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Abstract

A major challenge for nowadays telecommunication actors is to propose solutions to
manage the traffic growth, and ensure a smart use of network resources. This can be
possible by overlapping multi-band OFDM technology on an optical fibre infrastruc-
ture. A better and more flexible use of the wavelength capacity is then enabled by
dividing each wavelength channel into smaller sub-wavelengths or subbands. Moreover,
since it is necessary to meet user demand, OFDM multi-band networks must present
enough capacity to carry the traffic evolution. One of the best ways to ensure a smart
use of this new network infrastructure, is to provide an accurate answer in terms of re-
source planning, that is to guarantee that a sufficient number of resources are deployed
so that traffic routing may be possible.

In this thesis we consider two problems related to the capacitated design of networks,
using OFDM multi-band technology.

The first problem is associated with the capacitated design of single-layer networks,
using some technical requirements of OFDM multi-band technology. We give an integer
linear programming formulation for the problem and we study the polyhedra associated
with arc-set restrictions of this problem. We describe two classes of valid inequalities
and study the conditions under which they define facets for these polyhedra. We discuss
the separation procedures for these inequalities and use them within an Branch-and-
Cut algorithm to solve the problem.

Next, we investigate the multilayer version of capacitated network design in OFDM
multi-band networks. We propose several integer linear programming formulations
for the problem. The first one, namely cut formulation, is based on cut inequalities
which are in exponential number. We conduct an investigation of the polyhedron
associated with its feasible solutions. We identify several classes of valid inequalities
and study their facial structure. We then discuss the related separation problems and
devise a Branch-and-Cut algorithm to solve the problem. In particular, our approach
embeds valid inequalities identified in both single-layer and multilayer contexts. Both
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approaches were used to solve random and realistic instances and provide results of a
great interest for Orange Labs.

The second formulation for the problem is a compact formulation, which holds a
polynomial number of constraints and variables. We use this formulation to perform a
modeling approach based on paths, which yields two Branch-and-Price algorithms for
the problem. The first algorithm deals with the routing associated with the physical and
the virtual layers explicitly, while the second algorithm uses the interactions between
both layers to get a unique pricing problem instead of two.

Key words : optical multi-band networks, network design, polytope, facet, Branch-
and-Cut algorithm, Branch-and-Price algorithm.



Résumé

Un des enjeux majeurs pour les acteurs de l’industrie des télécommunications est de
proposer des solutions afin de répondre au mieux à la croissance du trafic, et d’assurer
une gestion intelligente des resources du réseau. Cela peut être possible en utilisant la
technologie OFDM multi-bandes sur un réseau de fibres optiques. Cette technologie
permet alors une utilisation plus flexible de la capacité offerte par les longueurs d’onde,
du fait de la division de chacune de ces capacités en plusieurs entités indépendantes
appelées sous-bandes. Par ailleurs, comme il est nécessaire de satisfaire la demande
des usagers en trafic, les réseaux OFDM multi-bandes doivent présenter une capacité
suffisante pour supporter l’évolution du trafic. L’un des meilleurs moyens d’assurer
une utilisation astucieuse des infrastructures d’un réseau, est de fournir une réponse
précise en terme de planification des resources. Il s’agit notamment de garantir qu’un
nombre suffisant de resource est déployé afin que le routage du trafic soit possible.

Dans cette thèse, nous étudions deux problèmes liés à au dimensionnement de réseaux
utilisant la technologie OFDM multi-bandes.

Nous nous intéressons d’abord à un problème de dimensionnement, dans le cas d’une
seule couche de réseau, utilisant des contraintes techniques issues de la technologie
OFDM multi-bandes. Nous donnons une formulation basée sur un programme linéaire
en nombres entiers pour le problème et nous étudions le polyèdre associé à la restric-
tion du problème sur un arc. Nous décrivons ensuite deux classes d’inégalités valides
et examinons les conditions pour qu’elles définissent des facettes. Nous discutons la
procédure de séparation pour ces inégalités et les intégrons dans un algorithme de
coupes et branchements afin de résoudre le problème.

Nous étudions ensuite la version multi-couche du problème de dimensionnement dans
les réseaux OFDM multi-bandes. Nous proposons plusieurs programmes linéaires en
nombre entier pour formuler le problème. La première formulation, dite en coupes,
est basée sur des contraintes de coupes, dont le nombre est exponentiel. Nous procé-
dons à l’étude du polyèdre associé à ses solutions réalisables. Cette étude nous permet
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d’identifier plusieurs classes d’inégalités valides, dont nous examinons la structure fa-
ciale. Nous discutons ensuite des problèmes de séparation associés et élaborons un al-
gorithme de coupes et branchements pour le problème. En particulier, notre approche
intègre les inégalités valides issues de l’étude des versions mono-couche et multi-couche
du problème.

La seconde formulation, dite compacte, possède un nombre polynomial de variables et
de contraintes. Nous utilisons cette formulation afin de proposer une nouvelle approche
de modélisation basée sur des chemins, qui induit deux algorithmes de génération de
colonnes et branchements pour le problème. Le premier algorithme considère explicite-
ment les niveaux de routages liés à chaque couche de réseau, tandis que le deuxième
algorithme utilise implicitement les interactions entre les deux couches du réseau pour
résoudre le problème.

Mots clés : réseaux optiques multi-bandes, conception de réseaux, polytope,
facette, algorithme de coupes et branchements, algorithme de génération de colonnes
et branchements.
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Introduction

La demande des usagers en trafic a connu une croissance significative durant ces
dernières décennies. De ce fait, les réseaux de télécommunication actuels atteignent
déjà leurs limites, et il sera bientôt nécessaire d’accroître leur capacité de transport.
En effet, l’avènement de nouveaux services, principalement dûs aux applications sur
internet et aux contenus multimédias, nécessitent des infrastructures de réseau plus
flexibles et avantageuses en terme de coûts. Afin de remédier à cette croissance ex-
plosive du trafic (estimée à 45% par an en moyenne [96]), les acteurs de l’industrie
des télécommunications étudient de nouvelles technologies qui pourraient répondre au
besoin d’augmenter la capacité tout en apportant la flexibilité nécessaire pour exploiter
pleinement cette capacité.

Un réseau de télécommunication peut être perçu comme la supperposition de multi-
ples couches, sur lesquelles différents services peuvent être fournis. En particulier, un
réseau de fibres optiques est composé de deux couches : une couche physique et une
couche virtuelle. La couche physique est constituée de fibres optiques, tandis que la
couche virtuelle représente la technologie WDM (Wavelength Division Multiplexing).
Un tel process est basé sur un ensemble d’équipements appelés multiplexeurs, inter-
connectés par des liens optiques, composés de plusieurs canaux optiques ou longueurs
d’onde. Les deux couches communiquent, puisque les longueurs d’onde de la couche
virtuelle utilisent les fibres optiques de la couche physique comme support pour trans-
porter les demandes des usagers en trafic.

La technologie WDM est aujourd’hui utilisée pour transporter des informations sur de
longues distances (régions métropolitaines, câbles sous-marins, etc.), avec des longueurs
d’onde de 2.5, 10 ou même 40 Gbit/s, cependant, il n’est actuellement pas possible
d’atteindre de telles distances avec des longueurs d’onde de plus grande capacité. En
fait, l’existence de phénomènes physiques pouvant affecter les fibres optiques accentue
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la difficulté de mettre en place des longueurs d’onde de très grande capacité sur de
longues distances (voir [28]). De récentes innovations dans le domaine des communica-
tions utilisant des fibres optiques, ont permis l’émergeance d’une technologie appelée
Orthogonal Frequency Division Multiplexing (OFDM) multi-bandes. Les études con-
cernant cette technologie ont montré que cette technologie pourrait permettre la tran-
sition des infrastructures basées sur le WDM vers de très grandes capacités (100 Gbit/s
et plus pour chaque longueur d’onde), sur de longues distances. La technologie OFDM
est basée sur la division de chaque canal optique en plusieurs entités indépendantes
appelées sous-bandes. On parle alors de réseau optique OFDM multi-bandes.

Le but initial de ce travail était de répondre à certaines questions posées par les in-
génieurs d’Orange Labs - France Telecom R&D, concernant la conception des réseaux
utilisant la technologie OFDM optique. En particulier, nos résultats devraient perme-
ttre d’évaluer certains indicateurs de performance de la technologie OFDM et donner
des outils d’aide à la décision pour le déploiement de cette technologie.

Les méthodes d’optimisation combinatoire, en particulier l’approche dite polyèdrale
ont montré leur efficacité pour traiter des problèmes difficiles et ayant une combinatoire
importante. Initiée par Edmonds dans le cadre du problème du couplage [44], cette
technique consiste à réduire la résolution d’un problème d’optimisation combinatoire
à celle d’un où plusieurs programmes linéaires. Il s’agit notamment de donner, une
description complète (ou partielle) du polytope des solutions du problème considéré
avec un système d’inégalités linéaires. L’approche polyèdrale a montré son efficacité
sur plusieurs problèmes d’optimisation combinatoire tels que le Problème du Voyageur
de Commerce, le Problème de Conception de Réseau, ainsi que le Problème de la Coupe
Maximum.

Un aspect critique de l’émergeance des infrastructures multi-couches et multi-technologies
est le déploiement et l’exploitation efficaces des ressources du réseau. Bien que les prob-
lèmes de conception de réseau sous-jacents aient été largement étudiés pour les réseaux
composés d’une seule couche, ils constituent toujours des questions intéressantes dans
le cadre des réseaux multi-couches. Ainsi, les problèmes de conception de réseau consis-
tent en général à identifier le nombre de capacités modulaires à installer sur les liens du
réseau afin de satisfaire une certaine demande en trafic. Dans le contexte des réseaux
multi-couches, il faut considérer la relation entre les différentes couches, en plus des
contraintes classiques du problème.

Dans cette thèse, nous considérons un problème de dimensionnement, pour des
réseaux de télécommunication mono-couches et multi-couches, dans un contexte polyé-
dral. Nous donnons plusieurs modèles pour les problèmes étudiés et examinons les
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propriétés des polyhèdres associés. Nous mettons en évidence la relation existant en-
tre ces problèmes et d’autres problèmes classiques d’optimisation combinatoire. Nous
décrivons des algorithmes de Branch-and-Cut et Branch-and-Price élaborés pour la
résolution de ces problèmes. Une étude expérimentale est présentée pour chaque prob-
lème et plusieurs séries de tests sont conduits sur des instances réalistes et réelles de
grand intérêt pour Orange Labs. Les résultats obtenus montrent de manière empirique
l’efficacité de notre approche sur les instances considérées.

Dans ce qui suit nous présentons succintement le contenu de chaque chapitre.

Preliminaries and State-of-the-Art

Le premier chapitre est consacré à l’introduction de quelques notions préliminaires
concernant l’optimisation combinatoire, les méthodes exactes en général et l’approche
polyèdrale en particulier. Nous donnons notamment un aperçu des méthodes des plans
sécants et de génération de colonnes, ainsi que des algorithmes de coupes et branche-
ments, et de génération de colonnes et branchements. Nous donnons alors quelques
définitions basiques sur la théorie des graphes et introduisons la terminologie et les
notations utilisées dans ce manuscrit. Enfin, nous présentons un état de l’art sur les
problèmes de conception et dimensionnement de réseaux. Dans le chapitre suivant nous
présentons le contexte pratique ainsi que les enjeux technologiques de ce travail.

Multilayer Optical Networks

Ce chapitre préliminaire entend donner une brève esquisse de l’évolution des réseaux de
télécommunication. Nous donnons quelques notions nécessaires pour la compréhension
des contraintes techniques inhérentes à la définition des problèmes étudiés dans cette
thèse. En particulier, nous donnons d’abord quelques éléments concernant les réseaux
de télécommunication multi-couches. Nous présentons ensuite la technologie WDM et
donnons un aperçu de l’architecture des réseaux optiques utilisant cette technologie.
Nous introduisons enfin les nouveaux paradigmes qui permettront aux réseaux op-
tiques d’évoluer vers plus de fléxibilité et une utilisation plus ingénieuse des ressources
disponibles. Par ailleurs, quelques éléments concernant la technologie OFDM optique
multi-bandes sont introduits. Enfin, nous fixons quelques hypothèses ainsi que la ter-
minologie adoptée dans la thèse. Nous présentons dans les chapitre suivants les modèles
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et les approches proposées pour apphréhender les deux problèmes de dimensionnement
de réseaux considérés.

Capacitated Network Design and Set Function Poly-

hedra

Nous considérons d’abord le problème de dimensionnement résultant de l’étude d’une
seule couche de réseau. Etant donnée une couche de réseau optique composé d’un en-
semble d’équipements interconnectés par des fibres optiques. Un ensemble de capacités
modulaires ou modules peut être installeé sur les liens du réseau rendant ainsi possible
la circulation du trafic sur ces liens. Chaque module induit un coût d’installation,
impacté sur le lien qui le reçoit. Etant donné un ensemble de demandes de trafic, il
s’agit de déterminer le nombre de capacités modulaires à installer sur les liens de la
couche considée de sorte que chaque demande de trafic soit routée entre son origine
et sa destination, et que le coût total soit minimum. Le problème sera désigné par
Dimensionnement de Réseau Mono-Couche (Capacitated Single-Layer Network Design
(CSLND) problem) afin de le différentier de la version multi-couche du problème de
dimensionnement de réseaux, étudié dans les chapitres 5, 6 et 7. Par ailleurs, les con-
traintes de ce problème sont dues aux exigences techniques de la version multi-couche.

Nous proposons d’abord un programme linéaire en nombres entiers pour modéliser
le problème. Cette formulation présente beaucoup de symétries, ce qui rend difficile
la résolution efficace du problème par un algorithme de Branch-and-Bound basé sur
ce modèle. Nous donnons alors une formulation alternative, dite agrégée, permettant
de briser les symétries de la première formulation, et présentant ainsi une structure
plus intéressante à étudier. Nous examinons ici les polyèdres associés à des relaxations
simples du problème, notamment lorsqu’on se restreint à un seul lien du réseau. Le
but étant d’étudier ces polyèdres et tirer profit de leur caractérisation partielle pour
résoudre efficacement le problème CSLND. En d’autres termes, nous montrons dans ce
chapitre que différents sous-problèmes, résultant d’une relaxation du problème CSLND
sont en fait associé à la même classe de polyèdres. Ces problèmes sont appelés fonc-
tions. Nous introduisons les polyèdres associés à une famille particulière de fonctions,
dîtes unitary step monotonically increasing (usmi), puis nous étudions leur propriétés
basiques. Nous dérivons deux familles d’inégalités, appelés Min Set I et Min Set II, qui
sont valides pour tous les polyèdres appartenant à la classe considérée. Nous menons
par ailleurs une investigation sur la structure faciale de ces inégalités et nous décrivons
des conditions nécessaires et suffisantes pour qu’elle définissent des facettes des polyè-
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dres étudiés.

Nous montrons que nos résultats polyèdraux restent valables quelque soit la fonction
considérée (appartenant á la classe de fonctions usmi). Les procédures de séparation
de ces inégalités peuvent notamment être similaires, mais nécessitent toutefois la prise
en compte des spécificités de chaque fonction. Nous illustrons les résultats obtenus
sur une application concernant la fonction Bin-Packing, qui est en réalité équivalent
au problème CSLND restreint sur un lien, lorsque les demandes de trafic ne sont pas
divisibles. En particulier, nos résultats concernant les inégalités Min Set I généralisent
ceux donnés dans [27, 101, 10] concernant les inégalités c-strong. En outre, les deux
familles d’inégalités Min Set I et Min Set II sont utilisées dans le cadre d’un algo-
rithme de coupes et branchements permettant de résoudre le problème CSLND. Les
procédures de séparation pour ces deux familles de contraintes ont été intégrées dans
l’algorithme de coupes et branchements que nous avons implémenté. Le chapitre 4 est
dédié aux aspects algorithmiques de cette implementation. En effet, dans ce chapitre
nous montrons de manière empirique l’efficacité de l’approche que nous proposons et
en particulier l’apport des contraintes valides proposées pour la résolution de CSLND.

Branch-and-Cut Algorithm for the CSLND problem

Nous décrivons ici l’algorithme de coupes et branchements que nous avons proposé
pour la formulation agrégée du problème CSLND. Cet algorithme est basé sur les
résultats théoriques introduits dans le chapitre 4. Nous donnons d’abord un aperçu
du fonctionnement de cet algorithme, puis nous détaillons les procédures de séparation
utilisées pour générer les inégalités de type Min Set I et Min Set II. L’objectif de ce
chapitre est de présenter la mise en oeuvre de l’approche proposée dans le chapitre
précédent et de donner un aperçu de l’efficacité des contraintes Min Set I et Min Set
II en pratique. En particulier, une étude expérimentale est conduite et plusieurs séries
de tests sont effectuées sur des instances réalistes provenant de la librairie SNDlib
[1]. Cette étude a notamment permis de comparer les performances de l’algorithme
de coupes et branchements et celles d’un algorithme de Branch-and-Bound basé sur la
formulation compacte initiale du problème CSLND.

Nos résultats montrent très clairement que l’algorithme de coupes et branchement est
beaucoup plus efficace que l’algorithme de Branch-and-Bound basé sur la formulation
initiale. Les expérimentations montrent également que les inégalités valides Min Set
I et Min Set II sont très efficaces en pratique pour le problème. Bien que l’efficience
des contraintes de type Min Set I soit plus visible que celle des contraintes Min Set II,



xiv Résumé long

nous pouvons voir que les heuristiques de séparation développées pour ces contraintes
fonctionnent bien, en particulier pour des instances correspondant à des réseaux peu
denses. Enfin, nous montrons également grâce à ces résultats que la difficulté des
instances traitées est très liée à la taille des demandes comparée à la capacité d’un
module. Par ailleurs, cette propriété est aussi présente dans la version multi-couche
du problème. Dans ce qui suit, nous étudions le problème de dimensionnement de
réseau multi-couche et présentons plusieurs approches de modélisation et résolution
pour ce problème. Par ailleurs, nous exploitons les inégalités valides issues de l’étude
du problème CSLND pour la résolution du problème multi-couche.

Optical Multi-Band Network Design : polyhedral study

Nous nous intéressons ici au problème de dimensionnement d’un réseau optique multi-
couche, utilisant la technologie OFDM multi-bandes. Etant donnée une couche physique
de réseau composée d’un ensemble de noeuds de transmission, liés par des fibres op-
tiques, et des demandes de trafic définiés par une origine, une destination et une quan-
tité. On dispose d’un ensemble de capacités modulaires, appelées sous-bandes OFDM,
à installer entre les noeuds de transmission, de sorte que la circulation du trafic soit
possible. Chaque sous-bande possède une capacité et induit un coût d’installation, qui
est impacté sur la fibre optique qui la reçoit. Si une ou plusieurs sous-bandes sont
installées entre deux noeuds de transmission, on dit qu’il existe un lien virtuel entre
ces noeuds. L’ensemble des liens virtuels ainsi que leux noeuds extrémités définissent
la couche virtuelle du réseau optique. Le problème que nous étudions peut alors être
défini comme suit. Nous souhaitons déterminer le nombre de sous-bandes OFDM à
installer sur les liens du réseau, de sorte que toute les demandes soient routées, que
chaque sous-bande utilisée soit associée à un chemin utilisant des fibres optiques, et
que le coût total soit minimum. Nous appellerons ce problème Conception de Réseau
Optique Multi-Bandes (Optical Multi-Band Network Design (OMBND) problem).

Nous proposons ici une approche de modélisation basée sur des coupes, et donnons
une formulation en programme linéaire en nombres entiers ayant un nombre expoentiel
de contraintes. Nous montrons d’abord que cette formulation est équivalente au prob-
lème OMBND. Nous examinons ensuite le polyèdre assocé à formulation en coupes
ainsi que la structure faciale des contraintes de base. Nous dérivons alors d’autres
familles d’inégalités valides, et décrivons les conditions nécéssaires aussi bien que les
conditions suffisantes pour qu’elles définissent des facettes non triviales du polyèdre.
Toutes les contraintes valides identifiées dans ce chapitre, ainsi que celles issues de
l’étude du problème CSLND sont intégrées dans un algorithme de coupes et branche-
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ments, qui sera présenté dans le chapitre 6. En effet, nous discutons dans ce chapitre
l’aspect algorithmique de l’étude présentée dans le chapitre 5. Par ailleurs, une étude
expérimentale est également proposée dans ce chapitre, permettant d’avoir un aperçu
sur l’efficacité, en pratique, des contraintes valides introduites.

Branch-and-Cut Algorithm for OMBND problem

Nous décrivons dans ce chapitre le cadre, notamment informatique, de notre algorithme.
Ce chapitre est basé sur les résultats issus de l’investigation polyèdrale menée dans le
chapitre précédent ainsi que celle présentée dans le Chapitre 3. En effet, l’ensemble
des contraintes valides identifiée pour les deux problèmes CSLND et OMBND sont
intégrées dans l’algorithme. Nous présentons d’abord les procédures de séparation
que nous proposons afin de générer chaque famille d’inégalités valides. Nous donnons
ensuite les détails de la mise en oeuvre et présentons les instances de réseaux considérées
dans notre étude éxpérimentale. Enfin, des résultats expérimentaux sont donnés pour
des instances réalistes issues de la librairie SNDlib, ainsi que pour des instances réelles
fournies par Orange Labs.

Nos résultats montrent le gain apporté par les inégalités valides proposées comparé
à la formulation de base. En particulier, les inégalités de type Min Set I, capacitated
cutset inequalities et flow-cutset inequalities ont permis de réduire sensiblement le saut
d’intégrité, et ainsi d’améliorer la qualité de la relaxation linéaire de la formulation
en coupes. Les autres classes d’inégalités valides ont permis une augmentation moins
significative des performances de l’algorithme. Cependant, nous pensons que des procé-
dures de séparation plus sophistiquées permettraient d’obtenir le meilleur parti de ces
inégalités sans que cela ne coûte trop cher en temps de calcul. Parallèlement, nos
inégalités valides ont été utilisées au sein d’un second algorithme de coupes et branche-
ments, basé sur une formulation compacte du problème, présentée au Chapitre 7. En
effet, le recours à cette approche alternative permet de réduire le temps total dédié à la
séparation des contraintes, puisque la formulation compacte possède un nombre poly-
nomial de contraintes. Cette approche a permis de traiter de plus grandes instances,
notamment les instances réelles d’Orange Labs, et ainsi d’obtenir de bonnes solutions
pour ces instances en quelques heures de calcul. Dans ce qui suit, nous introduisons
d’autres approches de modélisation du problème OMBND, basées sur des chemins.
Nous développons deux procédures de génération de colonnes pour ces modèles, et les
intégrons dans le cadre d’algorithmes de génération de colonnes et branchements.
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Optical Multi-Band Network Design using paths

Dans ce chapitre, nous proposons une approche de résolution basée sur la génération
de colonnes pour traiter le problème OMBND. Nous donnons d’abord une formulation
compacte pour le problème. Nous avons proposé deux formulations utilisant des vari-
ables chemin pour le problème. La première formulation considère une approche de dé-
composition explicite et induit une procédure de génération de colonnes utilisant deux
problèmes de pricing. Le second modèle, en l’occurrence une formulation de chemin
agrégée, donne, elle, une décomposition implicite du problème. En effet, dans cette
formulation, la couche virtuelle possède des informations sur la couche physique. Cette
imbrication est possible grâce une nouvelle famille de variables avec une structure spé-
cifique. Nous discutons les problèmes de pricing pour les deux formulations chemin, et
nous montrons qu’ils se réduisent à un problème de plus court chemin. Nous proposons
un algorithme de génération de colonnes et branchements pour résoudre chacune des
formulations chemin, et comparons les deux approches à l’algorithme de Branch-and-
Bound basé sur la formulation compacte. Quelques résultats numériques sont donnés
pour illustrer l’efficacité de ces deux algorithmes.

