some studies, such as those detailed in Lim and Smith [2007a], have been conducted to
determine an appropriate value for the constant Mk

a in the purpose of solving the multi-
commodity flow interdiction problem. For the MCFBP presented in this thesis, one
straightforward approach involves setting Mk

a equal to pa ×bk. Selecting the appropriate
value for Mk

a is crucial, as it directly influences the formulation and the efficiency of
the model. Consequently, in the following section, we introduce a generalization of
the Benders cut inequalities (5.11b) that do not require the determination of such a
constant.
It is worth noticing that the bilevel formulation (5.5) remains valid for the UMCFBP.
The distinction lies in the definition of the follower problem which is a UMCFP instead
of an MCFP. In this scenario, in accordance with the models of both the MCFP and the
UMCFP, the only difference lies in the definition set of variables y. However, solving
the bilevel model for the UMCFBP poses challenges, primarily due to the binary nature
of the variables y, which makes the dualization of the follower problem not possible.
Instead, alternative techniques stemming from bilevel optimization can be employed.
Specifically, within the realm of bilevel optimization, a category known as generalized
bilevel programming(see Kleinert et al. [2021]) offers increased flexibility and generality
for modeling specific problems. The Benders cut approach remains applicable for the
UMCFBP when considering the polytope Pumcf of feasible solutions for the follower
problem, which is defined as:

Pumcf =
{

y ∈ {0, 1}m : Ω(y) ≥ Φ + 1, (5.1), (5.2).
}
, (5.12)

In the following section, we present an ILP formulation to tackle both the MCFBP and
the UMCFBP.

140

5.3.3 An ILP formulation for the multicommodity flow blocker prob-
lem

In this section, we present a model to solve the MCFBP using an exponential number of
constraints in the natural space of the blocker variables, introduced in Section 5.3.1. This
formulation employs a set-covering approach, providing a clear and concise structure
that can be easily adjusted to tackle different variants of the problem.
Let G = (V,A) be a directed graph and K be a set of commodities in G. For a given
vector y ∈ ext(Pmcf), we define the subset of arcs AS(y) ⊆ A routing a multicommodity
flow in the extreme point y as follows:

AS(y) =
{
a ∈ A : yk,a > 0, ∀k ∈ K

}
.

It is worth noticing that according to the definition of Pmcf , y respects all the constraints
associated with the MCFP. Moreover, these arcs induce the support graph GS(y) =
(V,AS(y)) in which, by construction, the maximum MCFP profit Ψ(GS(y)) is larger
than or equal to Φ + 1.
We recall that A(x) is the set of blocked arcs induced by a binary realization of the
blocker vector x. In other words, A(x) is the set of arcs a ∈ A with xa equal to 1.
Suppose that A(x) and AS(y) satisfies the following inequality:

|A(x) ∩ AS(y)| ≥ 1, y ∈ ext(Pmcf). (5.13)

If so, then x is a feasible solution for the MCFBP. Indeed, the inequality (5.13) guar-
antees that no MCF with a profit greater than Φ remains in the non-blocked graph.
Precisely, the existence of such an MCF would entail the removal of an arc, resulting in
an obstruction of the routing process.
Based on this reasoning, a valid ILP formulation for the MCFBP reads as follows:

min
∑
a∈A

raxa (5.14a)
∑

a∈AS(y)
xa ≥ 1, y ∈ ext(Pmcf), (5.14b)

xa ∈ {0, 1} a ∈ A. (5.14c)

The objective function (5.14a) minimizes the total blocker cost. Constraints (5.14b),
denoted as target profit inequalities, are derived from Constraints (5.13). These con-
straints ensure that at least one arc from every MCF with a total profit greater than Φ,
is blocked.
The target profit inequalities (5.14b) are in exponential number. Accordingly, in order to
solve the natural formulation (5.14), one needs to implement a Branch-and-Cut (B&C)
algorithm where target profit inequalities are separated in the nodes of the branching
tree for integer and fractional solutions. This exact algorithm requires defining a relaxed
master problem (RMP) where the binary variables are replaced with continuous variables
taking values between 0 and 1. In the initialization phase only a subset of constraints
are included in the RMP. To check that RMP solutions respect all the target profit

141

inequalities or to determine one or more violated constraints which are then added to
the RMP, we propose several separation procedures that will be described in the next
chapter.
It is worth noticing that Model (5.14b) is valid for the MCFBP, as well as the UMCFBP.
The difference comes from the definition of Pmcf . For the UMCFBP, we consider un-
splittable flows, i.e., Pmcf should be replaced by the polytope Pumcf of feasible solutions
for the UMCFP, defined in 5.12.
Accordingly, for the UMCFBP, the target profit inequalities (5.14b) are replaced by the
following inequalities, called u-target profit inequalities:∑

a∈AS(y)
xa ≥ 1, y ∈ ext(Pmcf). (5.15)

A valid ILP formulation for the UMCFBP reads as follows:

min
∑
a∈A

raxa (5.16a)
∑

a∈AS(y)
xa ≥ 1, y ∈ ext(Pumcf) (5.16b)

xa ∈ {0, 1} a ∈ A. (5.16c)

As mentioned previously, (see Remark 4), every solution of the UMCFP is a valid
solution for the MCFP. Accordingly, we have the following relation between the two
polytopes Pmcf and Pumcf :

Pumcf ⊆ Pmcf .

This shows that inequalities (5.15) are valid inequalities for the natural formulation
(5.14). Precisely, inequalities (5.15) are contained in the set of inequalities (5.14b).
In the next section, we propose a polyhedral analysis of Model (5.14) and Model (5.16).

5.4 Polyhedral analysis

This section develops a polyhedral analysis for the natural formulation of the MCFBP
given by Model (5.14) with target profit inequalities (5.14b) and the natural formulation
for the UMCFBP given by model (5.16) with u-target profit inequalities (5.16b) .
We refer the reader to Chapter 1 for an in-depth discussion of polyhedral analysis
concepts.

5.4.1 Associated polytopes

Given a directed graph G = (V,A) and a set of commodities K, we consider the following
hypothesis for the rest of this study.

142

Hypothesis 1. There exists no arc (sk, tk) for all commodities k ∈ K.

To ensure that Hypothesis 1 is consistently satisfied, a preprocessing operation on the
graph can be performed. The procedure consists of examining for each commodity k ∈ K
if there is an arc (sk, tk). If such an arc exists, an intermediate vertex vk can be created,
and the arc (sk, tk) is replaced by two new arcs, (sk, vk) and (vk, tk). These two arcs
should have the same capacity as the original arc (sk, tk), i.e., c(sk,vk) = c(vk,tk) = c(sk,tk).
Moreover, we set p(sk,vk) = p(sk,tk) and p(vk,tk) = 0.
Let S ⊆ A be a set of blocked arcs. For each solution S of an MCFBP or a UMCFBP,
we denote the corresponding incidence vector as xS where xS ∈ {0, 1}m is defined by:

xS
a =

1 if a ∈ S,

0 otherwise.

We now introduce the two polytopes of the MCFBP and the UMCFBP, defined re-
spectively by the target profit inequalities (5.14b) and the u-target profit inequalities
(5.16b).
Let P (G,K) be the convex hull of the solutions of Formulation (5.14), that is

P (G,K) = conv({x ∈ {0, 1}m : x satisfies (5.14b)}. (5.17)

Let PU(G,K) be the convex hull of the solutions of formulation (5.16), that is

PU(G,K) = conv({x ∈ {0, 1}m : x satisfies (5.16b)}. (5.18)

In the remainder of this section, we will discuss P (G,K) and PU(G,K) by giving their
dimension and describing necessary and sufficient conditions for inequalities of formu-
lations (5.14) and (5.16) to be facet defining.
It is worth noticing that the proofs for both the splittable and unsplittable variants
exhibit notable similarities. Specifically, the splittable variant of the MCFBP is a gen-
eralization of the unsplittable variant. In the splittable variant, each satisfied commodity
allows for the flow to be routed across multiple paths instead of being restricted to a
single path. To this end, we primarily focus on developing the proof for the unsplittable
variant. We then expand our results to the splittable variant.

Proposition 18. PU(G,K) is full dimensional.

Proof. We need to exhibit m+ 1 solutions such that their incidence vectors are affinely
independent. Let S0 = A. Clearly, S0 is a feasible UMCFBP solution. For every arc
a ∈ A, let Sa = A \ {a}. As stated previously by Hypothesis 1, given a commodity k,
the source sk and the destination tk are linked by at least two arcs. Therefore, even
when focusing on a single commodity, i.e., d = 1, keeping any one arc in the network is
a feasible UMCFBP solution. This corresponds to the set of m solutions {Sa, a ∈ A}.
Finally, {Sa, a ∈ A} and S0 constitute a set of m+ 1 solutions for which their incidence
vectors are affinely independent.

□

143

Proposition 19. P (G,K) is full dimensional.

Proof. As for PU(G,K), to prove that P (G,K) is full dimensional, we need to exhibit
m + 1 solutions such that their incidence vectors are affinely independent. We remark
that the two sets of solutions S0 and {Sa, a ∈ A} described for PU(G,K) are also feasible
MCFBP solutions. Moreover, their incidence vectors are affinely independent. Which
ends the proof.

□

5.4.2 Trivial inequalities

This section focuses on the trivial inequalities, i.e., xa ≥ 0 and xa ≤ 1 for every arc
a ∈ A. Note that these trivial inequalities are common to the two natural formulations,
i.e., Model (5.14) for the MCFBP and Model (5.16) for the UMCFBP. More precisely,
we prove that the trivial inequalities are facets of the polytopes P (G,K) and PU(G,K).

Proposition 20. For an arc a ∈ A, inequality xa ≤ 1 defines a facet of PU(G,K).

Proof. We need to exhibit m feasible solutions for which arc a is blocked i.e. xa = 1,
and such that their incidence vectors are affinely independent. Let S0 = A be a feasible
UMCFBP solution since when removing all arcs from the graph, no UMCF can be
routed. For every arc a′ ∈ A \ {a}, let Sa′ = A \ {a′}. Clearly, these sets of arcs are
feasible UMCFBP solutions due to the preprocessing performed. More precisely, since
two nodes (sk, tk), for every commodity k ∈ K, cannot be linked by a unique arc due to
Hypothesis 1, no UMCF can be routed in a graph having only one arc. Moreover, the
incidence vectors of S0 and {Sa′, a′ ∈ A \ a} are affinely independent. Which ends the
proof. □

Proposition 21. For an arc a ∈ A, inequality xa ≤ 1 defines a facet of P (G,K).

Proof. As for PU(G,K), we need to exhibit m feasible solutions for which arc a is
blocked, i.e., xa = 1 and such that their incidence vectors are affinely independent.
Clearly, the two sets of solutions S0 and {Sa′, a′ ∈ A\a} described for PU(G,K) are also
feasible MCFBP solutions. Moreover, their incidence vectors are affinely independent.
Which ends the proof. □

Proposition 22. For an arc a ∈ A, the inequality xa ≥ 0 defines a facet of PU(G,K) if
and only if it does not exist a UMCF with a profit greater than Φ that satisfies a subset
of commodities K ′ ⊆ K, where |K| ≥ |K ′| ≥ 1, all having the same source s ∈ V and
the same destination t ∈ V , connected through a path {s, u, t}, u ∈ V .

Proof. (⇒) Suppose that all commodities have the same source and the same destina-
tion, linked by two arcs with a sufficient capacity, i.e., such that the capacity of each
arc is at least equal to the total bandwidths of all commodities. Moreover, assuming
that these two arcs form a UMCF with a profit greater than the target profit value Φ.
Then, we have the following valid inequalities:

x(s,u) + x(u,t) ≥ 1 (5.19)

144

x(s,u) ≤ 1 (5.20)

x(u,t) ≥ 0 (5.21)

Since Inequality (5.21) can be obtained as a linear combination of Inequality (5.19) and
Inequality (5.20), it cannot define a facet.

(⇐) Let Sa = A\{a} and Sa,a′ = Sa\{a′} for all arcs a ∈ A, a′ ∈ A. Due to the condition
of the proposition, it cannot exist a UMCF with a profit greater than Φ composed by
a single path having two arcs (s, u) and (u, t). Therefore, the sets {Sa, a ∈ A} and
{Sa,a′, a ∈ A, a′ ∈ A \ a} are UMCFBP solutions since it cannot exist a UMCF with
a profit greater than Φ with only two arcs remaining in the network. Moreover, the
incidence vectors of these two sets are affinely independent.

□

Proposition 23. For an arc a ∈ A, the inequality xa ≥ 0 defines a facet of P (G,K) if
and only if it does not exist an MCF with a profit greater than Φ that satisfies a subset
of commodities K ′ ⊆ K, where |K| ≥ |K ′| ≥ 1, all having the same source s ∈ V and
the same destination t ∈ V , connected through a path {s, u, t}, u ∈ V .

Proof. We can derive the proof established for Proposition 22 for the splittable variant
of the MCF. Indeed, due to the condition of the proposition, it cannot exist an MCF
with a profit greater than Φ with only two arcs remaining in the network. This shows, as
previously, that if the condition is respected, the two sets described earlier, {Sa, a ∈ A}
and {Sa,a′, a ∈ A, a′ ∈ A \ a} are MCFBP solutions with affinely independent vectors.
Which ends the proof.

□

5.4.3 target profit inequalities

In this section, we focus on the u-target profit inequalities 5.16b for the UMCFBP and
the target profit inequalities (5.14b) for the MCFBP.

Proposition 24. For every y ∈ ext(Pumcf), inequality ∑
a∈AS(y) xa ≥ 1 defines a facet

of PU(G,K) if and only if the UMCF induced by vector y is minimal, i.e., for each arc
ā ∈ AS(y), the support graph ḠS(y) = (V,AS(y) \ {ā}) does not contain a UMCF with
a profit greater than Φ.

Proof. (⇒) Suppose there is an arc ā such that the support graph ḠS(y) = (V,AS(y) \
{ā}) contains a UMCF with a profit greater than Φ. In this case, we can derive the
following inequalities: ∑

a∈AS(y)\{ā} xa ≥ 1 and xā ≥ 0. Accordingly, the inequality∑
a∈AS(y) xa ≥ 1 cannot define a facet of PU(G,K) since it can be obtained as a linear

combination of these inequalities.
(⇐) We denote by gx ≥ α the inequality ∑

a∈AS(y) xa ≥ 1. Let bx ≥ β be an inequality
that defines a facet of PU(G,K). Suppose that {x ∈ P : gx = α} ⊆ {x ∈ P : bx = β}.

145

We will show that there exists a scalar ρ > 0 such that b = ρg. For ā ∈ AS(y) and
¯̄a ∈ AS(y) \ {ā}, let Sā and S¯̄a be two sets of blocked arcs, defined as follows:

Sā = {ā} ∪ (A\AS(y)), S¯̄a = {¯̄a} ∪ (A\AS(y))

As y is minimal, these two sets of arcs correspond to feasible UMCFBP solutions. We
use xSā and xS¯̄a to denote the incidence vector associated with Sā and S¯̄a, respectively.
In other words, xSā

a = 1 if and only if arc a is contained in the set Sā. Similarly, xS¯̄a
a = 1

if and only if arc a is contained in the set S¯̄a. We can easily observe that both vectors
satisfy (5.14b) with equality, i.e., ∑

a∈AS(y) x
S¯̄a
a = xSā

a = 1. This implies that bxsā = bxs¯̄a

and hence bā = b¯̄a. By symmetry, we can deduce that there exists ρ ∈ Z such that
bā = b¯̄a = ρ for every arc ā ∈ AS(y), ¯̄a ∈ AS(y).
Let a′ ∈ A \ AS(y). We can state that there exists an arc ā ∈ AS(y) such that
AS(y)\{ā}∪{a′} does not contain a UMCF with a profit greater than Φ. Indeed, if such
an event were to occur, it would imply the existence of an arc (sk, tk) for a commodity
k ∈ K, which contradicts Hypothesis 1. To illustrate this statement, we consider the
simplified graph depicted in Figure 5.5, featuring a single commodity denoted as k0 =
(s0, t0, b0,Γ0), connected by two arcs, (s0, u) and (u, t0). We assume that these two arcs
form a UMCF with a profit greater than Φ, thus implying that one of these arcs is the
arc ā. Since no arc can directly link s0 to t0, for every vertex v ∈ V \ {s0, u, t0}, arc
a′ could potentially replace any arc linking v to s0, u, or t0. However, substituting any
of the arcs in the UMCF with a′ will not allow a UMCF of profit greater than Φ. In
Figure 5.5, the arc a′ is represented by one of the dashed lines. For sake of briefty, we
did not represent the capacities, routing costs and blocker costs on the arcs.

s0

u

t0
v

Figure 5.5: Graph with a single commodity (s0, t0, b0,Γ0)

We denote by Sa′,ā the UMCFBP solution that consists in removing arcs a′ and ā and
we use xSa′,ā to denote its associated incidence vector, i.e., xSa′,ā

a = 1 if and only if
arc a is contained in the set Sa′,ā. This solution satisfies (5.14b) with equality, i.e.,∑

a∈AS(y) x
Sa′,ā
a = 1. Therefore, we have bxSa′,ā = bxSā. This implies that ba′ = 0 and

thus, b = ρg. Which ends the proof. □

Proposition 25. For every y ∈ ext(Pmcf), inequality ∑
a∈AS(y) xa ≥ 1 defines a facet

of P (G,K) if and only if the MCF induced by vector y is minimal, i.e, for each arc
ā ∈ AS(y), decreasing its capacity results in an MCF with profit less than Φ.

Proof. (⇒) Suppose there exists an arc ā ∈ AS(y) for which decreasing its capacity
results in an MCF with profit greater than Φ. Assuming that the capacity of the arc is
1, this process is equivalent to removing the arc from the graph. Accordingly, in this
case, the following inequalities are valid: ∑

a∈AS(y)\{ā} xa ≥ 1 and xā ≥ 0. Therefore, the

146

inequality ∑
a∈AS(y) xa ≥ 1 cannot define a facet of P (G,K) since it can be obtained as

a linear combination of these inequalities.

(⇐) We can apply the same reasoning as the one presented for PU(G,K). However, it
is worth noticing that, in this case, the definition of minimality imposed by y is crucial.
Indeed, let a′ ∈ A \ AS(y). If the MCF induced by vector y is not minimal in the
sense that for each arc ā ∈ AS(y), decreasing its capacity results in an MCF with
profit less than Φ, then we cannot state that there exists an arc ā ∈ AS(y) such that
AS(y) \ {ā} ∪ {a′} does not contain an MCF with a profit greater than Φ. To illustrate
this, we consider the simple graph G = (V,A) depicted in Figure 5.6, featuring a single
commodity k0 = (s0, t0, b0,Γ0), with b0 = 10,Γ0 = 1. On each arc a ∈ A, we report the
capacity ca. The flow cost pa is set to 0 for every arc a ∈ A. The target profit value Φ is
set to 9. The blue lines represent an MCF with a profit equal to 10, which is accordingly
greater than Φ. We remark that by removing the arc (v, t0), the flow can be rerouted
on the arc a′ = (v, u), leading to an MCF of profit equal to 10, which is greater than Φ.
More precisely, this would imply that decreasing capacity of the arc (u, t0) could lead to
an MCF composed by the four arcs {(s0, u), (u, t0), (s0, v), (v, t0)} with a profit greater
than Φ. Therefore, it is necessary to impose a condition that y is minimal in the sense
that for each arc ā ∈ AS(y), decreasing its capacity results in an MCFP with profit
less than Φ. Using this condition for the splittable variant, we can use the same proof
by maximality as the one developed for the unsplittable variant (see Proposition 24) to
prove that inequality ∑

a∈AS(y) xa ≥ 1 defines a facet of P (G,K).

s0

u

t0
v

5 10

5

5

5

Figure 5.6: Graph with a single commodity (s0, t0, b0,Γ0)

□

147

5.5 Concluding remarks

In this chapter, we delve into the multi-commodity flow blocker problem, exploring
both its splittable (MCFBP) and unsplittable (UMCFBP) variants. We conduct a
comprehensive analysis of the complexity associated with both versions of the problem
and establish a correlation between their solutions. Our approach begins with proposing
a bilevel formulation to address these challenges, along with a single-level reformulation.
We then present a more general integer linear programming (ILP) formulation with an
exponential number of constraints. To enhance the model’s robustness, we introduce a
polyhedral study, aiming to describe the polyhedra of solutions for each problem and
identify necessary and sufficient conditions for the inequalities to be facet-defining.
For future research, leveraging the bilevel formulation and its reformulation could prove
beneficial in enhancing the proposed formulations by incorporating new valid inequali-
ties.
The next chapter will be dedicated to the Branch-and-Cut algorithms used to solve the
proposed formulations for the MCFBP and the UMCFBP.

148

Chapter 6

A Branch-and-Cut algorithm for the
multicommodity flow blocker problem

Contents
6.1 The splittable multicommodity flow blocker problem 150

6.1.1 Separation of target profit inequalities 150
6.1.2 Branch-and-Cut algorithm . 152

6.2 The unsplittable multicommodity flow blocker problem 156
6.2.1 Separation of u-target profit inequalities 158
6.2.2 Branch-and-Cut algorithm . 159

6.3 Computational results . 163
6.3.1 Benchmark set of instances . 164
6.3.2 Computational performance of the Branch-and-Cut for the MCFBP . 167
6.3.3 Computational performance of the Branch-and-Cut for the UMCFBP 178
6.3.4 Comparison of the effectiveness of the natural formulation and the

state-of-the-art technique . 182
6.4 Concluding remarks . 186

In the preceding chapter, we presented a natural formulation tailored to address the
multi-commodity flow blocker problem (MCFBP) in both its splittable and unsplittable
variants. This formulation is characterized by an exponential family of constraints.
The current chapter focuses on developing a specialized Branch-and-Cut algorithm for
each variant of the problem. For the two families of constraints presented, namely
the target profit inequalities(5.14b) and the u-target profit inequalities(5.16b), we delve
into the associated separation problem, exploring its complexity and various separation
strategies. Following this, we present experimental results to assess the effectiveness of
our proposed approaches. Furthermore, we conduct a comparison analysis of our natural
formulation against the current state-of-the-art technique for solving the MCFBP.