Nos expérimentations montrent que l’approche basée sur la génération de colonnes est
bien plus efficace que l’algorithme de Branch-and-Bound basé sur la formulation com-
pacte. Par ailleurs, l’algorithme issu de la formulation chemin initiale donne générale-
ment de meilleurs résultats que celui issu de la formulation agrégée, sur les instances
testées. En effet, bien que ce dernier explore moins de noeuds dans l’arbre de branche-
ments, il passe un temps non negligeable à générer des variables (pricing), en particulier
au noeud racine. Cependant, à partir d’une certaine taille d’instance, les deux algo-
rithmes éprouvent des difficultés á identifier une solution optimale pour le problème.
Aussi, plusieurs perspectives intéressantes pourraient être consiérées afin d’améliorer
les performances des deux algorithmes présentés dans ce chapitre. En fait, nous gag-
nerions, d’une part, à développer des stratégies de branchement plus élaborées afin de
mieux gérer la taille de l’arbre de branchements concernant la formulation chemin ini-
tiale. D’autre part, un examen plus approfondi du problème de pricing pour la seconde
formulation chemin (formulation agrégée) permettrait de mieux contrôler le processus
de génération de colonnes et ainsi offrir un compromis entre le temps passé à "pricer"
et celui dédié à l’exploration des noeuds de l’arbre de branchements.



Résumé long xvii

Conclusion

Les résultats présentés dans cette thèse, notamment concernant le problème OMBND,
peuvent servir à apporter des éléments de réponse pour le dimensionnement des réseaux
utilisant la technologie OFDM. Plus généralement, les algorithmes proposés constituent
des solutions génériques pour des problèmes de conception et dimensionnement de
réseaux optiques qui se posent en pratique. Ces méthodes peuvent également être
utilisées comme "outil référence" permettant d’évaluer la qualité d’une solution ap-
prochée obtenue à l’aide d’heuristiques ou mèta-heuristiques. Par ailleurs, nos ré-
sultats théoriques, en particulier concernant les set functions polyhedra peuvent être
utilisés dans un cadre beaucoup plus général que le network design, en l’occurrence
pour d’autres problèmes difficiles d’optimisation combinatoire.

Il y a plusieurs directions pertinentes dans lesquelles ce travail peut être poursuivi.
En effet, en ce qui concerne la recherche d’inégalités valides pour le problème CSLND,
nous considérons pour le moment une relaxation du problème sur un unique lien. Une
extension naturelle de cette étude serait de considérer le polyèdre associé à la restriction
du problème sur une coupe. En particulier, nous souhaitons comprendre comment
les inégalités Min Set I et Min Set II se génélisent dans le contexte d’une coupe.
Nous pensons que ces inégalités généralisées peuvent être utiles dans le cadre d’un
algorithme de coupes et branchements. En ce qui concerne le problème OMBND, la
plupart des efforts à faire doivent être investis dans l’amélioration des procédures de
séparation pour une détection plus efficace des inégalités valides, qui soit également
moins coûteuse en temps CPU. Par ailleurs, il serait également intéressant de proposer
des heuristiques primales afin d’identifier plus facilement de bonnes solutions réalisables
pour les algorithmes de coupes et branchements, aussi bien que les algorithmes de
génération de colonnes et branchements. Enfin, nous souhaiterions également étudier
d’autres versions du problème de dimensionnement de réseaux multi-couches, telle que
la version robuste (avec incertitude sur les demandes, etc.). En effet, bien que la prise
en compte des incertitudes sur les demandes de trafic ait déjà été bien étudiée pour les
réseaux à une seule couche, à notre connaissance, il n’existe pas de travaux considérant
la version robuste du problème de dimensionnement pour deux ou plusieurs couches de
réseaux.
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Introduction

User demand in traffic has increased significantly during the last decades. Nowadays
telecommunication networks are already reaching their limits, and it is necessary to
upgrade their transport capacity. Indeed, the arising of new services, mainly driven by
internet applications and multimedia contents, requires more flexible and cost-effective
network infrastructures. To overcome this explosive growth of traffic (estimated at
45 % per year in average [96]), telecommunication industry actors investigate new
technologies that provide a solution to the increasing capacity requirements, as well as
the flexibility needed to use smartly this capacity.

Telecommunication networks can be seen as an overlapping of multiple layers, upon
which different services may be furnished. In particular, optical fibers networks consists
of two layers : a physical layer and a virtual layer. The physical layer is based on optical
fibers, while the virtual layer supports the WDM (Wavelength Division Multiplexing)
technology. Such a process is based on a set of devices referred to as multiplexers,
interconnected by optical links, made of several wavelengths. Both layers are connected,
as the wavelengths of the virtual layer use the optical fibers of the physical layer as a
support to carry the customers traffic.

Although WDM technology is currently used to transport informations over long
distances (metropolitan areas, submarine communications cables), with wavelength
capacities of 2.5, 10 or 40Gb/s, it is not possible to reach similar distances with higher
capacities. In fact, the existence of physical phenomena also called transmission im-
pairments [28] that affect the optical fibers, highlights the difficulty of setting up higher
capacitated wavelengths on long distances. Recent innovations in optical fibers comuni-
cations concerning a new technology called Multi-band Orthogonal Frequency Division
Multiplexing (OFDM) have shown very promising results, and should enable the tran-
sition of WDM-based infrastructures to high capacitated wavelengths (100 Gb/s and
more) over long distances. OFDM is based on the division of each available wavelength
into many subwavelengths, also called subbands, this is known as Optical Multi-band
OFDM network.



2 Introduction

The initial purpose of this work was to answer some questions concerning the design
of OFDM networks, suggested by Orange Labs - France Telecom R& D engineers.
In particular, our results should enable to evaluate some performance indicators of
the OFDM technology, and provide decision making tools for the deployment of this
technology.

The combinatorial optimization tools, in particular the so called polyhedral method,
have proved their efficiency to tackle hard combinatorial problems. Initiated by Ed-
monds in the context of the matching problem [44], this technique consists in reducing
the resolution of a combinatorial problem to that of one or more linear programs. This
is based, in particular, on giving a complete (or a partial) description of the polytope of
solutions with a system of linear inequalities. The polyhedral approach has been proved
to be very efficient when applied to many combinatorial optimization problems such
as the Traveling Salesman Problem, the Network Design Problem and the Max-Cut
Problem.

A critical aspect of emerging multilayer and multi-technology infrastructures is the
efficient resources deployment and utilization. Despite the fact that underlying network
design problems have been widely studied for single-layer networks, they still constitute
very interesting issues in the context of multilayer networks. Thereby, network design
problems consists in general to identify the number of modular capacities to install over
the links in order to meet the traffic demand. In the context of multilayer networks,
one has to consider the relationship between both layers, in addition to the classical
constraints.

In this thesis, we study a capacitated network design problem for both single-layer
and multilayer telecommunication networks, within a polyhedral context. We give sev-
eral models for the considered problems and investigate the properties of the associated
polyhedra. We highlight the relationship between these problems and other well-know
combinatorial optimization problems. We devise Branch-and-Cut and Branch-and-
Price algorithms for their resolution. We conduce several series of experiments on
random, realistic and real networks, of great interest for Orange Labs. The obtained
results show empirically the efficiency of our approaches.

This dissertation is organized as follows. In Chapter 1, we present basic notions
of combinatorial optimization. This chapter also includes a state-of-the-art on com-
munication network design problems. Chapter 2 introduces the practical context of
the problems treated in the thesis. In this chapter some generalities on multilayer
communication networks are given and emphasis is put on optical networks coordinat-
ing WDM and OFDM multi-band technologies. Chapters 3 and 4 concern the first
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considered capacitated network design problem, that is Capacitated Single-Layer Net-
work Design (CSLND) problem. Chapter 5 discuss the multilayer version of the first
problem, namely Optical Multi-Band Network Design (OMBND) problem, and study
the associated polyhedron. Chapters 6 and 7 are dedicated to the algorithmic aspects
related to two exact algorithms we developed to solve OMBND problem.
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Preliminaries and State-of-the-Art
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This chapter is dedicated to the presentation of some preliminary notions concerning
combinatorial optimization, exact approaches and polyhedra. In particular, we give an
overview of cutting planes and column generation methods as well as Branch-and-Cut
and Branch-and-Price algorithms. We then give some basic definitions in graph theory
and introduce some notations and terminology that will be used throughout the disser-
tation. Finally, we give a state-of-the-art on the capacitated network design problem.
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1.1 Combinatorial optimization

Combinatorial Optimization is a branch of operations research related to computer
science and applied mathematics. Its purpose is the study of optimization problems
where the set of feasible solutions is discrete or can be represented as a discrete one.
Typically, the problems concerned with combinatorial optimization are those formu-
lated as follows. Let E = {e1, . . . , en} be a finite set called basic set where each element
ei is associated with a weight c(ei). Let F be a family of subsets of E. If F ∈ F, then
c(F ) =

∑
ei∈F

c(ei) denotes the weight of F . The problem consists in identifying an
element F ∗ of F whose weight is minimum or maximum. In other words,

min(ormax){c(F ) : F ∈ F}.

Such a problem is called combinatorial optimization problem. The set F represents
the set of feasible solutions of the problem.

The term combinatorial refers to the discrete structure of F. In general, this structure
is represented by a graph. The term optimization signifies that we are looking for the
best element in the set of feasible solutions. This set generally contains an exponential
number of solutions, therefore, one can not expect to solve a combinatorial optimization
problem by exhaustively enumerate all its solutions. Such a problem is then considered
as a hard problem.

Various effective approaches have been developed to tackle combinatorial optimiza-
tion problems. Some of these approaches are based on graph theory, while others use
linear and non-linear programming, integer programming and polyhedral approach.
Besides, several practical problems arising in real life, can be formulated as combina-
torial optimization problems. Their applications are in fields as diverse as telecommu-
nications, transport, industrial production planing or staffing and scheduling in airline
companies. Over the years, the discipline got thus enriched by the structural results
related to these problems. And, conversely, the progress made in computed science
have made combinatorial optimization approaches even more efficient on real-world
problems.

In fact, combinatorial optimization is closely related to algorithm theory and compu-
tational complexity theory as well. The next section introduces computational issues
of combinatorial optimization.
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1.2 Computational complexity

Computational complexity theory is a branch of theoretical computer science and math-
ematics, whose study started with works of Cook [35], Edmonds [43] and Karp [70]. Its
objective is to give a classify a given problem depending on its difficulty. A plentiful
literature can be find on this topic, see for example [51] for a detailed presentation of
NP-completeness theory.

A problem is a question having some input parameters, and to which we aim to find
an answer. A problem is defined by giving a general description of its parameters,
and by listing the properties that must be satisfied by a solution. An instance of
the problem is obtained by giving a specific value to all its input parameters. An
algorithm is a sequence of elementary operations that allows to solve the problem for
a given instance. The number of input parameters necessary to describe an instance
of a problem is the size of that problem.

An algorithm is said to be polynomial if the number of elementary operations nec-
essary to solve an instance of size n is bounded by a polynomial function in n. We
define the class P as the class gathering all the problems for which there exists some
polynomial algorithm for each problem instance. A problem that belongs to the class
P is said to be "easy" or "tractable".

A decision problem is a problem with a yes or no answer. Let P be a decision problem
and I the set of instances such that their answer is yes. P belongs to the class class
NP (Nondeterministic Polynomial) if there exists a polynomial algorithm allowing to
check if the answer is yes for all the instances of I. It is clear that a problem belonging
to the class P is also in the class NP . Although the difference between P and NP has
not been shown, it is a highly probable conjecture.

In the class NP , we distinguish some problems that may be harder to solve than
others. This particular set of problems is called NP-complete. To determine whether
a problem is NP-complete, we need the notion of polynomial reducibility. A decision
problem P1 can be polynomially reduced (or transformed) into an other decision prob-
lem P2, if there exists a polynomial function f such that for every instance I of P1,
the answer is "yes" if and only if the answer of f(I) for P2 is "yes". A problem P in
NP is also NP-complete if every other problem in NP can be reduced into P in poly-
nomial time. The Satisfiability Problem (SAT) is the first problem that was shown to
be NP-complete (see [35]).

With every combinatorial optimization problem is associated a decision problem.
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Furthermore, each optimization problem whose decision problem is NP-complete is
said to be NP-hard. Note that most of combinatorial optimization problems are NP-
hard. One of the most efficient approaches developed to solve those problems is the
so-called polyhedral approach.

1.3 Polyhedral approach and Branch-and-Cut

1.3.1 Elements of polyhedral theory

The polyhedral method was initiated by Edmonds in 1965 [44] for a matching problem.
It consists in describing the convex hull of problem solutions by a system of linear
inequalities. The problem reduces then to the resolution of a linear program. In
most of the cases, it is not straightforward to obtain a complete characterization of
the convex hull of the solutions for a combinatorial optimization problem. However,
having a system of linear inequalities that partially describes the solutions polyhedron
may often lead to solve the problem in polynomial time. This approach has been
successfully applied to several combinatorial optimization problems. In this section,
we present the basic notions of polyhedral theory. The reader is referred to works of
Schrijver [99] and [79].

We shall first recall some definitions and properties related to polyhedral theory.

Let n be a positive integer and x ∈ Rn. e say that x is a linear combination of x1,
x2, . . ., xm ∈ Rn if there exist m scalar λ1, λ2, . . ., λm such that x =

∑m
i∈1 λixi. If∑m

i=1 λi = 1, then x is said to be a affine combination of x1, x2, . . ., xm. Moreover, if
λi ≥ 0, for all i ∈ {1, . . . , m}, we say that x is a convex combination of x1, x2, . . ., xm.

Given a set S = {x1, . . . , xm} ∈ Rn×m, the convex hull of S is the set of points x ∈ Rn

which are convex combination of x1, . . ., xm (see Figure 1.1), that is

conv(S) = {x ∈ Rn|x is a convex combination of x1, . . . , xm}.

The points x1, . . ., xm ∈ Rn are linearly independents if the unique solution of the
system

∑m
i=1 λixi = 0 is λi = 0, for all i ∈ {1, . . . , m}. They are affinely independent

if the unique solution of the system

m∑

i=1

λixi = 0,

m∑

i=1

λi = 1,
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elements of S

conv(S)

Figure 1.1: A convex hull

is λi = 0, i = 1, . . ., m.

A polyhedron P is the set of solutions of a linear system Ax ≤ b, that is P =
{x ∈ Rn|Ax ≤ b}, where A is a m-row n-columns matrix and b ∈ Rm. A polytope is a
bounded polyhedron. A point x of P will be also called a solution of P .

A polyhedron P is said to be of dimension p if it has at most p+1 affinely independent
solutions. We denote it by dim(P ) = p. We also have that dim(P ) = n - rank(A=),
where A= is the submatrix of A of inequalities that are satisfied with equality by all
tje solutions of P (implicit equalities). The polyhedron P is full dimensional if dim(P )

= n.

An inequality ax ≤ α is valid for a polyhedron P ⊆ Rn if for every solution x ∈ P ,
ax ≤ α. This inequality is said to be tight for a solution x ∈ P if ax = α. The
inequality ax ≤ α is violated by x ∈ P if ax > α. Let ax ≤ α be a valid inequality for
the polyhedron P . F = {x ∈ P |ax = α} is called a face of P . We also say that F is a
face induced by ax ≤ α. If F 6= ∅ and F 6= P , we say that F is a proper face of P . If
F is a proper face and dim(F ) = dim(P )− 1 , then F is called a facet of P . We also
say that ax ≤ α induces a facet of P or is a facet defining inequality.

If P is full dimensional, then ax ≤ α is a facet of P if and only if F is a proper
face and there exists a facet of P induced by bx ≤ β and a scalar ρ 6= 0 such that
F ⊆ {x ∈ P |bx = β} and b = ρa.

If P is not full dimensional, then ax ≤ α is a facet of P if and only if F is a proper
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face and there exists a facet of P induced by bx ≤ β, a scalar ρ 6= 0 and λ ∈ Rq×n

(where q is the number of lines of matrix A=) such that F ⊆ {x ∈ P |bx = β} and
b = ρa+ λA=.

An inequality ax ≤ α is essential if it defines a facet of P . It is redundant if the
system A′x ≤ b′} obtained by removing this inequality from Ax ≤ b defines the same
polyhedron P . This is the case when ax ≤ α can be written as a linear combination
of inequalities of the system A′x ≤ b′. A complete minimal linear description of a
polyhedron consists of the system given by its facet defining inequalities and its implicit
equalities.

A solution is an extreme point of a polyhedron P if and only if it cannot be written
as the convex combination of two different solutions of P . It is equivalent to say that x
induces a face of dimension 0. The polyhedron P can also be described by its extreme
points. In fact, every solution of P can be written as a convex combination of some
extreme points of P .

Figure 1.2 illustrates the main definitions given is this section.

P

non−valid

valid

extreme points

valid 
proper face
facet

valid
proper face
but not facet

Figure 1.2: Valid inequality, facet and extreme points
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1.3.2 Cutting plane method

Now let P be a combinatorial optimization problem, E its basic set, c(.) the weight
function associated with the variables of P and S the set of feasible solutions. Suppose
that P consists in finding an element of S whose weight is maximum. If F ⊆ E, then
the 0-1 vector xF ∈ RE such that xF (e) = 1 if e ∈ F and xF (e) = 0 otherwise, is called
the incidence vector of F . The polyhedron P (S) = conv{xS|S ∈ S} is the polyhedron
of the solutions of P or polyhedron associated with P. P is thus equivalent to the linear
program max{cx|x ∈ P (S)}. Notice that the polyhedron P (S) can be described by a
set of a facet defining inequalities. And when all the inequalities of this set are known,
then solving P is equivalent to solve a linear program.

Recall that the objective of the polyhedral approach for combinatorial optimization
problems is to reduce the resolution of P to that of a linear program. This reduction
induces a deep investigation of the polyhedron associated with P. It is generally not
easy to characterize the polyhedron of a combinatorial optimization problem by a
system of linear inequalities. In particular, when the problem is NP-hard there is a
very little hope to find such a characterization. Moreover, the number of inequalities
describing this polyhedron is, most of the time, exponential. Therefore, even if we
know the complete description of that polyhedron, its resolution remains in practice a
hard task because of the large number of inequalities.

Fortunately, a technique called the cutting plane method can be used to overcome
this difficulty. This method is described in what follows.

The cutting plane method is based on the so-called separation problem. This consists,
given a polyhedron P of Rn and a point x∗ ∈ Rn, in verifying whether if x∗ belongs
to P , and if this is not the case, to identify an inequality aTx ≤ b, valid for P and
violated by x∗. In the later case, we say that the hyperplane aTx = b separates P and
x∗ (see Figure).

Grötschel, Lovász and Schrijver [57] have established the close relationship between
separation and optimization. In fact, they prove that optimizing a problem over a
polyhedron P can be performed in polynomial time if and only if the separation problem
associated with P can be solved in polynomial time. This equivalence has permitted
an important development of the polyhedral methods in general and the cutting plane
method in particular. More precisely, the cutting plane method consists in solving
successive linear programs, with possibly a large number of inequalities, by using the
following steps. Let LP = max{cx, Ax ≤ b} be a linear program and LP ′ a linear
program obtained by considering a small number of inequalities among Ax ≤ b. Let
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P

x∗

ax ≥ α

Figure 1.3: A hyperplan separating x∗ and P

x∗ be the optimal solution of the latter system. We solve the separation problem
associated with Ax ≤ b and x∗. This phase is called the separation phase. If every
inequality of Ax ≤ b is satisfied by x∗, then x∗ is also optimal for LP . If not, let ax ≤ α

be an inequality violated by x∗. Then we add ax ≤ α to LP ′ and repeat this process
until an optimal solution is found. Algorithm 1 summarizes the different cutting plane
steps.

Algorithm 1: A cutting plane algorithm
Data: A linear program LP and its system of inequalities Ax ≤ b

Result: Optimal solution x∗ of LP
Consider a linear program LP ′ with a small number of inequalities of LP ;
Solve LP ′ and let x∗ be an optimal solution;
Solve the separation problem associated with Ax ≤ b and x∗;
if an inequality ax ≤ α of LP is violated by x∗ then

Add ax ≤ α to LP ′;
Repeat step 2 ;

end

else

x∗ is optimal for LP ;
return x∗;

end
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Note that at the end, a cutting-plane algorithm may not succeed in providing an
optimal solution for the underlying combinatorial optimization problem. In this case
a Branch-and-Bound algorithm can be used to achieve the resolution of the problem,
yielding to the so-called Branch-and-Cut algorithm.

1.3.3 Branch-and-Cut algorithm

Consider again a combinatorial optimization problem P and suppose that P is equiv-
alent to max{cx|Ax ≤ b, x ∈ {0, 1}n}, where Ax ≤ b has a large number of inequali-
ties. A Branch-and-Cut algorithm starts by creating a Branch-and-Bound tree whose
root node corresponds to a linear program LP0 = max{cx|A0x ≤ b0, x ∈ Rn}, where
A0x ≤ b0 is a subsystem of Ax ≤ b having a small number of inequalities. Then
we solve the linear relaxation of P that is LP = {cx|Ax ≤ b, x ∈ Rn} using a cut-
ting plane algorithm whose starting from LP0. Let x∗

0 denote its optimal solution and
A′

0x ≤ b′0 the set of inequalities added to LP0 at the end of the cutting plane phase.
If x∗

0 is integral, then it is optimal. If x∗
0 is fractional, then we perform a branching

phase. This step consists in choosing a variable, say x1, with a fractional value and
adding two nodes P1 and P2 in the Branch-and-Cut tree. The node P1 corresponds to
the linear program LP1 = max{cx|A0x ≤ b0, A

′
0x ≤ b′0, x

1 = 0, x ∈ Rn} and LP2 =
max{cx|A0x ≤ b0, A

′
0x ≤ b′0, x

1 = 1, x ∈ Rn}. We then solve the linear program LP 1

= max{cx|Ax ≤ b, x1 = 0, x ∈ Rn} (resp., LP 2 = max{cx|Ax ≤ b, x1 = 1, x ∈ Rn}) by
a cutting plane method, starting from LP1 (resp. LP2). If the optimal solution of LP 1

(resp. LP 2) is integral then, it is feasible for P. Its value is then a lower bound of the
optimal solution of P, and the node P1 (resp. P2) becomes a leaf of the Branch-and-Cut
tree. If the solution is fractional, then we select a variable with a fractional value and
add two children to the node P1 (resp. P2), and so on.