149

6.1 The splittable multicommodity flow blocker problem

Let us consider the notations defined previously. Precisely, let G = (V,A) be a directed
graph with m = |A| arcs and n = |V | vertices. Each arc a ∈ A is given a capacity
ca ∈ R+, a routing cost (or flow cost) pa ∈ R+, representing the cost associated with
routing a unit of flow and a blocker cost ra ∈ R+, representing the cost for removing
(or blocking) arc a. This graph is associated with a set of commodities K, where each
commodity k = (sk, tk, bk,Γk) is characterized by a source sk ∈ V , a destination tk ∈ V ,
a bandwidth bk ∈ R+, and a reward Γk ∈ R+. Finally, as previously, let Φ denote the
target profit value.
We consider again the blocker vector x and the notations A(x) for the set of blocked
arcs and GNB(x) for the non-blocked graph.
Let y ∈ Pmcf be a vector associated with an MCF of profit value greater than Φ in
graph G, and let AS(y) ⊆ A be the subset of arcs routing the MCF. We recall that a
natural formulation for the MCFBP reads as follows:

min
∑
a∈A

raxa (6.1a)
∑

a∈AS(y)
xa ≥ 1 y ∈ ext(Pmcf) (6.1b)

xa ∈ {0, 1} a ∈ A, (6.1c)

The target profit inequalities (6.1b) are in exponential number. Accordingly, in order to
solve the natural formulation (6.1), one needs to implement a Branch-and-Cut (B&C)
algorithm where target profit inequalities are separated in the nodes of the branching
tree for integer and fractional solutions. This exact algorithm requires defining a relaxed
master problem (RMP) where the binary variables are replaced with continuous variables
taking values between 0 and 1. In the initialization phase, only a subset of constraints
are included in the RMP. To check that RMP solutions respect all the target profit
inequalities or to determine one or more violated constraints which are then added to
the RMP, we propose several separation procedures that will be described in the next
sections.

6.1.1 Separation of target profit inequalities

Given a (fractional) solution x ∈ [0, 1]m of the RMP in a B&C node, the separation
problem for the target profit inequalities (6.1b) requires finding a multi-commodity flow
defined by a vector y∗ ∈ ext(Pmcf) such that:∑

a∈A(y∗)
xa < 1, (6.2)

or to prove that such a vector does not exist, i.e., that all target profit inequalities (6.1b)
are satisfied by the solution x. Thus, it is necessary to find a vector y∗ ∈ ext(Pmcf)
leading to the minimum value of the left-hand side of (6.2).

150

We distinguish two cases. The first one is for fractional RMP solutions and the second
one is for integer RMP solutions.
For fractional RMP solutions x, let z ∈ {0, 1}m be a vector of binary variables where
each variable za is equal to 1 if and only if the arc a is in A(y∗), i.e., if the arc a is used
to route a positive amount of flow in the multicommodity flow defined by y∗. We recall
that the total profit of this MCF is strictly greater than Φ, according to the definition
of Pmcf . The separation problem for the target profit inequalities can be modeled by
the following ILP problem:

min
y∈[0,1]d×m,λ ≥0,z∈{0,1}m

∑
a∈A

za · xa (6.3a)
∑

k∈K

yk,a bk ≤ ca, ∀ a ∈ A (6.3b)

∑
a ∈ δ+(u)

yk,a bk −
∑

a ∈ δ−(u)
yk,a bk =

λk if u = sk,

0 if u ∈ V \{sk, tk},
−λk if u = tk

∀k ∈ K, ∀u ∈ V (6.3c)

yk,a ≤ za, a ∈ A, k ∈ K (6.3d)∑
k∈K

Γk λk −
∑
a∈A

pa yk,a bk ≥ Φ + 1. (6.3e)

The objective function minimizes the left-hand size of (6.2). Constraints (6.3b) and
(6.3c) are constraints of the MCFP, representing respectively the capacity constraints
and the flow conservation constraints. The additional constraints “yk,a ≤ za” imposes
to select an arc a ∈ A if it routes a flow for a commodity k ∈ K and constraint (6.3e)
defines the minimum profit of the multicommodity flow. If the optimal solution value of
this problem is strictly smaller than 1, then a target profit inequality maximally violated
by x is found. Otherwise, no target profit inequalities are violated by x.
To characterize the complexity of the separation problem associated with the target
profit inequalities for fractional RMP solutions, we introduce the minimum edge-cost
flow problem (MECFP). The MECFP is N P-complete in its decision version, see Garey
and Johnson [1979], and accordingly it is N P-hard in its optimization version. Given an
arc-price vector ω ∈ Zm

+ and a flow-value bound B ∈ Z+, the MECFP requires finding
a minimum-price flow from a source s ∈ V to a destination t ∈ V with a flow value
larger than or equal to B. It is worth noticing that the MECFP remains N P-hard for
ω ∈ [0, 1]m.
By reducing the MECFP to the separation problem, the next proposition characterizes
the computational complexity of the latter one.

Proposition 26. The separation problem for the target profit inequalities (6.1b) is
N P-hard for fractional solutions x ∈ [0, 1]m of the RMP.

Proof. Starting from a MECFP instance, we set xa equal to ωa (a value in [0, 1]) and
the routing cost pa equal to 0 for every arc a ∈ A. We focus on a single commodity
k0 = (s, t, b0,Γ0), where Γ0 = 1 and b0 is a positive integer greater than or equal to
B. The target profit value Φ is set to B − 1. Since there is only one commodity, the

151

separation problem of inequalities (6.1b) results in finding a flow from s to t. Moreover,
as b0 ≥ B, Γ0 = 1 and pa = 0 for all arcs a ∈ A, the total routing profit of this
flow is greater than or equal to B, therefore guaranteeing that the value of the flow
is also greater than or equal to B. Accordingly, once, the separation problem (6.3) is
solved, its optimal solution (y, z) corresponds to an optimal MECFP solution. Indeed,
since y defines a flow of value greater than or equal to B, all the MECFP constraints
are satisfied, i.e., the capacity constraints, the flow conservation constraints and the
requirement of having a flow value larger than or equal to B. Moreover, the variable
values z correspond to the arcs with a minimum-price flow from s to t.

□

For an integer solution x ∈ {0, 1}m, the separation problem can be restated as an MCFP
and the next proposition characterizes its computational complexity:

Proposition 27. The separation problem for the target profit inequalities (6.1b) can be
performed in polynomial time for integer solutions x ∈ {0, 1}m of the RMP.

Proof. Since xa ∈ {0, 1},∀a ∈ A, a violated target profit inequality can be found if and
only if a multi-commodity flow defined by a vector y ∈ ext(Pmcf) exists such that the
subset A(y) ⊆ A does not contain any blocked arcs. Accordingly, finding a violated
target profit inequality leads to solving an MCFP in the non-blocked graph GNB(x) =(
V,A \ A(x)

)
. In case the maximum profit of the MCF in the non-blocked graph is

strictly greater than Φ, a multi-commodity flow defined by a vector y ∈ ext(Pmcf) and
associated to a violated target profit inequality is found. Otherwise, no target profit
inequalities are violated by x. Since the MCFP can be solved in polynomial time (see
Tardos [1986]), the separation problem of the target profit inequalities (6.1b) can be
solved in polynomial time for any integer RMP solution x. □

6.1.2 Branch-and-Cut algorithm

In this section, we present a B&C algorithm to solve the MCFBP (Bentoumi et al.
[2021]).
Indeed, in order to solve the natural formulation (6.1) with target profit inequalities
(6.1b) for the MCFBP, one needs to implement a Branch-and-Cut algorithm with an ef-
ficient separation strategy for inequalities (6.1b). To determine a target profit inequality
violated by an RMP solution x, we propose the separation procedures described below.

Integer separation of target profit inequalities (6.1b)

One way to implement the B&C algorithm is to separate the target profit inequalities
only for integer LP relaxation points, since modern MIP solvers guarantee that fractional
points are cut off by the standard branching procedure strengthened with cutting plane
mechanisms. As stated in Proposition 27, this can be done in polynomial time by solving
an MCFP. To this end, one can solve the arc-formulation for the MCFP given by Model
5.3 in Chapter 5 using an LP Solver. However, in practice, due to the substantial

152

storage requirements associated with the arc-formulation, an alternative technique may
be employed to solve the MCFP. This technique relies on a path formulation that is
further solved using a column generation algorithm, described in the next paragraph.

A column generation algorithm to solve the MCFP Another formulation, re-
ferred to as the path formulation, can be designed for the MCFP, as well as for the
UMCFP. As for the previous formulations, known as the arc formulations, we are given
a directed graph G = (V,A) with a set of commodities K. We introduce a new parame-
ter P k for every commodity k ∈ K. P k represents the set of all distinct paths from sk to
tk in the network. In the path formulation, we introduce a decision variable yk,p for each
commodity k ∈ K and each path p ∈ P k. For every commodity k ∈ K, the variable
yk,p represents the proportion of the bandwidth routed through path p. In the context
of a splittable multicommodity flow problem, yk,p is a continuous variable ranging be-
tween 0 and 1, i.e., yk,p ∈ [0, 1]. This implies that the bandwidth bk can be distributed
among multiple paths. Conversely, in the case of an unsplittable multicommodity flow
problem, yk,p is binary, i.e., yk,p ∈ {0, 1}. As mentioned in the previous chapter, in the
UMCFP, a satisfied commodity has its entire bandwidth routed through a single path.
Therefore, the path formulation for the MCFP is given below.

ζ(MCFP) = max
∑

k∈K

∑
p∈P k

(bk Γk yk,p −
∑

a∈A(p)
bk pa yk,p) (6.4a)

∑
k∈K

∑
p∈P k|a∈p

yk,p bk ≤ ca a ∈ A,

(6.4b)∑
p∈P k

yk,p ≤ 1 k ∈ K

(6.4c)
yk,p ∈ [0, 1] k ∈ K, p ∈ P k.

(6.4d)

Constraints (6.4b) are the capacity constraints imposing that, for every commodity the
total flow routed through an arc does not exceed the capacity of the arc. Constraints
(6.4c) impose that, for all commodities k ∈ K, the total flow routed through all the
paths P k does not exceed the bandwidth bk. Finally, constraints (6.4d) express the
definition set of the path-flow variables y.

Let us describe the column generation method to solve the path formulation (6.4) of the
MCFP. We denote by (MCFP) the master LP (6.4) and its dual by (D-MCF). For every
commodity k ∈ K, let P ′k ⊆ Pk be a subset of the paths. We consider the restricted
master LP (MCFP’) with regard to P ′k.

153

ζ(MCFP′) = max
∑

k∈K

∑
p∈P ′k

(yk,p bk Γk −
∑

a∈A(p)
yk,p bk pa) (6.5a)

∑
k∈K

∑
p∈P ′k|a∈p

yk,p bk ≤ ca a ∈ A,

(6.5b)∑
p∈P k

yk, p ≤ 1 k ∈ K

(6.5c)
yk,p ∈ [0, 1] k ∈ K, p ∈ P ′k.

(6.5d)

It is clear that a feasible solution for (MCFP’) corresponds to a feasible solution for
(MCFP). However, determining whether the solution of (MCFP’) is optimal for (MCFP)
requires further investigation. More precisely, if this is not the case, then additional
variables are introduced to (MCFP’) to enhance the solution value. This process can
be done by using the dual restricted master LP (D-MCF’), presented below:

ζ(D − MCFP′) = min
∑
a∈A

caµa +
∑

k∈K

µk (6.6a)

µk +
∑

a∈A(p)
bkµa ≥ bk(Γk −

∑
a∈A(p)

pa) k ∈ K, p ∈ P ′k

(6.6b)
µk ∈ [0, 1] k ∈ K,

(6.6c)
µa ∈ [0, 1] a ∈ A.

(6.6d)

where µa are the dual variables associated to Constraints (6.4b), for every arc a ∈ A and
µk are the dual variables associated to Constraints (6.4c), for every commodity k ∈ K.
Let µ be a solution of (D-MCF’) that respects the dual constraints (6.6b) for all p ∈
P k, k ∈ K, then µ is a feasible and optimal solution for (D-MCF) (see Ahuja et al.
[1993]).
Deciding whether Constraints (6.6b) are satisfied for all paths is the so-called pricing
problem and can be solved efficiently by computing the shortest path for each commodity
k ∈ K between the source sk and the destination tk with a weight µa on every arc a ∈ A.
If the shortest paths are all at least of weight 1, then Constraints (6.6b) are satisfied for
all paths, otherwise, we have found a path that violated Constraints (6.6b).
An efficient separation strategy for fractional points can also help enhance the perfor-
mance of a Branch-and-cut-based approach. We will now introduce some.

154

Exact separation of target profit inequalities (6.1b)

A second approach involves separating fractional solutions in addition to integer solu-
tions. This can be done by solving the exact separation problem (see Model (6.3)).
Let (y∗, z∗) be an optimal solution of Model (6.3). In case the optimal solution value is
strictly smaller than 1, then we have detected a violated target profit inequality (6.1b)
and the following cut is added to the RMP:∑

a∈A(y∗)
xa ≥ 1,

where A(y∗) is the set of arcs a ∈ A for which y∗
k,a > 0,∀k ∈ K.

However, as stated in Proposition 26, this problem is N P-hard. Accordingly, the exact
separation of target profit inequalities may be time-consuming.

Heuristic separation of target profit inequalities (6.1b)

We now propose an alternative method to separate fractional solutions, wherein a fea-
sible solution of the separation problem (6.3) is considered instead of the optimal solu-
tion. To this end, we investigate a heuristic for the separation problem. This heuristic,
referred to as SP_Heu is a simple and well-understood algorithm based on successive
computations of shortest paths problems. We refer the interested reader to Chapter 1,
where a detailed description of the shortest path problem (SPP) has been provided.
We recall that the separation problem of the target profit inequalities (6.1b) aims at
finding a multicommodity flow defined by a vector y ∈ ext(Pmcf) such that inequality
(6.2) is satisfied. The value ∑

a∈A(y) x
∗
a is referred to as the total use-arc-cost value.

Shortest-path based heuristic (SP_Heu) The general idea of the heuristic consists
in constructing a multicommodity flow with a profit greater than Φ, by iteratively
satisfying a set of commodities. We recall that a commodity k ∈ K is satisfied if at
least one unit of flow is routed from the source sk to the destination tk. Additionally,
the rewards for commodities and routing costs on arcs are set up so that increasing the
quantity of flow routed also increases the routing profit. Accordingly, the objective for
each commodity is to route a quantity of flow that reaches the upper limit of bk.
For each commodity k ∈ K, the algorithm identifies a set of paths to route the flow from
sk to tk, while minimizing the total use-arc-cost. This process involves solving a set of
shortest path problems (SPP) for each pair of source and destination nodes within the
graph G. In this context, every arc in the graph is assigned a length denoted by la and
a capacity denoted by c∗

a. This specific instance of the shortest path problem can be
written as SPP(G, sk, tk, c∗, l), where c∗ and l are the arc-capacity vector and arc-length
vector, respectively.
Precisely, the algorithm starts with a profit Ω(G) equal to 0, i.e., all commodities are
unsatisfied and the total use-arc-cost, denoted by SumX is equal to 0. These values
are incrementally updated during the construction of the multicommodity flow. At

155

the initialization phase, the arc capacity vector c∗ and the arc-length vector l take
respectively values of the initial arc-capacity vector c and vector x∗. For each commodity
k ∈ K, we consider a flow value Fk that is initially equal to 0 and that cannot exceed
the bandwidth bk. Therefore, while Fk does not exceed bk, a path p∗ between sk and tk
is computed by solving SPP(G, sk, tk, c∗, l). When p∗ is found, the arc-capacity vector
c∗ and the use-arc-cost vector are updated. Precisely, for every arc a ∈ A(p∗), la is
set to 0 and c∗

a is reduced by the value of the flow routed through the path, which is
determined by the smallest value between two quantities: the minimum capacity among
all arcs in p∗ and the residual bandwidth, computed as bk − Fk. On the other hand,
every time p∗ is found, the routing profit Ω(G) is increased by the routing profit of
the path computed as min{min{ca : a ∈ A(p∗)}, bk − Fk} × (Γk − ∑

a∈A(p∗) pa), where
min{min{ca : a ∈ A(p∗)}, bk − Fk} is the flow routed through the path. The total
use-arc-cost is also increased by the total length of the path, i.e., ∑

a∈A(p∗) la.

The algorithm terminates under two conditions. First, it stops when a multicommodity
flow with a profit greater than Φ and a total use-arc-cost less than 1 is found. In
this scenario, the corresponding new inequality is added to the RMP. Alternatively,
the algorithm also stops when the total use-arc-cost is greater than 1. In this case, no
new inequality is added to the RMP. It is worth noticing that if all commodities are
treated without finding an MCF with a total routing profit greater than Φ and such
that SumX > 0, then as previously, no new inequality is added to the RMP.
In what follows, we give a detailed description of the heuristic, see Algorithm 4.
It is worth noticing that various strategies exist for defining an order to process the
commodities. A notable approach involves sorting the commodities based on their
rewards, prioritizing those with the highest rewards. Alternatively, commodities could
be sorted according to their bandwidths. Another strategy might involve a balanced
consideration, where a trade-off between the reward and bandwidth of each commodity
is taken into account. Each of these sorting methods offers a distinct approach to
optimizing the flow-routing process but in our experiments, we mainly focus on the first
technique that prioritizes commodities by their rewards, in order to increase the routing
profit.

6.2 The unsplittable multicommodity flow blocker prob-
lem

In alignment with Section 6.1, this section introduces a Branch-and-Cut algorithm tai-
lored for addressing the unsplittable variant of the MCFBP, namely the UMCFBP.
Let y ∈ Pumcf be a vector associated with a UMCF of profit value greater than Φ in
graph G. Using the same notations as before, we recall that the natural formulation for
the UMCFBP reads as follows:

156

Algorithm 4 Pseudo-code for the Shortest-Path Based Heuristic for the MCFBP
SP_Heu(G,K,x∗)

1: Input Data:
2: G = (V,A): Directed graph
3: K: Set of commodities
4: c: Initial arc-capacity vector
5: x∗: fractional RMP solution
6: sk, tk, bk,Γk: Source, destination, bandwidth and reward for each commodity k ∈ K
7: pa : Routing cost on arc a ∈ A
8: procedure Initialize
9: Ω(G) = 0

10: SumX = 0
11: c∗ = c
12: l = x∗

13: end procedure
14: for all k ∈ K do
15: Fk = 0
16: while Fk < bk do
17: p∗ = SPP (G, sk, tk, c∗, l)
18: Fk+ = min{min{ca : a ∈ A(p∗)}, bk − Fk}
19: for all a ∈ A(p∗) do
20: la = 0
21: c∗

a− = min{ca : a ∈ A(p∗)}
22: SumX+ = la
23: end for
24: end while
25: end for

157

min
∑
a∈A

raxa (6.7a)
∑

a∈AS(y)
xa ≥ 1 y ∈ ext(Pumcf) (6.7b)

xa ∈ {0, 1} a ∈ A, (6.7c)

Inequalities (6.7b), referred to as the u-target profit inequalities, are in exponential
number. Accordingly, in order to solve the natural formulation (6.7), one needs to
implement a Branch-and-Cut (B&C) algorithm where u-target profit inequalities are
separated in the nodes of the branching tree for integer and fractional solutions. As
previously, this exact algorithm requires defining a relaxed master problem (RMP) where
the binary variables are replaced with continuous variables taking values between 0 and
1. In the initialization phase, only a subset of constraints are included in the RMP.
To check that RMP solutions respect all the u-target profit inequalities or to determine
one or more violated constraints which are then added to the RMP, we propose several
separation procedures that will be described subsequently.
In the next section, we present the separation problem associated with the u-target
profit inequalities.

6.2.1 Separation of u-target profit inequalities

Given a (fractional) solution x ∈ [0, 1]n of the RMP in a B&C node, the separation
problem for the u-target profit inequalities (6.7b) requires finding an unsplittable multi-
commodity flow defined by a vector y∗ ∈ ext(Pumcf) such that:∑

a∈A(y∗)
xa < 1, (6.8)

or to prove that such a vector does not exist, i.e., that all u-target profit inequalities
(6.7b) are satisfied by the solution x. Thus, it is necessary to find a vector y∗ ∈
ext(Pumcf) leading to the minimum value of the left-hand side of (6.8).
Let z ∈ {0, 1}m be a vector of binary variables where each variable za is equal to 1 if
and only if the arc a is in A(y∗), i.e., if the arc a is used to route a positive amount of
flow in the unsplittable multicommodity flow defined by y∗. We recall that the total
profit of this UMCF is strictly greater than Φ, according to the definition of Pumcf .
The separation problem for the u-target profit inequalities can be modeled by the fol-
lowing ILP problem:

min
y∈{0,1}d×m,λ ≥0,z∈{0,1}m

{ ∑
a∈A

za · xa : (6.3b), (6.3c), (6.3d), (6.3e).
}

(6.9)

Model (6.9) is the same as Model (6.3), which represents the exact separation problem
for target profit inequalities (6.1b). Indeed, the two models have the same objective
function and constraints. However, they differ in the variable set y, representing the
flow.

158

The next proposition characterizes the computational complexity of the separation prob-
lem for the u-target profit inequalities (6.7b).

Proposition 28. The separation problem for the u-target profit inequalities (6.7b) is
N P-hard for fractional and integer solutions x of the RMP.

Proof. The decision problem of the separation problem for inequalities (6.7b) asks for
finding an unsplittable multi-commodity flow with a total profit exceeding Φ + 1. This
problem is N P-Complete as stated previously. Accordingly, the optimization version of
the problem is N P-hard. □

6.2.2 Branch-and-Cut algorithm

In this section, we present a Branch-and-Cut algorithm to solve the UMCFBP. Indeed,
in order to solve the natural formulation (6.7) with u-target profit inequalities (6.7b), one
needs to implement a Branch-and-Cut algorithm with an efficient separation strategy
for Inequalities (6.7b). To determine a u-target profit inequality violated by an RMP
solution x, we propose the separation procedures described below.

Integer separation of u-target profit inequalities (6.7b)

One way to implement the B&C algorithm is to separate the u-target profit inequalities
only for integer LP relaxation points x ∈ {0, 1}n, since modern MIP solvers guarantee
that fractional points are cut off by the standard branching procedure strengthen with
cutting plane mechanisms. This can be done by solving a UMCFP. Indeed, since xa ∈
{0, 1},∀a ∈ A, a violated u-target profit inequality can be found if and only if an
unsplittable multi-commodity flow defined by a vector y ∈ ext(Pumcf) exists such that
the subset A(y) ⊆ A does not contain any blocked arcs. Accordingly, finding a violated
u-target profit inequality leads to solve a UMCFP in the non-blocked graph GNB(x) =
(V,A \ A(x)). In case the maximum profit Ψ(GNB(x)) is strictly greater than Φ, an
unsplittable multicommodity flow defined by a vector y ∈ ext(Pumcf) and associated to
a violated u-target profit inequality is found. Otherwise, no u-target profit inequalities
are violated by x. However, as the UMCFP is N P-Hard, the separation of integer
LP relaxation points may considerably impact the overall performance of the B&C
algorithm. Subsequently, we propose an algorithm designed to efficiently generate u-
target profit inequalities, using a column-generation-based heuristic approach.
As for the MCFP, an alternative formulation can be designed for the UMCFP using a
path-based approach. Specifically, the path formulation previously introduced for the
MCFP remains applicable for its unsplittable variant, the UMCFP. However, there is
a distinction in the variable set y, which becomes a vector of binary variables, i.e, for
every commodity k ∈ K and for every path p ∈ P k, we have yk,p ∈ {0, 1}.
Therefore, the path formulation for the UMCFP reads as follows:

159

ζ(UMCFP) = max
∑

k∈K

∑
p∈P k

(yk,p bk Γk −
∑

a∈A(p)
yk,p bk pa) (6.10a)

∑
k∈K

∑
p∈P k|a∈p

yk,p bk ≤ ca a ∈ A,

(6.10b)∑
p∈P k

yk,p ≤ 1 k ∈ K,

(6.10c)
yk,p ∈ {0, 1} k ∈ K, p ∈ P k.

(6.10d)

Achieving optimality for Model (6.10) would require the implementation of a Branch-
and-Price algorithm (refer to Schrijver [2003]). Conversely, our approach involves solving
the linear relaxation of the model and subsequently applying a rounding algorithm,
presented in the next paragraph, to derive integer solutions. This approach yields a
feasible solution for the UMCFP.

Rounding algorithm The rounding procedure presented is known as randomized
rounding (Krolikowski et al. [2021b]), wherein paths are chosen based on probabilities
derived from the optimal solution of the linear relaxation of Model (6.10). The objective
of this procedure is to select paths randomly, with probabilities proportional to their
respective linear relaxation values. More precisely, for a set of commodities K ′ ⊆ K
processed in a random order, a path is randomly selected for every commodity k ∈ K ′,
where the probability of selecting a path is proportional to the linear relaxation value
of yk,p, k ∈ K ′, p ∈ P k. It is worth noticing that each time a path is chosen to satisfy
a commodity, the capacity of the arcs in this path is updated, i.e., reduced by the
bandwidth. Furthermore, the total profit value of the current UMCF is computed. The
algorithm is iterated for a specified number of times to compare multiple solutions, and
the best solution value is maintained, representing the combination of paths resulting
in a multicommodity flow with the highest profit value.
Hence, a method for deriving u-target profit inequalities for integer LP relaxation points
x ∈ {0, 1}m involves heuristically solving a UMCFP in the non-blocked graph GNB(x).
This is achieved by first solving the LP relaxation of the path formulation (6.10) for the
UMCFBP using a column generation algorithm and then applying a rounding procedure
to obtain an integer solution. If an unsplittable multicommodity flow with a profit
greater than Φ is identified, a new target-u profit inequality associated with this UMCF
is added to the RMP. On the other hand, if such a UMCF is not found, the UMCFBP
must be solved to optimality to ensure that no u-target profit inequalities are violated
by x.
An effective separation strategy for fractional points can also significantly enhance the
performance of the algorithm. In what follows, we introduce two distinct strategies
aimed at separating fractional points.

160

Exact separation of u-target profit inequalities (6.7b)

This section delves into the separation of fractional solutions by addressing the exact
separation problem of u-target profit inequalities (6.7b).
Let (y∗, z∗) be an optimal solution of Model (6.9). In case the optimal solution value
is strictly smaller than 1, then we have detected a violated u-target profit inequality
(6.7b) and the following cut is added to the RMP:∑

a∈A(y∗)
xa ≥ 1,

where A(y∗) is the set of arcs a ∈ A for which y∗
k,a > 0,∀k ∈ K.

However, solving Model (6.9) may be time-consuming. Therefore, in the next section
we propose an algorithm to heuristically separate fractional solutions.

Heuristic separation of u-target profit inequalities (6.7b)

We now present two heuristics to solve the exact separation problem of the u-target
profit inequalities, i.e., Model (6.9). The first heuristic, denoted as U_SP_HEU, is adapted
from the heuristic SP_HEU presented in Section 6.1 for the MCFBP. The second heuris-
tic, denoted by U_CSP_HEU, is an adapted variant of the Lagrangian Relaxation based
aggregated cost (LARAC) algorithm for the constrained shortest path problem.

U_SP_HEU heuristic This heuristic employs the same logic as the SP_HEU heuristic
designed for the MCFBP. However, for the U_SP_HEU heuristic, the flow for each com-
modity is routed through a single path. A detailed presentation of the algorithm is
given by Algorithm 5.

161

Algorithm 5 Pseudo-code for the Shortest-Path Based Heuristic for the UMCFBP
U_SP_Heu(G,K,x∗)

1: Input Data:
2: G = (V,A): Directed graph
3: K: Set of commodities
4: c: Initial arc-capacity vector
5: x∗: fractional RMP solution
6: sk, tk, bk,Γk: Source, destination, bandwidth, and reward for each commodity k ∈ K
7: pa : Routing cost on arc a ∈ A
8: procedure Initialize
9: Ω(G) = 0

10: SumX = 0
11: c∗ = c
12: l = x∗

13: end procedure
14: for all k ∈ K do
15: lk = l
16: Gk = (V,Ak) ▷ Ak is the set of arcs a ∈ A with ca ≥ bk

17: p∗ = SPP (Gk, sk, tk, c∗, lk)
18: for all a ∈ A(p∗) do
19: la = 0
20: c∗

a− = bk

21: SumX+ = la
22: end for
23: end for

Constrained shortest-path based heuristic (U_CSP_Heu) A second heuristic
strategy to address the separation problem of u-target profit inequalities focuses on
determining an optimal path for each commodity. This entails finding the shortest
path that satisfies a specific constraint, which corresponds to a problem known in the
literature as the constrained shortest path problem.
We first present the constrained shortest path problem (CSPP) also known as the shortest
weight-constrained path, see e.g. Garey and Johnson [1979] where it has been shown to
be N P-hard. Given a graph G = (V,A) where a length la and a weight ωa is affected
to every arc a ∈ A, the CSPP aims at finding a path p between a source s ∈ V and
a destination t ∈ V that minimizes the total length of the path, i.e., the sum of the
lengths on the arcs constituting the path, and such that the total weight of the path,
i.e, the sum of the weights on the arcs constituting the path, does not exceed a given
value W . The CSPP is a well-known optimization problem and many algorithms have
been designed to exactly or heuristically solve this problem. In Juttner et al. [2001],
the authors present the LARAC algorithm, a heuristic to solve the CSP, referred to
as the delay constrained least cost path problem. This heuristic relies on the Lagrange
Relaxation, which is a common technique used for finding lower bounds in a minimization
problem. This technique has been introduced in Held and Karp [1970] for the Traveling
Salesman problem. The main idea of this technique is to remove a set of constraints

162

defined as hard constraints and add them into the objective function as penalization
terms for violating the hard constraints.
In what follows, we describe U_CSP_Heu, a heuristic that is based on the LARAC algo-
rithm for the CSP, to solve the separation problem of the u-target profit inequalities.
This algorithm uses the LARAC algorithm at each iteration. To explain U_CSP_Heu,
we recall that the separation problem of the u-target profit inequalities aims to find an
unsplittable multi-commodity flow with a profit greater than the target profit value Φ
and such that inequality (6.2) is satisfied. We first focus on a particular case of the
UMCFBP where we consider only one commodity k0. It is clear that if the bandwidth
of this commodity can be routed through a path of the graph, with a profit greater
than Φ and while ensuring inequality (6.2), then a violated u-target profit inequality is
found and added to the RMP. We now study the general case of |K| ≥ 1. We can treat
all commodities iteratively. For each commodity k ∈ K, we find a path in the graph
G considering only the arcs with a capacity greater than bk. This path can be found
by solving the LARAC algorithm. Then, as for the U_SP_Heu algorithm, every time a
path for a commodity is found, we upgrade the value of the total routing profit and the
arc-capacity vector. At initialization, we also consider a bound corresponding to SumX
(see Algorithm 5) set to value 1. At each iteration, when a path is found, this bound is
decreased with the sum of the values x∗

a of the arcs a constituting the path, then vector
x∗ is updated, i.e., the values of x∗

a are then set to 0. The algorithm stops under several
conditions. First, it stops when SumX reaches a zero or a negative value. In this case,
no cuts are found. A second condition is related to the total routing profit. If it exceeds
the target profit value Φ, then a new cut is found and added to the RMP. Finally, if
all commodities are treated without finding a UMCF with a total routing profit greater
than Φ and such that SumX > 0, then as previously, no cut is added to the RMP.

6.3 Computational results

In this section, we present the results of our computational campaign. The aim is
to assess the performance of the ILP natural formulations for the MCFBP and the
UMCFBP, presented in this thesis, i.e., Model (6.1) and Model (6.7). These models
feature an exponential number of constraints. Accordingly, they are solved via Branch-
and-Cut algorithms.
For each formulation, our computational campaign has two goals. The first one is to
assess the best configuration of the Branch-and-Cut algorithms for the natural formu-
lations. The second is to determine, for each formulation, the maximum size of the
instances that can be solved to proven optimality using the exact method proposed in
this paper to solve the MCFBP and the UMCFBP. Specifically, we investigate the prac-
tical computational difficulty of the main features of the instances. We also compare
the performance of the ILP formulations proposed against the direct use of a bilevel
solver, which corresponds to the current state-of-the-art approach. This technique in-
volves employing an online-accessible solver designed for bilevel programs. This solver
is the same as the one used to solve the maximum flow blocker problem in Chapter 4.
The experiments are conducted on a processor Intel Core i5-3340M CPU of 2.70GHz ×

163

4. To tackle the ILP formulations, we use CPLEX in C++ and its CONCERT TECHNOLOGY. In
our experiments, all computations are performed in a single-thread mode with default
values for all CPLEX parameters.

6.3.1 Benchmark set of instances

To the best of our knowledge, this thesis presents the first exact methods to solve the
MCFBP and the UMCFBP and no instances can be found in the literature. Hence,
we have generated synthetic instances and derived others from datasets available in the
literature to design networks.
The MCFBP and UMCFBP instances are characterized by three main components: i)
the graph-structural features, ii) the commodity-related features and iii) the flow-blocker
features.
Constructing a diverse and representative collection of instances for analysis poses a
significant challenge. This section details the specific criteria and choices implemented
in developing our benchmark set of instances for the MCFBP and the unsplittable
variant, i.e., the UMCFBP. The structural characteristics of the instances are based
on the input directed graph G = (V,A). The primary graph-structural features are
the number of vertices n ∈ V and the number of arcs m ∈ A. The arc density of the
graph, denoted as d(G) = |A|

n2−n is another crucial feature. Furthermore, in the context
of MCFBP and UMCFBP, each arc is associated with specific capacities and routing
costs. It is also crucial to consider the features related to commodities. In this context,
each commodity within these instances is characterized by four fundamental elements:
its source node, its destination node, the required bandwidth, and the reward value for
transporting a unit of flow from the source to the destination. These elements, along
with the arc-capacities and routing costs play a vital role in computing the maximum
profit Ω(G) of an MCF in the graph.
The flow-blocker features of MCFBP and UMCFBP instances consist in determining the
blocker cost ra ∈ Z+ for each arc a ∈ A and the target flow Φ ∈ Z+. We have chosen to
determine the target flow as a percentage λ ∈ [0, 1] of the maximum profit value Ψ(G)
in the given instances. By opting for this approach, we can conduct an analysis of the
computational complexity of the instances based on the maximum profit allowed in the
non-blocked graph, which is determined as a percentage of the maximum profit in the
original graph G. It is worth noticing that if λ = 0, the value of the target flow Φ is
equal to 0, which implies that no MCF should remain in the non-blocked graph. On
the other hand, if λ = 1, the value of the target profit Φ is equal to the maximum profit
value in G, i.e., Φ = Ψ(G), implying that there is no need to remove any arcs from G.
The distribution of the blocker costs on the arcs determines the value of the optimal
solution for the MCFBP and the UMCFBP.
As far as the graph-structural features of MCFBP and UMCFBP instances are con-
cerned, we consider three classes of instances: i) SNDLIB graphs, ii) TELECOM graphs,
iii) SYNTHETIC graphs. The first class gathers instances obtained from the literature.
The second class are instances provided by Huawei and the last class was generated
from a random graph generator that we implemented in Python 3.8.10.

164

1. SNDLIB instances are sourced from SNDlib (Survivable Network Design Library), a
well-known repository for test instances in network design, particularly in telecom-
munications. SNDlib provides a collection of network instances that include graphs
and associated traffic demand scenarios. These instances are based on realistic net-
work topologies and demand scenarios, making them valuable for practical network
optimization studies. The library and detailed information about these instances
can be accessed on the website1. For the purpose of our experiments, we selected
specific characteristics from the SNDlib instances as follows: directed demands,
directed links, explicit link capacities (as opposed to linear, modular, or single
modular link capacities), a fixed-charge cost model and an admissible path model
considering all paths without an explicit list. Furthermore, we included all surviv-
ability models in our analysis. Figure 6.1 provides an example of a typical network
topology from SNDlib. Moreover, we considered two distinct sets of instances, each
comprising 27 distinct networks. The first set was used for experiments involving
continuous routing, while the second set was dedicated to discrete (unsplittable)
routing. This selection and categorization were based on the inherent character-
istics of the SNDlib instances. We refer the interested reader to Orlowski et al.
[2007] for further details on these instances.

Figure 6.1: Example of a network topology from SNDlib

2. The TELECOM instances consist of real-world telecommunications network data
along with traffic demands, provided by Huawei. This dataset is divided into
two distinct categories: TELECOM_A, TELECOM_B and TELECOM_C. These instances
represent graphs of type IPRAN (IP Radio Access Network), which is a special
class of telecommunication networks having a specific structure. More precisely,
in telecommunications, IPRAN graphs are pivotal and depict the network’s struc-
ture connecting radio access equipment to the main IP network, which is crucial
for efficient data transmission. Figure 6.2 presents a typical example of an IPRAN
(IP Radio Access Network) network topology, illustrating the characteristic struc-
ture of this type of telecommunications network. This class comprises a total of
45 instances, with 15 instances per type. The instances of TELECOM_A consist

1http://sndlib.zib.de/home.action

165

http://sndlib.zib.de/home.action

of graphs with 71 vertices, averaging 500 arcs, and encompassing 60 commodities.
For TELECOM_B instances, the graphs feature 1271 vertices, an average of 2500 arcs,
and include 30 commodities. Lastly, the TELECOM_C instances are characterized
by graphs with 5021 vertices, averaging 8000 arcs, and containing 10 commodities.

Figure 6.2: Example of an IPRAN network topology

3. The SYNTHETIC class consists of Erdős-Rényi random graphs denoted as G(n, p),
where the parameter p determines the probability of including each arc. In this
case, the value of p is set to 0.5, meaning that each arc has a 50% chance of being
included in the graph. We consider a large set of instance sizes based on the number
of vertices n in the graph ranging from 20 to 300. Specifically, n takes the following
values: 20, 40, 50, 70, 100, 130, 150, 200, 250 and 300. The size of the instances
also varies depending on the arc densities d(G), which range from 0.1 to 0.9 with a
step size of 0.1. For each combination of n and d(G), we create a total of 5 distinct
Erdős-Rényi graphs using different random seed generators. This dataset is divided
into two distinct categories, SYNTHETIC_SAME and SYNTHETIC_DIFF. These two
classes of instances have the same networks, i.e., the same graph with a different
set of commodities. In SYNTHETIC_SAME, all commodities have the same source and
different destinations, while in SYNTHETIC_DIFF, all commodities have different
sources and destinations. For each commodity k ∈ K, the source sk and the
destination tk are randomly selected between the vertices of the graph such that
sk and tk are linked by at least three consecutive arcs. The number of commodities
within each of these classes can vary, encompassing options of 5, 10, 20, 25, 30, 40,
50 or 60 commodities. The arc-capacities are generated by drawing a number from
the range [1, 49] (resp. [1, 3]) uniformly at random and rounding it to the nearest
integer value. The bandwidth of the commodities are also randomly generated by
selecting a number from the discrete uniform distribution on [1, 49].

For each instance, we assign a routing cost to every arc and a blocker cost. These
costs are determined by randomly selecting numbers from respective discrete uniform
distributions. Specifically, for all instances, the routing cost and the blocker cost for
each arc are generated from a distribution within the range of [1, 49]. Additionally, for
every commodity, we associate a reward value, which is also randomly selected from a

166

discrete uniform distribution, defined within the range [50, 100]. This selection helps
guarantee that routing a single unit of flow results in an increase in the profit.
In the remainder of this paper, all computing times are expressed in seconds. We impose
a CPU time limit of 600 seconds for every instance. If this time limit is exceeded, it is
reported as t.l. in the computational results.

6.3.2 Computational performance of the Branch-and-Cut for the
MCFBP

In this section, we study and discuss the computational performance of Model (6.1) for
the MCFBP. The aim of this section is to determine the best Branch-and-Cut algorithm
to solve the natural formulation for the MCFBP.
The natural formulation is solved using a Branch-and-Cut algorithm where target profit
inequalities (6.1b) are separated at every node of the branching tree and added to
the RMP. It is worth noticing that the RMP is initialized with one constraint that is
associated with the maximum-profit multicommodity flow in G. This MCF has, by
definition, a profit greater than Φ. We recall that we are interested in separating target
profit inequalities both for integer and fractional solutions. As explained previously,
the separation of target profit inequalities can be done in polynomial time by solving an
MCFP, see Model (5.3) of Chapter 5, using CPLEX LP solver. For fractional solutions,
the separation problem of target profit inequalities is N P-hard (see Proposition 26).
Consequently, an efficient separation procedure is crucial. In light of this, we have ex-
plored several strategies to separate target profit inequalities (6.1b). The first approach
involves separating fractional solutions by solving the exact separation problem (see
Model (6.3)). Additionally, alternative methods have been considered, wherein a feasi-
ble solution of the separation problem (6.3) is obtained instead of the optimal solution.
To this end, we can use the shortest-path-based heuristic SP_Heu presented in Section
6.1.2.
Therefore, we propose three Branch-and-Cut algorithms to solve the natural formulation
(6.1). The first one, denoted by INT_MCFBP, consists in separating only integer unfeasi-
ble points. Indeed, this is possible since modern MIP solvers guarantee that fractional
points are cut off by the standard branching procedure strengthened with cutting plane
mechanisms. However, an efficient separation strategy for fractional points can enhance
the overall performance of the Branch-and-Cut algorithm. Accordingly, we investigate
both types of separations in the two other algorithms. The second Branch-and-Cut
algorithm, denoted by EXACT_MCFBP, consists in separating, in addition to the integer
points, fractional points by solving the exact separation problem, i.e., Model (6.1b). The
last algorithm, denoted by HEU_MCFBP consists in solving the heuristic SP_Heu instead
of the exact separation problem.
Table 6.1, 6.2 and 6.3 compare the performance of the three Branch-and-Cut algorithms
on SNDLIB instances for three target profit values defined by λ = 0.2, λ = 0.6 and
λ = 0.9. Each row in the table corresponds to instances from SNDLIB class grouped by
the size, defined by the number of vertices n in the graph, the number of arcs m, the
number of commodities d, and the value λ to define the target profit. The column #

167

reports the total number of instances per row. For each configuration of the Branch-and-
Cut algorithm, we report the following values: the number of instances solved to proven
optimality (#opt), the average (avg.) and maximum (max) computing time (time) in
seconds, the average number of constraints generated to separate integer infeasible points
(#lazy), the average number of nodes in the branching tree (nodes), the average and
maximum optimality gap value (opt gap). The optimality gap represents the percentage
discrepancy between the current solution (LB) and the best possible solution (UB) and
it is computed as 100 × UB−LB

UB . For EXACT_MCFBP and HEU_MCFBP, we also report the
average number of constraints generated to separate fractional infeasible points (#user).
In Tables 6.2 and 6.3, we observe that the strategy of separating both integer and frac-
tional infeasible points by solving the exact separation problem (6.3) yields better perfor-
mance for the natural formulation on SNDLIB instances. Indeed, the EXACT_MCFBP con-
figuration successfully solves 29 instances to proven optimality, surpassing INT_MCFBP
and HEU_MCFBP by 2 instances. As expected, compared to INT_MCFBP, the separation
of fractional infeasible points contributes to a reduction in the number of constraints
required for separating integer infeasible points. For instance, for the smallest instances
of 26 vertices with λ = 0.6, the number of integer infeasible points drops from 854 for
INT_MCFBP to 163 for EXACT_MCFBP. This shows that the separation of fractional unfeasi-
ble points contributes to reaching the optimal solution faster. This is further evidenced
by the considerably reduced number of nodes in the branching tree for EXACT_MCFBP,
with only 77 nodes instead of 525 for INT_MCFBP.
However, with HEU_MCFBP, no improvement in total computing time is observed com-
pared to INT_MCFBP. Furthermore, separating fractional infeasible points in this case
does not contribute to reaching the optimal solution faster, as the number of nodes
in the branching tree remains comparable to that of INT_MCFBP. In some instances,
this number surpasses that of INT_MCFBP. For example, in graphs with 26 vertices, the
branching tree comprises 687 nodes with HEU_MCFBP compared to 525 with INT_MCFBP.
On the other hand, when fractional solutions are separated by solving the exact separa-
tion problem (6.3), EXACT_MCFBP successfully solves two additional instances to proven
optimality: one with 26 vertices and 84 arcs, and another with 27 vertices and 102
arcs. Given the scale of these instances, the computing time required to solve the exact
separation problem is reasonable (approximately 0.1 seconds). Meanwhile, the heuristic
algorithm SP_HEU requires only a few milliseconds. However, the number of cuts needed
to reach the optimal solution may increase and occasionally deviate from the optimal
solution, leading to a decrease in the overall performance of the algorithm. This scenario
is clearly demonstrated in instances with 26 vertices, where 11335 cuts are generated.
For larger instances, the time saved by solving the heuristic might facilitate a quicker
convergence to the optimal solution, as indicated by the value of the optimality gap (opt
gap). For instance, in graphs with 39 vertices and 122 arcs and with λ = 0.2, the opt gap
is 91% for HEU_MCFBP, compared to 96% for EXACT_MCFBP. This discrepancy becomes
significant with λ = 0.6, where the average optimality gap is 74% for HEU_MCFBP and
81% for EXACT_MCFBP.
Moreover, we observe that for all configurations of the algorithm, namely INT_MCFBP,
EXACT_MCFBP, and HEU_MCFBP, the computing time increases proportionally with the
value of the target profit defined as a percentage λ of the maximum MCF profit value

168

in the graph. Consequently, a high value for λ suggests that a significant portion of
the MCF profit is allowed in the graph, leading to a lower blocker cost. Additionally,
it implies a smaller number of MCFs to block, or equivalently a smaller number of ex-
treme points in Pmcf , thus reducing the number of target profit inequalities (6.1b) in the
natural formulation (6.1). On the contrary, decreasing λ results in a lower target profit
value, necessitating the blocking of more MCFs. This is characterized by an increased
number of extreme points in Pmcf and a greater number of target flow inequalities in
Model (6.1), which contributes to the increased complexity of the model, and conse-
quently, the computing time. For example, in a graph of 39 vertices and 122 arcs with
λ = 0.9, the number of instances solved to proven optimality is 9 out of 9 (100% of
the instances). However, with λ = 0.6, this number drops to 1, and with λ = 0.2, no
instances are solved to proven optimality within the time limit.