Note that sequentially adding constraints of type xi = 0 and xi = 1, where xi is a
fractional variable, may lead to an infeasible linear program at a given node of the
Branch-and-Cut tree. Or, if it is feasible, its optimal solution may be worse than the
best known lower bound of the problem. In both cases, that node is pruned from the
Branch-and-Cut tree. The algorithm ends when all nodes have been explored and the
optimal solution of P is the best feasible solution given by the Branch-and-Bound tree.

This algorithm can be improved by computing a good lower bound of the optimal
solution of the problem before it starts. This lower bound can be used by the algorithm
to prune the node which will not allow an improvement of this lower bound. This
would permit to reduce the number of nodes generated in the Branch-and-Cut tree,
and hence, reduce the time used by the algorithm. Furthermore, this lower bound
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may be improved by comparing at each node of the Branch-and-Cut tree a feasible
solution when the solution obtained at the root node is fractional. Such a procedure is
referred to as a primal heuristic. It aims to produce a feasible solution for P from the
solution obtained at a given node of the Branch-and-Cut tree, when this later solution
is fractional (and hence infeasible for P). Moreover, the weight of this solution must be
as best as possible. When the solution computed is better than the best known lower
bound, it may significantly reduce the number of generated nodes, as well as the CPU
time. Moreover, this guarantees to have an approximation of the optimal solution of
P before visiting all the nodes of Branch-and-Cut tree, for example when a CPU time
limit has been reached.

The Branch-and-Cut approach has shown a great efficiency to solve various problems
of combinatorial optimization that are considered difficult to solve, such as the Travel-
ling Salesman Problem [7]. Note a good knowledge of the polyhedron associated with
the problem, together with efficient separation algorithms (exacts as well as heuristics),
might help to improve the effectiveness of this approach. Besides, the cutting plane
method is efficient when the number of variables is polynomial. However, when the
number of variables is large (for example exponential), further methods, as column
generation are more likely to be used. In what follows, we briefly introduce the outline
of this method.

1.4 Column generation and Branch-and-Price

Compact formulations of combinatorial optimization problems often provide a weak
linear relaxation. Those problems require then further formulations, whose linear re-
laxation is closer to the convex hull of feasible solutions. Those reformulations may
have a huge number of variables, so that one can not consider them explicitly in the
model. we describe a method that suits well to such reformulation, that is the so-called
column generation method.

1.4.1 Column generation procedure

The column generation method is used to solve linear programs with a huge number
of variables only by considering a few number among these variables. This method
was pioneered by Dantzig and Wolfe in 1960 [37] in order to solve problems that could
not be handled efficiently because of their size (CPU time and memory consumption).



1.4 Column generation and Branch-and-Price 15

Column generation is generally used either for problems whose structure is suitable for a
Dantzig-Wolfe decomposition, or for problems with a large number of variables. Gilmore
and Gomory [52, 53] used this method to solve a cutting stock problem belonging to
the later class.

The overall idea of column generation is to solve a sequence of linear programs with
a restricted number of variables (also referred to as columns). The algorithm starts by
solving a linear program having a small number of variables, and such that a feasible
solution for the original problem may be identified using this basis. At each iteration
of the algorithm, we solve the so-called pricing problem whose objective is to identify
the variables which must enter the current basis. These variables are characterized by
a negative reduced cost. The reduced cost associated with a variable is computed using
the dual variables associated with the constraints of the problem. We then solve the
linear program obtained by adding the generated variables, and repeat the procedure
until no variable with reduced cost can be identified by the pricing problem. In this
case, the solution obtained from the last restricted program is optimal for the original
model. The main step of column generation procedure is summarized in Algorithm 2.

Algorithm 2: A column generation algorithm

Data : A linear program MP (Master Problem) with a huge number of variables
Output : optimal solution x∗ of MP

1: Consider a linear program RMP (Restricted Master Problem) including only a
small subset of variables of the MP;
2: Solve RMP and let x∗ be an optimal solution;
3: Solve the pricing problem associated with the dual variables obtained by the
resolution of the RMP;
4: If there exists a variable x with a negative reduced cost then;
5: add x to RMP.
6: go to 2.
7: else

8: x∗ is optimal for MP.
9: return x∗.

The column generation method can be seen as the dual of the cutting plane method
since it adds columns (variables) instead of rows (inequalities) in the linear program.
Furthermore, the pricing problem may be NP-hard. One can then use heuristic pro-
cedures to solve it. For more details on column generation algorithms, the reader is
referred to [103, 40, 75].
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1.4.2 Branch-and-Price algorithm

The solution obtained by a column generation procedure may not be integer. There-
fore, to solve an integer programming problem, the column generation method has to
be integrated within a Branch-and-Bound framework. This is known a Branch-and-
Price algorithm. Branch-and-Price is similar to Branch-and-Cut approach, except that
procedure focuses on column generation rather than row generation. In fact, gener-
ating variables (pricing) and adding inequalities (cutting plane) are complementary
operations to strengthen the linear relaxation of a integer programming formulation.

The Branch-and-Price procedure works as follows. Each node of the Branch-and-
Bound tree is solved by column generation, so that variables may be added to improve
the linear relaxation of the current LP. The branching phase occurs when no columns
price out to enter the basis and the solution of the linear program is not integer.

Branch-and-Price approaches have been widely used in the literature to solve large
scale integer programming problems. The applications are in various fields, and even
real life problems such as Cutting stock problem [6], Generalized Assignment Problem
(GAP) [98], Airline Crew Scheduling [15], Multi-commodity Flow Problems [16], etc.

Note that, at each node of the Branch-and-Price tree, column generation may be
combined with cutting plane approach, to tighten the LP relaxation of the problem. In
this case, the algorithm is called Branch-and-Cut-and-Price algorithm. Such a method
can be difficult to handle, since adding valid inequalities to the initial model may
change the structure and complexity of the pricing problem. However, some successful
applications of this algorithm can be found in the literature (see [95], [16] for instance).

1.5 Graph theory

In this section we will introduce some basic definitions and notations of graph theory
that will be used throughout the chapters of this dissertation. For more details, we
refer the reader to [99].

A graph is denoted G = (V,E) where V is the set of vertices or nodes and E is the
set of edges. If e ∈ E is an edge with end initial end node u and terminal end node
v, we may also use both notations uv or (u, v) to denote e. Given two node subsets T

and T ′ of V , we denote by [T, T ′] the set of edges such that their origins are in T and
their destinations are in T ′. We let T denote the subset V \ T . If T ′ = T , then [T, T ′]
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is called a cut, and will be denoted by δ(T ). Similarly, we denote by δ(T ) the set of
edges having their origins in T and destinations in T .

The graphs considered here are directed, finite, loopless and may include multiple
arcs.

A directed graph or digraph is denoted G = (V,A) where V is the set of vertices or
nodes and A is the set of arcs. If a ∈ A is an arc with origin node u and destination
node v, we may also use both notations uv or (u, v) to denote a. The graph G is said
to be complete if there exists an arc between each pair of nodes (u, v). Given two node
subsets T and T ′ of V , we denote by [T, T ′] the set of arcs such that their origins are
in T and their destinations are in T ′. We let T denote the subset V \ T . If T ′ = T ,
then [T, T ′] is called a directed cut or dicut, and will be denoted by δ+(T ). Similarly,
we denote by δ−(T ) the set of arcs having their origins in T and destinations in T (see
Figure 1.4).

δ+G(T )

δ−G(T )

T V \ T

Figure 1.4: Directed cuts

If T = {u}, where u is a node of V , then we denote by δ+(u) and δ−(T ) the directed
cuts δ+({u}) and δ−({u}), respectively. Arcs of δ+(u) and δ−(u) are said to be incidents
to u. If s and t are two nodes of G such that s ∈ T and t ∈ T , we may refer to δ+(T )

and δ−(T ) as st-dicuts of G.

G is said to be a bidirected graph if for each arc uv of A, there also exists an arc vu

in A. Two arcs a, a′ are called parallel arcs if a = uv = a′ (they have the same origin
and destination nodes). They are said to be antiparallel if a = uv and a′ = vu. A pair
(u, v) occurring more than once in A is called a multiple arc. We may refer to each
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occurrence of (u, v) as a copy of arc uv. If a ∈ A is a multiple arc, then we let the pair
(a, i), i ∈ Z+, denote the ith copy of a.

Let G′ = (V ′, A′) be a subgraph of G, with V ′ ⊆ V and A′ ⊆ A. If c(.) is a weight
function associates with an arc a ∈ A the weight c(a), then the total weight of G′ is
c(A′) =

∑
a∈A′ c(a).

In what follows, we will use the graph as a subscript. In other words, we will write
δ+G(T ), δ

−
G(T ), whenever the considered graphs may not be clearly deduced from the

context.

We define a path in a directed graph G as an alternate sequence of of arcs (u1, a1,

u2, . . . , ul, al, ul+1), with ai = (ui, ui+1), for i = 1, ..., l. u1 and ul+1 will be called
endnodes of the path. A path is denoted either by its node sequence (u1, . . . , ul+1), or by
its arc sequence (a1, a2, . . . , al). Throughout this manuscript, we will use the notation
{a1, . . . , al} to designate a path. We will use the notation {(a1, i1), (a2, i2), . . . , (al, il)}
to designate a path in a graph with multiple arcs. This notations specifies the copy of
each arc used in the path.

Given a directed graph G = (V,A). G is said to be connected if for every pair of
nodes (u, v) there exists at least one path between u and v. Let s, t be two nodes of V ,
then two st-paths are arc-disjoint if they have no arc in common. If each arc of G is
assigned a capacity, we define an st-flow as a nonnegative real-valued function on the
arcs of G, satisfying the "flow conservation law" and such that the flow on an arc does
not exceed the capacity of that arc.

Note that for seek of clarity, and all along the subsequent chapters, we will represent
edges instead of antiparallel arcs in the figures showing bidirected graphs.

1.6 State-of-the-art on network design problems

Network Design has become a flourishing area and many problem variants have been
considered in the literature. In this section we discuss two important families of prob-
lems related with network design field. We first introduce a general and widely studied
design problem arising in telecommunication networks. Then, we present a version of
this problem that takes into account the evolution of networks architecture towards a
multilayer structure.
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1.6.1 The network design problem

Network planning problems have several applications, specifically in telecommunication
industry. They consists in choosing the capacities to be installed on the network links,
so that they can carry the traffic demand flowing in the network. We assume that
demands between pairs of origin and destination of a given network are input data.
Assume that a set of modular capacities are available. The capacities have a limited
value, and their installation yields a certain cost, which is positive. The network design
problem is then to determine the number of capacities to set up on the network, so
that the traffic demands can be met and the total cost is minimum.

Let G = (V,E) be a finite and undirected graph, where V represent the set of network
nodes and E is the set of edges. We denote by Q the set of commodities or demands.
For every k ∈ Q, O(k) denotes the origin node of k, D(k) its destination node, and uk

its amount of traffic. Let bij be the cost of installing a modular capacity C on edge ij.
Let us denote by fk

ij the flow of commodity k using the edge ij from i to j. Let yij be
an integer variable that is the number of capacities of size C installed on edge ij.

The Network Design Problem is then equivalent to the following mixed integer pro-
gramming formulations

min
∑

ij∈E

bijyij

∑

j∈V

fk
ij −

∑

j∈V

fk
ji =






−uk, if i = O(k),

uk, if i = D(k),

0, otherwise,

∀i ∈ V, ∀k ∈ Q, (1.1)

∑

k∈Q

(fk
ij + fk

ji) ≤ Cyij, ∀ij ∈ E, (1.2)

yij ≥ 0, ∀ij ∈ E, (1.3)

yij entier , ∀ij ∈ E, (1.4)

fk
ij , f

k
ji ≥ 0, ∀ij ∈ E, ∀k ∈ Q. (1.5)

Inequalities (1.1) are called flow conservation constraints. Inequalities (1.2) are ca-
pacity constraints. Inequalities (1.3) and (1.5) are nonnegativity constraints, while
(1.4) are the integrity constraints.

This problem is also referred to as Network Loading Problem or Capacitated Network
Design (CND) Problem, and has been investigated in many works. In [77], Magnanti,
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Mirchandani and Vachani study two relaxations of CND problem. The first one is
induced by the restriction of the problem to a single edge of the graph. They introduce a
new class of valid inequalities, namely the arc-residual capacity inequalities. The second
subproblem restricts the graphs to three nodes. This restriction allows to introduce
further valid inequalities, namely 3-partition inequalities.

Bienstock and Muratore [22] the CND problem with survivability requirements. They
have considered the cutset polyhedron associated with the problem, and studied its ex-
treme points. They described several lifting procedures to derive general facet defining
inequalities for this polyhedron.

Further versions of the problem have been studied. In fact, Magnanti, Mirchandani,
and Vachani [77] study an extension of CND to the case of two facilities. In particular,
they consider low capacity type and high capacity type. Moreover, traffic demands
may be known in advance or submitted to uncertainty, the later is known as the
Robust Network Design problem [84, 19]. In this work, we assume that the facilities
have the same capacity and that traffic demands are reliably estimated, since several
telecommunication operators use forecast traffic matrix for the design of their networks.
The commodities are said to be unsplittable if their traffic value can not be divided
along several paths, a unique path is then associated with each commodity for its
routing. They are said to be splittable otherwise. In [71] authors analyse the network
design problem with survivability requirements. They examine some of the models
proposed in the literature for this problem as well as the methods developed to solve
them.

1.6.2 The multilayer network design problem

More recently, the evolution of telecommunication networks has led some authors to
turn themselves towards problems related to multilayer networks. In its most general
form, the multilayer network design can be defined as follows [83].

Definition 1 Given a multilayer network where each layer is represented by a graph
Gi = (Vi, Ei), and a traffic matrix given in the last layer, such that

(i) nodes in layer i + 1 are a subset of nodes in layer i, that is to say Vi+1 ⊆ Vi,

(ii) an edge e ∈ Ei+1 corresponds to a path in layer i between its endpoints,

(iii) commodities are routed in the last layer,
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(iv) capacities installed on layer i + 1 define demands for layer i,

We wish to determine the capacities to be installed over edges of all layers, so that the
traffic is routed and the total cost is minimum.

Actually, the problem of designing layered networks have been studied first by Dahl
and Stoer in [49]. Authors wish to set up a set of virtual links referred to as "pipes"
on the physical layer. They propose an integer linear programming formulation based
on cut constraints for the problem. They study the associated polytope and provide
several classes of valid inequalities that define facets under some conditions which are
described. Authors also provide a cutting planes based algorithm embedding their
theoretical results.

Earlier works on this topic address the problem of designing virtual layer over an
existing infrastructure. They take into account engineering constraints such as traffic
multiplexing and assignment of wavelengths to the virtual links. In [111, 62], authors
give decompositions of the problem in several subproblems solved sequentially. In [61],
authors provide a heuristic approach to solve SDH over WDM network design. They
develop several procedures based on greedy algorithms, random start heuristic as well
as a metaheuristic based on a GRASP (greedy randomized adaptive search procedure)
algorithm.

Additional works consider exact methods for different variants of the multilayer net-
work design. In fact, in [87], Orlowski et al. propose an cutting plane approach
for solving two-layer network design problems, using different MIP-based heuristic al-
lowing to find good solutions early in the Branch-and-Cut tree. Belotti et al. [17]
investigate the design of multilayer networks in the context of MPLS networks. They
propose a mathematical programming formulation based on paths, that takes into ac-
count technical operations in MPLS technology for processing traffic demands, called
statistical traffic multiplexing. They apply a Lagrangian relaxation working with a
column generation procedure to solve their model. We also cite a more recent work
of Raghavan and Stanojević [94] that study the two-layer network design arising in
WDM optical networks. They consider the non-splittable traffic demands and propose
a path based formulation for the problem. They provide an exact Branch-and-Price
algorithm which solves simultaneously the WDM topology design and the traffic rout-
ing. In [88], Orlowski et al. address the problem of planning multilayer SDH/WDM
networks. They consider the minimum cost installation of link and node hardware for
both layers, under various practical constraints such as heterogeneity of traffic bit-rates,
node capacities and survivability issues. They propose a mixed integer programming
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formulation and develop a Branch-and-Cut algorithm using strong inequalities, from
the single-layer network design problem, to solve it. In [48], Fortz and Poss study the
multi-layered network design problem. They propose a Branch-and-Cut algorithm to
solve a capacity formulation based on the so-called metric inequalities, enhancing the
results obtained by Knippel and Lardeux in [73] for the same formulation. In [83],
Mattia studies two versions of the two-layer network design problem. The author was
particularly interested in capacity formulations for both versions and investigates the
associated polyhedron. Some polyhedral results are provided for both versions of the
problem, specifically proving that tight metric inequalities [11] define all the facets of
the considered polyhedra. The author show how to extend these polyhedral results to
an arbitrary number of layers. In [26], Borne et al. study the problem of designing an
IP-over-WDM network with survivability against failures of the links. They conduce
a polyhedral study of the problem and give several facet defining valid inequalities,
and propose a Branch-and-Cut algorithm to solve the problem. Further results on
survivability in multilayer network design can be found in [100], where author high-
light the close relationship between the design of survivable network and the Steiner
travelling salesman problem. Several formulations are proposed for the problem and
exact algorithms are developed to solve them.

The capacitated single-layer network design has receive a lot of attention in the lit-
erature, and the associated polyhedron was studied in details. Yet the investigation
of capacitated multilayer network design problems received only a limited attention,
specifically in a polyhedral point of view. In this thesis we consider the dimensioning
aspect in both single-layer and multilayer network design problems. Unlike the previ-
ously cited works, we consider here that the commodities can not be split along several
routing paths or even several facilities of the same path. This assumption, together
with additional requirements related to OFDM multi-band technology, further compli-
cates both problems. In the following chapter, we address a variant of the capacitated
network design problem.
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Multilayer Optical Networks
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This preliminary chapter, intends to give a brief outline on the evolution of telecom-
munication networks. We seek for giving here some key notions to understand the
technical requirements that fall within the definition of problems studied in this thesis.
In particular, we first give some elements concerning multilayer optical networks. We
then focus on optical WDM technology and the infrastructures used in optical fibre based
networks. We finally introduce new paradigms that will guide the evolution of WDM
networks towards greater flexibility.
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2.1 Optical networks : a layered structure

Telecommunication networks have continually evolved since their introduction. This
evolution has been mainly driven by the increase and diversification of user traffic and
services. Emerging paradigm for present and future telecommunication networks are
based on a multilayer representation of the networks, where different technologies are
able to provide various services to the customers. Each layer has a specific functionality
and provides a service to the layer above.

The transmission of information between the different layers is governed by various
protocols. A protocol can be defined as a formal description of the conventions and
rules that are used by a layer to manage data traffic and ensure the interactions with the
other layers. These protocols have been classified by the ISO (International Standard-
ization Organization), that proposed a model with seven layers, called the OSI (Open
Systems Interconnection) model (see Figure 2.1). Even though this model constitutes

Upper Layer

Lower Layer

Figure 2.1: Reference model OSI

a reference allowing to understand the earlier multilayer network representations, it
remains relevant only in a theoretical point of view. In practice, there are generally
less than seven layers, and each layer may ensure several functionalities.

Basically, most commons architectures are composed by an IP layer overlying and
ATM, which is itself placed on a SDH support. The IP (Internet Protocol) layer is used
as a platform for users’ applications, ATM (Asynchronous Transfer Mode) for traffic
engineering, flow control and carrying different QoS (Quality of Service) support. ATM
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flows are then sent on SDH (Synchronous Digital Hierarchy), and finally over WDM
(Wavelength Division Multiplexing) fibres.

Fiber Fiber Fiber

Figure 2.2: Towards IP-over-WDM architecture

This architecture results from a progressive evolution, yet it suffers from a deficiency
in flexibility to cope with the constant growth of traffic [74]. It has also been proposed
an overlaying concept based on transmitting IP over MPLS (Multiple Label Switching
Protocol). IP over MPLS flows are sent on SDH, which is itself sending flows on WDM
fibre. Note that the first and second approaches are widely deployed on nowadays
networks. However, a third approach appears progressively as the solution to which
today’s networks will converge. This solution consists in employing IP directly over
WDM, and thus to get profit from the huge capacity of optical fibres to soak up the
traffic generated by IP layer. Although this solution seems to be the most efficient,
it requires that either IP or WDM have the capability to manage all the restoration
functions carried by SDH layer, as well as traffic engineering functions of ATM layer,
in previous models.

To overcome this difficulty, telecommunication operators had the idea to use the
control protocols such as MPLS (Multi-Protocol Label Switching) and the GMPLS
(Generalized-MPLS) [80]. These protocols allow the implementation of the traffic en-
gineering in the IP layer (at the packet level) and in the optical layer (at the wavelength
level), and hence the ATM can be removed from the network. Similarly, many func-
tions of the SDH can be transferred to the optical layer. However, some functionalities
such as processing data can not be moved down to the WDM layer, thus a restricted
SDH layer ensured some necessary functionalities must remain. The three approaches
of IP-over-WDM networks can be seen in Figure 2.2.
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2.2 Optical WDM networks

2.2.1 Architecture

An optical telecommunication network is composed by a set of devices interconnected
by a set of links so as to enable data exchange between the nodes. Transmission and
reception of information of different type is made according to well defined rules. In
general, optical telecommunication networks are maid of three parts. The first one,
referred to as access network links the user (customer, company, etc.) to the network.
The length of links connecting the user to the first interface of the network does not
exceed a few kilometers. The second part of the network is called metropolitan or back-
haul network, and it covers a distance of few tens of kilometers. Its role is to aggregated
and route the traffic to the third part of the network, namely the core network. The
core network is the central part of telecommunication networks. It interconnects all
the the metropolitans networks, and provides various services (internet, VoD, etc.) to
the users who are connected by the access networks. This part of the network carries
out the greatest traffic amount by using most efficient technologies allowing to support
important traffic rates on long distances. Since all the metropolitan networks are con-
nected to the core network, the nodes of metropolitan networks are linked to those of
the core network via optical fibres that may reach a huge transmission capacity.

Figure 2.3: Optical network architecture
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2.2.2 WDM technology

Telecommunication operator that manages a core network use to provide point-to-
point connexions to its users. This connexions result from the aggregation of several
low bit-rate data streams, so that they have enough traffic to make a good use of the
large capacity offered by optical fibres. In what follows, we introduce the definitions
and terminology related to the fibre based communication networks, as well as their
operating principle.

2.2.2.1 Optical fibres

Optical fibre is a flexible, transparent fibre made of high quality of glass or plastic.
It can work as a waveguide to transmit light between the two ends of the fibre, by
using refraction properties. In fact, when a light beam strikes the surface at an angle
between two environments that are more or less transparent, it splits in two. The first
part is reflected while the second one is refracted, that is to say, transmitted in the
other medium when changing direction. This principle is used to guide light along an
optical fibre.

1. core: 8µm diameter

2. cladding: 125 µm diameter

3. buffer: 250 µm diameter

4. jacket: 400 µm diameter

Figure 2.4: The structure of a typical single-mode fibre

Optical fibres typically include a transparent core surrounded by a transparent cladding
material with lower index of refraction. Light is kept in the core by total internal re-
flection. Fibres that support many propagation paths or transverse modes are called
Multi-Mode Fibres (MMF) while those that only support a single mode are called
Single-Mode Fibres (SMF). This property makes the optical fibres widely used in fibre-
optic communications. Moreover, from an electromagnetic point of view, optical fibres
are quite immune to interference. As a consequence, they constitute a very good choice
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for high-speed transmissions. Another advantage of the optical fibre is safety aspect.
Indeed, it is very difficult to connect a listening cable to an optical fibre and such an
operation results in a significant drop of signal, whose cause can be easily localized.

It is possible to use several wavelengths within the same optical fibre in order to
send different signals simultaneously. Indeed, each fibre can carry many independent
channels, each one using a different wavelength of light, this is known as wavelength-
division multiplexing (WDM).

2.2.2.2 WDM transmission system

Data transmission in telecommunication networks using optical fibres is mainly based
on wavelength division multiplexing technology. Indeed, optical networks consists in a
set of nodes interconnected by several cables, each one containing up to tens of optical
fibres.

Thanks to WDM, several distinct wavelengths may share the same optical fibre,
and then to perform high bit-rate data stream transmission without being subject to
interferences. The nodes have the capability to multiplex or to combine a number of
optical carrier signals onto a single optical fibre by using different wavelengths (i.e.
colors) of laser light. This technique enables bidirectional communications over one
strand of fibre, as well as multiplication of capacity.

In current core networks, WDM divides the large bandwith available in an optical
fibre into several tens of wavelengths, each one having a transport capacity of 10 Gbit/s,
40 Gbit/s or even 100 Gbit/s.

Figure 2.5: A typical WDM system
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Overall, a WDM system holds two terminal nodes. Those nodes includes several
transponders that are in the interface of emission and reception of optical signal in
WDM systems. Indeed, at each node, a transmitter sends data on a specific wavelength.
Then, a multiplexer packs the wavelengths together in order to form a unique signal that
is transmitted along a single optical fibre to the destination terminal. A demultiplexer
installed on the destination node does the inverse work. In fact, it is responsible
for splitting the signal, and returns each receiver the corresponding wavelength. A
wavelength established between two terminals is somehow a virtual link, as it connects
directly two nodes of the networks that are not necessarily neighbours (not linked by
the same optical fibre). This virtual links may also be referred to as a lightpath.

Transmission on long distances (long haul WDM) may require using additional de-
vices, referred to as optical amplifiers, since the signal may suffers from attenuation. In
general, amplifiers devices are installed each 100 kilometers in average. Although the
optical fibre offer a huge bandwidth capacity, the limitations in terms of transmission
possibilities come essentially from node architecture and functionalities.

Figure 2.5 shows an example of WDM system with three wavelengths (respectively
depicted in green, purple and red). Each wavelength is carried out by a transponder
device, and the three wavelengths are processed by the multiplexer device so as to form
a unique signal, transmitted via the outgoing fibre to the destination terminal. The
signal is then demultiplexed and gave back to the receiver transponders, which directs
each stream to the remaining routing sections.

The installation of optical amplifiers will not be considered here since it does not
affect the studied problems. Moreover, one can take into account the wavelength
routing cost, which can be expressed in terms of length of fibre based path associated
with each used wavelength.

2.2.2.3 Traffic grooming

The heterogeneity of data streams granularities raises the question of an efficient filling
of wavelengths. In fact, these low-rate traffic request may range from a few megabits up
to the full wavelength capacity. Moreover, any used wavelength induces a cost mainly
related to the transponders responsible for its emission and reception, as well as the
routing. Thus, make the best use of set up devices and transmitted wavelengths is one
the most relevant issues in optical networking. Since multiplexing and demultiplexing
are predominant features in nodes of WDM networks, it is possible to use this property
to efficiently grooming low bit-rate data streams into wavelengths. In other words,
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traffic grooming can be seen as multiplexing, demultiplexing and switching low rate
traffic streams onto high capacity lightpath [42]. Despite the fact that traffic grooming
improves the wavelength utilization in the network, it also further complicates the
architecture of nodes.

Observe that traffic grooming operations together with wavelength multiplexing
yields a specific multi-layer like structure. In practice, traffic streams are transmit-
ted via the new channels that are ligthpaths, while each wavelength needs a physical
media support, which is the optical fibre. This structure suggests two levels of routing.
Indeed, data traffic need to be routed using ligthpaths from their origins to their des-
tinations. On an other hand, each ligthpath corresponds to a wavelength that has to
be routed from the transmitter terminal, to the receiver terminal, by using the optical
fibres. We speak about physical routing and virtual routing, since the former uses
optical fibres and is related to wavelengths, while the latter is based on lightpaths and
concerns the traffic data streams.

Figure 2.6: Levels of routing

Figure 2.6 depicts a bi-layer representation of a WDM system. In this example,
three traffic streams s1, s2 and s3, are groomed thanks to a multiplexer within two
wavelengths, represented in green and red, respectively. The traffic streams are carried
by the two lightpaths from their origin terminal to their destination terminal, where
they are separated and sent back to their final receiver. Both wavelengths are put
together in the same optical fibre along a routing path having two sections. This
example clearly shows that there are two levels of grouping traffic streams, as well as
two routing levels.
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2.2.2.4 Transparency in WDM networks

The traffic using WDM systems are submitted to a set of operations that aim to
process its different streams so as to get a signal transmitted more efficiently. Such
operations require that the signal goes through Optical-Electrical-Optical (O/E/O)
conversions at every node of the WDM system. More precisely, the optical signal
(including one or several wavelengths) is systematically converted to an electrical signal,
each time it goes through a node in the network. In this kind of networks, WDM layer
is only used to transport point-to-point data. The O/E/O conversions are often costly
and power consuming. Thus, networking actors have introduced a node architecture
having the capability to process signal including traffic streams only at their origin or
destination terminals. In other words, this new type of nodes avoids O/E/O conversions
at intermediate nodes for traffic streams. Thus, at a given node, the incoming signal or
one that reaches its destination are subjects to O/E/O conversions, while the remaining
signal passes through or by-passes the current node. Such node is known as transparent
node, and by extension, a WDM network using this technique is also called transparent
WDM network.

The basic network element in a transparent network is a device called Optical Add/Drop
Multiplexer (OADM). Add and drop here refer to the capability of the device to add
one or more new wavelength channels to an existing multi-wavelength WDM signal,
and/or to drop (remove) one or more channels, passing those signals to another network
path.

Figure 2.7: Optical Add/Drop Multiplexer

Figure 2.7 shows a typical architecture of OADM device. In this figure are represented
four wavelength using the node in different ways. In fact, two wavelengths respectively
represented in purple and red, are dropped at this node and replaced by two further
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wavelengths having the same colours. The brown and green wavelengths, in turn by-
pass the node without being subject to any O/E/O conversion.

Note that next-generation OADM, called Reconfigurable Optical Add Drop Multi-
plexer (ROADM), has the extra flexibility so that adding wavelengths or changing the
wavelengths destination becomes easy and even possible to perform remotely. This
capability provides a full control over the capacity of transparent WDM networks.

In what follows, we briefly survey some solutions being studied to reach even more
flexibility in transparent WDM networks, and enhance the efficiency in wavelength
utilization.

2.3 Towards more flexibility in the optical layer

The increase in number as well as transport capacity of wavelengths, is closely related
to the growth of traffic in optical networks. Actually, current WDM systems may
ensure transmission of about a hundred of different wavelengths, each one having a
capacity of 10 Gbit/s to 40 Gbit/s. Telecommunication operators are even prepare
the deployment of 100 Gbit/s capacitated wavelengths on some optical networks [64,
23]. This important growth requires that a trade-off is identified between flexibility
in processing data at nodes of the network from one part, and the cost plus power
consumption from the other part. Furthermore, it should be pointed out that the
signal carried by high capacitated wavelengths (100 Gbit/s and more) may suffer from
some form of alterations over long distances. This is explained by the existence of
physical phenomena that might affect signal travelling on long distances [28].

Recent advances in networking have enabled the advent of a new technology called
optical multi-band Orthogonal Frequency Division Multiplexing (OFDM) as an answer
to the challenges highlighted above. This technology offers the possibility to being able
to perform processing within a traffic stream transported by a given wavelength. Such
operation can be done without leaving the optical domain (without O/E/O conver-
sions). Next section is devoted to give a short presentation of this technology.

2.3.1 Optical Multi-Band OFDM

OFDM is a technology that has been initially developed for the wireless transmissions
like mobile communication. Its utilization to the optical fibre networks has received
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an increasing attention in recent years. Optical multi-band OFDM can be defined as a
multicarrier modulation technique in which the traffic is carried over many lower rate
subcarriers. In other words, each WDM channel spectrum is divided into smaller in-
dependent entities called OFDM sub-wavelengths or subbands [64, 24] each one having
a set of sub-carriers. These subbands may be used to transport traffic and can be pro-
cessed independently from other each other, without using O/E/O conversions. To this
end, OFDM transponder generates just enough spectral resource to carry the incoming
signal. Such process enables a better filling of WDM channels since resources can be
provisioned elastically by allocating a required number of subbands, in accordance to
the traffic stream bit-rate [72].

Figure 2.8: Principle of OFDM

Figure 2.8 [109] shows an illustration of the division of a WDM channel spectrum
into multiple OFDM subbands, denoted Band1 to BandN, each one being composed
of several subcarriers. It is then possible to attribute one a several subbands to the
incoming signal for its transmission. Since the subbands are transmitted and processed
independently from each other, this allows to use the same wavelength to transport
data streams that do not necessarily have the same origin and destination terminals.
Furthermore, it provides a granularity smaller than one of the WDM channel, and this
property avoids wasting bandwidth.

It should be noted that the architecture of the multi-band OFDM transponder re-
mains complex because it requires several single band generation and reception [24].
Besides, several architectures are currently under review, and some patents have al-
ready been proposed for this technology. Overall, it appears from the investigations
on optical multi-band OFDM that it is a promising technology that may carry out
the evolution of optical networks towards deployment of very high capacitated WDM
systems on long distances.

In Figure 2.9 is shown a ROADM with an incoming fibre that includes two wave-
lengths, respectively represented in green and purple. Both wavelengths are divided
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Figure 2.9: ROADM function

into two subbands, denoted b1 and b2. Note that subband b1 (respectively b2) of green
wavelength and subband b1 (respectively b2) of purple wavelength are not equivalent,
since they do not correspond to the same resource in the spectrum. In this example,
there are four data streams incoming to the ROADM, each one uses a specific subband.
The traffic stream carried by subband b1 of the green wavelength reaches its destina-
tion at this node, and is extracted (dropped), while the remaining subband (b2) of the
wavelength together with b1 and b2 in wavelength purple, bypasses the ROADM.

2.3.2 Further solutions

Parallel investigations have been conducted on further technological solutions seeking
to get more flexibility without paying too much in processing data (essentially due
to O/E/O conversions). One of these technologies is called Optical Burst Switching
(OBS), and where incoming data are assembled into basic units referred to as bursts
that are then transported over the optical network. OBS ensures a division of wave-
length different from one performed in in OFDM. In fact, it provides the division of
the wavelength in the time domain at the optical layer. We refer the reader to [110],
[91], and references therein, for more details on this technology.

Some works also focus on a technology called SLICE (Spectrum-sliced Elastic Optical
Path Network). This process allows to adapt the capacity of the wavelength to size of
data stream to be transported. This can be possible thanks to specific transponders,
that have the capability to generate an optical signal using the minimum spectral
resources to allow the transmission of data stream from its origin node to its terminal
node [23]. SLICE introduces un new concept of elasticity that offers more flexibility
in the optical layer, specifically in terms of bandwidth allocation. Note that this
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technology does not allow to have a granularity smaller than the wavelength, since
it is not possible to perform processing on "portions" of optical channel. Additional
informations on this technology can be found in [65].

2.4 Terminology and assumptions

In this thesis we consider optical WDM networks using the technology multi-band
OFDM. We will consider given a set of ROADMs compatible with OFDM technology.
Moreover, since subbands of a wavelength can be used independently from each other,
we do not longer mention the wavelengths. The subbands here play the role of ligth-
paths since they connect two nodes that are not specially linked to the same fibre. In
order to allow an effective occupation of WDM channels, we assume that the cost of a
subband increases with its index. In other words, it is more relevant to fill the WDM
channel progressively in practice. Besides, two subbands with same index coming from
two wavelengths of the same color can not be associated with the same optical fibre.
Indeed, since a subband corresponds to a specific resource in the wavelength channel,
it can not be associated twice with an optical fibre. This constraint will be referred to
as disjunction constraint.

We deal here with dimensioning aspects of optical networks using OFDM technology.
Note that, although WDM technology is considered in practice in the physical layer, we
assume here that it is a virtual layer. In fact, the physical layer is the layer composed
by optical fibres and transmission nodes, and the WDM layer is to be determined. We
mean by installing a subband on a link setting up two transponders at the ends of this
link, that generate the subband. We further suppose that all the subbands installed on
a virtual link are carried by the same WDM system. In other words, a unique pair of
ROADMs at terminal nodes may generate all the subbands needed to carry the traffic
on this link. Besides, we consider that installing a capacity on a link of the network is
equivalent to set up a subband on this link. We assume that data stream can not be
split along several routing paths, or even several subbands in the same WDM system.
Finally, we will differentiate traffic routing and subband routing since the former uses
lightpaths while the later uses optical fibres.
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2.5 Concluding remarks

In this section we have introduced some elementary notions concerning multi-layer
in general, and optical WDM networks in particular. We have focused on optical
WDM networks, and showed that these networks can be seen as the superposition of
two-layers: the physical layer (fibre layer), and the virtual layer (WDM layer). More
precisely, we have presented the multi-band OFDM technology and its principle. In
the sequel, we will consider two optimization problems related to these optical WDM
networks. The first problem focus on the virtual (WDM) layer dimensioning and does
not take into account physical (fibre) layer. In fact, this first problem attempts to be
very generic and will use only some technical requirements of OFDM technology such as
non splittable traffic assumption. The second problem is related to multi-layer optical
network design. It considers the dimensioning of virtual layer in terms of number of
required subbands, taking into account the physical layer.
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In this chapter we study the Capacitated Single-Layer Network Design (CSLND)
problem. We first present an integer linear programming formulation for the problem.
Then we consider the polyhedron associated with a simple relaxation of this problem,
namely arc-set polyhedron. We highlight the relationship between this relaxation and
a classical combinatorial optimization problem: the bin-packing problem. We use this
relationship to provide new classes of valid inequalities, and describe necessary and
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sufficient conditions for these inequalities to define facets. The identified inequalities
are then embedded within a Branch-and-Cut framework to solve the CSLND problem.
Some computational experiments are presented in Chapter 4 to empirically test the
efficiency of our approach.

3.1 Capacitated network design problem

Network design problems are becoming one of the major economic issues for nowadays
telecommunications industry. The Capacitated Network Design (CND) problem can
be defined as follows. Given a network with a set of commodities, we want to select the
minimum cost capacitated facilities to install over the links of this network such that all
the commodities may be routed simultaneously. We consider a variant of the classical
capacitated network design problem that can be defined as follows. Given an optical
network, composed by optical devices interconnected by fibre links. Each link holds two
optical fibres, so that it can be used in both directions independently. A set of modules
with the same capacity can be installed on the links of the network. Each module
installation yields a positive cost, impacted on the link concerned. Given a set of traffic
demands (commodities), each one defined by an origin device, a destination device and
an amount of traffic to route between both devices. Note that, throughout the chapter,
we will use either "modules" or "copies" to designate the modular capacities installed
on a the links of the network.

We wish to determine the number of modules to set up on the network so that the
commodities can be routed from their origins to their destinations, and the total cost
is minimum. This problem will precisely be referred to as Capacitated Single-Layer
Network Design (CSLND) problem, to differentiate it from a multilayer version of the
Capacitated Network Design problem, discussed later in this manuscript (Chapters 5,
6 and 7). In fact, CSLND is nothing but a relaxation of this multilayer network design
problem. Besides, the constraints and specificities of CSLND problem come from the
technical requirements related to its multilayer version.

The earlier results on the CND problem and the associated polyhedron can be find in
[77, 78], where authors study a single commodity multifacility network design problem.
Some of their results are generalized by Bienstock and Günlük in [21] and extended
to the case of multicommodity network design using two type of facilities. The CND
problem is also studied in [13, 30, 11, 93] under splittable traffic assumption. Several
polyhedral results are presented for the problem and cutting planes based approaches
are developed in all the referenced works. More recently, some authors have focused
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on the Multi-layer Network Design problem (see for instance [49, 48, 83]).

We are interested in the polyhedra associated with simple relaxations of CSLND
restricted to some link of the network. The idea behind this is to investigate those
polyhedra and take advantage of their partial characterization to solve CSLND problem
efficiently. Some studies have already shown the effectiveness of such approach for
solving network design problems.

In fact, Magnanti et al. [77] study the restriction of CSLND on one arc for two facili-
ties and splittable flow assumption. Pochet and Wolsey [92] study the polyhedron of a
single-arc network design problem with an arbitrary number of facilities and splittable
flow assumption. Brockmüller et al. [27] and van Hoesel [101] investigate the CSLND
restricted to one edge (the edge capacity problem). They study the integer knapsack
problem arising from this relaxation then introduce the so-called c-strong inequalities
and give necessary and sufficient conditions for these inequalities to define facets. In
[101], authors give conditions under which the facets of edge capacity polytope define
also facets for the CSLND polytope. In [10], Atamtürk and Rajan study both splittable
and unsplittable CSLND arc-set polyhedra by considering the existing capacity of the
arc. They give a linear-time separation procedure for the residual capacity inequali-
ties and show its effectiveness for the splittable CSLND. They also use the c-strong
inequalities and derive a second class of valid inequalities for the unsplittable CSLND
problem. Similar approach have also been used to study cut-set polyhedra associated
with the CSLND in [8] and CSLND with survivability constraints in [22].

Our contribution

The objective of this chapter is to study the polyhedra associated with the arc-set
CSLND problem. We show that many different subproblems, arising as relaxations
of our problem are in fact associated with the same polyhedron. We refer to these
subproblems as functions. We introduce the polyhedra associated with a general class
of functions called unitary step monotonically increasing functions, and we study their
basic properties. We provide two classes of inequalities called Min Set I and Min
Set II, that are valid for each considered function, and we describe general separation
procedures for these inequalities. We give necessary and sufficient conditions for these
inequalities to define facets for the considered polyhedra. Our polyhedral results remain
the same for every considered function, and the separation procedures are still available
by integrating the specificities of each function. We give an application to the bin-
packing function, that is in fact equivalent to the arc-set CSLND with unsplittable
flow. In particular, our results for Min Set I inequalities generalize those provided in
[27, 101, 10] for c-strong inequalities, and both inequalities Min Set I and Min Set II are
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used within a Branch-and-Cut algorithm to solve efficiently CSLND problem. The rest
of the chapter is organized as follows. In this section we briefly describe the CSLND
problem and its restriction to a single arc. In section 3.2 we introduce the set-functions
polyhedra and study their basic properties. We then present the so-called Min Set I
and Min Set II inequalities, and investigate their facial structure. In section 3.3, we
give and application of our polyhedral results to the bin-packing function, and we show
the interest of such application for the CSLND problem.

3.1.1 Compact formulation for CSLND

In terms of graphs, the problem can be presented as follows. Consider a bi-directed
graph G = (V,A) that represents an optical network. Each node v ∈ V corresponds to
an optical device and each arc a = ij ∈ A corresponds to an optical fibre. If an arc ij

exists in A, then ji also belongs to A. Let K be a set of commodities. Each commodity
k ∈ K has an origin node ok ∈ V , a destination node dk ∈ V and a traffic Dk > 0 that
has to be routed between ok and dk. Suppose given a set of available modules, denoted
by W having the same capacity C. Assume without loss of generality that Dk ≤ C,
for all k ∈ K. A module w ∈ W installed on an arc ij is a copy of that arc, and
yields a cost denoted cij . Every module w can carry one or many commodities, but a
commodity can not be split on several modules. This specificity makes impossible the
aggregation of commodities having the same source and destination nodes to reduce
the size of the problem. Thus, there might be several different commodities with the
same origin and destination nodes.

The CSLND problem is to determine a minimum cost assignment of the modules to
the arcs of G so that a routing path is associated with each commodity from its origin
to its destination.

Let y ∈ R|A||W | such that, for each arc ij ∈ A and for each module w ∈ W ,

ywij =

{
1, if w is installed on ij,

0, otherwise.

and let x ∈ R|K||A||W | such that, for each k ∈ K, w ∈ W and ij ∈ A,

xkw
ij =

{
1, if k uses the module w on arc ij for its routing,
0, otherwise.
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The CSLND problem is then equivalent to the following integer linear programming
formulation:

min
∑

ij∈A

∑

w∈W

cijy
w
ij

∑

w∈W

∑

j∈V

xkw
ji −

∑

w∈W

∑

j∈V

xkw
ij =





1, if i = dk,

−1, if i = ok,

0, otherwise ,

∀k ∈ K,

∀i ∈ V,
(3.1)

∑

k∈K

Dkxkw
ij ≤ Cywij, ∀w ∈ W, ∀ij ∈ A, (3.2)

0 ≤ xkw
ij ≤ 1, xkw

ij ∈ {0, 1}, ∀k ∈ K, ∀w ∈ W, ∀ij ∈ A, (3.3)

0 ≤ ywij ≤ 1, ywij ∈ {0, 1}, ∀w ∈ W, ∀ij ∈ A. (3.4)

Equalities (3.1) are the flow conservation constraints, they require that a unique path
between ok and dk is associated with each commodity k. Inequalities (3.2) are the
capacity constraints for each installed module. They also ensure that the capacity
installed on arc ij is large enough to carry the commodities using this arc. (3.3) and
(3.4) are the trivial and integrity constraints.