INT_MCFBP
time # lazy nodes opt gap

n m d λ # # opt avg. max avg. avg. avg. max
26 84 15 0.2 9 0 t.l. t.l. 907.78 316.89 90.95 98.97

0.6 9 1 566.56 t.l. 854.89 525.56 58.78 84.24
0.9 9 9 1.33 4.00 45.78 31.44 0.00 0.00

27 102 16 0.2 6 0 t.l. t.l. 762.67 240.67 93.21 97.61
0.6 6 0 t.l. t.l. 756.33 349.67 84.45 90.64
0.9 6 6 4.33 15.00 61.50 38.00 0.00 0.00

39 122 23 0.2 9 0 t..L. t.l. 586.56 169.67 91.97 99.65
0.6 9 1 536.33 t.l. 514.44 243.22 74.66 96.32
0.9 9 8 69.00 t.l. 100.00 89.33 5.85 52.63

172 23 0.2 3 0 t.l. t.l. 489.67 73.33 98.77 99.74
0.6 3 0 t.l. t.l. 487.00 102.67 96.48 99.74
0.9 3 2 231.33 t.l. 256.00 99.67 24.19 72.58

Total 81 27

Table 6.1: Performance of INT_MCFBP Branch-and-Cut algorithm used to solve Model
(6.1) on SNDLIB instances

In Table 6.1, Table 6.2 and Table 6.3, we can see that the natural formulation does not
achieve proven optimality for all instances from SNDLIB, successfully solving 29 out of 81
instances, which corresponds to approximately 36%. This is mainly due to the intricate
structure of the networks combined with a large number of demands. Subsequently, we
will delve into the performance of the formulation on the TELECOM class of instances.

169

EXACT_MCFBP
opt time # lazy # user nodes opt gap

n m d λ # # opt avg. max avg. avg. avg. avg. max
26 84 15 0.2 9 0 t.l. t.l. 224.89 3538.67 73.44 68.97 97.71

0.6 9 2 580.00 t.l. 163.44 2347.00 77.22 53.24 79.22
0.9 9 9 4.00 18.00 25.00 63.67 8.00 0.00 0.00

27 102 16 0.2 6 0 t.l. t.l. 184.50 3287.67 53.17 83.22 99.40
0.6 6 1 567.00 t.l. 134.33 1811.50 44.33 78.93 99.51
0.9 6 6 6.33 22.00 29.50 110.50 14.83 0.00 0.00

39 122 23 0.2 9 0 t.l. t.L. 162.78 1540.89 28.00 96.11 100.00
0.6 9 1 546.89 t.L. 127.44 982.22 30.33 81.70 100.00
0.9 9 8 69.44 t.L. 27.33 217.33 12.44 2.66 23.93

172 23 0.2 3 0 t.l. t.L. 278.67 2196.00 31.00 99.23 99.78
0.6 3 0 t.l. t.L. 285.00 773.33 36.67 96.48 99.78
0.9 3 2 227.33 t.L. 126.67 450.33 37.67 21.86 65.57

Total 81 29

Table 6.2: Performance of EXACT_MCFBP Branch-and-Cut algorithm used to solve Model
(6.1) on SNDLIB instances

HEU_MCFBP
opt time # lazy # user nodes opt gap

n m d λ # # opt avg. max avg. avg. avg. avg. max
26 84 15 0.2 9 0 t.l. t.l. 707.67 11335.89 269.78 92.22 100.00

0.6 9 1 563.44 t.l. 852.00 199.89 687.56 53.71 80.75
0.9 9 9 1.44 3.00 45.78 0.00 31.44 0.00 0.00

27 102 16 0.2 6 0 t.l. t.l. 782.33 126.33 189.83 88.19 95.15
0.6 6 0 t.l. t.l. 751.33 52.17 434.50 71.36 85.00
0.9 6 6 4.17 15.00 61.50 0.00 38.00 0.00 0.00

39 122 23 0.2 9 0 t.l. t.l. 583.44 26.67 181.56 91.23 99.51
0.6 9 1 536.22 t.l. 512.56 3.56 224.33 74.49 95.56
0.9 9 8 71.56 t.l. 98.00 0.00 88.22 5.85 52.63

172 23 0.2 3 0 t.l. t.l. 487.33 56.67 87.00 99.23 99.68
0.6 3 0 t.l. t.l. 488.33 0.00 105.00 96.48 99.74
0.9 3 2 230.33 t.l. 257.00 0.00 100.33 24.19 72.58

Total 81 27

Table 6.3: Performance of HEU_MCFBP Branch-and-Cut algorithm used to solve Model
(6.1) on SNDLIB instances

Tables 6.4, 6.5 and 6.6 present the results of the natural formulation (6.1) applied to
TELECOM instances, categorized by type: TELECOM_A, TELECOM_B, and TELECOM_C. It
is worth noticing that TELECOM_A instances comprise graphs of smaller size (with 71

170

vertices and approximately 500 arcs) and feature a substantial number of commodities
(60). In contrast, the graphs of TELECOM_B are larger (1271 vertices and approximately
2500 arcs) but have fewer commodities (30). Lastly, the TELECOM_C graphs are signifi-
cantly larger (with 5021 vertices and around 8000 arcs) and have the fewest commodities
(10). Similar to previous observations, three values of λ are considered: 0.2, 0.6, and 0.9.
The column # reports the total number of instances per row. For each configuration of
the Branch-and-Cut algorithm, we report the following values: the number of instances
solved to proven optimality (#opt), the average (avg.) and maximum (max) comput-
ing time (time) in seconds, the average number of constraints generated to separate
integer infeasible points (#lazy), the average number of nodes in the branching tree
(nodes), the average and maximum optimality gap value (opt gap). For EXACT_MCFBP
and HEU_MCFBP, we also report the average number of constraints generated to separate
fractional infeasible points (#user) and the average time required (time user).
First, Tables 6.4, 6.5 and 6.6 support the results of Tables 6.1, 6.2 and 6.3, regarding
the computing time in accordance with the target profit value. Indeed, as for SNDLIB
instances, we observe that for all configurations of the Branch-and-Cut algorithm, and
regardless of the instance type, computing time increases as the value of λ decreases.
As an illustrative example, within the INT_MCFBP configuration and for TELECOM_A
instances, the average computing time decreases significantly from 37 seconds for λ = 0.2
to 0.97 seconds for λ = 0.9. This trend is even more significant for larger instances such
as TELECOM_B, where only 5 out of 15 instances were solved to proven optimality within
the time limit for λ = 0.2. In contrast, for λ = 0.9, all 15 instances were solved to
proven optimality, with the maximum computing time not exceeding 58 seconds.
Second, the performance analysis of the three configurations of the Branch-and-Cut
(B&C) algorithm indicates that EXACT_MCFBP yields the least favorable results. Specif-
ically, for small-sized instances, INT_MCFBP achieves the optimal solution within a rea-
sonable time (up to 37 seconds for TELECOM_A instances), whereas EXACT_MCFBP requires
167 seconds to solve the same instances, which is more than a fourfold increase. As pre-
viously, this is due to the time needed to separate fractional infeasible points by solving
the exact separation problem (6.3). For example, it takes 125 seconds to generate 79
#user cuts. On the other hand, using the heuristic algorithm SP_HEU can help reduce
the number of fractional integer points to separate (# lazy), for example 62 instead of
67 for TELECOM_A instances.
Finally, we observe that the instances requiring the most time to reach the optimal
solution are those of TELECOM_B. Compared to TELECOM_A, the graphs of TELECOM_B
instances are larger (having a larger number of vertices and arcs), yet the number of
commodities is reduced by half, i.e., 30 commodities instead of 60. Additionally, com-
pared to TELECOM_C, the graphs of TELECOM_B are smaller but have more commodities
(30 instead of 10). For TELECOM_A and TELECOM_C instances, all instances have been
solved to proven optimality. However, for TELECOM_B with λ = 0.6, 9 out of 15 in-
stances were optimally solved within the time limit, and with λ = 0.2, this number
decreases to 5. Thus, it can be deduced that the number of commodities in the graph
significantly impacts the performance of the model. However, the size of the graph also
plays a crucial role in determining the model’s performance. As shown in this table, an
MCFBP instance consisting of a large graph with a small number of demands and an

171

MCFBP instance composed of a small graph with a large number of demands can both
be solved within a reasonable time (up to 392 seconds with INT_MCFBP for instances of
TELECOM_C). However, the combination of a relatively large graph with a substantial
number of commodities (as in TELECOM_B) poses a challenge to the model.

INT_MCFBP
time # lazy nodes opt gap

Type λ # # opt avg. max avg. avg. avg. max
TELECOM_A 0,2 15 15 37,78 271,25 67,27 33,33 0 0

0,6 15 15 6,54 45,39 16,93 6,27 0 0
0,9 15 15 0,97 1,65 2,13 0 0 0

TELECOM_B 0,2 15 5 444,88 t.l. 591,2 221,73 25,66 99,56
0,6 15 9 318,94 t.l. 498,4 268,27 14,15 68,75
0,9 15 15 13,51 58,6 31,8 11,6 0 0

TELECOM_C 0,2 15 15 40,65 392,25 100,47 91,4 0 0
0,6 15 15 4,87 22,58 12,6 2,73 0 0
0,9 15 15 1,21 4,29 2,33 0 0 0

Total 135 119

Table 6.4: Performance of INT_MCFBP Branch-and-Cut algorithm used to solve Model
(6.1) on TELECOM instances

EXACT_MCFBP
opt time # lazy # user time user nodes opt gap

Type λ # # opt avg. max avg. avg. avg. avg. avg. max
TELECOM_A 0,2 15 12 167,94 t.l. 70,47 79,33 125,35 26,87 0 0

0,6 15 13 86,64 t.l. 14,87 45,27 80,39 16,07 0 0
0,9 15 15 0,96 1,71 2,13 0 0 0 0 0

TELECOM_B 0,2 15 2 t.l. t.l. 271,8 471,87 505,18 76,33 64,37 99,98
0,6 15 5 587,15 t.l. 225,67 405,33 449,23 96,13 35,92 95,89
0,9 15 13 100,09 t.l. 28,93 71,73 85,95 21,4 0 0

TELECOM_C 0,2 15 11 196,5 t.l. 39,73 210,2 167,39 10,8 15,39 99,99
0,6 15 13 97,81 t.l. 11,4 96,87 81,25 0,73 2,82 42,31
0,9 15 15 1,82 11,84 2,33 0 0 0 0 0

Total 135 99

Table 6.5: Performance of EXACT_MCFBP Branch-and-Cut algorithm used to solve Model
(6.1) on TELECOM instances

172

HEU_MCFBP
opt time # lazy # user time user nodes opt gap

Type λ # # opt avg. max avg. avg. avg. avg. avg. max
TELECOM_A 0,2 15 15 34,18 217,04 62,93 0,13 0,07 30,4 0 0

0,6 15 15 6,76 46,34 16,93 0 0,02 6,27 0 0
0,9 15 15 0,97 1,68 2,13 0 0 0 0 0

TELECOM_B 0,2 15 5 446,1 t.l. 586,8 0 0,93 217,47 30,85 99,56
0,6 15 9 320,74 t.l. 493,27 0 1,17 263,2 14,5 68,75
0,9 15 15 13,86 60,42 31,8 0 0,06 11,6 0 0

TELECOM_C 0,2 15 15 41,58 414,57 100,47 0 0,67 91,4 0 0
0,6 15 15 4,42 23,26 12,6 0 0,02 2,73 0 0
0,9 15 15 1,11 2,85 2,33 0 0 0 0 0

Total 135 119

Table 6.6: Performance of HEU_MCFBP Branch-and-Cut algorithm used to solve Model
(6.1) on TELECOM instances

In what follows, we conduct a comprehensive performance analysis of the model, ex-
amining the impact of graph-structural features, flow-blocker features, and commodity
features on its efficiency. This analysis specifically targets instances from the SYNTHETIC
class. For solving these instances, our attention is directed towards the INT_MCFBP and
HEU_MCFBP configurations of the Branch-and-Cut (Branch-and-Cut) algorithm. Notably,
the EXACT_MCFBP configuration has not proven to be efficient. Moreover, as the size of
the instance grows, the exact separation problem 6.3 demands significant memory re-
sources, and reaching the optimal solution may also consume considerable time.
Figures 6.3, 6.4, 6.5 and 6.6 give the computing time boxplots of the different Branch-
and-Cut algorithms to solve the MCFBP, i.e., INT_MCFBP and HEU_MCFBP. The consid-
ered instances belong to the SYNTHETIC SAME class and contain 1200 graphs, grouped by
the number of vertices n, the density d(G), value λ for the target flow and the number
of commodities d considered. We graphically show the time spent by each configuration
of the Branch-and-Cut algorithm through their quartiles. The lines extending vertically
from the boxes indicate the variability outside the upper and lower quartiles. Above the
upper quartile, the outliers are plotted as individual points. The y-axis is the computing
time (in logarithmic scale) and the x-axis represents the group of instances. On the top
part of the figure, we report, for each group, the total number of instances solved to
proven optimality (#Opt). These boxplots illustrate that, in average, the computing
time of HEU_MCFBP is lower than that of INT_MCFBP. Moreover, we notice a discrepancy
in the number of instances solved to proven optimality, with HEU_MCFBP achieving a
higher success rate, especially when the size of the graph increases. Specifically, for the
smallest graphs (with 50 vertices and a density of 0.2), the number of instances solved
to proven optimality by INT_MCFBP exceeds that of HEU_MCFBP, with respective counts
of 298 and 253 for n = 50 and d(G) = 0.2. For the same parameters, HEU_MCFBP solves
296 and 252 instances to proven optimality, slightly fewer than INT_MCFBP. However, for
larger graphs, this trend reverses. For example, in the case of graphs with 70 vertices,

173

HEU_MCFBP optimally solves 279 instances, which is 18 more instances than INT_MCFBP.
For all configurations of the algorithms, we observe that the computing time is directly
correlated to the graph size, i.e., the number of vertices and the density of the graph.
Indeed, these two parameters are directly correlated to the number of variables and con-
straints of Model (6.1). As an illustrative example, for graphs of 200 vertices, HEU_MCFBP
manages to solve only 84 instances out of 300 while for graphs of 50 vertices, only 4
instances remain unsolved. Moreover, for graphs with a density of 0.8, HEU_MCFBP suc-
cessfully solves 202 instances out of 300 instances, whereas for d(G) equal to 0.2, 252
instances have been solved to proven optimality. We observe a similar behavior when
increasing the number of commodities from 10 to 20: the computing time increases,
and similarly, the number of instances optimally solved decreases. For example, with
INT_MCFBP, the number of instances decreases from 182 for 10 commodities to 179 for
20 commodities and 163 for 30 commodities. Finally, the boxplots demonstrate that the
computing time decreases as the target flow increases. In other words, the model is more
efficient for large values of the target flow. This is consistent with the constraints of the
natural formulation (6.1). Indeed, due to the structure of the target profit inequalities
(6.1b), as the value of the target flow Φ increases, the collection of extreme points in
Pmcf decreases, leading to fewer constraints in the model.

Figure 6.3: Computing time boxplots of the natural formulation (6.1) for the MCFBP
on SYNTHETIC SAME instances, depending on the number of vertices n

50 100 150 200

0.
2

0.
5

2.
0

5.
0

20
.0

10
0.

0
50

0.
0

INT_MCFBP

n

C
om

pu
tin

g
tim

e
(s

ec
)

298 261 231 81

50 100 150 200

0
10

0
20

0
30

0
40

0
50

0
60

0

HEU_MCFBP

n

C
om

pu
tin

g
tim

e
(s

ec
)

296 279 239 84

174

Figure 6.4: Computing time boxplots of the natural formulation (6.1) for the MCFBP
on SYNTHETIC SAME instances, depending on the density d(G)

0.2 0.4 0.6 0.8

0.
2

0.
5

2.
0

5.
0

20
.0

10
0.

0
50

0.
0

INT_MCFBP

d(G)

C
om

pu
tin

g
tim

e
(s

ec
)

253 217 211 190

0.2 0.4 0.6 0.8

0
10

0
20

0
30

0
40

0
50

0
60

0

HEU_MCFBP

d(G)
C

om
pu

tin
g

tim
e

(s
ec

)

252 221 223 202

Figure 6.5: Computing time boxplots of the natural formulation (6.1) for the MCFBP
on SYNTHETIC SAME instances, depending on λ

10 15 20 25 30

0.
2

0.
5

2.
0

5.
0

20
.0

10
0.

0
50

0.
0

INT_MCFBP

d

C
om

pu
tin

g
tim

e
(s

ec
)

182 181 179 166 163

10 15 20 25 30

0
10

0
20

0
30

0
40

0
50

0
60

0

HEU_MCFBP

d

C
om

pu
tin

g
tim

e
(s

ec
)

186 186 180 172 174

175

Figure 6.6: Computing time boxplots of the natural formulation (6.1) for the MCFBP
on SYNTHETIC SAME instances, depending on the number of commodities d

0.2 0.6 0.9

0.
2

0.
5

2.
0

5.
0

20
.0

10
0.

0
50

0.
0

INT_MCFBP

λ

C
om

pu
tin

g
tim

e
(s

ec
)

267 298 306 267

0.2 0.6 0.9

0
10

0
20

0
30

0
40

0
50

0
60

0

HEU_MCFBP

λ
C

om
pu

tin
g

tim
e

(s
ec

)

293 304 301 293

The same observations hold for instances from the SYNTHETIC_DIFF instances. However,
it is worth noticing that the formulation requires more time to solve when dealing
with commodities having different sources and destinations, as shown by the boxplots
represented in Figures 6.7, 6.8, 6.9 and 6.10.

Figure 6.7: Computing time boxplots of the natural formulation (6.1) for the MCFBP
on SYNTHETIC DIFF instances, depending on the number of vertices n

50 100 150 200

0.
1

0.
5

5.
0

50
.0

50
0.

0

INT_MCFBP

n

C
om

pu
tin

g
tim

e
(s

ec
)

290 262 231 65

50 100 150 200

0
10

0
20

0
30

0
40

0
50

0
60

0

HEU_MCFBP

n

C
om

pu
tin

g
tim

e
(s

ec
)

289 266 237 71

176

Figure 6.8: Computing time boxplots of the natural formulation (6.1) for the MCFBP
on SYNTHETIC DIFF instances, depending on the density d(G)

0.2 0.4 0.6 0.8

0.
1

0.
5

5.
0

50
.0

50
0.

0

INT_MCFBP

d(G)

C
om

pu
tin

g
tim

e
(s

ec
)

236 225 198 189

0.2 0.4 0.6 0.8

0
10

0
20

0
30

0
40

0
50

0
60

0

HEU_MCFBP

d(G)
C

om
pu

tin
g

tim
e

(s
ec

)

239 225 205 194

Figure 6.9: Computing time boxplots of the natural formulation (6.1) for the MCFBP
on SYNTHETIC DIFF instances, depending on λ

10 15 20 25 30

0.
1

0.
5

5.
0

50
.0

50
0.