This problem as well as capacitated network design variants is known to be NP-
hard even for special cases (see Bienstock et al. [30] and Chopra et al. [31]. Thus,
it is difficult to solve CSLND to optimality using Branch-and-Bound, even for small
instances.

3.1.2 Aggregated formulation

Suppose now that G consists of nodes i, j connected by a single edge ij. Then the
CSLND problem here, is to determine the number of modules to install over ij, in such
a way that each commodity using ij is assigned to at most one module and the total
cost is minimum. Consider the polyhedron:

Pij := conv{(x, y) ∈ {0, 1}|K|×|W |× {0, 1}|W | :

∑

k∈K

Dkxkw
ij ≤ Cywij ∀w ∈ W,

∑

w∈W

xkw
ij ≤ 1 ∀k ∈ K}

Pij is the convex hull of CSLND problem restricted to ij. Note that the polyhedron
Pij has many symmetric solutions and does not present a suitable structure to investi-
gate. In fact, there are few chances that such an investigation can bring any relevant
information to help in solving CSLND problem. To overcome this difficulty, we will
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introduce a new aggregated model that does not specify which copy of the arc ij is used
for the routing of a commodity k. Indeed, the idea is just to determine the number of
modules that have to be installed on ij, so that each commodity can be assigned to
one of these modules.

We will define the following additional decision variables. Let y ∈ Z+ such that
for each arc ij ∈ A, yij =

∑
w∈W ywij is the number of modules installed on ij. Let

x ∈ R|K||A| such that for each commodity k ∈ K, and for each arc ij ∈ A, xk
ij =∑

w∈W xkw
ij , and

xk
ij =

{
1, if k uses some module of the arc ij for its routing,
0, otherwise.

The CSLND problem can then be formulated using the following ILP:

min
∑

ij∈A

cijyij

∑

j∈V

xk
ji −

∑

j∈V

xk
ij =






1, if i = dk,

−1, if i = ok,

0, otherwise ,

∀k ∈ K,

∀i ∈ V,
(3.5)

∑

k∈K

Dkxk
ij ≤ Cyij, ∀ij ∈ A, (3.6)

0 ≤ xk
ij ≤ 1, ∀k ∈ K, ∀ij ∈ A, (3.7)

xk
ij ∈ {0, 1}, yij ∈ Z+, ∀k ∈ K, ∀ij ∈ A. (3.8)

As in formulation (3.1)-(3.3), equalities (3.5) are the flow conservation constraints for
each commodity of K. Inequalities (3.6) will be called aggregated capacity constraints.
They ensure that the overall capacity of the modules installed over ij is not exceeded by
the commodities flowing along ij, ij ∈ A. (3.7) and (3.8) are the trivial and integrity
constraints.

Proposition 3.1 Every solution of compact formulation (3.1)-(3.4) is a solution of
aggregated formulation.

Proof. Trivial.

Proposition 3.2 A solution for the aggregated formulation (3.5)-(3.8) is not necessary
feasible for the compact formulation.
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Proof. To prove this proposition, we give a counterexample.

Consider an instance of CSLND problem given by a three nodes graph and 3 available
modules per arc. There are five commodities denoted k1 to k5, with traffic amount 4,
3, 6, 6, 6 (see Figure 3.1), while the capacity of each module is C = 10. Figure 3.1
shows a feasible solution for the aggregated formulation (3.5)-(3.8). Let us denote by
(x, y) this solution. Then we can describe its entries as follows. y12 = y23 = 1 while
y13 = 2. The commodities are routed using path given in Figure 3.1. We can see for
example that k1 uses the arc 12, while k3, k4, and k5 use the arc 13.

2

1

3

2

1

3

k1

k2

k3

k5

k4

Figure 3.1: Example of solution for aggregated formulation

The solution (x, y) clearly satisfies all the constraints of the aggregated formulation
(3.5)-(3.8). However, it is not feasible for the compact formulation (3.1)-(3.4). In fact,
k3, k4 and k5 are routed on arc 13, since the overall capacity installed on this arc allows
this packing (6 + 6 + 6 < 10 + 10). Yet this solution is not feasible for the compact
formulation since no two commodities among k3, k4 and k5 might fit together in one
module.

This implies that solution described in Figure 3.1 can not induce a feasible solution
for the compact formulation (3.1)-(3.4).

In order to ensure a feasible solution for compact formulation by considering aggre-
gated formulation, we should add the following constraint:

(xk
ij , yij) ∈ Qij , ∀ij ∈ A, ∀k ∈ K, (3.9)
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where

Qij := conv{(x, y) ∈ {0, 1}|K| × Z+ : xk
ij =

∑

w∈W

xkw
ij , yij ≥

∑

w∈W

ywij,

∑

k∈K

Dkxkw
ij ≤ Cywij ∀w ∈ W,xkw

ij ∈ {0, 1}, ywij ∈ {0, 1}, ∀k ∈ K, ∀w ∈ W}

Qij is the projection on (xk
ij , yij) of the polyhedron Pij. Observe that the symmetric

solutions of Pij will project on a single point, and Qij would then be more suitable to
investigate.

Polyhedron Qij , ij ∈ A belongs to a more general class of polyhedra, associated with
simple structured relaxations that may be considered for the CSLND problem. In what
follows, we introduce a family of functions inducing some of these relaxations, and we
show that we can get benefit from the characteristics of underlying polyhedra to better
understand the related CSLND problem.

3.2 Set function polyhedra

Let E be a base set with n elements and let f : 2E −→ Z+ be a set function over E.
Let S be a subset of E. The incidence vector of S, denoted xS ∈ {0, 1}n, is such that
for each element i ∈ E

xS
i =

{
1, if i ∈ S,

0, otherwise.

By abuse of notation, we may write f(xS) to designate f(S).

Definition 2 A function f defined on a subset of elements S ⊆ E with integer values
is called monotonically increasing function if

f(S ∪ {s})− f(S) ≥ 0, ∀S ⊆ E, ∀s ∈ E \ S,

A combinatorial interpretation of such a function is that adding any element to the
subset S may induce an increase of the function value.

Definition 3 The function f is said to be unitary step monotonically increasing if
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(i) f(∅) = 0,

(ii) f(S ∪ {s})− f(S) ∈ {0, 1}, ∀S ∈ E, ∀s ∈ E \ S.

In other words, given a subset of element S ⊆ E, a function f is said to be unitary
step monotonically increasing if adding any element s to the initial subset S yields an
increase of at most one in the value of f .

Given a set function f : {0, 1}n −→ Z+. We define the convex hull of incidence
vectors (xS, f(xS)), for all S ⊆ {0, 1}n as follows:

Pf := conv{(x, y) ∈ {0, 1}n × Z+ : y = f(x) + λ(0, 0, 0, . . . , 1), λ ≥ 0},

That is to say

Pf := conv{(x, y) ∈ {0, 1}n × Z+ : y ≥ f(x)},

The optimization problem associated with Pf may then be written as follows

min{y −
∑

i∈E

cixi : (x, y) ∈ Pf},

where c ∈ Rn is a vector of coefficients such that a coefficient ci > 0 is associated with
each element i ∈ E. We will refer to this problem as set function problem. Furthermore,
given a subset of elements S ⊆ E, we will define the solution of a set function problem
as the pair (xS, yS), such that associated incidence vector (xS, yS ≥ f(xS)) ∈ Pf .
Besides, we let x(S) be equal to

∑
i∈S xi.

Example

Consider a simple set function given by g : {0, 1}2×Z+ −→ R such that z = g(x, y) =
x+ y. Figure 3.2 shows a set of solutions (x, y, z = g(x, y)) ∈ {0, 1}2 × Z+.

These solutions are denoted p1, p2, p3 and p4, and we can see that g(x, y) is a
monotonically step increasing function. In fact, adding any non negative element to
the solution induces an increasing of at most 1 in the value of g(x, y). Then the convex
hull of solutions p1 to p4 is given in the figure 3.2.

In what follows we will study the properties of polyhedra associated with general set
functions. We will introduce two classes of valid inequalities, namely Min Set I and
Min Set II, and discuss some necessary and sufficient conditions for these inequalities
to define facets for any polyhedron having the form of Pf , where f is a set function.
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x

y

z

p1

p2

p3

p4

M =




x y z

p1 0 0 0

p2 1 0 1

p3 0 1 1

p4 1 1 2




Figure 3.2: Polyhedron associated with g(x, y)

3.2.1 Properties of Pf for general f

3.2.1.1 Dimension

Theorem 3.3 The polyhedron Pf is full dimensional.

Proof. We shall exhibit n+ 2 solutions pi, i = 1, . . ., n + 2, whose incidence vectors
(xSi , ySi) are affinely independent. First, consider the solutions (xSi , f(Si)) induced by
the subsets Si = {i}, for i ∈ E. Moreover, consider the solutions (x∅, 1) and (x∅, 0). It
can be easily seen that these n + 2 solutions are affinely independent. The solutions
defined above are given in the matrix M1 described thereafter.

M1 =




x1 x2 x3 . . . xn y

S1 1 0 0 . . . 0 1

S2 0 1 0 . . . 0 1

S3 0 0 1 . . . 0 1
...
Sn 0 0 0 . . . 1 1

S1 0 0 0 . . . 0 1

S0 0 0 0 . . . 0 0
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We can easily remark that the system formed by

n+2∑

i=1

λixi = 0,

n+2∑

i=1

λi = 0.

admits a unique solution λi = 0, for i = 1, . . . , n + 2. It follows that the n + 2 rows
contained in M1 are affinely independent, thus Pf is full dimensional. �

Proposition 3.4 r∗ = (0, 0, ..., 0, 1) is an extreme ray of Pf .

Proof. Let F={λr∗, λ ∈ R+} be a face of the polyhedron Pf . We will show that the
dimension of F is one. Consider the m× n matrix A and a vector b of Rm such that

Pf = {(x, y) ∈ {0, 1}n × Z+ : Ax ≤ b}

Let A be the matrix containing the rows Ai of A such that Air = 0 for any ray r of
Pf . We can see that r∗ = (0, 0, . . . , 0, 1) verifies

xi = 0, i ∈ E,

therefore, rank(A) = |E| = n, and it follows that the dimension of F is

dim(F) = n + 1− rank(A) = n+ 1− n = 1

hence, r∗ is an extreme ray of P . �

In the sequel, we will use the following definition of Pf

Pf := conv{(x, y) ∈ {0, 1}n × Z+ : y ≥ f(x)},

In what follows, we will be interested in the facial structure of Pf . In particular we
study the trivial inequalities xi ≥ 0, and xi ≤ 0, for all i ∈ E, before introducing
further facet defining valid inequalities.
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3.2.1.2 Trivial inequalities

Theorem 3.5 For i ∈ E, xi ≥ 0 defines a facet of Pf .

Proof. Denote by Fi the face induced by inequality xi ≥ 0, that is

Fi = {(x, y) ∈ Pf : xi = 0},

Similarly to proof of Theorem 3.3, we can identify n + 1 solutions whose incidence
vectors belong to Pf and also to Fi. First consider the solutions (xSj , 1), where Sj =
{j}, for j ∈ E \ {i}. Also consider the solutions (x∅, 1) and (x∅, 0). Clearly, all these
solutions are in Pf and in F.

The n + 1 solutions described above are summarized in matrix M2.

M2 =




x1 x2 x3 . . . xi . . . xn y

S1 1 0 0 . . . 0 . . . 0 1

S2 0 1 0 . . . 0 . . . 0 1

S3 0 0 1 . . . 0 . . . 0 1
...
Sn−1 0 0 0 . . . 0 . . . 1 1

Sn 0 0 0 . . . 0 . . . 0 1

S0 0 0 0 . . . 0 . . . 0 0




It is easy to see that the n + 1 rows of the matrix M2 induces affinely independent
incidence vectors, which completes the proof. �

Theorem 3.6 For i ∈ E, xi ≤ 1 defines a facet of Pf .

Proof. Let us denote by Fi the face induced by inequality xi ≤ 1, that is

Fi = {(x, y) ∈ Pf : xi = 1},

Consider the subsets Sj of E such that Sj = {j, i}, for j ∈ E \{i}. Clearly, the solution
(xSj , 2) for j ∈ E \ {i} belongs to Pf and also to F. Moreover, the solutions (xE , |E|
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+ 1) also belong to Pf and to F. Let us denote by M3 the matrix containing the n +
1 solutions described above. M3 is given as follows:

M3 =




x1 x2 x3 . . . xĩ . . . xn y

S1 1 0 0 . . . 1 . . . 0 2

S2 0 1 0 . . . 1 . . . 0 2

S3 0 0 1 . . . 1 . . . 0 2
...
Sn−1 0 0 0 . . . 1 . . . 1 2

Sĩ 0 0 0 . . . 1 . . . 0 2

E 1 1 1 . . . 1 . . . 1 |E|+ 1




We can see that these n + 1 solutions are affinely independent. �

In what follows, we will show that all the non-trivial facets of the polyhedron Pf

have non negative coefficients.

Theorem 3.7 All the non-trivial facets of Pf are of the form
∑

i∈E πixi ≤ π0y + p,
where p in a non negative integer parameter, πi, π0 ≥ 0, and πi ≤ π0, for all i ∈ E.

Proof. We will first show that πi ≥ 0, for all i ∈ E. For this, assume that there exists
an element j ∈ E such that πj < 0.

As
∑

i∈E πixi ≤ π0y+p is different from xj ≥ 0, there must exist a subset of elements,
say S ⊆ E, containing j and y ∈ Z+ such that the vector (xS, y) belongs to Pf , and∑

i∈E πix
S
i = π0y + p.

Consider the subset S ′ = S \ {j} and the solution (xS′

, y). Hence,
∑

i∈E πix
S′

i ≤
π0y+p. In addition, since

∑
i∈E πix

S′

i =
∑

i∈E πix
S
i - πj, it follows that

∑
i∈E πix

S
i −πj ≤

π0y+ p. As
∑

i∈E πix
S
i = π0y+ p, we obtain −πj ≤ 0, which is a contradiction. Hence,

πi ≥ 0, for all i ∈ E.

Now we shall show that πi ≤ π0, for all i ∈ E.

Suppose that πj > π0, for some j ∈ E. As
∑

i∈E πixi ≤ π0y + p is different from
xj ≤ 1, there is a set S ⊆ E \ {j} and y ∈ Z+ such that

∑
i∈E πixi = π0y + p. Now
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consider the subset S̃ = S ∪ {j} and consider the solution (xS, y+1). Then we have∑
i∈E πix

S̃ ≤ π0y+p for this solution. However, as
∑

i∈E xS′

i =
∑

i∈E\{j} πix
S
i +πj , and

π0y
S′

+p = π0y
S+π0+p, we get

∑
i∈E\{j} πix

S′

i +πj ≤ π0y
S+π0+p, since

∑
i∈E\{j} πix

S
i

= π0y
S + p, it implies that πj ≤ π0 which is a contradiction. Hence, 0 ≤ πi ≤ π0, for

all i ∈ E and the proof is complete. �

Remark 3.8 Let S be a subset of E, then a non-trivial inequality of the format∑
i∈S πix

i ≤ π0y + p, is valid if and only if p ≥ π(S) - π0f(S).

In what follows we present two families of valid inequalities. We describe some condi-
tions under which these inequalities may define facets for polyhedron Pf .

3.2.2 Min Set I inequalities

Proposition 3.9 Let f : {0, 1}n −→ Z+ be a unitary step monotonically increasing
function. Let S be a subset of E and p a non negative integer such that p = |S|−f(S).
Then, the following inequality ∑

i∈S

xi ≤ y + p, (3.10)

is valid for Pf .

Proof. Let S ′′ be a subset of elements of E, and define S ′ = S ′′ ∩ S. Consider the
solution induced by S ′′, whose incidence vector is denoted (x(S ′′), f(S ′′)) ∈ Pf . As the
function f is unitary step monotonically increasing, the following is true

|S| − |S ′| ≥ f(S)− f(S ′), for all S ′ ⊆ S,

This implies that |S ′| ≤ f(S ′)+|S|−f(S) and by the same way |S ′| ≤ f(S ′′)+|S|−f(S)
that may be obtained by substituting the point (x(S ′′), f(S ′′)) in the inequality (3.10).
�

Theorem 3.10 Given a subset S̃ of E and p a non negative integer parameter. In-
equality

∑
i∈S̃ xi ≤ y + p, define a facet of Pf if and only if the following conditions

hold

(i) f(S̃ ∪ {s}) = |S̃| − p, for all s ∈ E \ S̃,
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S’

Figure 3.3: Proof of Proposition 3.9

(ii) f(S̃ \ {s}) = |S̃| − p− 1, for all s ∈ S̃.

Proof. Necessity

(i) First, it is clear that f(S∪{s}) ≤ f(S) + 1, for all s ∈ E \S. Suppose that there
exists an element s of E \ S such that f(S ∪ {s}) ≤ |S| − p. Then the inequality
(3.10) with respect to S ∪ {s} can be written as

∑

i∈S∪{s}

≤ y + |S| − f(S) = y + p, (3.11)

However, (3.11) dominates (3.10), and therefore the latter cannot define a facet.

(ii) Clearly, f(S \ {s}) ≥ f(S)− 1, for all s ∈ E \ S. Suppose there exists s ∈ E \ S,
such that f(S \ {s}) = |S| − p. Then, inequality (3.10), with respect to S \ {s}
can be written

∑

i∈S\{s}

≤ y + (|S| − 1− f(S \ {s})) = y + |S| − 1− f(S) = y + p− 1,

Inequality (3.10) can be obtained as a linear combination of the inequality above
and xs ≤ 1. Therefore, it cannot define a facet.

Sufficiency
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Assume now that conditions (i) and (ii) of Theorem 3.10 are fulfilled. We will denote
by F the face induced by inequality (3.10). That is

F = {(x, y) ∈ Pf :
∑

i∈S

xi = y + p}

We will exhibit n + 1 subsets of E, solutions of F, and whose incidence vectors are
affinely independent. First consider the solution p0 = (xS, f(S)). Clearly, p0 ∈ F. Now
let us consider the solutions ps = (xS∪{s}, f(S)), for s ∈ E \S. As by (i), f(S ∪{s}) =
f(S), we have that ps is a solution of Pf and also of F. Finally, consider the solutions
ps = (xS\{s}, f(S) - 1) for all s ∈ S. By (ii), it follows that ps, for s ∈ S, is a solution
of Pf . Moreover, ps satisfies (3.10) with equality, and then it is also a solution of F.
Now, one can easily see that p0, ps for s ∈ E \S, ps for s ∈ S are affinely independent.
�

3.2.3 Min Set II inequalities

Proposition 3.11 Let f : {0, 1}n −→ Z+ be a unitary step monotonically increasing
function. Let S be a subset of E, p and q two non negative integers, with q ≥ 2. Then,
the inequality ∑

i∈S

xi ≤ qy + p, (3.12)

is valid for Pf if p ≥ |S ′| − qf(S ′), for all S ′ ⊆ S.

Proof. Let S ′ be a subset of S. By summing trivial inequalities xi ≤ 1 over S ′, we get∑
i∈S′ xi ≤ |S ′| which is valid. On the other hand, by definition of the polyhedron Pf ,

we have that y ≥ f(S ′), for all S ′ ⊆ S. As q ≥ 0, it then follows that, q(y−f(S ′)) ≥ 0.
Thus

∑

i∈S

xS′

i =
∑

i∈S′

xS′

i ≤ |S ′|+ q(y − f(S ′)) = qy + |S ′| − qf(S ′) ≤ qy + p,

yielding the validity of (3.12). �

Theorem 3.12 Given a subset of elements S ⊆ E, two non negative integers q ≥ 2

and p. The inequality ∑

i∈S̃

xi ≤ qy + p (3.13)

defines a facet of Pf , if the following hold.
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(i) There exists an integer r ∈ Z+, p ≤ r ≤ |S|−1, such that for all S ′ ⊆ S with |S ′|
= r, f(S ′) = |S′|−p

q
,

(ii) for all s ∈ E \ S, there exists S ′ ⊆ S such that f(S ′) = |S′|−p

q
= f(S ′ ∪ {s}),

Proof. We will denote by F the face induced by inequality (3.13), i.e.

F = {(x, y) ∈ Pf :
∑

i∈S

xi = qy + p}

Suppose that conditions (i) and (ii) hold. We will exhibit n + 1 solutions of F that
are affinely independent. Consider a subset S ′ of S such that |S ′| = r. As by (i),
p ≤ r ≤ |S| − 1, S ′ 6= ∅ S∅S ′. Let e′ and e′ be elements of S ′ and S \ S ′, respectively.

Consider the sets Se = Se = (S ′ \{e′})∪{e} for all e ∈ S \S ′ and Se = (S ′\{e})∪{e′}
for all e ∈ S ′. Clearly, by (i), the solutions (xS, f(S)), (xSe , f(Se)), e ∈ S all belong
to F.

Next, for each e ∈ E \ S, by (ii) there exists S ′
e ⊆ S such that f(S ′

e) = |S′
e|−p

q
=

f(S ′
e) ∪ {e}. Hence, the solutions (xS′

e∪{e}, f(S ′
e ∪ {e})) for all e ∈ E \ S all belong to

F. Finally, consider the solution (xS, f(S) = |S|−p

q
) which is also in F. Now, it is not

hard to see that these solutions constitute a set of n + 1 affinely independent points.
�

In the next section, we will study an application that illustrates well how our results
for general set functions, are still valid for a specific function.

3.3 Bin-packing function

Given m items (demands) and n bins. We denote by Dk the weight of the item k,
k ∈ {1, 2, ..., m} and C is the capacity of each bin. The Bin-Packing problem (BPP)
consists in assigning each item to one bin so that the total weight in each bin does not
exceed C and the number of bins used is minimum [81].

We assume, without loss of generality, that the weights Dk and the capacity C are
positive integer and Dk ≤ C, ∀k ∈ K. Moreover, we can assume that the number of
available bins n is large enough so a feasible packing exists for the m items.
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The Bin-Packing Problem belongs to the class of NP-hard problems [51] and many
approaches have been proposed to solve it during the three last decades. Most of
the algorithms described in the literature are approximation algorithms and relatively
complete part of them can be found in the survey of Coffman et al [34].

There exists less references on the exact algorithms developed to solve the Bin-
Packing Problem to optimality. We cite Martello and Toth [81] that developed a
branch-and-bound algorithm, based on an integer linear programming formulation.
They also provided lower bounds and dominance criteria [82] for the BPP and evalu-
ated them through a concept of worst-case performance. More recently, many linear
programming formulations have been introduced to model the BPP and most of them
are reviewed in the very good survey in [39], where Valério de Carvalho highlights
the similarities between the Bin-Packing Problem and the One-Dimension Cutting
Stock Problem and compares the presented LP formulations. In [38], Valério de Car-
valho introduces an arc-flow formulation for the Bin-Packing problem and proposes an
equivalent path formulation obtained by applying a Dantzig-Wolfe decomposition. He
proposes a column generation procedure embedded within a branch-and-bound algo-
rithm. Vanderbeck [104] and Vance [102] also proposes branch-and-price algorithms
to solve the bin-packing and the one-dimensional cutting stock problems. In partic-
ular, Vanderbeck discussed some branching schemes and cutting planes in order to
strengthen the formulation and improve the efficiency of his branch-and-bound algo-
rithm. A cutting plane approach combined with column generation is developed in [18]
for the case of multiple stock lengths in the one-dimensional cutting stock problem,
which is closely related to bin-packing problem. Several works also focus on computing
good lower bounds for bin-packing problem (see [33, 46, 81]).

We will denote by N = {1, 2, ..., n} the set of available bins, and K = {1, 2, ...., m}
the set of items. Let us introduce the binary decision variable yj, j ∈ N , that takes the
value 1 if the bin j is used, and 0 otherwise. Let xk

j , k ∈ K, j ∈ N be a binary deci-
sion variable that takes the value 1 if the item k is assigned to the bin j, and 0 otherwise.

The Bin-Packing Problem is equivalent to the following integer linear programming
formulation, given by Kantorovitch [67] in 1939 and also used by Martello and Toth
later in [81] for their branch-and-bound approach:
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min
∑

j∈N

yj

s.t :
∑

k∈K

Dkxk
j ≤ Cyj, ∀j ∈ N, (3.14)

∑

j∈N

xk
j = 1, ∀k ∈ K, (3.15)

0 ≤ yj ≤ 1, yj ∈ {0, 1}, ∀j ∈ N, (3.16)

0 ≤ xk
j ≤ 1, xk

j ∈ {0, 1},∀k ∈ K, ∀j ∈ N. (3.17)

In this formulation, there are n× (1+m) binary decision variables and a polynomial
number of constraints. The objective is to minimize the number of open bins needed to
carry all of the items. Inequalities (3.14) are the capacity constraints of each bin while
equalities (3.15) ensure that each item is assigned to exactly one bin. (3.16) and (3.17)
are the trivial and integrity constraints. Note that a lower bound can be obtained by
replacing (3.16) and (3.17) by

0 ≤ yj ≤ 1, ∀j ∈ N, (3.18)

0 ≤ xk
j ≤ 1,∀k ∈ K, ∀j ∈ N. (3.19)

and (3.14)-(3.15)-(3.18)-(3.19) is the linear relaxation of the formulation (3.14)-(3.17).

Proposition 3.13 (Martello and Toth [81]) The lower bound provided by the lin-

ear programming relaxation of this model is equal to ⌈
∑

k∈K Dk

C
⌉

Proof. A valid solution to the linear relaxation formulation is xk
j = 1 for k = j, xk

j =

0 ∀k ∈ K, j ∈ N such that k 6= j, and yk = Dk

C
, ∀k ∈ K. The corresponding value of

the objective function is
∑

k∈K Dk

C
. As the number of bins should be integer, the lower

bound is equal to the smallest integer grater or equal to
∑

k∈K Dk

C
. �

We will denote by P the convex hull of the solutions of the bin-packing problem.
That is to say,

P := conv{(x, y) ∈ {0, 1}m×n × {0, 1}n : (3.14)− (3.15) are satisfied}.
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Due to the large number of possible assignments of items to the bins, there exists a
large number of xk

j variable values. Then, several equivalent solutions may arise and
need to be checked during the exploration of branch-and-bound tree, which often makes
the process time consuming. In other words, this formulation suffers from symmetry
as one can arbitrary permute the bins [63]. For this reason, the polyhedron P should
not be convenient to investigate. We will then consider further aggregated decision
variables:

xk =

{
1, if the item k is assigned to some bin,
0, otherwise

(3.20)

and the variable y ∈ Z+ being the number of bins used to pack the items of K. Note
that an item is said to be satisfied if it is assigned to some bin (no matter which). We
also give the relationship between the original variables and the aggregated ones:

xk =
∑

j∈N

xk
j , ∀k ∈ K,

y =
∑

j∈N

yj.

In what follows, we will study the polyhedron associated with BPP, using the ag-
gregated variables. In particular, we will show how results provided for general set
functions may be applied for bin-packing problem.

3.3.1 Associated Polyhedron

Consider the polyhedron Q defined as follows

Q := conv{(x, y) ∈ {0, 1}m × Z+ : xk =
∑

j∈N

xk
j , y ≥

∑

j∈N

yj,

∑

k∈K

Dkxk
j ≤ Cyj, ∀j ∈ N, xk

j ∈ {0, 1}, yj ∈ {0, 1}, ∀k ∈ K, ∀j ∈ N}

Q is the projection on (xk, y) of the polyhedron P . We denote by BP (S) the solution
of the Bin-Packing problem for a subset of items S of K. In other words, BP (S) is
the minimum number of bins needed to carry the objects of S. We let xS denote the
incidence vector of S. By the same way, given a vector x ∈ {0, 1}m, we denote by S(x)

the subset of items induced by x. That is to say, S(x) = {k ∈ K, xk = 1}. Then we
provide an alternative definition of Q:

Q := conv{(x, y) ∈ {0, 1}|K| × Z+ : y ≥ BP (S(x))}
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This polyhedron is associated with a problem that will be referred to as Bin-Packing
Function (BPF). In what follows, we will study the dimension of the polyhedron Q

and give the conditions under which inequalities Min Set I (3.10) and Min Set II (3.12)
remain facet defining for Q.

Theorem 3.14 Q is full dimensional.

Proof. We will exhibit m+2 solutions whose incidence vectors are affinely indepen-
dent. Let us introduce the m solutions Sk, k ∈ K, such that one bin is used to satisfy
the item k, while the other items are not satisfied. Consider the incidence vector as-
sociated with each Sk, given by (0, . . . , xk = 1, 0, . . . , y = 1), k ∈ K. We denote by
Sk1,k2, the solution defined as follows. Suppose that three bins are used to pack two
among the m items, namely k1 and k2. Then, incidence vector of Sk1,k2 is given by
(0, . . . , xk1 = 1, xk2 = 1, 0, . . . , y = 3). Consider now the solution S0 where no item is
satisfied and no bin is open. The associated incidence vector is then given by (0, .., 0).
It is clear that S0, Sk1,k2, and Sk, k ∈ K, belong to polyhedron Q and their incidence
vectors are affinely independent. Hence, the results follows. �

3.3.1.1 Trivial Inequalities

Theorem 3.15 For k̃ ∈ K, inequality xk̃ ≥ 0 defines a facet of Q.

Proof. Let us denote by Fk̃ the face induced by xk̃ ≥ 0.

Fk̃ = {(x, y) ∈ {0, 1}m × Z+ : xk̃ = 0}

We can exhibit m+1 solutions of Fk̃ having their incidence vectors affinely independent.

Let Sk, k ∈ K be the solution corresponding to xk = 1 for some k ∈ K \ {k̃} while
xk̃ = 0. The incidence vectors associated with Sk are (0, 0, 0, ..., xk̃ = 0, 0, 0, ..., xk =

1, 0, .., y = 1), for all k ∈ K \ {k̃}.

Now let us denote by Sk1,k2 that consists in satisfying two among the m items,
k1, k2 ∈ K \ {k̃}, by using three bins. (xSk1,k2 , ySk1,k2 ) is then given by (0, . . . , xk1 =

1, xk2 = 1, . . . , xk̃ = 1, . . . , y = 3).

We consider also S0 with the associated incidence vector (0, 0, ..., 0) where no item is
satisfied. The incidence vectors associated with solutions described above are affinely
independent, and the result follows. �
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Theorem 3.16 For k̃ ∈ K, inequality xk̃ ≤ 1 defines a facet of Q

Proof. We will denote by Fk̃ the face induced by xk̃ ≤ 1.

Fk̃ = {(x, y) ∈ {0, 1}m × Z+ : xk̃ = 1}

Similarly to the previous proof, we can identify m+ 1 solutions having their incidence
vectors in F.

First consider the solution Sk̃ that is to open a unique bin, used to pack the item k̃.
Sk̃ clearly induces a feasible solution, and (xS

k̃ , ySk̃) ∈ Fk̃.

Next, we will exhibit m−1 solutions having their incidence vectors in both Q and Fk̃.
Consider the solutions Sk where k̃ and some additional item k ∈ K \ {k} are satisfied.
We set ySk to 3, for all k ∈ K \{k̃}. In other words, 3 bins are open to pack two items,
in each solution Sk, k ∈ K \ {k̃}. It is easy to see that Sk induce feasible solutions.
Moreover, their incidence vectors are given by (0, 0, 0, ..., xk = 1, 0, xk̃.., y = 3), with
k ∈ K \ {k̃}, and belong to Fk̃.

Now let us consider the solution Sm where a bin is assigned to each item of K. In
other words, (xSk , ySk) is such that xk = 1, for all k ∈ K and y = BP (K). This
solution is obviously feasible and (xSk , ySk) belongs to the face Fk̃. Furthermore, the
incidence vectors of solutions previously described are affinely independent. Therefore,
the proof is complete. �

3.3.2 Valid inequalities

In this section we will adapt the results obtained for Min Set I and Min Set II inequali-
ties in the context of Bin-Packing Function, and we will show the relationship between
this function and CSLND problem.

3.3.2.1 Min Set I Inequalities

Proposition 3.17 Given a subset S ⊆ K and a non negative integer p ∈ Z+, inequal-
ity ∑

k∈S

xk ≤ y + p, (3.21)

is valid for Q if and only if p ≥ |S| −BP (S).
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Proof. Sufficiency

Suppose that p ≥ |S| − BP (S). Then by definition of polyhedron Q, we have
y ≥ BP (S) ≥ |S| − p. Hence, we have |S| ≤ y + p. Summing up trivial inequalities
xk ≤ 1 over subset S yields

∑
k∈S x

k ≤ |S|. In consequence,
∑

k∈S x
k ≤ y + p. Thus

inequality (3.21) is valid for Q.

Necessity

Suppose now that p < |S|−BP (S). Then consider the solution that consists in using
BP (S) bins to pack all the items of S. Its incidence vector is given as follows. xk =
1, if k ∈ S, and 0 otherwise, while y = BP (S). This solutions is obviously feasible.
However, it is cut off by (3.21). �

Theorem 3.18 Let S̃ be a subset of K and p a non negative integer parameter. In-
equality (3.21) induced by S̃ and p defines a facet of Q if and only if the following
conditions hold

1) BP (S̃) = |S̃| − p,

2) BP (S̃ ∪ {s̃}) = |S̃| − p, where s̃ is the largest element of K \ S̃,

3) BP (S̃ \ {s}) ≤ |S̃| − p− 1, where s is the smallest element of S̃.

Proof. Necessity

We show that (i), (ii) and (iii) are necessary conditions for (3.21) to define facets.

(i) Suppose that inequality (3.21) induced by S̃ and p defines a facet of Q. Then,
there must exist a solution, say (x̃, ỹ), such that

∑
k∈S̃ x̃

k = ỹ + p. We have, by
definition of polyhedron Q that ỹ ≥ BP (S̃). Thus, BP (S̃) ≤ ∑

k∈S̃ x̃
k − p, and

then
BP (S̃) ≤ |S̃| − p (3.22)

Furthermore, the validity condition of (3.21) states that

BP (S̃) ≥ |S̃| − p (3.23)

Hence, by (3.22) and (3.23), we conclude that BP (S̃) = |S̃| − p.
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(ii) Assume now that there exists an element s̃ of K \ S̃ such that BP (S̃ ∪ {s̃}) ≤
|S̃| − p. Then, Min Set I inequality induced by S̃ and p is dominated by another
constraint, namely ∑

k∈S̃∪{s̃}

xk ≤ y + p

In consequence, (3.21) can not be a facet of Q.

(iii) If BP (S̃ \ {s}) ≥ |S̃| − p, we can see that (3.21) is dominated by
∑

k∈S̃\{s}

xk ≤ y + p

and xk ≤ 1, for all k = s. Thus (3.21) can not define facets for Q.

Sufficiency

Assume now that conditions (i), (ii) and (iii) of Theorem 3.18 are satisfied. Let F

be the face induced by inequality
∑

k∈S̃ x
k ≤ y + p, where

F = {(x, y) ∈ {0, 1}n × Z+ :
∑

k∈S̃

xk = y + p}

We shall exhibit m+1 solutions denoted by Sk, k ∈ {1, ..., m+1} of Q that also belong
to F. The construction of these m + 1 solutions is quite similar to proof of Theorem
(3.10).

First consider the solution S1 where we use BP (S̃) to pack S̃ items. The correspond-
ing incidence vector is composed by the following entries. xk = 1, for all k ∈ S̃, and y

= BP (S̃) = |S̃| − p, by condition (i). It is clear that this solution is feasible, and its
incidence vector is in F.

Now we will provide |K \ S̃| further solutions of Q that also belong to F. Consider
the solutions Si, i ∈ K \ S̃ defined as follows. We add an item of K \ S̃, say i, to the
solution, and we still use BP (S̃) bins to pack S̃ ∪{i}. Condition (ii) ensures that such
a solution is feasible by and, by conditions (i), it also belongs to F.

Finally, we will construct the |S̃| remaining by removing any item from S̃. The
number of bins needed to packs S̃ \{i}, i ∈ S̃ is |S̃|−p−1, since by condition (iii), the
value of BP (S̃) decreases even if the smallest item of S̃ is removed from this subset.
These solutions are clearly feasible, and, by conditions (i) and (iii), they belong to F.
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M6 denotes a (m+ 1)× (m+ 1) matrix containing the incidence vectors of solutions
described above.

M6 =




x1 x2 x3 . . . x|S| x|S|+1 . . . x|K| y

S1 1 1 1 . . . 1 0 . . . 0 |S| − p

S2 1 1 1 . . . 1 1 . . . 0 |S| − p
...
S|K\S|+1 1 1 1 . . . 1 0 . . . 1 |S| − p

S|K\S|+2 1 1 1 . . . 0 0 . . . 0 |S| − p− 1
...
S|K|+1 0 1 1 . . . 1 0 . . . 0 |S| − p− 1




We can easily check that the incidence vectors of Sk, k ∈ {1, 2, ..., m+1} are affinely
independent. Hence, the proof is complete. �

3.3.2.2 Min Set II Inequalities

Proposition 3.19 Let S be a subset of K, and p and q, two non negative integer
parameters such that q ≥ 2. Then, the inequality

∑

k∈S

xk ≤ qy + p, (3.24)

is valid for Q if and only if p ≥ (|S ′| − qBP (S ′)), for all S ′ ⊆ S.

Proof. Sufficiency

Suppose that the inequality (3.24) is valid for Q. Then, by definition of polyhedron
Q, we have that y ≥ BP (S) ≥ BP (S ′), for all S ′ ⊆ S. Multiplying both sides of this
inequality by q yields

qy ≥ qBP (S) ≥ qBP (S ′), ∀S ′ ⊆ S, (3.25)

Besides, summing the trivial inequalities xk ≤ 1, over any S ′ gives
∑

k∈S′

xk ≤ |S ′|, (3.26)

By doing (3.25) - (3.26), we get
∑

k∈S′

xk − qy ≤ |S ′| − qBP (S),
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which is equivalent to
∑

k∈S′

xk ≤ qy + |S ′| − qBP (S ′), ∀S ′ ⊆ S,

and it follows p ≥ |S ′| − qBP (S ′), for all S ′ ⊆ S.

Necessity

Assume now that there exists some subset S ′ ⊆ S such that p < |S ′| − qBP (S ′).
Then the solution having

xk =

{
1 if k ∈ S ′,

0 otherwise

y = BP (S ′),

belongs to Q but is cut off by inequality (3.24). Indeed, we would have |S ′|−qBP (S ′) ≤
p which is a contradiction. �

Example of Min Set II inequality that defines a facet Consider a set K of six
items with sizes 12, 9, 8, 7, 3 and 2. Assume that each available bin has a capacity of
15. Then, the following inequality

x1 + x5 + x6 − 2× y ≤ 0, (3.27)

defines a facet of Q. In fact, we can exhibit |K| + 1 solutions of Q whose incidence
vector are also in the face induced by (3.27). The matrix M7 contains those affinely
independent incidence vectors.

M7 =




x1 x2 x3 x4 x5 x6 y

X1 1 0 0 0 1 0 1

X2 1 0 0 0 0 1 1

X3 0 0 0 0 1 1 1

X4 0 0 0 1 1 1 1

X5 0 0 1 0 1 1 1

X6 0 1 0 0 1 1 1

X7 0 0 0 0 0 0 0
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3.3.3 CSLND using Bin-Packing function

Let us consider again the restriction of CSLND problem on one arc ij ∈ A. Recall that
the polyhedron Qij , associated with this relaxation is defined as follows

Qij := conv{(x, y) ∈ {0, 1}|K| × Z+ : xk
ij =

∑

w∈W

xkw
ij , yij ≥

∑

w∈W

ywij,

∑

k∈K

Dkxkw
ij ≤ Cywij ∀w ∈ W,xkw

ij ∈ {0, 1}, ywij ∈ {0, 1}, ∀k ∈ K, ∀w ∈ W}

Observe that Qij , ij ∈ A is equivalent to polyhedron Q. Indeed, if an item is associated
with a commodity, and a bin is associated with a module, then an instance of restricted
CSLND problem can be obtained from an instance of Bin-Packing problem. In other
words, CSLND problem restricted to one arc reduces to Bin-Packing problem.

Thus it is clear that the following formulation is equivalent to CSLND problem

min
∑

ij∈A

cijyij

∑

j∈V

xk
ji −

∑

j∈V

xk
ij =





1, if i = dk,

−1, if i = ok,

0, otherwise,

∀k ∈ K,

∀i ∈ V,
(3.28)

∑

k∈K

Dkxk
ij ≤ Cyij, ∀ij ∈ A, (3.29)

(xk
ij, yij) ∈ Q, ∀k ∈ K, ∀ij ∈ A. (3.30)

Where Q is the Bin-Packing function polyhedron. In consequence, facets of Q can be
very useful to solve CSLND problem.

3.4 Concluding remarks

In this chapter, we considered the capacitated single-layer network design. We focused
our attention on the arc-set polyhedron associated with this problem. We studied
a set of functions that are, in fact, relaxations of the considered problem, when it
is restricted to an arc. We investigated the basic properties of this polyhedron and
derived new classes of valid inequalities. We then described necessary and sufficient
conditions for theses inequalities to define facets. We presented an application of these
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results to the Bin-Packing function. In particular, our results concerning set functions
polyhedra generalize those presented in [10] for the unsplittable traffic assumption.
The identified valid inequalities were used to devise a branch-and-cut algorithm for
the capacitated single-layer network design problem. The later was implemented to
solve randomly generated instances, using realistic network topologies. The chapter
4 is dedicated to the algorithmic aspect of this implementation. We show in this
chapter some preliminary experiments for the considered instances, that confirm the
effectiveness of the identified valid inequalities.
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In this chapter, we devise a Branch-and-Cut algorithm for the aggregated formulation
of CSLND problem. This algorithm is based on the theoretical results presented in the
previous chapter. First, we give an outline of the algorithm. Then, we describe the
separation procedures used for some valid inequalities. Our objective is to discuss the
algorithmic implementation of the cuts introduced in the polyhedral study and to give
an insight of their effectiveness in practice. In particular, we test our approach on a
set of random and realistic instances.
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4.1 Branch-and-Cut algorithm

4.1.1 Overview

Here, we describe the framework of our algorithm. Suppose that we are given a bi-
directed graph G = (V,A) and a weight vector c ∈ RA

+ associated with the arcs of G.
Let K be a set of commodities to be routed on G and W a set of available facilities per
arc. To start the optimization, we consider the following linear program, LPinitial, given
by the flow conservation constraints and the aggregated capacity constraints associated
with the arcs of G, together with the trivial inequalities, that is

min
∑

(i,j)∈A

cijyij

∑

j∈V

xk
ji −

∑

j∈V

xk
ij =





1, if i = dk,

−1, if i = ok,

0, otherwise,

∀k ∈ K, ∀i ∈ V,

∑

k∈K

Dkxk
ij ≤ Cyij, ∀ij ∈ A,

0 ≤ xk
ij ≤ 1, ∀k ∈ K, ∀ij ∈ A,

yij ≥ 0, ∀ij ∈ A.

Let us denote by (x, y) ∈ RK×A × RA the optimal solution of this relaxation of the
CSLND problem. Note that (x, y) is feasible for the problem if it is integer and it
satisfies all Min Set I inequalities. Usually, this is not the case. Then, at each iteration
of the Branch-and-Cut algorithm, one has to generate further valid inequalities. This
procedure is known as the separation problem, and consists, given a class of valid
inequalities in deciding whether if there exists an inequality violated by the current
solution. The identified inequalities are added to the current linear program, that is
solved again. This procedure is repeated until no violated inequality may be found.
The final solution if then optimal for the linear relaxation of the aggregate formulation.
If the solution is integral, then it is optimal for CSLND problem. Otherwise, we create
two new problems by branching on a fractional variable. The separation routine is then
performed at each node of the Branch-and-Cut tree until the optimal solution is found.
The Branch-and-Cut algorithm uses the classes of inequality previously introduced and
their separation is performed in the following order

1. Min Set I inequalities
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2. Min Set II inequalities

The algorithm 3 summarizes the principal steps of the Branch-and-Cut algorithm.

Algorithm 3: Branch-and-cut algorithm

Data : a graph G = (V,A), a set of commodities K, a set of available facilities W ,
and a cost vector c ∈ IRA.
Output : optimal solution of CSLND problem, or best feasible upper bound.

1: LP ← LPinitial

2: solve the linear program LP.
let (x, y) be the optimal solution of LP.

3: If (x, y) is feasible for CSLND problem then

(x, y) is an optimal solution. STOP
4: If constraints (Min Set I and Min Set II) violated by (x, y) are found then

add them to LP.
go to 2.

5: else

create two sub-problems by branching on a fractional variable.
6: return the best solution for all the sub-problems.