0

INT_MCFBP

d

C
om

pu
tin

g
tim

e
(s

ec
)

182 181 174 158 153

10 15 20 25 30

0
10

0
20

0
30

0
40

0
50

0
60

0

HEU_MCFBP

d

C
om

pu
tin

g
tim

e
(s

ec
)

183 181 177 164 158

177

Figure 6.10: Computing time boxplots of the natural formulation (6.1) for the MCFBP
on SYNTHETIC DIFF instances, depending on the number of commodities d

0.2 0.6 0.9

0.
1

0.
5

5.
0

50
.0

50
0.

0

INT_MCFBP

λ

C
om

pu
tin

g
tim

e
(s

ec
)

250 296 302 250

0.2 0.6 0.9

0
10

0
20

0
30

0
40

0
50

0
60

0

HEU_MCFBP

λ
C

om
pu

tin
g

tim
e

(s
ec

)

264 296 303 264

6.3.3 Computational performance of the Branch-and-Cut for the
UMCFBP

As for the MCFBP, we now present a detailed performance analysis of Model (6.7) to
solve the UMCFBP, examining the impact of graph-structural features, flow-blocker
features and commodity features on its efficiency.
The natural formulation (6.7) is solved using a Branch-and-Cut algorithm where u-target
profit inequalities (6.7b) are separated at every node of the branching tree and added
to the RMP. As explained previously, the separation of u-target profit inequalities is
N P-hard for fractional and integer RMP solutions (see Proposition 28). Consequently,
an efficient separation procedure is crucial. In light of this, we have explored several
strategies to separate u-target profit inequalities (6.1b). The first approach involves
separating only integer unfeasible points by solving a UMCFP in the non-blocked graph.
This configuration of the Branch-and-Cut algorithm is denoted by INT_UMCFBP. The
second approach, referred to as INT_CG_UMCFBP entails the initial heuristic separation
of integer infeasible points using the column-generation-based algorithm outlined in
Section 6.2.2, followed by the exact resolution of a UMCFP in the non-blocked graph if
no cut has been identified. Finally, the third approach, referred to as CG_HEU_UMCFBP
involves, in addition to INT_CG_UMCFBP, the separation of fractional solutions using the
shortest-path-based heuristic U_SP_Heu presented in Section 6.2.2. It is worth noticing
that we did not report the results obtained when solving the exact separation problem
(6.9) of u-target profit inequalities to separate fractional RMP solutions. Indeed, this
approach has proven to be inefficient when addressing the splittable variant. For the
unsplittable variant, separating a single fractional point could significantly increase the
computing time.
The three configurations of the Branch-and-Cut algorithm for solving the UMCFBP are
compared on SNDLIB and TELECOM instances.

178

Table 6.7, 6.8 and 6.9 compare the performance of the three Branch-and-Cut algorithms
on SNDLIB instances for three target profit values defined by λ = 0.2, λ = 0.6 and
λ = 0.9. Each row in the table corresponds to instances from SNDLIB class grouped by
the size, defined by the number of vertices n in the graph, the number of arcs m, the
number of commodities d, and the value λ to define the target profit. The column #
reports the total number of instances per row. For each configuration of the Branch-and-
Cut algorithm, we report the following values: the number of instances solved to proven
optimality (#opt), the average (avg.) and maximum (max) computing time (time) in
seconds, the average number of constraints generated to separate integer infeasible points
(#lazy), the average number of nodes in the branching tree (nodes), the average and
maximum optimality gap value (opt gap). The optimality gap represents the percentage
discrepancy between the current solution (LB) and the best possible solution (UB) and
it is computed as 100× UB−LB

UB . For CG_HEU_UMCFBP, we also report the average number
of constraints generated to separate fractional infeasible points (#user).

INT_UMCFBP
time # lazy nodes opt gap

n m d λ # # opt avg. max avg. avg. avg. max
26 84 15 0.2 9 1 587.20 t.l. 661.56 238.44 90.73 98.73

0.6 9 2 528.88 t.l. 679.33 472.44 46.65 88.11
0.9 9 9 31.87 142.43 43.33 16.22 0.00 0.00

27 102 16 0.2 6 0 t.l. t.l. 692.33 201.17 94.87 99.39
0.6 6 0 t.l. t.l. 655.67 265.17 85.54 90.61
0.9 6 6 65.84 117.73 93.33 57.83 0.00 0.00

39 122 23 0.2 9 0 t.l. t.l. 540.33 122.11 97.52 99.44
0.6 9 0 t.l. t.l. 512.11 261.00 80.13 90.70
0.9 9 9 14.39 36.45 17.78 3.67 0.00 0.00

172 23 0.2 3 0 t.l. t.l. 480.33 107.00 99.73 99.80
0.6 3 0 t.l. t.l. 433.33 91.33 99.77 99.80
0.9 3 2 255.48 t.l. 166.67 87.33 18.75 56.25

Total 81 29

Table 6.7: Performance of INT_UMCFBP Branch-and-Cut algorithm used to solve Model
(6.7) on SNDLIB instances

179

INT_CG_UMCFBP
time # lazy nodes opt gap

n m d λ # # opt avg. max avg. avg. avg. max
26 84 15 0.2 9 2 580.77 t.l. 3745.22 1685.33 78.99 98.17

0.6 9 4 441.87 t.l. 1677.78 1464.44 24.93 73.86
0.9 9 9 21.80 85.95 43.33 16.22 0.00 0.00

27 102 16 0.2 6 0 t.l. t.l. 2335.83 860.83 91.66 96.45
0.6 6 0 t.l. t.l. 1736.50 951.17 78.09 87.34
0.9 6 6 57.86 131.09 115.67 89.83 0.00 0.00

39 122 23 0.2 9 0 t.l. t.l. 3122.44 1158.89 92.30 94.59
0.6 9 2 550.35 t.l. 1451.00 975.67 58.80 86.34
0.9 9 9 15.85 36.27 17.78 3.67 0.00 0.00

172 23 0.2 3 0 t.l. t.l. 2529.00 730.33 98.56 99.71
0.6 3 0 t.l. t.l. 1475.33 314.00 95.36 97.08
0.9 3 2 231.44 t.l. 304.67 188.67 0.00 0.00

Total 81 34

Table 6.8: Performance of INT_CG_UMCFBP Branch-and-Cut algorithm used to solve
Model (6.7) on SNDLIB instances

CG_HEU_UMCFBP
time # lazy # user nodes opt gap

n m d λ # # opt avg. max avg. avg. avg. avg. max
26 84 15 0.2 9 3 565.27 t.l. 3572.44 589.33 2602.89 53.78 82.05

0.6 9 6 400.93 t.l. 1105.78 1895.67 1369.78 18.25 98.00
0.9 9 9 23.38 57.25 43.33 0.00 16.22 0.00 0.00

27 102 16 0.2 6 0 t.l. t.l. 2481.17 540.83 1023.33 83.03 92.92
0.6 6 0 t.l. t.l. 1743.50 193.33 1115.50 70.38 81.57
0.9 6 6 55.56 132.01 116.67 0.17 91.50 0.00 0.00

39 122 23 0.2 9 0 t.l. t.l. 3176.22 324.78 1792.00 81.79 94.30
0.6 9 2 544.19 t.l. 1518.56 5.11 1106.78 53.20 84.77
0.9 9 9 18.83 45.21 17.78 0.00 3.67 0.00 0.00

172 23 0.2 3 0 t.l. t.l. 2582.67 325.33 680.00 95.68 99.29
0.6 3 0 t.l. t.l. 1571.67 0.00 373.33 95.25 97.08
0.9 3 2 229.96 t.l. 303.00 0.00 190.67 0.00 0.00

Total 81 37

Table 6.9: Performance of CG_HEU_UMCFBP Branch-and-Cut algorithm used to solve
Model (6.7) on SNDLIB instances

180

First, our focus is on separating integer infeasible points. For this purpose, we observe
that INT_CG_UMCFBP provides better results than INT_MCFBP. Indeed, while INT_MCFBP
achieves optimality for 29 out of 81 instances, INT_CG_UMCFBP successfully solves 5 more
instances. Additionally, the average and maximum computing times of INT_CG_UMCFBP
consistently remain smaller than those of INT_UMCFBP. However, INT_CG_UMCFBP re-
quires the separation of a higher number of integer points (# lazy) and the exploration
of more nodes in the branching tree. For example, in the case of the smallest graphs with
26 vertices, 84 arcs, and 15 commodities, with λ = 0.2, the average number of integer
points to be separated stands at 661 when using INT_UMCFBP, but rises to 3745 when em-
ploying INT_CG_UMCFBP. Similarly, INT_UMCFBP requires 238 nodes in the branching tree,
whereas INT_CG_UMCFBP averages 1685. However, despite this disparity, INT_CG_UMCFBP
exhibits superior computing times and overall performance. Moreover, it is worth notic-
ing that the optimality gap (opt gap) consistently remains smaller for INT_CG_UMCFBP,
indicating that even when it does not achieve the optimum, INT_CG_UMCFBP provides a
better solution compared to INT_UMCFBP, i.e., a solution closer to optimality.
We now assess the gain of separating fractional solutions using the shortest-path-based
heuristic presented in Section 6.2.2. We observe that separating fractional infeasible
points results in a reduction in the number of integer points that need to be separated,
thereby improving the overall performance. This is evidenced by shorter computing
times for CG_HEU_UMCFBP, a higher number of instances solved to proven optimality
(37), and smaller values for the optimality gap.
Therefore, we can conclude that CG_HEU_UMCFBP has proven to be the most efficient
configuration of the Branch-and-Cut algorithm for solving the natural formulation (6.7)
for the UMCFBP, particularly on SNDLIB instances. To validate this finding, we will
conduct a similar analysis on TELECOM instances.
In Figure 6.3.3, we present a comparative analysis of the three algorithms for solving the
UMCFBP, i.e., INT_UMCFBP, IN_CG_UMCFBP and CG_HEU_UMCFBP on TELECOM instances.
Specifically, Figure 6.3.3 illustrates a bar chart depicting the average computing time of
each algorithm on TELECOM_A, TELECOM_B and TELECOM_C instances. Each category of
instances is represented by three adjacent bars, corresponding to an algorithm. Addi-
tionnaly, above each bar, we report the number of instances solved to proven optimality.
This figure primarily highlights the effectiveness of employing the heuristic approach to
separate integer unfeasible points, thereby enhancing the algorithm’s overall perfor-
mance.

181

Figure 6.11: Performance comparison of the natural formulation (6.7) for the UMCFBP
on TELECOM instances

It is worth noticing that the natural formulation becomes more challenging to solve
when considering unsplittable flows, especially large graphs. These observations can
be explained mostly by the N P-hardness of the UMCFP, resulting in a longer sep-
aration process for integer infeasible points. However, our experiments indicate that
the heuristic employed to separate fractional infeasible points performs more effectively
when applied to unsplittable flows.

6.3.4 Comparison of the effectiveness of the natural formulation and
the state-of-the-art technique

In this section, we are interested in comparing performance of the Branch-and-Cut
algorithms presented against the direct use of an online-accessible solver designed for
bilevel programs, which corresponds to the current state-of-the-art approach to solving
the MCFBP and the UMCFBP.
This exact solver designed specifically for mixed-integer bilevel linear programs (MI-
BLPs) has been introduced in Chapter 4 to solve the MFBP. As mentioned in this
chapter, it is available online 2 and it is associated with the work of Fischetti and Lju-
bic [2017]. In this study, we employ the same configuration of the solver as the one
presented for the MFBP, namely the MIX++ setting. Finally, in accordance with the
tests made for the natural formulations of the MCFBP and the UMCFBP, the solver is
used in a single-thread mode. This resolution method is denoted by BISOLVER.
For this study, we consider instances from the SNDLIB and SYNTHETIC classes, and for
each instance, we set a time limit of 600 seconds.

2https://msinnl.github.io/pages/bilevel.html

182

https://msinnl.github.io/pages/bilevel.html

BISOLVER technique for the MCFBP

In this section, we focus on performance of the BISOLVER technique to solve the MCFBP.
First, experiments indicate that when using BISOLVER, no instances from the SNDLIB
class were solved to proven optimality within the time limit, regardless of the values of λ.
On the contrary, the best configuration of the Branch-and-Cut algorithm for the natural
formulation (6.1), which corresponds to EXACT_MCFBP for these instances, manages to
solve 29 instances out of 81 within the time limit.
We now analyze the performance of BISOLVER on instances drawn from the SYNTHETIC
SAME and SYNTHETIC DIFF classes. This investigation aims to evaluate the effectiveness
of the state-of-the-art technique in addressing the MCFBP’s challenges and to compare
it with the natural formulation (6.1) proposed in this thesis for the same purpose.
Figure 6.3.4 and Figure 6.3.4 present a comparative analysis of two methodologies for
solving the MCFBP. Figure 6.3.4 focuses on instances from the SYNTHETIC SAME class,
while Figure 6.3.4 focuses on instances from the SYNTHETIC DIFF class. Specifically,
these two figures compare the Branch-and-Cut algorithm HEU_MCFBP for solving the nat-
ural formulation (6.1) against the direct use of a bilevel solver, referred to as BISOLVER.
The figures illustrate their respective average computing time relative to the number of
vertices n in the graph. The x-axis represents the values of n and for each value, the
average computing time is displayed in the y-axis. The blue curve represents the per-
formance of HEU_MCFBP, while the orange curve depicts that of BISOLVER. Additionally,
we report on each point of the curve the total number of instances solved to proven
optimality. It is worth noticing that our analysis encompasses 9 groups of instances
categorized by the number of vertices, with each group consisting of 180 graphs.
Figure 6.3.4 shows that the computing time of BISOLVER consistently exceeds that of
HEU_MCFBP. Specifically, for all instances, the computing time of HEU_MCFBP remains
below 60 seconds, whereas the computing time of BILEVEL fluctuates between 100 and
350 seconds. Furthermore, it is worth noticing that, except for graphs with 70 vertices
where two instances remain unsolved, HEU_MCFBP successfully solves all instances to
proven optimality. Conversely, for the smallest graphs (20 vertices), the bilevel solver
achieves optimality only for 140 out of 180 instances. This number decreases to 98
instances for graphs with 100 vertices.
Figure 6.3.4 exhibits similarities to Figure 6.3.4, with the performance of the bilevel
solver remaining the same on instances where commodities have different sources and
destinations. The primary distinction between the two figures lies in the performance
of the Branch-and-Cut algorithm, i.e., HEU_MCFBP. In Figure 6.3.4, the number of in-
stances optimally solved decreases to 173 out of 180 for graphs with 70 vertices, and
the computing time increases to approximately 25 seconds for graphs with 100 vertices.
Nonetheless, the performance of HEU_MCFBP remains significantly superior to that of
BISOLVER.

183

Figure 6.12: Performance comparison between the bilevel solver and the natural formu-
lation (6.1) for the MCFBP, on SYNTHETIC SAME instances

Figure 6.13: Performance comparison between the bilevel solver and the natural formu-
lation (6.1) for the MCFBP, on SYNTHETIC DIFF instances

BISOLVER technique for the UMCFBP

We are now interested in evaluating performance of the bilevel solver, i.e., BISOLVER for
solving the UMCFBP.
As for the MCFBP, experiments have revealed that using the bilevel solver to address
the UMCFBP fails to achieve optimality for instances from the SNDLIB class within the
time limit. We are currently investigating the performance of BISOLVER on instances

184

from the SYNTHETIC DIFF class. Given the results observed in the previous section
for instances with both identical and different sources, we now focus only on the most
general instances, featuring distinct sources and destinations.
As previously, Figure 6.3.4 presents a comparative analysis of two methodologies for
solving the UMCFBP, focusing on instances from the SYNTHETIC DIFF class. This
figure compares the Branch-and-Cut algorithm CG_HEU_UMCFBP (also referred to as
HEU_UMCFBP)for solving the natural formulation (6.7) against the direct use of a bilevel
solver, referred to as BISOLVER. As in Figure 6.3.4, the x-axis represents the number
of vertices n in the graph and the y-axis represents the average computing time. The
blue curve represents the performance of CG_HEU_UMCFBP, while the orange curve depicts
that of BISOLVER. Additionally, we report on each point of the curve the total number
of instances solved to proven optimality. The set of instances is composed by 9 groups
containing 180 graphs with the same number of vertices.
The computing time of BISOLVER consistently exceeds that of CG_HEU_UMCFBP. For small
instances, ranging from 20 to 50 vertices, the disparity between the two techniques is
relatively small. While CG_HEU_UMCFBP provides the optimal solution in a few seconds,
the computing time of BISOLVER fluctuates between 15 and 35 seconds, which is com-
paratively reasonable. However, even for these sizes of graphs, the bilevel solver fails
to reach the optimal solution for some instances. For example, for graphs with 20, 30,
and 40 vertices, 1, 2, and 4 instances, respectively, have not been solved to proven op-
timality within the time limit. For larger instances, such as graphs with 70 vertices,
the difference between the two methods becomes more evident. For example, the com-
puting time of CG_HEU_UMCFBP approaches 35 seconds, whereas the computing time of
BISOLVER exceeds 80 seconds (more than double), with 16 instances remaining unsolved.

Figure 6.14: Comparison between the bilevel solver and the natural formulation (6.7)
the UMCFBP, on SYNTHETIC DIFF instances

It is worth noticing that the bilevel solver demonstrates better performance in terms

185

of computing time for the UMCFBP compared to the MCFBP. This distinction is no-
ticeable when examining the average computing time on the y-axis in figures 6.3.4 and
6.3.4 for the MCFBP, which ranges between 0 and 300 seconds. In contrast, in Figure
6.3.4 for the UMCFBP, the maximum computing time achieved by BISOLVER is ap-
proximately 90 seconds. This discrepancy arises from the nature of the cuts introduced
by the bilevel solver, which are better suited to bilevel models where variables of the
follower problem are integers.

6.4 Concluding remarks

In this chapter, we present Branch-and-Cut algorithms designed to address the MCFBP
and the UMCFBP. For each variant, we delve into the separation problem concerning
the proposed exponential family of constraints. Subsequently, we introduce various ap-
proaches to separate these inequalities. For fractional RMP solutions, we propose a
heuristic based on successive computations of shortest paths. Additionally, for the UM-
CFBP, we introduce a column-generation-based algorithm to separate integer infeasible
points. To evaluate the effectiveness of the different approaches and assess performance
of the Branch-and-Cut algorithm, we conduct an extensive computational study on a
set of synthetic and real-world instances. This study highlights the efficiency of the
described heuristics, especially for large graphs.

186

Chapter 7

The multicommodity flow blocker
problem: vertex variant

Contents
7.1 The multicommodity flow vertex blocker problem 188

7.1.1 Definition . 188
7.1.2 Relationship between vertex and arc blocker variants 189
7.1.3 An ILP formulation for the V-UMCFBP 192

7.2 Polyhedral analysis . 193
7.3 A Branch-and-Cut algorithm to solve the V-UMCFBP 195

7.3.1 Separation of the V-target profit inequalities 195
7.3.2 Branch-and-Cut algorithm . 196

7.4 Computational results . 198
7.4.1 Computational performance of the Branch-and-Cut for the V-UMCFBP198

7.5 Concluding remarks and perspectives 202

In the previous chapters, our work centered on the blocker variant of the maximum
flow problem and the multicommodity flow problem, whose objective is to destruct arcs
from the graph in order to deteriorate the maximum flow and the multicommodity flow,
respectively. The current chapter delves into a novel blocker variant, that aims to
remove vertices instead of arcs. This chapter specifically targets the vertex blocker
variant of the unsplittable multicommodity flow problem, which is called the unsplittable
multi-commodity flow vertex blocker problem, denoted by V-UMCFBP. After providing a
formal description of the problem, we establish a connection between solutions of the arc
blocker variant and solutions of the vertex blocker variant using a graph transformation.
We then introduce an Integer Linear Programming (ILP) formulation to address this
problem. This formulation is a natural formulation featuring an exponential number of
constraints and it is adapted from the one designed for the arc blocker variant of the
unsplittable multicommodity flow problem, i.e., the UMCFBP. Following this, we propose
a polyhedral analysis of this model offering insights into the structure of the polytope and
its solutions. As the formulation proposed uses only design variables, it is solved using
a Branch-and-Cut algorithm. Finally, we present some experiments conducted to assess
the performance of the natural formulation for the vertex blocker variant.

187

7.1 The multicommodity flow vertex blocker problem

7.1.1 Definition

Notations

Let us recall the notations introduced in the previous chapter.
We consider a directed graph G = (V,A) with m = |A| arcs and n = |V | vertices. Each
arc a ∈ A has a capacity ca ∈ Z+ and a flow cost pa ∈ Z+, corresponding to the cost
for routing one unit of flow. We consider a set of commodities K where a commodity
k = (sk, tk, bk,Γk) is defined by a source sk ∈ V , a destination tk ∈ V , a bandwidth
bk ∈ Z∗

+ and a reward Γk ∈ Z∗
+.

For the vertex variant of the multicommodity flow blocker problem, we assign to each
vertex v ∈ V , a blocker cost bv ∈ Z+. In this way, the V-UMCFBP consists in finding a
minimum-cost subset of vertices to be blocked in such a way that the maximum profit
of the UMCF remaining in the graph is no larger than the target profit Φ ∈ Z+.
In the next section, we provide a detailed example of a V-UMCFBP solution.

Graphical illustration

We illustrate in this section the features of optimal UMCFP and V-UMCFBP solutions
thanks to an example graph with 8 vertices and 12 arcs shown in Figures 7.1 and 7.2.
This example includes two commodities k1 = (s1, t1, d1 = 8, r1 = 6) and k2 = (s2, t2, d2 =
10, r2 = 35). In Figure 7.1, we report on each arc two values separated by the symbol
“; ”: the first one, in brackets, is the flow cost, and the second one, is the capacity
of the arc. The curved arcs illustrate the solution of the UMCFP. Red ones indicate
the flow routed for commodity k1 while blue ones represent the flow for commodity k2.
Above these curved arcs, we display the corresponding flow quantities in red or blue.
By definition, for every commodity, the demand is routed through a path; {s1, v1, v3, t1}
for commodity k1 and {s2, v2, v4, v3, t2} for commodity k2. In this example, the two
commodities are satisfied. The total routing profit of the UMCF is equal to 28.
The same graph is then used to illustrate an optimal V-UMCFBP solution in Figure 7.2.
We report on each vertex its blocker cost in bold. We consider a target profit Φ = 10
(≈ 64% of the maximum profit in G). In the optimal V-UMCFBP solution shown, a
single vertex, namely v2, is blocked with a total blocker cost of 3. The blocked vertex
is visually marked with a dashed outline. The UMCF remaining in the graph achieves
a profit of 28 satisfying the condition 28 ≤ Φ = 10. It is worth noticing that in this
UMCF, only one commodity is satisfied, specifically, commodity k1.

188

s1

k1 = (s1, t1, 8, 6)

s2

k2 = (s2, t2, 10, 35)

v1

v2

v3

v4

t1

t2

(2)
; 8

(17); 8

(18); 8

(2); 10
10

10

10

108

8 8

(17);12 (2
0)

;1
0

(1); 8

(5); 11

(2); 8

(9)
; 1 (6); 12

(10); 3

Figure 7.1: An optimal UMCFP solution

s1

k1 = (s1, t1, 8, 6)

s2

k2 = (s2, t2, 10, 35)

v1

8

v2

3

v3

7

v4

5

t1

t2

(2)
;8

(17);8

(18);8

(2);10

8

8 8

(17);12 (2
0)

;1
0

(1);8

(5);11

(2);8

(9)
;1 (6);12

(10);3

Figure 7.2: An optimal V-UMCFBP solution with a target profit Φ = 10

7.1.2 Relationship between vertex and arc blocker variants

In this section, we demonstrate the equivalence between solving the vertex-blocker vari-
ant and the arc-blocker variant of the unsplittable multicommodity flow problem (UM-
CFP).
Let G = (V,A) be a directed graph characterized by a capacity ca ∈ Z+, a flow cost
pa ∈ Z+ and a blocker cost ra ∈ Z+.
We introduce an arc-augmented graph, denoted as G∗ = (V ∗, A∗), defined such that
V ⊆ V ∗, with |V ∗| = |V | + |A| and the number of arcs is doubled, resulting in |A∗| =
2 × |A|, thereby expanding the arc set from the original graph G. The construction
process of G∗ from G involves the following steps: For each arc (u, v) ∈ A, we create an
associated arc-vertex, denoted by v(u,v) ∈ V ∗. The original arc (u, v) is then decomposed
into two new arcs: (u, v(u,v)) ∈ A∗ and (v(u,v), v) ∈ A∗. These arcs are assigned the same
capacity as the original arc (u, v) and flow costs; the flow cost for the arc (u, v(u,v)) is
equal to the flow cost of the original arc (u, v), whereas the flow cost of the arc (v(u,v), v)
is assigned a value of 0. Moreover, each newly introduced arc-vertex v(u,v) ∈ V ∗ \ V
is assigned a blocker cost that mirrors the blocker cost associated with the original arc
(u, v) ∈ A. On the other hand, each vertex v ∈ V is attributed an infinite blocker cost.

189

The figures provided below depict the graph transformation described in this section.
Figure 7.3 illustrates a simple graph G = (V,A) having 6 vertices and 5 arcs. For each
arc, three distinct values are presented: the blocker cost, highlighted in bold at the top,
and below it, two other values separated by a semicolon “; ”. The first of these values,
enclosed in brackets, is the flow cost, and the second is the capacity of the arc. Following
this, Figure 7.4 illustrates the arc-augmented graph G∗ = (V ∗, A∗), which consists of 11
vertices and 10 arcs. Displayed on each arc are the flow cost and the capacity, while the
blocker cost is denoted in bold on each vertex.

s1

v1

s2

v2

t1

t2

10
(6);15

10
(2);5

5
(8);20

10
(3);15

10
(4);5

Figure 7.3: A graph G with 6 vertices and 5 arcs.

s1

v(s1,v1)

10 v1

0
v(s2,v1)

10s2

v(v1,v2)

5

v2

0

v(v2,t1)

10

t1

v(v2,t2)

10
t2

(6); 15

(0); 15

(2); 5

(0); 5

(8); 20 (0); 20

(3); 15

(0); 15

(4); 5

(0); 5

Figure 7.4: The augmented graph G∗ with 11 vertices and 5 arcs.

We now introduce the vertex-augmented graph G∗∗ = (V ∗∗, A∗∗), where V ⊆ V ∗∗ and
A ⊆ A∗∗. This graph is constructed from the original graph G as follows. For each
vertex v ∈ V , we define one vertex V ∗∗ ∈ V ∗∗ such that (v, V ∗∗) ∈ A∗∗ with c(v,V ∗∗) =
max{c(u,v) : (u, v) ∈ A}, ω(v,V ∗∗) = 0 and b(v,V ∗∗) = bv. This arc (v, V ∗∗) is called node-
arc associated to vertex v. Each arc (v, u) ∈ A is replaced in the vertex-augmented
graph by an arc (V ∗∗, u) ∈ A∗∗ with c(V ∗∗,u) = c(v,u), p(V ∗∗,u) = p(v,u) and r(V ∗∗,u) = M ,
where M is a large integer value. Moreover, every arc (u, v) ∈ A∗∗ is associated with a
blocker cost r(v,u) = M.

Thanks to these graph transformations, we prove that there exists an equivalence be-
tween the arc-blocker variant of the UMCFP, i.e., the UMCFBP, and the vertex-blocker

190

variant of the UMCFP, i.e., the V-UMCFBP. More precisely, the next proposition shows
that an optimal solution of the UMCFBP solved in G can be obtained by solving the
vertex-blocker variant of the UMCFP in the arc-augmented graph G∗.

Proposition 29. An optimal solution of the UMCFBP in G = (V,A) can be found by
solving a V-UMCFBP in G∗ = (V ∗, A∗).

Proof. By construction, it is clear that the maximum profit of a UMCF in G is equal to
the maximum profit of a UMCF in G∗. In other words, the optimal solution value of a
UMCFP solved in G is equal to the optimal solution value of the UMCFP solved in G∗.
Moreover, the removal of an arc-vertex in G∗ produces the same reduction of maximum
profit as the removal of the associated arc in G. Accordingly, when considering a set of
blocked vertices Ṽ ⊆ (V ∗ \ V) that constitute a feasible solution for the V-UMCFBP
solved in G∗, these vertices are associated with a set of blocked arcs Ã in G.
We first prove that Ã is a feasible solution for the UMCFBP solved in the graph G. We
recall that Ã is a collection of arcs that are associated with the set of vertices-arcs Ṽ ,
which represents a feasible solution for the vertex blocker variant, i.e., the V-UMCFBP
solved in G∗. Accordingly, the removal of the arcs Ã in the graph G ensures that the
profit of the UMCF remaining in G does not exceed the target profit value Φ. This
guarantees that Ã is a feasible solution for the UMCFBP solved in G. It is worth
noticing that the two solutions, Ṽ and Ã, have the same objective value. Indeed, every
arc-vertex associated with an arc has a blocker cost equal to the blocker cost of that
arc.
We now prove that, if Ṽ is an optimal solution for the V-UMCFBP in G∗, then Ã is
also an optimal solution for the UMCFBP in G. By contradiction, suppose that this is
not the case, then there exists a set of blocked arcs ˜̃A in A, that is a feasible solution for
the UMCFBP solved in G and such that ∑

a∈ ˜̃A ra <
∑

a∈Ã ra. However, since all vertices
v ∈ V , i.e., vertices that are not arc-vertices in V ∗ have infinite blocker costs, it follows
that ˜̃A is associated with a set of arc-vertices in G∗. This set of arc-vertices forms a
feasible solution for the V-UMCFBP solved in the augmented graph G∗. Moreover, it
exhibits a lower solution value compared to Ṽ . However, this contradicts the fact that
Ṽ is an optimal solution.

□

We can use a similar reasoning to prove that an optimal solution of the V-UMCFBP
solved in G can be obtained by solving the arc-blocker variant of the UMCFP in the
vertex-augmented graph G∗∗.

Proposition 30. An optimal solution of the V-UMCFBP in G = (V,A) can be found
by solving a UMCFBP in G∗∗ = (V ∗∗, A∗∗).

Proof. By construction, it is clear that the maximum profit of a UMCF in G is equal to
the maximum profit of a UMCF in G∗∗. In other words, the optimal solution value of a
UMCFP solved in G is equal to the optimal solution value of the UMCFP solved in G∗∗.
Moreover, the removal of a node-arc in G∗∗ produces the same reduction of maximum
profit as the removal of the associated vertex in G. Accordingly, when considering a set

191

of blocked vertices Ṽ ⊆ V that constitute a feasible solution for the V-UMCFBP solved
in G, these vertices are associated with a set of blocked node-arcs Ã∗∗ ⊆ A∗∗ in G∗∗.
We first prove that Ã∗∗ is a feasible solution for the UMCFBP solved in the augmented
graph G∗∗. We recall that Ã∗∗ is a collection of node-arcs that are associated with the
set of vertices Ṽ , which represents a feasible solution for the V-UMCFBP solved in G.
Accordingly, the removal of the arcs Ã∗∗ in the vertex-augmented graph G∗∗ ensures
that the profit of the UMCF remaining in G∗∗ does not exceed the target profit value
Φ. This guarantees that Ã∗∗ is a feasible solution for the UMCFBP solved in G∗∗. It
is worth noticing that the two solutions, Ṽ and Ã∗∗, have the same objective value.
Indeed, every node-arc associated with a vertex has a blocker cost equal to the blocker
cost of that vertex.
We now prove that, if Ṽ is an optimal solution for the V-UMCFBP in G, then Ã∗∗ is
also an optimal solution for the arc-blocker, i.e., the UMCFBP in G∗∗. By contradiction,
suppose that this is not the case, then there exists a set of blocked arcs ˜̃A∗∗ in A∗∗, that is
a feasible solution for the UMCFBP solved in G∗∗ and such that ∑

a∈ ˜̃
A∗∗ ra <

∑
a∈Ã∗∗ ra.

However, since all arcs a ∈ \A, i.e., arcs that are not node-arcs, have a large blocker
cost value equal to M , it follows that ˜̃A∗∗ is a set of node-arcs associated with a set of
vertices ˜̃V ⊆ V in G. This set of vertices forms a feasible solution for the V-UMCFBP
solved in G. Moreover, it exhibits a lower solution value compared to Ṽ . However, this
contradicts the fact that Ṽ is an optimal solution. Which ends the proof.

□

7.1.3 An ILP formulation for the V-UMCFBP

In this section, we present a model designed to tackle the V-UMCFBP. This model
features an exponential family of constraints. As for the natural formulation introduced
in Chapter 5 to solve the arc-blocker variant of the UMCFP, namely the UMCFBP, this
model is a set-covering type formulation. However, it is explicitly designed to tackle the
vertex-blocker variant of the UMCFP. As the natural formulations introduced in the
previous chapters, the aim is to provide a concise formulation that can be easily tailored
to handle different variants of the problem.
Given a directed graph G = (V,A) and a set K of d commodities, let y ∈ Pumcf be
a vector associated with a UMCF of profit value greater than Φ in graph G, and let
VS(y) ⊆ V be the subset of vertices in the MCF, i.e.,

VS(y) = {u, v ∈ V : yk,(u,v) > 0,∀k ∈ K, ∀(u, v) ∈ A}.

Let us introduce a vector x ∈ {0, 1}n of m binary variables, called vertex blocker vari-
ables. Each variable xv is associated with a vertex v ∈ V and it takes value 1 if and
only if the vertex v is blocked, i.e., removed from the graph G. We denote by V(x) the
set of blocked vertices induced by a binary realization of the vertex blocker vector x. In
other words, V(x) is the set of vertices v ∈ V with xv equal to 1. Suppose that V(x)
and VS(y) satisfies the following inequality:

|V(x) ∩ VS(y)| ≥ 1, ∀ y ∈ ext(Pumcf), (7.1)

192

If so, then x is a feasible solution for the V-UMCFBP. Indeed, the inequality (7.1)
guarantees that no UMCF with a profit greater than Φ remains in the graph after the
removal of the blocked vertices. Precisely, the existence of such a UMCF would entail
the removal of a vertex, resulting in an obstruction of the routing process.
Based on this reasoning, a valid ILP formulation for the V-UMCFBP reads as follows:

min
x∈{0,1}n

∑
v∈V

bvxv (7.2a)
∑

v∈VS(y)
xv ≥ 1 ∀ y ∈ ext(Pumcf) (7.2b)

The objective function (7.2a) minimizes the total blocker cost. Constraints (7.2b), de-
noted as V-target profit constraints, are derived from Inequality (7.1). These constraints
ensure that at least one vertex from every UMCF with a total profit greater than Φ is
blocked. This ILP model is called natural formulation since it features only the natural
variables associated with the arcs.
A binary realisation x ∈ {0, 1}n of the vertex blocker variables is called a vertex blocker
policy and it generates a vertex non-blocked graph GV (x) =

(
VNB(x),ANB(x)

)
, i.e., the

graph with the non-blocked vertices v ∈ V with xv = 0 (denoted VNB(x)). The set of
arcs ANB(x) contains the arcs remaining in G after removal of the blocked vertices, i.e.,
ANB(x) = {(u, v) ∈ A : xu = xv = 0}.
The V-target profit inequalities (7.2b) are in exponential number. Accordingly, to solve
the natural formulation (7.2), one needs to implement a Branch-and-Cut (B&C) algo-
rithm where V-target profit inequalities are separated in the nodes of the branching tree
for integer and fractional solutions. This exact algorithm requires defining a relaxed mas-
ter problem (RMP) where the binary variables are replaced with continuous variables
taking values between 0 and 1. In the initialization phase, only a subset of constraints
are included in the RMP. To check that RMP solutions respect all the V-target profit
inequalities or to determine one or more violated constraints which are then added to
the RMP, we propose several separation procedures that will be described subsequently.

7.2 Polyhedral analysis

This section presents a polyhedral analysis of the natural formulation with V-target
profit inequalities (see Model (7.2)), which was introduced in the previous section to
address the V-UMCFBP.
We make the same assumption as the one made for the arc-blocker variant (see Chapter
5). More precisely, we suppose that there is no arc (sk, tk) for all commodities k ∈ K.
Moreover, it is worth noticing that this polyhedral study can be adapted from the arc-
variant through the graph transformation presented in Section 7.1.2.
Given a directed graph G = (V,A) and a set of commodities K, let P V (G,K) be the
convex hull of the solutions of Formulation (7.2), that is:

P V (G,K) = conv({x ∈ {0, 1}n : x satisfies (7.2b)}. (7.3)

The following proposition presents the dimension of P V (G,K).

193

Proposition 31. P V (G,K) is full dimensional.

Proof. We need to exhibit n+ 1 solutions such that their incidence vectors are affinely
independent. Let S0 = V . Clearly, S0 is a V-UMCFBP solution, since it consists in
removing all vertices of the graph. For every vertex v ∈ V , let Sv = V \ {v}. It is
also clear that the set S = {Sv : v ∈ V }, which involves keeping in the graph only one
vertex, constitutes a set of V-UMCFBP solutions. Indeed, for every commodity k ∈ K,
as sk ̸= tk, it is not possible to route any flow from the source to the destination in a
graph containing only one vertex. Moreover, the incidence vectors of S0 and Sv ∈ S are
affinely independent. Accordingly, S0 and S constitute a set of n+1 solutions for which
their incidence vectors are affinely independent.

□

In what follows, we will be interested in the facial structure of the polytope P V . More
precisely, we focus on the V-target profit inequalities (7.2b) and show that the minimality
condition used in Chapter 5 for the MCFBP is not sufficient to ensure that the V-target
profit inequalities are facet of the polytope.

Proposition 32. For every y ∈ ext(Pumcf), inequality ∑
v∈VS(y) xv ≥ 1 does not define

a facet of P V (G,K).

Proof. To prove this proposition, we consider the following graph with 6 vertices and
6 arcs, given by Figure (7.2). All arcs a ∈ A have a capacity ca equal to 1 and a cost pa

equal to 0. This graph is associated with three commodities k0 = (s0 = v0, t0 = v3, b0 =
1,Γ0 = M), k1 = (s1 = v1, t1 = v3, b1 = 1,Γ1 = M) and k2 = (s2 = v1, t2 = v5, b2 =
1,Γ2 = M), where M is a constant integer value. The target profit value is set to M−1.

v0 v1 v2 v3

v4

v5

Figure 7.5: Graph with 3 commodities.

The following inequalities are valid for the polytope P V (G,K).

xv0 + xv4 + xv5 + xv2 + xv3 ≥ 1 (7.4)

xv1 + xv2 + xv3 ≥ 1 (7.5)
xv1 + xv0 + xv4 + xv5 ≥ 1 (7.6)

By summing these inequalities and dividing by 2, we obtain the following inequality:
∑
v∈V

xv ≥ 3
2
.

194

As ∑
v∈V xv is an integer for every V-MCFBP solution, the following inequality is valid

for the polytope P V (G,K). ∑
v∈V

xv ≥ ⌈3
2

⌉ ≥ 2. (7.7)

Accordingly, the V-target profit inequality is dominated by Inequality (7.7), also called
Chvatal-Gomory inequality, which ends the proof. □

Proposition 32 shows that Inequality ∑
v∈VS(y) xv ≥ 1 does not define a facet of P V (G,K).

However, it is worth noticing that when solving the arc-blocker variant in the vertex-
augmented graph G∗∗ obtained using the graph transformation presented above, the
equivalent u-target profit inequality is a facet of P (G∗∗, K), as demonstrated in Chap-
ter 5.

7.3 A Branch-and-Cut algorithm to solve the V-UMCFBP

In this section, we propose a Branch-and-Cut algorithm for the natural Formulation
(7.2) with V-target profit inequalities (7.2b) to address the V-UMCFBP. To this end,
we first describe the separation problem of the V-target profit inequalities, along with
its complexity. We then present various separation strategies aimed at optimizing the
algorithm’s computational efficiency.

7.3.1 Separation of the V-target profit inequalities

Given a (fractional) solution x ∈ [0, 1]n of the RMP in a B&C node, the separation
problem for the V-target profit inequalities (7.2b) requires finding an unsplittable multi-
commodity defined by a vector y∗ ∈ ext(Pumcf) such that:∑

a∈VS(y∗)
xv < 1, (7.8)

or to prove that such vector does not exist, i.e., that all V-target profit inequalities (7.2b)
are satisfied by the solution x. Thus, it is necessary to find a vector y∗ ∈ ext(Pumcf)
leading to the minimum value of the left-hand side of (7.8).
Let z ∈ {0, 1}n be a vector of binary variables where each variable zv is equal to 1 if and
only if the vertex v is in VS(y∗), i.e., if an arc (u, v) is used to route a positive amount of
flow. We recall that the total profit of the UMCF associated with y∗ is strictly greater
than Φ, according to the definition of Pumcf . The separation problem can be modeled
by the following ILP formulation:

195

min
y∈[0,1]d×m,z∈{0,1}n

∑
v∈V

xv · zv (7.9a)
∑

k∈K

yk,a bk ≤ ca, ∀ a ∈ A

(7.9b)

∑
a ∈ δ+(u)

yk,a bk −
∑

a ∈ δ−(u)
yk,a bk =

λk if u = sk,

0 if u ∈ V \{sk, tk},
−λk if u = tk

∀k ∈ K, ∀u ∈ V

(7.9c)
yk,(u,v) ≤ zv, ∀ k ∈ K, ∀ (u, v) ∈ A,

(7.9d)∑
k∈K

Γk λk −
∑
a∈A

pa yk,a bk ≥ Φ + 1. (7.9e)

The objective function minimizes the left-hand size of (7.8). The constraints are the
ones of the UMCFP with the additional constraint “yk,(u,v) ≤ xv” that imposes to select
an arc a ∈ A if a positive flow value is routed on this arc for a commodity k ∈ K
and constraint “Φ(G) ≥ Φ + 1” defines the minimum profit of UMCF . If the optimal
solution value of Model (7.9) is strictly smaller than 1, then a V-target profit inequality
maximally violated by x is found. Otherwise, no V-target profit inequalities are violated
by x.
The next proposition characterizes the computational complexity of the separation prob-
lem for the V-target profit inequalities (7.2b).

Proposition 33. The separation problem for the V-target profit inequalities (7.2b) is
N P-hard for fractional and integer solutions x of the RMP.

Proof. The decision problem of the separation problem for inequalities (7.2b) asks for
finding an unsplittable multi-commodity flow with a total profit greater than or equal to
Φ+1. This problem is N P-Complete as stated previously. Accordingly, the optimization
version of the problem is N P-hard. □

7.3.2 Branch-and-Cut algorithm

To solve the natural formulation (7.2) with an efficient B&C algorithm, one needs an
efficient separation strategy for the V-target profit inequalities (7.2b). To determine a
V-target profit inequality violated by an RMP solution x, we propose the separation
procedures described in the next sections.

Integer separation of V-target profit inequalities (7.2b)

One way to implement the B&C algorithm is to separate the V-target profit inequalities
only for integer LP relaxation points.

196

This can be done by solving a UMCFP. Indeed, since xv ∈ {0, 1},∀v ∈ V , a violated
V-target profit inequality can be found if and only if an unsplittable multi-commodity
flow defined by a vector y ∈ ext(Pumcf) exists such that the subset VS(y) ⊆ V does not
contain any blocked vertices. Accordingly, finding a violated V-target profit inequality
leads to solve a UMCFP in the vertex non-blocked graph GV

NB(x). In case the maximum
profit Ψ(GV

NB(x)) is strictly greater than Φ, an unsplittable multicommodity flow defined
by a vector y ∈ ext(Pumcf) and associated to a violated V-target profit inequality is
found. Otherwise, no V-target profit inequalities are violated by x.
An effective separation strategy for fractional points can also significantly enhance the
performance of the algorithm. In what follows, we introduce two distinct strategies
aimed at separating fractional points.