In our Branch-and-Cut algorithm, we apply the following separation strategy. At
each separation procedure, we can add more than one violated inequality if there is
any. Also we move to the separation of a new class of inequalities only if no additional
inequality can be identified in the current class. Note that the cutting plane is a global
procedure, applied to all the nodes of the Branch-and-Cut tree. This allows to get the
best possible lower bound. In what follows, we describe the separation algorithm used
to identify violated inequalities introduced above. We devised heuristic procedures for
the separation of both classes of valid inequalities. First, let us introduce the test used
to check whether if a solution (x, y) ∈ RK×A × RA is feasible for CSLND problem.

4.1.2 Feasibility test

The basic constraints of the aggregated formulation (3.5)-(3.6) are not enough to guar-
antee that a solution (x, y), even integer, is feasible. In fact, this solution has to
satisfy all the Min Set I inequalities. We have considered a feasibility test that veri-
fies if (x, y) is feasible or not. This tests consists in checking, for each arc a ∈ A, if
ya ≥ BP (S), or not. Here, S is the subset of commodities using a. In other words,
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S = {k ∈ K, xk
a > 0.1}. Note that this test requires, for each arc, and given a sub-

set of commodities S, the computation of BP (S). For this test, we perform BP (S)

computation by solving the ILP formulation (3.14)-(3.17) using a branch-and-bound
algorithm.

4.1.3 Separation of Min Set I inequalities

In this section we discuss the separation problem of Min et I inequalities. This problem
consists, given a fractional solution (x, y), in finding a Min Set I inequality (3.21) that
is violated by (x, y), or showing that no such inequality exists. Namely, one has to
identify a subset of commodities S ⊆ K, and a non negative integer parameter p that
induces a valid Min Set I inequality

∑

k∈K

xk
a ≤ ya + p.

for some arc a ∈ A. As the validity condition requires the computation of BP (S) value
for each subset S, we have to embed the resolution of the bin packing problem within
the separation process.

In other words, for a particular arc a ∈ A, one has to produce a subset S that
ensures the validity condition and decide whether the induced Min Set I inequality
is violated or not. To formulate this separation problem, we will introduce a binary
decision variable denoted αk, k ∈ K, that takes the value 1 if the commodity k belongs
to S, and 0 otherwise. Note that S = {k ∈ K : αk = 1} and |S| =

∑
k∈K αk. The

separation problem is then equivalent to the following :

max
∑

k∈K

xk
ijα

k − yij − p

s.t :

BP (S) ≥
∑

k∈K

αk − p (4.1)

0 ≤ αk ≤ 1, αk ∈ {0, 1},∀k ∈ K. (4.2)

The objective function states that we are looking for the most violated constraint
while the inequality (4.1) ensures that this constraint is valid. Observe that inequality
(4.1) requires the computation of BP (S) within the separation process, which fur-
ther complicates the problem. In what follows, we show that the separation problem
associated with Min Set I inequalities is not in the class NP.
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Proposition 4.1 The separation problem (4.1)-(4.2) does not belong to the class NP

Proof. An instance of the separation problem (4.1)-(4.2) is defined as follows

Instance

• a set of commodities K. Each commodity k ∈ K has a traffic value Dk > 0,

• a set of available facilities W . Each facility has a capacity C > 0, Dk ≤ C, for
all k ∈ K,

• a "gain" given by the vector (x, y), corresponding to the current fractional solu-
tion. We can consider that a gain xk is associated to each commodity k ∈ K,

• an integer parameter p = |S| −BP (S).

The separation problem (4.1)-(4.2) is to decide whether there is a subset of commodi-
ties S ⊆ K that maximizes the total gain, such that the smallest number of facilities
needed to pack all the commodities of S is greater or equal than |S| − p. Now consider
a solution α̃ ∈ {0, 1}|K| of the formulation (4.1)-(4.2), and the corresponding subset
of commodities S̃. One has to solve the bin packing problem in order to check if α̃ is
feasible for (4.1)-(4.2). As the bin packing problem is NP-hard, it is not possible to
answer to the question above by using a polynomial algorithm. Hence, the separation
problem does not belong to the class NP . �

As the separation problem for Min Set I inequalities does not belong to the class NP ,
one can not aim to perform an exact separation of this class. In the next section,
we will present a heuristic procedure that we devised. The idea of this routine is to
consider the separation of a relaxed version of Min Set I inequalities, which is "easier"
to handle.

4.1.3.1 Heuristic separation

For each arc a ∈ A, we look for a Min Set I inequality (3.21) that is violated by
the current fractional solution (x, y). Let a be an arc of A, and S be a subset of
commodities in K. Consider the inequality

∑

k∈S

xk
a ≤ ya + pr (4.3)
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where pr is a non negative integer such that pr = |S| -
∑

k∈S
Dk

C
. Notice that pr is

obtained by replacing BP (S) by the trivial lower bound
∑

k∈S
Dk

C
, in p = |S| - BP (S).

Separating this new class of inequalities allows to easily exhibit a subset S which might
induce a violated Min Set I inequality. Besides, given an arc a ∈ A, and a fractional
solution (x, y) of (3.5)-(3.6), the separation problem associated with inequality (4.3) is
equivalent to the following integer linear program:

maxZ =
∑

k∈K

(xk
a +

Dk

C
− 1)αk − ya (4.4)

0 ≤ αk ≤ 1, αk ∈ {0, 1}, ∀k ∈ K. (4.5)

The function (4.4) is maximised using a simple greedy procedure working as follows.
Given a fractional solution (x, y), we start with an empty set S, then we check for
each k ∈ K if adding the commodity k to S increases the value of Z. This greedy
procedure allows to iteratively build a subset S that maximizes the function Z (4.4).
We use the greedy algorithm given above within a heuristic separation described in

Algorithm 4: Greedy procedure SEP_MSI

Data : a fractional solution (x, y), a set of commodities K, an arc a ∈ A.
Output : a subset of commodities S that might induce a violated Min Set I
inequality.

1: S = ∅,
2: Z∗ ← −ya,
3: Forall k ∈ K do

Z ← (xk
a +

Dk

C
− 1) + Z∗,

If Z > Z∗ then

Z∗ ← Z,
S = S ∪ {k},

4: return S.

Algorithm 5, that may be presented as follows. Our separation algorithm consists
first in determining, for each arc a ∈ A, a subset of commodities S using the greedy
procedure described in Algorithm 4. Based on subset S, we give an approximate value
of the parameter p by using Fekete and Shepers’s dual feasible function [46] to find a
good lower bound of BP (S). In fact, this bound is computed using the so-called dual
feasible functions. These functions have been used first by Johnson [66] then by Lueker
in [76] to derive lower bounds for bin-packing problems (see [33] for detailed description
of dual feasible functions used in the literature to obtain either lower bounds or valid
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inequalities within a cutting planes context). In particular we use the class of lower
bounds introduced by Fekete and Schepers in [46], that is L

(p)
∗ with p = 2. This class

of bounds allows to strengthen the elementary bounds L1 and L2 given by Martello
and Toth in [81, 82]. We will denote this function by fFS(S). We finally check if the
identified subset S and parameter p produce a violated Min Set I inequality and add the
obtained constraint to the current linear program if so. Fekete and Shepers’s function

Algorithm 5: Heuristic separation of inequalities (3.21)

Data : fractional solution (x, y)

Output : a set S of Min Set I inequalities violated by (x, y)

1: S← ∅;
1: Forall a ∈ A do

2: Sa = SEP_MSI(x, y, a),
/* the set of commodities that may induce a violated Min Set I */

/* inequality for a

3: Compute the parameter p = |S| − fFS(S)

4: If
∑

k∈Sa
xka − ya > p then

/* there is a violated Min Set I inequality */

5: Denote Sa this inequality;

6: S← S;

7: return the identified violated Min Set I inequalities S;

/* S = ∅ if no violated Min Set I inequalities are detected */

fFS(S) that gives a lower bound of BP (S) can be computed in O(|K|log(|K|)). In
fact, the computational effort consists in sorting the commodities by traffic amount.
As the operation is iterated for each arc of A, our separation procedure is running in
O(m|K|log(|K|)), where m = |A|. However, if the commodities are sorted by traffic
amount, then we have a complexity of O(m|K|).

4.1.4 Separation of Min Set II inequalities

Our separation algorithm for Min Set II inequalities (3.24) consists first in identifying
a subset of commodities S that induces a violated constraint, and satisfies certain
conditions. The former step is performed by using the greedy procedure described in
Algorithm 4. We consider the separation of inequalities with q = 2 and p = 0. The
validity condition for this inequality requires the verification of all subsets of S. This
number may be very large (2|S| subsets of S), we only look at sets with at most 4
elements. In such a way that the subsets of S are thus not so many, and it possible to
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verify in a relatively small time if the validity condition is satisfied. We then check if
the corresponding Min Set II inequality is violated by the current fractional solution,
and we add it to the current linear program if so.

4.2 Computational study

4.2.1 Implementation’s feature

We now briefly describe the hardware and software tools used for implementations as
well as the instances considered for the experiments, before giving the numerical results.
The Branch-and-Cut algorithm depicted in the previous section has been implemented
in C++ using CPLEX 12.5 Callable Library [2] as a linear solver and to handle the
Branch-and-Cut framework. Our algorithm was tested on a Bi-Xeon quad-core E5507
2.27GHz with 8Go of RAM, running under Linux distribution. Finally, we have fixed
a CPU time limit of five hours.

All the experiments for this algorithm have been conduced on SNDlib based instances
with two types of traffic matrices : randomly generated and realistic. Both types are
described in the following sections.

4.2.2 Description of instances

The experiments given here have been obtained by considering instances from a library
dedicated to the optimization of telecommunication networks, namely SNDlib [1]. The
set of considered instances includes instances with randomly generated commodities
and realistic commodities. Both classes of instances are characterized by the number
of nodes V , the number of arcs A, the number of available facilities denoted W , and
the number of commodities K.

4.2.2.1 Instance with randomly generated traffic

These instances are based on data from polska, nobel_us, newyork, geant, ta1, norway
and pioro40 instances. The set of nodes and arcs in G correspond to those of SNDlib
instances for bidirected link instances, while each edge of undirected SNDlib instances
induces two inversely directed arcs in our instances. We associate with each arc a
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length that is rounded euclidean distance between the arc’s vertices. Moreover, a
facility settled on an arc induces a cost equivalent to the length of this arc. The
available facilities are supposed to have the same capacity and their number is fixed to
ten facilities per arc, for all the instances (W = 10). Concerning the traffic matrices,
we randomly generate the origin node, the destination node and the traffic amount of
each commodity. The commodities traffic is uniformly distributed in ]ǫ, C], where ǫ =
0.2C. Finally, we generate five examples of each previously described instance, and we
give the average results obtained for each instance.

4.2.2.2 Instance with realistic traffic

The realistic instances considered here are based on SNDlib network topologies as well
as instances described above. We used topologies derived from data of abilene, atlanta,
nobel_germany, france, nobel_eu, india35, cost266 and zib54. Again, V corresponds
to the set of nodes of SNDlib instances, and A is either obtained from the set of edges
of SNDlib undirected link instances, or equivalent for the bi-directed link instances.
We assume that we can install up to five facilities having the same capacity, on arcs
of each instance. Furthermore, concerning the commodities, we choose the K most
important commodities according to the traffic amount for each instance.

4.2.3 Data preprocessing

We describe here a simple preprocessing operation we have performed on our instances
data to enhance the solution process. The idea of this operation comes from some
techniques used for computing lower bounds for bin-packing. In fact, each commodity
which is not compatible with any other commodity into the same subband is increased
to the subband capacity. In other words, commodities that are too large to fit with
any other commodity are increased to fill completely the capacity of a subband. More
formally, let us denote by k a commodity of this class. Then, if Dk +Dk′ ≥ C, for all
k′ ∈ K, then Dk = C. In particular, this may help ton increase the bound on design
variables y, that are closely related to the value of ratio Dk

C
, for all k ∈ K (see Table

4.3 for further details on the difficulty of an instance).
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4.2.4 Computational results

In this section we present some experiments obtained by using our Branch-and-Cut
approach on both classes of instances, previously described. The results are reported
in the tables given in what follows. The entries of the various tables are:

V : number of nodes in G,
A : number of arcs,
K : number of commodities,
NmsI : number of generated Min Set I inequalities,
NmsII : number of generated Min Set II inequalities,
nodes : number of nodes in the Branch-and-Cut tree,
o/p : number of problem solved to optimality over number of tested

instances (only for instances with randomly generated traffic),
Gap : the relative error between the best upper bound (optimal

solution if the problem has been solved to optimality) and the lower
bound obtained at the root node of the Branch-and-Cut tree

TT : total CPU time in h:m:s
TTsep : CPU time spent in performing the constraints separation.

The instances whose CPU time reaches 5 hours are not solved to optimality. For
those instances, the gap is indicated in italic.

4.2.4.1 The effectiveness of Branch-and-Cut algorithm

Our first series of experiments concerns a subset of instances with randomly generated
commodities. Those instances were handled using a Branch-and-Bound algorithm to
solve the compact formulation (3.1)-(3.3), and a Branch-and-Cut algorithm to solve
the aggregated formulation (3.5)-(3.6) and by considering valid inequalities. The idea
behind these experiments is to bring out the efficiency of valid inequalities introduced
in the previous chapter. The results are summarized in Table 6.1. In Table 6.1 are
presented three parameters that usually make it possible to compare the performance
of two approaches, namely the gap, the number of nodes of the Branch-and-Bound (re-
spectively Branch-and-Cut) tree, and the CPU time for computation. It appears from
Table 6.1 that the aggregated formulation with valid inequalities performs better than
the compact formulation for all the instances. In fact, we can notice that the Branch-
and-Cut approach allows to solve to optimality all tested instances in a very short
time (less than 5 minutes for all the instances except for newyork_20_1, ta1_16_1,
ta1_18_1, and ta1_20_1), whereas the Branch-and-bound performs worse results for
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all the instances according to this criterion. See for example newyork_10_1 which is
solved to optimality instantly by Branch-and-Cut while it could not be solve to op-
timality within 5 hours using the Branch-and-Bound. Indeed, a significant number
of instances could not be solved to optimality within 5 hours using the Branch-and-
Bound algorithm. Also, we can see that the gap is more important for some instances
using Branch-and-Cut algorithm. However, it is clear that the number of Branch-and-
Bound tree’s nodes is much more greater than one of Branch-and-Cut, for almost all
the instances. The instance newyork_8_1, for example, required 10206 nodes in the
Branch-and-Bound tree to be solved to optimality, while the Branch-and-Cut explored
only 157 nodes.

The results presented in Table 6.1 clearly shows the gain provided by using the valid
inequalities introduced in the previous chapter, within a Branch-and-Cut framework.
Indeed, our approach allows to solve efficiently the CSLND problem and requires less
CPU time and fewer explored nodes than the Branch-and-Bound approach.

We give hereafter the results of the experiments for SNDlib instances with realistic
and randomly generated traffic matrices.

4.2.4.2 Instances with randomly generated traffic matrices

Our second series of experiments concerns instances based on SNDlib topologies, with
randomly generated commodities. The instances considered here have graphs with 12
up to 40 nodes and 36 up to 178 arcs, while the number of commodities varies from 4
to 40 (4 to 20 for pioro). The results are reported in Table 4.2. Note that instances
used in Table 6.1 are a part of those used in Table 4.2. We can see from Table 4.2 that,
in average 34 among 46 families of instances have been solved to optimality within the
fixed time limit (i.e. Opt = 5/5). Also remark that for only 6 families of instances, the
Branch-and-Cut could not provide any optimal solution within 5 hours. Moreover, 5
over 33 families of instances solved to optimality have a gap value greater than 30%.
The remaining instances have a gap that may reach 66% (instance pioro_4). These
observations together with the gap value raise the question of what makes an instance
difficult, outside of its size.

In order to answer this question, we have made some experiments on a family of
instances with different traffic amount. We have considered the topology of atlanta
network which has 15 nodes and 44 arcs, while the commodities ranges from 5 to 50.
For each instance size we have generated five types of commodities. In fact, the first
type of commodities are generated in interval ]0, C

4
], the second type of commodities are
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Table 4.1: Aggregated formulation versus Compact formulation

Compact formulation Aggregated formulation (B&C)

Instance |V| |A| |K| Gap Nodes TT Gap Nodes TT NmsI NmsII

polska_2_1 12 36 2 0.00 1 0:00:00 0.00 1 0:00:00 2 0

polska_4_1 12 36 4 18.71 1829 0:00:28 21.21 12 0:00:00 44 0

polska_6_1 12 36 6 0.00 1 0:00:00 2.41 9 0:00:00 86 0

polska_8_1 12 36 8 27.68 1076 0:05:26 21.68 56 0:00:02 143 2

polska_10_1 12 36 10 14.04 919 0:02:56 12.28 71 0:00:05 384 0

polska_12_1 12 36 12 14.15 977 0:02:19 11.33 100 0:00:05 499 3

polska_14_1 12 36 14 18.83 83500 5:00:00 18.70 367 0:00:22 619 4

polska_16_1 12 36 16 13.48 1241 0:03:56 12.17 249 0:00:24 840 2

polska_18_1 12 36 18 12.32 55299 1:35:48 14.08 421 0:00:50 1372 11

polska_20_1 12 36 20 27.33 16777 5:00:00 23.11 596 0:01:49 692 7

nobel_us_2_1 14 42 2 22.37 182 0:00:09 58.83 18 0:00:00 46 0

nobel_us_4_1 14 42 4 30.98 1734 0:02:23 39.57 14 0:00:00 46 0

nobel_us_6_1 14 42 6 0.00 1 0:00:01 25.55 17 0:00:00 109 0

nobel_us_8_1 14 42 8 13.29 4978 0:23:03 22.35 64 0:00:03 169 0

nobel_us_10_1 14 42 10 29.08 82768 5:00:00 29.02 114 0:00:01 158 0

nobel_us_12_1 14 42 12 11.75 71534 5:00:00 28.90 278 0:00:26 291 2

nobel_us_14_1 14 42 14 27.47 55221 5:00:00 22.50 302 0:00:48 556 14

nobel_us_16_1 14 42 16 6.57 74429 5:00:00 20.28 281 0:00:46 580 21

nobel_us_18_1 14 42 18 7.48 64164 5:00:00 22.34 1001 0:03:45 757 27

nobel_us_20_1 14 42 20 10.79 13291 5:00:00 22.92 295 0:00:49 434 6

newyork_2_1 16 98 2 0.00 1 0:00:00 0.19 5 0:00:00 22 0

newyork_4_1 16 98 4 38.60 11354 1:12:00 16.95 24 0:00:00 78 0

newyork_6_1 16 98 6 25.12 10822 1:21:01 20.28 58 0:00:03 113 0

newyork_8_1 16 98 8 35.91 10206 1:33:28 27.65 157 0:00:24 226 2

newyork_10_1 16 98 10 12.65 1360 0:17:06 1.82 10 0:00:01 88 1

newyork_12_1 16 98 12 13.94 974 0:07:24 1.84 13 0:00:01 109 1

newyork_14_1 16 98 14 21.19 489 0:06:15 8.01 46 0:00:05 268 3

newyork_16_1 16 98 16 22.17 1859 0:16:00 5.96 47 0:00:05 246 2

newyork_18_1 16 98 18 21.65 5663 0:20:04 10.08 288 0:00:59 905 10

newyork_20_1 16 98 20 28.18 8032 5:00:00 18.41 7776 2:01:37 2250 70

geant_2_1 22 72 2 0.00 1 0:00:00 0.00 1 0:00:00 6 0

geant_4_1 22 72 4 23.60 2617 0:04:46 22.27 7 0:00:00 41 0

geant_6_1 22 72 6 15.09 865 0:01:36 5.48 5 0:00:00 22 0

geant_8_1 22 72 8 13.23 2284 0:14:15 28.82 29 0:00:02 144 1

geant_10_1 22 72 10 8.28 659 0:00:45 1.96 12 0:00:00 80 0

geant_12_1 22 72 12 16.28 4885 0:13:57 11.91 21 0:00:00 158 0

geant_14_1 22 72 14 5.13 1522 0:03:13 6.07 28 0:00:01 182 0

geant_16_1 22 72 16 3.22 1216 1:01:10 5.62 15 0:00:00 133 0

geant_18_1 22 72 18 0.26 28 0:00:21 6.51 29 0:00:01 207 4

geant_20_1 22 72 20 12.34 17900 5:00:00 10.49 211 0:00:52 438 4

ta1_2_1 24 102 2 0.00 1 0:00:01 22.23 9 0:00:00 38 0

ta1_4_1 24 102 4 23.81 2021 0:12:18 32.99 57 0:00:01 76 0

ta1_6_1 24 102 6 17.80 11190 1:51:06 26.17 66 0:00:05 199 1

ta1_8_1 24 102 8 20.69 12434 2:33:57 32.13 405 0:00:50 391 2

ta1_10_1 24 102 10 7.47 2084 0:14:10 6.83 55 0:00:08 282 0

ta1_12_1 24 102 12 8.88 11453 0:32:03 22.89 301 0:00:22 378 4

ta1_14_1 24 102 14 21.84 25186 5:00:00 29.65 898 0:02:05 770 2

ta1_16_1 24 102 16 8.14 23252 5:00:00 26.94 2450 0:09:25 1423 9

ta1_18_1 24 102 18 8.52 20941 5:00:00 25.48 4188 0:26:33 1724 31

ta1_20_1 24 102 20 30.91 12088 5:00:00 27.23 27257 4:42:36 2307 58
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Table 4.2: Branch-and-Cut results for SNDlib instances with random traffic