Exact separation of V-target profit inequalities (7.2b)

Let (y∗,x∗) be an optimal solution of Model (7.9). In case the optimal solution value
is strictly smaller than 1, then we have detected a violated u-target profit inequality
(7.2b) and the following cut is added to the RMP:∑

a∈A(y∗)
xa ≥ 1,

where A(y∗) is the set of arcs a ∈ A for which y∗
k,a > 0,∀k ∈ K.

However, solving Model (7.9) could be time-consuming. Therefore, in the following
section, we introduce an algorithm to heuristically separate fractional solutions.

Heuristic separation of V-target profit inequalities (7.2b)

We now present a heuristic to solve the exact separation problem of the V-target profit
inequalities, i.e., Model (7.9). This heuristic is referred to as V_U_SP_HEU since it is
based on successive computations of shortest paths.
This heuristic is very similar to the U_SP_HEU heuristic introduced in Chapter 6 for
solving the arc blocker variant of the UMCFP. However, it has been adapted in this
section to address the vertex-blocker variant. Consequently, the approach to identifying
a UMCFP with a profit greater than Φ remains very similar, taking into account the
blocked vertices rather than the blocked arcs.
As with the U_SP_HEU, the V_U_SP_HEU operates on the principle of incrementally satis-
fying a set of commodities to achieve a UMCF of profit greater than Φ, while ensuring
that the total blocker cost is less than 1. However, in the case of the U_SP_HEU, where
a blocker cost is attributed to every arc of the graph, in the V_U_SP_HEU, the blocker
costs are assigned to vertices of the graph. Therefore, in the V_U_SP_HEU, we consider a
use-vertex-cost instead of a use-arc-cost. This use-vertex-cost corresponds to the sum of
the blocker costs on the vertices in the UMCF. Hence, if a UMCF of profit greater than
Φ is found such that the total use-vertex-cost does not exceed 1, then a cut is identified
and the corresponding inequality is added to the RMP.

197

7.4 Computational results

In this section, we present the results of our computational campaign. The aim is to
assess the performance of the ILP natural formulations for the vertex variant of the
UMCFBP, i.e., the V-UMCFBP.
As in Chapter 6, the experiments are conducted on a processor Intel Core i5-3340M CPU
of 2.70GHz × 4. The Branch-and-Cut algorithms are implemented using the CONCERT
TECHNOLOGY of CPLEX. As previously, all computations are performed in a single-thread
mode with default values for all CPLEX parameters.
We consider the instances presented previously, i.e., the instances from SNDLIB, TELECOM
and SYNTHETIC classes. For each instance, we assign to every vertex in the graph a
blocker cost. These costs are determined by randomly selecting numbers from respective
discrete uniform distributions. Specifically, for all instances, the blocker cost for each
vertex is generated from a distribution within the range of [1, 49].
In the remainder of this paper, all computing times are expressed in seconds. We impose
a CPU time limit of 600 seconds for every instance. If this time limit is exceeded, it is
reported as t.l. in the computational results.

7.4.1 Computational performance of the Branch-and-Cut for the V-
UMCFBP

In this section, we study and discuss the computational performance of Model (7.2)
for the V-UMCFBP. The aim of this section is to determine the best Branch-and-Cut
algorithm to solve the natural formulation for the V-UMCFBP.
The natural formulation is solved using a Branch-and-Cut algorithm where V-target
profit inequalities (7.2b) are separated at every node of the branching tree and added
to the RMP. It is worth noticing that the RMP is initialized with one constraint that
is associated with the maximum-profit unsplittable multicommodity flow in G. This
UMCF has, by definition, a profit greater than Φ. We recall that we are interested
in separating target profit inequalities both for integer and fractional solutions. As
previously discussed, the separation of u-target profit inequalities is N P-Hard for in-
teger and fractional RMP solutions. Therefore, we introduce two distinct separation
strategies for integer and fractional points. For integer points, the first strategy entails
the separation of integer solutions by solving a UMCFP using CPLEX ILP Solver. An
alternative approach involves employing a column generation algorithm for solving a
UMCFP, proceeding to use the CPLEX ILP Solver if no cuts are identified. This latter
has demonstrated superior efficiency for the arc-blocker variant. Hence, it is the method
we consider for this study. For fractional solutions, the initial method involves the sep-
aration of fractional solutions through the exact separation problem (see Model (7.9)).
Moreover, we consider a second approach, where a feasible solution to the separation
problem (7.9) is considered, rather than the optimal solution, by using the shortest-path
based heuristic V_U_SP_HEU detailed in Section 7.3.2.
Therefore, we propose two Branch-and-Cut algorithms to solve the natural formula-
tion (7.2). The first algorithm, denoted as INT_CG_V − UMCFBP, focuses on separat-

198

ing only integer infeasible points by solving a UMCFP, using the column-generation
based approach. The second algorithm, denoted as CG_HEU_V − UMCFBP introduces the
separation of fractional infeasible points by applying the shortest-path-based heuristic
V_U_SP_HEU.
Tables 7.1 and 7.2 compare performance of these two Branch-and-Cut algorithms on
SNDLIB instances, namely, INT_CG_V-UMCFBPand CG_HEU_V-UMCFBP.

INT_V-UMCFBP
time # lazy nodes

n m d λ # # opt avg. max avg. avg.
26 84 15 0,2 9 7 t.l. t.l. 936,21 408,6

0,6 9 5 198,84 t.l. 757 586
0,9 9 8 0,83 10.1 44,1 1,76

27 102 16 0,2 6 3 t.l. t.l. 807 t.l.
0,6 6 3 t.l. t.l. 795 t.l.
0,9 6 6 2,01 7.98 91,78 6,4

39 122 23 0,2 9 2 t.l. t.l. 600 t.l.
0,6 9 1 t.l. t.l. 589,22 t.l.
0,9 9 9 0,15 0.99 17,95 1.98

172 23 0,2 3 0 t.l. t.l. 503 t.l.
0,6 3 1 t.l. t.l. 495,55 t.l.
0,9 3 2 132,09 t.l. 192,14 465

Total 81 47

Table 7.1: Performance of INT_CG_V-UMCFBPBranch-and-Cut algorithm used to solve
Model (7.2b) on SNDLIB instances

The comparative analysis between CG_HEU_V-UMCFBP and INT_CG_V-UMCFBP reveals that
CG_HEU_V-UMCFBP consistently outperforms INT_V-UMCFBP, as evidenced by the average
computing time and the number of instances solved to proven optimality. This enhance-
ment is primarily attributed to the effective separation of fractional unfeasible points,
which subsequently decreases the number of infeasible points to separate. Consequently,
this contributes to reducing the number of nodes in the branching tree and hence the
overall computing time. To illustrate this statement, let us consider graphs of 26 vertices
and 84 arcs. For instance, with INT_V-UMCFBP, the number of integer infeasible points
separated (# lazy cuts) averages 936. This number reduces to 57 when incorporating
86 #user cuts. Consequently, the average computing time decreases from exceeding the
time limit (600 seconds) to 98 seconds, highlighting the efficiency of CG_HEU_V-UMCFBP.
Furthermore, it is worth noticing that the vertex-blocker variant exhibits better com-
puting times compared to the arc-blocker variant, with 58 instances from SNDLIB solved

199

CG_HEU_V-UMCFBP
opt time # lazy # user nodes

n m d λ # # opt avg. max avg. avg. avg.
26 84 15 0,2 9 9 98,82 t.l. 57 86 339,9

0,6 9 7 0,84 10,2 44 1,75 t.l.
0,9 9 8 t.l. t.l. 807 t.l. 807,05

27 102 16 0,2 6 4 2,03 8 91,77 6,5 261,12
0,6 6 4 t.l. t.l. 600 t.l. t.l.
0,9 6 6 132,1 t.l. 192,15 465 133,1

39 122 23 0,2 9 4 198,85 t.l. 757 587 339,87
0,6 9 3 0,85 10,1 44,2 1,77 t.l.
0,9 9 9 t.l. t.l. 807 t.l. 808

172 23 0,2 3 1 2,02 7,97 91,79 6,3 262
0,6 3 1 198,81 t.l. 758 588 134,2
0,9 3 2 0,83 10,15 44,1 1,76 340

Total 81 58

Table 7.2: Performance of CG_HEU_V-UMCFBP Branch-and-Cut algorithm used to solve
Model (7.2b) on SNDLIB instances

to proven optimality, against 37 for the arc-blocker problem. This observation is consis-
tent, as removing vertices instead of arcs results in reduced combinatorial complexity.
This reduction is directly associated with the number of vertices in the graph, which
consistently tends to be smaller than the number of arcs.
In Figure 7.4.1, we present a comparative analysis of the two algorithms for solving
the V-UMCFBP, i.e., INT_CG_V-UMCFBP and CG_HEU_V-UMCFBP on TELECOM instances.
Specifically, Figure 7.4.1 illustrates a bar chart depicting the average computing time of
each algorithm on TELECOM_A, TELECOM_B and TELECOM_C instances. Each category of
instances is represented by two adjacent bars, corresponding to an algorithm. Addition-
naly, above each bar, we report the number of instances solved to proven optimality.
We recall that each group of instances counts a total of 45 instances. This analysis
reveals that for the vertex variant, the shortest-path based heuristic proposed demon-
strates limited efficiency according to the TELECOM instances. Although the average
computing time may not be substantial and only 3 instances remain unsolved, this ob-
servation underscores the potential for improvement through the refinement of current
methodologies or the exploration of alternative heuristics for the vertex-blocker variant.

200

Figure 7.6: Performance comparison of the natural formulation (7.2) for the V-UMCFBP
on TELECOM instances

201

7.5 Concluding remarks and perspectives

In this chapter, our attention shifts to another variant of the network flow blocker
problem, known as the network flow vertex-blocker problem. Unlike its counterpart,
this variant targets the removal of vertices in graphs rather than arcs. Specifically, we
investigate the unsplittable multicommodity flow problem within this context. Thus,
we introduce a natural formulation for the unsplittable multicommodity flow vertex-
blocker problem (V-UMCFBP), characterized by an exponential family of constraints,
namely the V-target profit inequalities. To address this problem, we develop a tailored
Branch-and-Cut algorithm featuring several separation procedures, adapted from the
arc-blocker variant.
Furthermore, after describing the polyhedra of solutions for the proposed model, we
illustrate that, unlike the arc-blocker variant, a V-target profit inequality does not define
a facet under the conditions of the arc-blocker variant. However, as a direction for
future research, further exploration could be pursued to identify a new valid inequality.
A preliminary investigation in this direction is outlined below.

New valid inequality Let us go back to the Chvatal-Gomory inequality (7.7) and
propose a generalization.
Let us consider the example graph represented in Figure 7.2. Suppose that there exists
a vertex u ∈ V such that for a commodity k ∈ K, the set of arcs {(sk, u), (u, tk)}
constitutes a UMCF with a profit greater than 2, then the following inequality is valid
for Formulation (7.2):

∑
v∈VS(y)

xv + xu ≥ 2, ∀y ∈ Pumcf (7.10)

More generally, if there exists a subset of commodities K ′ ⊆ K, such that for each
commodity k ∈ K ′, the source sk and the destination tk are connected by a vertex uk,
then the subsequent family of inequalities holds true for Formulation (7.2):

∑
v∈VS(y)

xv +
∑

k∈K ′
xuk

≥ 1 + q, ∀y ∈ Pumcf , (7.11)

where q is the number of vertices uk, k ∈ K ′.

202

Conclusion

In this dissertation, we are interested in network flow blocker problems. More precisely,
we focus on blocker problems applied to the multicommodity flow problem and its
variants.
At the beginning of the thesis, we present practical applications for studying network
flow blocker problems, with a primary focus on telecommunication networks. Specifi-
cally, one direct application aims to enhance resilience against anomalies to ensure the
robustness and reliability of telecommunication networks. Therefore, we design in this
thesis algorithms tailored for this purpose. Furthermore, we extend our scope to en-
compass another application known as network-wide monitoring. Within this context,
we study the sketch assignment problem and propose solution methods.
In the first part of the thesis, we delve into the maximum flow blocker problem (MFBP).
The motivation behind exploring this problem is diverse. First, it serves as a specific
instance of the multicommodity flow blocker problem. Second, its relevance stems from
the specific structure of the subproblem which is a maximum flow problem. Third, the
extensive existing literature surrounding this problem underscores its significance and
potential for further investigation. To tackle this problem, we propose several integer
linear programming formulations. Some have an exponential family of constraints and
they are accordingly solved using a tailored Branch-and-Cut algorithm. Another for-
mulation having a polynomial number of variables and constraints has been designed.
These formulations are compared theoretically by studying the strength of the LP relax-
ations and through a comprehensive computational study. Moreover, we demonstrate a
structural link between the solutions of the blocker and the interdiction variant of the
maximum flow problem. This is the first time a relationship between a blocker and an
interdiction problem applied to another optimization problem has been clarified. This
theoretical result enables us to derive another algorithm for addressing the MFBP.
In the second part of the thesis, we delve into the multicommodity flow blocker prob-
lem, distinguishing two scenarios: one where the flow is splittable (MCFBP) and the
other where the flow is splittable, meaning that it is routed through a unique path
for each commodity (UMCFBP). To tackle this challenge, we introduce a concise and
well-understood formulation within the natural space of the blocker variables. This
formulation, featuring an exponential number of constraints, can be adapted for sev-
eral versions of the multicommodity flow blocker problem. For each variant (splittable
and unsplittable), we study the associated separation problem and propose several ap-
proaches. We then present a tailored Branch-and-Cut algorithm to solve the MCFBP
and the UMCFBP. Moreover, to enhance the robustness of the model, we present a com-
prehensive polyhedral analysis. The various approaches and potential enhancements of

203

the Branch-and-Cut algorithms are compared thanks to an extensive computational
analysis on sets of synthetic and real-world instances. The primary objective of this
study is to evaluate, for each variant of the problem, the performance of the proposed
formulation and to identify the characteristics of instances that can be solved to proven
optimality.
Finally, in the third part of the thesis, we extend our work to address the vertex blocker
variant of the unsplittable multicommodity flow problem (V-UMCFBP). This variant
entails the removal of vertices in the graph rather than arcs. We demonstrate the exis-
tence of a relationship between the two variants, using graph transformations. Specifi-
cally, we establish that solving one variant is equivalent to solving another in a trans-
formed graph. Additionally, we introduce a dedicated model for the V-UMCFBP fea-
turing an exponential number of constraints, solved using a customized Branch-and-Cut
algorithm. Moreover, we investigate the properties of the associated polyhedra.
There are many directions in which the research in this dissertation can be continued.
For the maximum flow blocker problem, delving into the polyhedra of the proposed
formulations allows for the identification of conditions under which the inequalities de-
fine facets and the potential discovery of new valid inequalities. Moreover, exploring
deeper the relationship between blocker and interdiction could yield valuable insights,
potentially extending its applicability to other problems.
For the multicommodity flow blocker problem, future works could focus on two key di-
rections. The first one concerns the algorithmic aspect that involves enhancing existing
heuristics or implementing more advanced branching strategies. The second direction is
more theoretical with a deeper exploration of the polyhedra associated with the formula-
tions proposed for the different variants of the problem. An initial line of investigation
could be to further develop the work done on the vertex-blocker variant, by initially
evaluating the effectiveness of the identified valid inequality, and subsequently adapting
it for the arc-blocker variant.
Finally, natural directions for future research include integrating real-world constraints
from telecommunication networks. Specifically, this may entail generalizing anomalies
to consider traffic peaks, for example, or incorporating additional constraints related to
network monitoring. Moreover, proposing optimal routing strategies that account for
anomalies is another option to investigate. Achieving this could involve redefining the
actions of the blocker.

204

Bibliography

Anup Agarwal, Zaoxing Liu, and Srinivasan Seshan. HeteroSketch: Coordinating
network-wide monitoring in heterogeneous and dynamic networks. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22), pages 719–
741, Renton, WA, April 2022. USENIX Association. ISBN 978-1-939133-27-4.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice hall, N.Y, 1993.

F. Alvelos and J. Carvalho. Comparing branch-and-price algorithms for the unsplittable
multicommodity flow problem. 01 2003.

A. A. Assad. Multicommodity network flows—a survey. Networks, 8(1):37–91, 1978.

Nikitas Assimakopoulos. A network interdiction model for hospital infection control.
Computers in Biology and Medicine, 17(6):413–422, 1987. ISSN 0010-4825. doi:
https://doi.org/10.1016/0010-4825(87)90060-6. URL https://www.sciencedirect.
com/science/article/pii/0010482587900606.

Sabina Barakovic, Jasmina Barakovic Husic, and Enida Cero Dinarević. Iot’s tiny steps
towards 5g: Telco’s perspective. Symmetry, 9, 10 2017. doi: 10.3390/sym9100213.

Cynthia Barnhart, Christopher A. Hane, and Pamela H. Vance. Using Branch-and-
Price-and-Cut to Solve Origin-Destination Integer Multicommodity Flow Problems.
Operations Research, 48(2):318–326, 2000.

Y. Beck, I. Ljubic, and M. Schmidt. A survey on bilevel optimization under uncertainty.
European Journal of Operational Research, 311(2), 2023.

A. Benhamiche, M. Chopin, and S. Martin. Unsplittable shortest path routing: Ex-
tended model and matheuristic. 2023 9th International Conference on Control, De-
cision and Information Technologies (CoDIT), 2023.

I. Bentoumi, F.Furini, A. R. Mahjoub, and S. Martin. A branch-and-cut algorithm to
solve the multi-commodity flow blocker problem. 22éme congrés de la société Francaise
de Recherche Opérationnelle et d’Aide à la Décision, 2021.

I. Bentoumi, F.Furini, A. R. Mahjoub, and S. Martin. A branch-and-benders-cut ap-
proach to solve the maximum flow blocker problem. 2023 9th International Conference
on Control, Decision and Information Technologies (CoDIT), pages 674–677, 2023a.

I. Bentoumi, F.Furini, A. R. Mahjoub, and S. Martin. Integer linear formulations for
the maximum flow blocker problem. Book of abstracts PGMO DAYS 2023, 2023b.

205

https://www.sciencedirect.com/science/article/pii/0010482587900606
https://www.sciencedirect.com/science/article/pii/0010482587900606

I. Bentoumi, F.Furini, A. R. Mahjoub, and S. Martin. Optimization methods for the
multi-commodity flow blocker problem. 24éme congrés de la société Francaise de
Recherche Opérationnelle et d’Aide à la Décision, 2023c.

Valerio Bruschi, Ran Ben Basat, Zaoxing Liu, Gianni Antichi, Giuseppe Bianchi, and
Michael Mitzenmacher. Discovering the heavy hitters with disaggregated sketches.
In Proceedings of the 16th International Conference on Emerging Networking EXper-
iments and Technologies, CoNEXT ’20, page 536–537, New York, NY, USA, 2020.
Association for Computing Machinery. ISBN 9781450379489. doi: 10.1145/3386367.
3431674. URL https://doi.org/10.1145/3386367.3431674.

C. Burch, R. Carr, S. O. Krumke, M. Marathe, C. Phillips, and E. Sundberg.
A decomposition-based pseudoapproximation algorithm for network flow inhibi-
tion. Operations Research/ Computer Science Interfaces Series, 22:51–68, 2006.
https://doi.org/10.1007/0-306-48109-X_3.

Paola Cappanera and Maria Scaparra. Optimal allocation of protective resources in
shortest-path networks. Transportation Science, 45:64–80, 02 2011. doi: 10.2307/
23017638.

G. Castellano, M. Gallo, S. Martin, and I. Bentoumi. Apparatus and methods for
network-wide sketching, 2023.

Stephen A. Cook. The complexity of theorem-proving procedures. Proceedings of the
third annual ACM symposium on Theory of computing, 1971.

Jr. H. W. Corley and H. Chang. Finding the n most vital nodes in a flow network.
Management Science, 21(3):362–364, 1974. https://doi.org/10.1287/mnsc.21.3.362.

K. J. Cormican, D. P. Morton, and R. K. Wood. Stochastic network interdiction.
Operations Research, 46(2):184–197, 1998. https://doi.org/10.1287/opre.46.2.184.

Graham Cormode. Count-min sketch. 01 2009. doi: 10.1007/978-0-387-39940-9_87.

Graham Cormode. Summary data structures for massive data. In Paola Bonizzoni,
Vasco Brattka, and Benedikt Löwe, editors, The Nature of Computation. Logic, Algo-
rithms, Applications, pages 78–86, Berlin, Heidelberg, 2013. Springer Berlin Heidel-
berg. ISBN 978-3-642-39053-1.

Graham Cormode. Data sketching. Communications of the ACM, 60:48–55, 08 2017.
doi: 10.1145/3080008.

E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis.
The complexity of multiway cuts (extended abstract). STOC ’92, page 241–251.
Association for Computing Machinery, 1992.

George B. Dantzig and Philip Wolfe. Decomposition principle for linear programs.
Operations Research, 8:101–111, 1960.

206

https://doi.org/10.1145/3386367.3431674

S. Dempe. Bilevel Optimization: Theory, Algorithms, Applications and a Bib-
liography, chapter 20, pages 581–672. Springer International Publishing, 2020.
https://doi.org/10.1007/978-3-030-52119-6_20.

Martin Dietzfelbinger. Universal Hashing via Integer Arithmetic Without Primes, Re-
visited, pages 257–279. Springer International Publishing, Cham, 2018. ISBN 978-3-
319-98355-4. doi: 10.1007/978-3-319-98355-4_15. URL https://doi.org/10.1007/
978-3-319-98355-4_15.

Y. Dinitz, N. Garg, and M.X. Goemans. On the single-source unsplittable flow problem.
In Proceedings 39th Annual Symposium on Foundations of Computer Science, pages
290–299, 1998.

J. Edmonds. Covers and packings in a family of sets. Bulletin of the American Mathe-
matical Society,, 68(5):494–499, 1971.

J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic effi-
ciency for network flow problems. Journal of the ACM, 19(2):248–264, 2003.
https://doi.org/10.1007/3-540-36478-1_4.

Jack Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of Re-
search of the National Bureau of Standards Section B Mathematics and Mathematical
Physics, page 125, 1965.

S. Even, A. Itai, and A. Shamir. On the complexity of time table and multi-commodity
flow problems. In 16th Annual Symposium on Foundations of Computer Science (sfcs
1975), pages 184–193, 1975. doi: 10.1109/SFCS.1975.21.

Mohammad Fathi and H. Bevrani. Convex Programming, pages 69–93. 01 2019. ISBN
978-3-030-05308-6. doi: 10.1007/978-3-030-05309-3_4.

M. Fischetti and I. Ljubic. A new general-purpose algorithm for mixed-integer bilevel
linear programs. Operations Research, 65(6):1615–1637, 2017.

M. Fischetti, I. Ljubic, and S. Monaci. On the use of intersection cuts for bilevel
optimization. Math. Program., 2018.

Jr. L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal
of Mathematics, 8:399–404, 1956. https://doi.org/10.4153/CJM-1956-045-5.

L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, 1962.

F. Furini, I. Ljubić, S. Martin, and P. San Segundo. The maximum clique interdic-
tion problem. European Journal of Operational Research, 277(1):112–127, 2019.
https://10.1016/j.ejor.2019.02.028.

L.F. Carvalho G. Fernandes, J.J.P.C. Rodrigues. A comprehensive survey on network
anomaly detection. Telecommun Syst, 70:447–489, 2019.

Carlos García-Martínez, Christian Blum, Francisco Rodríguez, and Manuel Lozano. The
firefighter problem: Empirical results on random graphs. Computers & Operations
Research, 60:55–66, 08 2015. doi: 10.1016/j.cor.2015.02.004.

207

https://doi.org/10.1007/978-3-319-98355-4_15
https://doi.org/10.1007/978-3-319-98355-4_15

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-completeness. W.H. Freeman, San Francisco, 1979.

I. Ghafir, V. Prenosil, and M. Hammoudeh. A survey on network security monitoring
systems. pages 77–82, 2016.

A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem.
Journal of the ACM, 35(4):921–940, 1988. https://doi.org/10.1145/48014.61051.

R. Grappe, M. Lacroix, and S. Martin. The multiple pairs shortest path problem for
sparse graphs: Exact algorithms. 2023 9th International Conference on Control,
Decision and Information Technologies (CoDIT), 2023.

Martin Grötschel, Lovász László, and Alexander Schrijver. The ellipsoid method and
its consequences in combinatorial optimization. Combinatorica, 1:169–197, 06 1981.
doi: 10.1007/BF02579273.

David Gutierrez-Estevez, Marco Gramaglia, Antonio Domenico, Ghina Dandachi, Sina
Khatibi, Dimitris Tsolkas, Irina Balan, Andres Garcia-Saavedra, Uri Elzur, and Yue
Wang. Artificial intelligence for elastic management and orchestration of 5g networks.
IEEE Wireless Communications, PP:1–8, 08 2019. doi: 10.1109/MWC.2019.1800498.

Michael Held and Richard M. Karp. The traveling-salesman problem and minimum
spanning trees. Operations Research, 18(6):1138–1162, 1970.

T. C. Hu. Multi-commodity network flows. Operations Research, 11(3):344–360, 1963.

N. Huin, J. Leguay, S. Martin, and P. Medagliani. Routing and slot allocation in 5g
hard slicing. Computer Communications, 201:72–90, 2023.

E. Israeli and K. R. Wood. Shortest-path network interdiction. Networks, 40(2):97–111,
2002a. https://doi.org/10.1002/net.10039.

E. Israeli and K. R. Wood. Shortest-path network interdiction. Networks, 40(2):97–111,
2002b.

G. Junior, J. Rodrigues, L. Carvalho, J. Al-Muhtadi, and M. Proença. A comprehensive
survey on network anomaly detection. Telecommunication Systems, 70(3):447–489,
2019. https://doi.org/10.1007/s11235-018-0475-8.

A. Juttner, B. Szviatovski, I. Mecs, and Z. Rajko. Lagrange relaxation based method for
the qos routing problem. In Proceedings IEEE INFOCOM 2001. Conference on Com-
puter Communications. Twentieth Annual Joint Conference of the IEEE Computer
and Communications Society, volume 2, pages 859–868, 2001.

Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer
US, Boston, MA, 1972. ISBN 978-1-4684-2001-2. doi: 10.1007/978-1-4684-2001-2_9.
URL https://doi.org/10.1007/978-1-4684-2001-2_9.

J.L. Kennington. A survey of linear cost multicommodity network flows. Operations
Research,, 26(2):209–236, 1978.

208

https://doi.org/10.1007/978-1-4684-2001-2_9

L. Khachiyan, K. Borys E. Boros, K. Elbassioni, V. Gurvich, G. Rudolf, and J. Zhao. On
short paths interdiction problems: Total and node-wise limited interdiction. Theory
of Computing Systems, 43:204–233, 2008.

Jon M. Kleinberg. Approximation algorithms for disjoint paths problems. Ph.D. thesis,
MIT, Cambridge MA, 1996.

Thomas Kleinert, Martine Labbé, Ivana Ljubić, and Martin Schmidt. A survey on
mixed-integer programming techniques in bilevel optimization. EURO Journal on
Computational Optimization, 9:100007, 2021. ISSN 2192-4406.

Stavros G. Kolliopoulos and Clifford Stein. Approximation algorithms for single-source
unsplittable flow. SIAM Journal on Computing, 31(3):919–946, 2001.

J. Krolikowski, S. Martin, P. Medagliani, J. Leguay, S. Chen, X. Chang, and X. Geng.
Joint routing and scheduling for large-scale deterministic ip networks. Computer
Communications, 165:33–42, 2021a.

Jonatan Krolikowski, Sebastien Martin, Paolo Medagliani, Jeremie Leguay, Shuang
Chen, Xiaodong Chang, and Xuesong Geng. Joint routing and scheduling for large-
scale deterministic ip networks. Computer Communications, 165:33–42, 01 2021b.
doi: 10.1016/j.comcom.2020.10.016.

S. O. Krumke, H. Noltemeier, S. Schwarz, HC. Wirth, and R. Ravi. Flow improvement
and network flows with fixed costs. pages 158–167, 1999.

Martine Labbé, Patrice Marcotte, and Gilles Savard. A bilevel model of taxation and
its application to optimal highway pricing. Management Science, 44:1608–1622, 12
1998. doi: 10.1287/mnsc.44.12.1608.

Ashwin Lall, Vyas Sekar, Mitsunori Ogihara, Jun Xu, and Hui Zhang. Data streaming
algorithms for estimating entropy of network traffic. volume 34, pages 145–156, 06
2006. doi: 10.1145/1140277.1140295.

Mohammed Lalou, Mohammed Amin Tahraoui, and Hamamache Kheddouci. The crit-
ical node detection problem in networks: A survey. Computer Science Review, 28:92–
117, 2018. ISSN 1574-0137. doi: https://doi.org/10.1016/j.cosrev.2018.02.002. URL
https://www.sciencedirect.com/science/article/pii/S1574013716302416.

Pierre Laroche, Franc Marchetti, Sébastien Martin, Anass Nagih, and Zsuzsanna
Róka. Multiple bipartite complete matching vertex blocker problem: Complex-
ity, polyhedral analysis and branch-and-cut. Discrete Optimization, 35:100551,
2020. ISSN 1572-5286. doi: https://doi.org/10.1016/j.disopt.2019.100551. URL
https://www.sciencedirect.com/science/article/pii/S1572528617301469.

T. Li, J. Ma, Q. Pei, Y. Shen, and C. Sun. Anomalies detection of routers based on
multiple information learning. In 2018 International Conference on Networking and
Network Applications (NaNA), pages 206–211. IEEE Computer Society, 2018.

C. Lim and J. Cole Smith. Algorithms for discrete and continuous multicommodity flow
network interdiction problems. IIE Transactions, 39(1):15–26, 2007a.

209

https://www.sciencedirect.com/science/article/pii/S1574013716302416
https://www.sciencedirect.com/science/article/pii/S1572528617301469

Churlzu Lim and J. Smith. Algorithms for discrete and continuous multicommodity
flow network interdiction problems. Iie Transactions, 39:15–26, 01 2007b. doi: 10.
1080/07408170600729192.

Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir Braver-
man. One sketch to rule them all: Rethinking network flow monitoring with univ-
mon. In Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, page
101–114, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450341936. doi: 10.1145/2934872.2934906. URL https://doi.org/10.1145/
2934872.2934906.

Y. Magnouche and S. Martin. Most vital vertices for the shortest s − t path problem:
complexity and branch-and-cut algorithm. Optimization Letters, 14:2039–2053, 2020.
doi: https://10.1007/s11590-019-01527-5.

P. Marcotte and D. L. Zhu. Exact and inexact penalty methods for the generalized
bilevel programming problem. Math. Program., 74(2):141–157, aug 1996. ISSN 0025-
5610.

M. P. Martin and S. Martin. Unsplittable multi-commodity flow problem via quantum
computing. 2023 9th International Conference on Control, Decision and Information
Technologies (CoDIT), 2023.

S. Martin, P. Medagliani, and J. Leguay. Network slicing for deterministic latency. 2021
17th International Conference on Network and Service Management (CNSM), pages
572–577, 2021.

S. Martin, Y. Magnouche, C C. Juvigny, and J. Leguay. Constrained shortest path tour
problem: Branch-and-price algorithm. Computers & Operations Research, 144, 2022.

N. Olver and L. Vegh. A simpler and faster strongly polynomial algorithm for generalized
flow maximization. Journal of the ACM, 67, 2016.

S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly. SNDlib 1.0–Survivable Network
Design Library. In Proceedings of the 3rd International Network Optimization Confer-
ence (INOC 2007), Spa, Belgium, April 2007. URL http://www.zib.de/orlowski/
Paper/OrlowskiPioroTomaszewskiWessaely2007-SNDlib-INOC.pdf.gz.
http://sndlib.zib.de, extended version accepted in Networks, 2009.

A. Ouorou, P. Mahey, and J.-Ph. Vial. A survey of algorithms for convex multicom-
modity flow problems. Management Science, 46(1):126–147, 2000.

Antonio Pescapé, Dario Rossi, Davide Tammaro, and Silvio Valenti. On the impact of
sampling on traffic monitoring and analysis. In 2010 22nd International Teletraffic
Congress (lTC 22), pages 1–8, 2010. doi: 10.1109/ITC.2010.5608718.

Marco Polverini, Antonio Cianfrani, Marco Listanti, and Andrea Baiocchi. Routing
perturbation for traffic matrix evaluation in a segment routing network. IEEE
Transactions on Network and Service Management, 15(4):1645–1660, 2018. doi:
10.1109/TNSM.2018.2862423.

210

https://doi.org/10.1145/2934872.2934906
https://doi.org/10.1145/2934872.2934906
http://www.zib.de/orlowski/Paper/OrlowskiPioroTomaszewskiWessaely2007-SNDlib-INOC.pdf.gz
http://www.zib.de/orlowski/Paper/OrlowskiPioroTomaszewskiWessaely2007-SNDlib-INOC.pdf.gz

H. D. Ratliff, G. T. Sicilia, and S. H. Lubore. Finding the n most vi-
tal links in a flow network. Management Science, 21(5):531–539, 1975.
https://doi.org/10.1287/mnsc.21.5.531.

J. Royset and R. K. Wood. Solving the bi-objective maximum-flow network-
interdiction problem. INFORMS Journal on Computing, 19(2):175–184, 2007.
https://doi.org/10.1287/ijoc.1060.0191.

A. Schrijver. On the history of the transportation and maximum flow problems. Mathe-
matical Programming, 91(3):437–445, 2002. https://doi.org/10.1007/s101070100259.

A. Schrijver. Combinatorial Optimization Polyhedra and Efficiency. Springer-Verlag
Berlin Heidelberg, 2003.

Lawrence Snyder, Zumbul Atan, Peng Peng, Ying Rong, Amanda Schmitt, and Burcu
Sinsoysal. Or/ms models for supply chain disruptions: A review. IIE Transactions,
48:89–109, 11 2016. doi: 10.2139/ssrn.1689882.

H. Stackelberg. The Theory of the Market Economy. William Hodge, 1952.

E. Tardos. A strongly polynomial algorithm to solve combinatorial linear programs.
Operations Research, 34(2):250–256, 1986.

Eva Tardos. A strongly polynomial minimum cost circulation algorithm. Combinatorica,
5(3):247–255, 1985.

I. L. Wang. Multicommodity network flows: A survey, part i: Applications and formu-
lations. 15:145–153, 12 2018a.

I. L. Wang. Multicommodity network flows: A survey, part ii: Solution methods. 15:
155–173, 12 2018b.

N. Wei and J. Walteros. Integer programming methods for solving binary interdiction
games. European Journal of Operations reseach, 9:456–469, 2022.

R. K. Wood. Deterministic network interdiction. Mathematical and Computer Modeling,
17(2):1–18, 1993. https://doi.org/10.1016/0895-7177(93)90236-R.

R. K. Wood. Bilevel network interdiction models: Formulations and solutions. Wi-
ley Encyclopedia of Operations Research and Management Science, 174:1–11, 2011.
https://doi.org/10.1002/9780470400531.eorms0932.

P. Xu. Three essays on bilevel optimization algorithms and applications. PhD thesis,
Iowa State University, 2012.

R. Zenklusen. Matching interdiction. Discrete Applied Mathematics, 158(15):1676–1690,
2010. https://doi.org/10.1016/j.dam.2010.06.006.

J. Zhang, Y. Magnouche, S. Martin, A. Fressancourt, and J. C. Beck. The multi-
commodity flow problem with disjoint signaling paths: A branch-and-benders-cut
algorithm. 2023 9th International Conference on Control, Decision and Information
Technologies (CoDIT), 2023.

211

J. Zhang, Y. Magnouche, P. Bauguion, S. Martin, and J. C. Beck. Computing bipath
multicommodity flows with constraint programming–based branch-and-price-and-cut.
INFORMS Journal on Computing, 2024.

Ying Zhang. An adaptive flow counting method for anomaly detection in sdn. pages
25–30, 12 2013. doi: 10.1145/2535372.2535411.

MOTS CLÉS

Optimisation combinatoire, flot maximum, multiflots, bloqueur, interdiction, optimisation biniveau

RÉSUMÉ

Les réseaux de télécommunication sont des systèmes complexes dans lesquels s'inscrivent des problèmes d'optimisation
combinatoire difficiles. Face à une demande croissante, l'efficacité de ces réseaux devient cruciale, notamment en termes
de délai et de résilience face aux anomalies. Cette thèse se concentre sur l'analyse de la résilience des réseaux, avec
pour objectif principal de déterminer le nombre maximal d'anomalies que le réseau peut supporter tout en maintenant sa
fonctionnalité selon des critères spécifiques.
Ce défi relève d'une classe de problèmes d'optimisation connus sous le nom de problèmes de bloqueur sur les flots. Notre
travail se focalise particulièrement sur les problèmes de multiflots rencontrés dans les réseaux de télécommunication,
caractérisés par des contraintes complexes de satisfaction des demandes. Nous nous intéressons aux demandes ayant
différentes formes de trafic et prédites avec des méthodes d'apprentissage automatique. Le problème étudié est appelé
problème de bloqueur sur les multiflots. Pour répondre à cette problématique, nous utilisons des outils d'optimisation
combinatoire, explorant diverses approches, y compris les techniques bi-niveau, l'approche polyèdrale et les algorithmes
de branchement.
Nous abordons initialement le problème du bloqueur sur le flot maximal. Pour le résoudre, nous proposons plusieurs
formulations de programmation linéaire entière, ainsi qu'une technique dérivée d'un résultat théorique établissant un lien
structurel avec un problème existant dans la littérature. Par la suite, nous étendons notre travail pour traiter la notion
de bloqueur sur les multiflots, en couvrant plusieurs variantes. Pour ce faire, nous introduisons une formulation avec
une famille exponentielle de contraintes, résolue à l'aide d'un algorithme de branchement et de coupes. De plus, nous
développons une approche polyèdrale pour renforcer la robustesse du modèle. Les performances des méthodes exactes
proposées pour résoudre le deux problèmes décrits sont évaluées à travers une étude expérimentale approfondie.

ABSTRACT

Telecommunication networks are complex systems in which hard combinatorial optimization problems must be solved.
With the increasing demand, telecommunication networks have to be efficient, especially in terms of time lag and failure
tolerance. In this context, this thesis will focus on the resilience analysis of a network. More precisely, the primary goal
of this study is to determine the maximum number of anomalies that may occur in the network while guaranteeing its
functionality depending on a crucial property that needs to be maintained.
This challenge belongs to a class of optimization problems called network flow blocker problems. The initial purpose of this
work is to focus on multi-commodity flow problems arising in telecommunication networks with complex demand satisfac-
tion constraints. We are interested in demands, also called commodities, having different shapes of traffic and predicted
with machine learning methods. The associated network flow blocker problem is called multicommodity flow blocker prob-
lem (MCFBP). To tackle this challenge, we use combinatorial optimization tools, delving into various approaches including
bilevel techniques that exploit the bilevel nature of network flow blocker problems, a polyhedral approach and branching
algorithms.
We first focus on the maximum flow blocker problem (MFBP), which is a particular case of the MCFBP. To solve the MFBP,
we propose several Integer Linear Programming (ILP) formulations and a technique derived from a theoretical result that
establishes a structural link between the MFBP and another problem existing in the literature. We then expand our work to
address the blocker notion of the multicommodity flow problem, covering several variants. For this problem, we introduce
an ILP formulation featuring an exponential number of constraints and solved using a tailored branch-and-cut algorithm.
In addition, we enhance the model's robustness by studying its polyhedra. Performance of the exact methods proposed to
solve the MFBP and the MCFBP are evaluated through an extensive computational campaign involving a set of synthetic
and real-world instances.

KEYWORDS

Combinatorial optimization, maximum flow, multicommodity flow, blocker, interdiction, bilevel optimization

	Introduction
	Preliminaries and State-of-the-art
	Combinatorial optimization
	Computational complexity
	Elements of polyhedral theory
	Algorithms for combinatorial optimization problems
	Branch-and-Bound algorithm
	Cutting plane method and Branch-and-Cut algorithm
	Column generation and Branch-and-Price

	Network flow problems
	Graph theory
	Flow notations
	State-of-the-art on network flow problems

	State-of-the-Art on bilevel problems
	Bilevel programming
	Interdiction problems
	Blocker problems

	Network flow blocker problems and their applications in Telecommunication Networks
	Resilience analysis
	Networks architecture
	Routing in telecommunication networks
	Anomalies in telecommunication networks
	Resilience analysis with network flow blocker

	Network-wide sketching
	Network-wide monitoring and related works
	The Flow-Sketch assignment problem
	An ILP formulation for the FSAP
	A bilevel approach for the FSAP
	A greedy algorithm for the FSAP

	Concluding remarks

	The maximum flow blocker problem : Formulations and algorithms
	The maximum flow blocker problem
	Natural ILP models for the MFBP
	A bilevel formulation
	A first single-level ILP model for the MFBP
	Separation of the Benders cuts
	A second single-level ILP model for the MFBP
	Separation of the target-flow inequalities
	Comparison of the strength of the LP relaxations of the natural formulations
	A third single-level ILP model for the MFBP

	A compact ILP model for the MFBP
	A fourth compact ILP model for the MFBP
	Solving the MFBP via the MFIP
	Comparison of the strength of the LP relaxations of the formulations
	Complexity results for the MFBP and the MFIP

	Extensions
	Continuous interdiction and blocker
	Vertex interdiction and blocker problems
	The maximum cardinality bipartite matching blocker problem

	Concluding remarks

	The maximum flow blocker problem : Computational experiments
	Computational experiments
	Implementation's features
	Benchmark set of MFBP instances

	Computational performance of the natural formulations
	Computational performance of the natural formulation n-ILPTF
	Computational performance of the natural formulations n-ILPB and n-ILPB+TF
	Comparison between the natural formulation and the state-of-the-art technique

	Comparison of the effectiveness of the natural and the compact formulation
	Resolution of the compact formulation
	Comparison between the natural and the compact formulation

	Gaps
	Testing the limits of the compact formulation
	Concluding remarks

	The multicommodity flow blocker problem : Formulations and polyhedral analysis
	The multicommodity flow problem
	An ILP formulation for the MCFP
	An ILP formulation for the UMCFP
	Graphical illustrations

	The multicommodity flow blocker problem
	Description of the problem
	Complexity
	Relation between the MCFBP and the UMCFBP

	Formulations
	A bilevel formulation for the multicommodity flow blocker problem
	A second single-level ILP formulation for the MCFBP
	An ILP formulation for the multicommodity flow blocker problem

	Polyhedral analysis
	Associated polytopes
	Trivial inequalities
	target profit inequalities

	Concluding remarks

	A Branch-and-Cut algorithm for the multicommodity flow blocker problem
	The splittable multicommodity flow blocker problem
	Separation of target profit inequalities
	Branch-and-Cut algorithm

	The unsplittable multicommodity flow blocker problem
	Separation of u-target profit inequalities
	Branch-and-Cut algorithm

	Computational results
	Benchmark set of instances
	Computational performance of the Branch-and-Cut for the MCFBP
	Computational performance of the Branch-and-Cut for the UMCFBP
	Comparison of the effectiveness of the natural formulation and the state-of-the-art technique

	Concluding remarks

	The multicommodity flow blocker problem: vertex variant
	The multicommodity flow vertex blocker problem
	Definition
	Relationship between vertex and arc blocker variants
	An ILP formulation for the V-UMCFBP

	Polyhedral analysis
	A Branch-and-Cut algorithm to solve the V-UMCFBP
	Separation of the V-target profit inequalities
	Branch-and-Cut algorithm

	Computational results
	Computational performance of the Branch-and-Cut for the V-UMCFBP

	Concluding remarks and perspectives

	Conclusion