Instance V A K NmsI NmsII Gap Opt nodes TT

polska_4 12 36 4 50.2 0 16.81 5/5 11 0:00:00

polska_6 12 36 6 70.6 0 10.78 5/5 11 0:00:00

polska_8 12 36 8 143.6 1.2 14.40 5/5 47.2 0:00:01

polska_10 12 36 10 247.6 3.2 14.61 5/5 66.4 0:00:03

polska_15 12 36 15 533.2 3.6 16.63 5/5 205.8 0:00:25

polska_20 12 36 20 970.8 39.8 17.78 5/5 835.2 0:03:37

polska_30 12 36 30 3294.2 149.2 15.06 4/5 4818 1:14:15

polska_40 12 36 40 7596.8 388.4 16.43 1/5 17778.6 4:02:08

nobel_us_4 14 42 4 72.8 0.8 29.25 5/5 29.6 0:00:00

nobel_us_6 14 42 6 90 0.4 23.23 5/5 21.6 0:00:00

nobel_us_8 14 42 8 158.2 0.8 26.13 5/5 54.4 0:00:01

nobel_us_10 14 42 10 123.6 0.4 21.69 5/5 54 0:00:01

nobel_us_15 14 42 15 795.2 26.4 26.98 5/5 3056.2 0:06:03

nobel_us_20 14 42 20 1609.2 37 26.15 5/5 6399.2 0:29:31

nobel_us_30 14 42 30 3566.8 62.4 22.35 4/5 8436.6 1:17:57

nobel_us_40 14 42 40 8723.6 129.8 25.37 0/5 14616 5:00:00

newyork_4 16 98 4 43 0 8.71 5/5 11.8 0:00:00

newyork_6 16 98 6 157.4 2 23.02 5/5 94 0:00:03

newyork_8 16 98 8 281.2 4.8 19.70 5/5 184.6 0:00:12

newyork_10 16 98 10 271.2 2.4 10.61 5/5 110.6 0:00:10

newyork_15 16 98 15 598 11.4 12.66 5/5 527.4 0:01:33

newyork_20 16 98 20 1993.6 28.2 14.09 5/5 3778.4 0:34:21

newyork_30 16 98 30 4683.4 101.2 15.78 0/5 17894.6 5:00:00

newyork_40 16 98 40 8994.8 99.4 60.53 0/5 10812.2 5:00:00

geant_4 22 72 4 45.6 0 25.16 5/5 12.2 0:00:00

geant_6 22 72 6 47.8 0 7.63 5/5 8 0:00:00

geant_8 22 72 8 129.2 0.8 27.70 5/5 35.6 0:00:02

geant_10 22 72 10 155.6 0.6 16.65 5/5 35.6 0:00:03

geant_15 22 72 15 312.8 3 14.27 5/5 98.2 0:00:17

geant_20 22 72 20 353 1 13.11 5/5 98.2 0:00:23

geant_30 22 72 30 1496.6 21.6 12.34 5/5 686.8 0:07:15

geant_40 22 72 40 3111.2 37.2 12.60 5/5 2096.4 0:54:45

ta1_4 24 110 4 96 0 35.72 5/5 47 0:00:01

ta1_6 24 110 6 165.4 0.4 29.49 5/5 59.2 0:00:04

ta1_8 24 110 8 319.6 1.6 27.09 5/5 381.8 0:01:03

ta1_10 24 110 10 415.6 7.6 21.03 5/5 778 0:02:04

ta1_15 24 110 15 1120.4 78.4 27.32 4/5 8788.4 1:08:46

ta1_20 24 110 20 1920 49.4 25.25 3/5 10870 2:45:12

ta1_30 24 110 30 4570 69.6 25.88 0/5 9886.8 5:00:00

ta1_40 24 110 40 9187.2 117.8 52.85 0/5 13739.8 5:00:00

pioro_4 40 178 4 174.4 0 66.01 5/5 418.4 0:00:07

pioro_6 40 178 6 217.4 0.4 56.49 5/5 365.8 0:00:13

pioro_8 40 178 8 786.4 11.2 59.67 5/5 8678.8 0:11:42

pioro_10 40 178 10 884 9 51.72 5/5 5719.6 0:10:36

pioro_15 40 178 15 2471.4 82.8 56.60 2/5 46315.2 3:51:36

pioro_20 40 178 20 3426.4 87.4 55.55 0/5 41249.8 5:00:00
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Instance V A K NmsI NmsII Gap nodes TT TT(sep)

atlanta5_1 15 44 5 41 0 46.77 71 0:00:01 0

atlanta5_2 15 44 5 69 0 16.43 34 0:00:01 0

atlanta5_3 15 44 5 32 0 0.00 1 0:00:01 0

atlanta5_4 15 44 5 55 0 0.89 7 0:00:01 0

atlanta5_5 15 44 5 39 0 0.46 5 0:00:01 0

atlanta10_1 15 44 10 157 0 55.86 833 0:00:27 0

atlanta10_2 15 44 10 120 0 33.33 100 0:00:08 0

atlanta10_3 15 44 10 83 0 4.48 4 0:00:01 0

atlanta10_4 15 44 10 207 0 8.94 32 0:00:02 0

atlanta10_5 15 44 10 193 1 27.60 83 0:00:03 0

atlanta15_1 15 44 15 411 0 50.14 538 0:00:44 0

atlanta15_2 15 44 15 1837 456 29.31 31724 2:33:09 73

atlanta15_3 15 44 15 665 0 16.19 109 0:00:20 0

atlanta15_4 15 44 15 148 0 2.08 17 0:00:01 0

atlanta15_5 15 44 15 988 72 21.97 2169 0:06:17 5

atlanta20_1 15 44 20 1063 207 57.31 9571 0:24:50 16

atlanta20_2 15 44 20 3107 643 31.82 59587 5:00:00 67

atlanta20_3 15 44 20 864 0 11.85 92 0:00:12 1

atlanta20_4 15 44 20 662 0 4.41 66 0:00:08 1

atlanta20_5 15 44 20 2749 354 26.01 39985 3:01:31 108

atlanta25_1 15 44 25 1450 123 48.74 50604 5:00:00 48

atlanta25_2 15 44 25 2262 332 33.62 33482 5:00:00 103

atlanta25_3 15 44 25 2340 0 17.88 634 0:09:02 6

atlanta25_4 15 44 25 1596 0 5.41 199 0:02:10 4

atlanta25_5 15 44 25 1661 88 20.22 6576 0:29:54 26.92

atlanta30_1 15 44 30 1316 159 44.24 31804 5:00:00 52

atlanta30_2 15 44 30 3211 355 36.88 23474 5:00:00 85

atlanta30_3 15 44 30 4302 0 15.98 1134 0:11:27 6

atlanta30_4 15 44 30 2100 0 5.84 266 0:01:23 0

atlanta30_5 15 44 30 2769 205 17.82 16437 1:52:31 69.96

atlanta35_1 15 44 35 2316 148 43.19 30825 5:00:00 44

atlanta35_2 15 44 35 4124 463 36.32 17560 5:00:00 153

atlanta35_3 15 44 35 3997 0 18.26 1643 0:46:12 24

atlanta35_4 15 44 35 2322 0 4.61 325 0:06:28 8

atlanta35_5 15 44 35 5230 845 25.22 34494 5:00:00 100

atlanta40_1 15 44 40 2211 598 43.92 34685 5:00:00 88

atlanta40_2 15 44 40 4255 704 28.40 14758 5:00:00 147

atlanta40_3 15 44 40 9489 0 23.78 4386 5:00:00 73

atlanta40_4 15 44 40 3622 0 4.76 383 0:12:48 13

atlanta40_5 15 44 40 5117 414 15.83 28951 5:00:00 157

atlanta50_1 15 44 50 2857 134 46.08 22886 5:00:00 97

atlanta50_2 15 44 50 3955 643 52.87 11473 5:00:00 163

atlanta50_3 15 44 50 13741 0 25.23 2966 5:00:00 77

atlanta50_4 15 44 50 10283 0 5.46 2201 4:19:52 98

atlanta50_5 15 44 50 9053 546 16.75 17879 5:00:00 130

Table 4.3: The hardness of CSLND instances
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], the third one in ]C

2
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4
C], then in ]3

4
C,C], and the last type was generated in

]C
4
, 3C

4
]. For example, if C = 100, then commodities will be generated in the following

intervals ]0, 25], ]25, 50], ]50, 75], ]75, 100] and ]25, 75]. An instance name is followed by
the extension 1, 2, 3, 4 or 5 according to the interval that contains its traffic demands.
The results are show in Table 4.3. It appears clearly from Table 4.3 that all the in-
stances with traffic in intervals ]C

2
, 3
4
C] and ]3

4
C,C] are solved to optimality within the

time limit, except for atlanta_40_3 and atlanta_50_3. These two instances are also
the only ones among the 18 instances whose traffic is generated in intervals 3 and 4,
to have a gap greater than 20%. Moreover, we can easily observe that instances whose
commodities are generated in intervals 1 and 2 have the worse results in terms of gap
and size of the Branch-and-Cut tree. In fact, the instances whose traffic is generated
in interval 1 are clearly the most difficult to solve, followed by those of intervals 2,
5, 3 and 4, in decreasing order of difficulty. Those observations are consistent with
most of the works concerning bin-packing problem (see for example [46] and references
therein), which state that instances with large commodities are easier to solve. How-
ever, although interval 5 has less small commodities than interval 1, so less chances
to fill the modules gap, instances are not more difficult to solve. All these remarks
lead us to conclude that the hardness of an instance is closely related to ratio between
commodities traffic and facilities capacity (D

k

C
, k ∈ K).

Note also that the number of generated Min Set I inequalities is significantly higher
than the number of generated Min Set II inequalities. This means that Min Set II
inequalities are more likely to improve the efficiency of Branch-and-Cut in terms of
number of explored nodes in the tree. Although the separation procedure for Min Set
II inequalities can be enhanced, we do not expect them to be as effective as Min Set I
inequalities. This can be explained by the structure of random instances as Min Set II
inequalities seem to be more helpful for instances with small commodities.

4.2.4.3 Realistic instances

Our last series of experiments concerns realistic instances based on SNDlib topologies.
The tested instances have graphs with 12 up to 54 nodes and sets of 2 to 45 commodities
(6 to 45 for instances abilene and atlanta). We have treated 92 instances and the results
obtained are divided into two tables, namely Table 7.3 and Table 7.4. It appears
from Table 7.3 and Table 7.4 that 70 among the 92 tested instances were solved to
optimality within the fixed time limit. The remaining instances, are generally those
having more than 30 commodities and/or more than 35 nodes. In addition, note that
60 instances could be solved to optimality in less than 15 minutes. We can remark that,
the gap values are slightly better than those obtained for the instances with randomly
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generated traffic (see Table 4.2). However, it seems that realistic traffic based instances
are as challenging as randomly generated traffic ones. Also we can see that CPU time
dedicated to the separation is very short regarding to the number of valid inequalities
that are generated. Indeed, using good lower bound instead of integer programming to
solve the bin-packing problem within separation routines helped to make it faster and
more efficient.

Similarly to instances with randomly generated commodities, the difficulty of real-
istic SNDlib-based instances is closely related to the nature of commodities (amount
of traffic compared to the capacity of facilities), and to the size of the graph as well
(number of nodes and number of arcs). Yet this justifies why two instances outwardly
equivalents in size are not handled with the same ease by the Branch-and-Cut algo-
rithm. Moreover, it must be pointed out that valid inequalities are more likely to be
efficient for the instances with sparse graphs. Actually, in those graphs, the commodi-
ties routing paths would be longer, so more commodities would have to share the same
arcs and "bin-packing effect" is significant. For example, we can compare instances
nobel_germany in Table 7.3 with instances newyork in Table 4.2, that are similar in
terms of number of nodes. It is clear that the class of instances nobel_germany are
solved more easily than instances newyork. In fact, the graph of latter instances is
strongly meshed. This induces a heaviest model (in terms of number of variables) but
also more possibilities in the routing of commodities. In consequence, this does not
encourage the emergence of valid inequalities that are violated.

4.3 Concluding remarks

In this chapter, we have presented the results provided by our Branch-and-Cut algo-
rithm, devised and implemented to solve CSLND problem. We have first given an
overview of the algorithm and discussed some aspects of the separation problems asso-
ciated with two classes of valid inequalities. In particular, we have proposed heuristic
procedures to generate both Min Set I (3.21) and Min Set II (3.24) inequalities.

Our computational experiments have shown that the Branch-and-Cut approach is
much more efficient than a Branch-and-Bound on the compact formulation to solve the
problem. They have also shown that Min Set I and Min Set II inequalities are very
effective for the problem. We could also see that our heuristics to separate Min Set
I and Min Set II inequalities performs well, especially for instances based on sparse
graphs. These experiments also illustrated the fact that CSLND problem is easier to
solve when the traffic demands are not so small in comparison with facilities capacity.
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Instance |V| |A| |K| NmsI NmsII Gap Nodes TT TTsep

abilene 12 30 6 15 0 5.75 32 0:00:00 0

abilene 12 30 8 68 0 10.05 9 0:00:00 0

abilene 12 30 10 112 0 15.38 22 0:00:00 0

abilene 12 30 12 199 0 21.59 22 0:00:00 0

abilene 12 30 14 173 4 17.52 427 0:00:07 0

abilene 12 30 16 450 1 24.49 151 0:00:05 0

abilene 12 30 18 688 3 26.71 354 0:00:21 0

abilene 12 30 20 620 4 25.25 231 0:00:14 0

abilene 12 30 25 1273 8 18.61 462 0:00:51 1

abilene 12 30 30 1801 9 20.48 1362 0:02:21 3

abilene 12 30 40 3994 576 19.13 10246 0:45:03 73

abilene 12 30 45 5781 451 16.86 10005 2:00:09 35

atlanta 15 44 6 47 0 0.36 4 0:00:00 0

atlanta 15 44 8 181 26 43.31 545 0:00:05 0

atlanta 15 44 10 76 1 4.61 27 0:00:00 0

atlanta 15 44 12 205 35 43.92 379 0:00:00 0

atlanta 15 44 14 268 0 45.69 140 0:00:05 0

atlanta 15 44 16 305 0 33.94 264 0:00:14 1

atlanta 15 44 18 820 654 48.94 23977 0:40:40 20

atlanta 15 44 20 297 17 10.17 127 0:00:08 0

atlanta 15 44 25 1209 383 18.64 3781 0:10:40 9

atlanta 15 44 30 1443 305 13.72 4145 0:13:23 13

atlanta 15 44 40 3771 484 45.61 15569 5:00:00 22

nobel_germany 17 52 6 27 6 0.78 8 0:00:00 0

nobel_germany 17 52 8 24 1 1.5 7 0:00:00 0

nobel_germany 17 52 10 37 1 1.52 8 0:00:00 0

nobel_germany 17 52 12 49 0 12.22 5 0:00:00 0

nobel_germany 17 52 14 57 0 21.25 12 0:00:00 0

nobel_germany 17 52 16 62 0 21.55 17 0:00:00 0

nobel_germany 17 52 18 91 1 15.29 31 0:00:00 0

nobel_germany 17 52 20 400 10 13.47 80 0:00:04 0

nobel_germany 17 52 25 632 20 9.31 123 0:00:11 0

nobel_germany 17 52 30 325 18 33.06 345 0:00:19 0

nobel_germany 17 52 40 1088 130 30.57 0:45:03 232 6

nobel_germany 17 52 45 703 44 34.00 721 0:01:01 2

france 25 90 2 31 0 57.86 16 0:00:00 0

france 25 90 4 77 0 48.05 27 0:00:00 0

france 25 90 6 123 1 44.10 37 0:00:00 0

france 25 90 8 190 0 42.06 72 0:00:03 0

france 25 90 10 296 10 39.43 229 0:00:11 0

france 25 90 12 404 12 37.39 332 0:00:22 0

france 25 90 14 467 19 33.84 324 0:00:32 0

france 25 90 16 713 63 28.52 1933 0:03:55 2

france 25 90 18 1017 103 25.44 2010 0:04:57 4

france 25 90 20 1223 137 27.80 4610 0:14:57 8

france 25 90 25 1748 68 17.06 3903 0:19:21 13

france 25 90 30 4585 951 35.04 26412 5:00:00 64

france 25 90 40 5763 1154 33.06 18025 5:00:00 69

france 25 90 45 7865 1497 61.83 18521 5:00:00 84

Table 4.4: Branch-and-Cut results for realistic instances (1)
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Table 4.5: Branch-and-Cut results for realistic instances (2)

Instance |V| |A| |K| NmsI NmsII Gap Nodes TT TTsep

india35 35 160 2 25 0 33.81 23 0:00:00 0

india35 35 160 4 49 0 44.7 454 0:00:06 0

india35 35 160 6 54 0 35.69 452 0:00:10 0

india35 35 160 8 171 1 43.05 487 0:00:22 0

india35 35 160 10 234 1 39.05 93 0:00:09 0

india35 35 160 12 608 47 40.00 1585 0:04:18 3

india35 35 160 14 864 118 39.08 3927 0:13:60 9

india35 35 160 16 1126 139 35.31 5004 0:19:43 15

india35 35 160 18 1783 487 45.11 17553 5:00:00 77

india35 35 160 20 2349 286 51.05 12724 5:00:00 78

india35 35 160 25 3793 405 66.69 16037 5:00:00 114

india35 35 160 30 2779 419 75.71 10017 5:00:00 106

india35 35 160 40 3402 665 72.93 6747 5:00:00 166

india35 35 160 45 3789 438 66.2 5879 5:00:00 171

cost266 37 102 2 57 0 48.36 20 0:00:00 0

cost266 37 102 4 57 0 39.43 17 0:00:00 0

cost266 37 102 6 51 0 31.14 15 0:00:00 0

cost266 37 102 8 214 2 32.83 81 0:00:12 0

cost266 37 102 10 168 10 36.40 106 0:00:04 0

cost266 37 102 12 389 14 34.79 204 0:00:18 0

cost266 37 102 14 544 29 30.79 483 0:01:14 1

cost266 37 102 16 934 69 37.71 2291 0:07:25 4

cost266 37 102 18 1109 157 36.66 3081 0:14:71 7

cost266 37 102 20 414 751 37.67 4808 1:19:30 35

cost266 37 102 25 2680 780 38.9 11252 5:00:00 91

cost266 37 102 30 2523 646 42.48 9710 5:00:00 85

cost266 37 102 40 4224 689 58 6505 5:00:00 164

cost266 37 102 45 3599 794 68.62 6439 5:00:00 168

zib54 54 160 2 42 0 40.92 13 0:00:00 0

zib54 54 160 4 161 0 42.76 104 0:00:05 0

zib54 54 160 6 344 3 44.2 269 0:00:36 1

zib54 54 160 8 539 25 44.46 485 0:02:15 1

zib54 54 160 10 869 111 46.62 975 0:03:83 4

zib54 54 160 12 1747 493 52.92 4957 1:24:00 25

zib54 54 160 14 2500 392 53.98 12818 5:00:00 54

zib54 54 160 16 3208 131 58.83 16591 5:00:00 46

zib54 54 160 18 3686 129 56.95 19299 5:00:00 49

zib54 54 160 20 4050 913 60.52 17227 5:00:00 49

zib54 54 160 25 5474 558 66.46 13841 5:00:00 57

zib54 54 160 30 4816 565 64.2 11809 5:00:00 58

zib54 54 160 40 3264 246 81.46 10289 5:00:00 85

zib54 54 160 45 5245 367 68.89 8446 5:00:00 93
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In this chapter we consider the optical multi-band network design problem from a
polyhedral point of view. We first present the problem and give a linear programming
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formulation to model it. We then introduce further valid inequalities for the associated
polytope and describe necessary and sufficient conditions for these inequalities to de-
fine facets. In chapter 6, we discuss the algorithmic aspect of this study. We devise
separation heuristics for the valid inequalities and embed them within a branch-and-cut
algorithm. We show some numerical experiments that give an insight of the practical
efficiency of the valid inequalities.

5.1 Presentation of OMBND problem

5.1.1 General Statement

Consider an optical multi-band OFDM network that consists in an OFDM/WDM
network over a fiber layer. The OFDM/WDM layer is called virtual layer and the fiber
layer is called physical layer as well. The OFDM/WDM layer is composed of ROADMs
(Reconfigurable Optical Add-Drop Multiplexer) devices which are interconnected by
virtual link. A virtual link may receive one or many OFDM subbands. Note that,
although a subband is said to be installed over a virtual link, it is in fact generated
by a pair of ROADMs at the extremities of the link. The physical layer is composed
of several transmission nodes interconnected by physical links. Each physical link
contains two optical fibers, so that the traffic can be transported in both directions.
The physical and virtual layers are communicating via an interface referred to as OEO
(Optical-Electrical-Optical) interface.

Each ROADM in the virtual layer is associated with a transmission node in the
physical layer. And every link in the virtual layer carries one or several subbands. We
suppose that there exists a link between each pair of ROADMs in the virtual layer, as
one or many subbands may be installed between any pair of devices. Each subband
installed over a virtual link is assigned a path in the physical layer. A link in the
physical layer can be associated with several subbands. However, due to technical
aspects of OFDM technology, a physical link can be associated at most once with a set
up subband. In practice, one or many ROADMs may be installed upon a transmission
node. However, we assume without loss of generality that all the subbands installed
over a virtual link are produced by a unique pair of ROADMs set up on the extremities
of this link. In addition, establishing a subband yields a certain cost, which is the cost
of ROADMs that generate this subband. We assume that we have a traffic matrix,
where each element is a point-to-point traffic demand that may correspond to a given
service, internet application or a multimedia content. This traffic demand has a value
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Figure 5.1: Example of multilayer network

that is an amount of informations measured in Mb/s or Gb/s.

The Figure 5.1.1 shows a bilayer network. The virtual layer includes four ROADMs
denoted R1, R1, R3 and R4, while physical layer contains six transmission nodes de-
noted T1 to T6. We can see that R1, R2, R3 and R4 are connected to T1, T2, T3 and
T4 via OEO interfaces. In addition, there exists a link between each pair of installed
ROADMs. Remark that nodes R5 and R6 have not been represented as they do not
carry any ROADM. Furthermore, three subbands are represented in the figure, respec-
tively set up on the links (R1, R2), (R1, R3) and (R1, R4). The traffic using these virtual
links is in fact transmitted through paths made of optical fibres in the physical layer.
Indeed, the link (R1, R2) is associated with the path (T1, T2), while (R1, R3) is assigned
the path (T1, T4), (T4, T3) and (R1, R4) is physically routed by (T1, T6), (T6, T4). It
should be pointed out that there are two levels of routing in such networks. The traffic
is routed using subbands installed on the virtual links, and the subbands themselves
may be seen as demands for the physical layer. Thus, when given those two layers of
network and a traffic matrix, one may determine the set of virtual links that will receive
the subbands, and the set of physical links involved in the routing of those subbands,
and establish the traffic commodities routing.
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In this context, we are interested in a problem related to the design of OFDM/WDM
networks. Thereby, assume that we are given an optical fiber layer, an OFDM/WDM
layer and a traffic matrix. The Optical Multi-band Network Design (OMBND) problem
consists in determining the number of subbands to be installed over the virtual links,
and their physical path as well, so that the traffic can be routed on the virtual layer
and the design is cost-efficient.

5.1.2 Notations and examples

In terms of graphs, the problem can be presented as follows. We associate with the
virtual layer, a directed graph G1 = (V1, A1). G1 is a complete graph where V1 is the set
of nodes and A1 is the set of arcs. Each node v ∈ V1 corresponds to a ROADM and each
arc e ∈ A1 corresponds to a virtual link between a pair of ROADMs. In addition, G1

is a bi-directed graph, i.e. there exists two arcs (u, v) ∈ A1 and (v, u) ∈ A1, connecting
each pair of nodes u and v of V1. Consider the directed graph G2 = (V2, A2) that
represents the physical layer of the optical network. V2 denotes the set of nodes and
A2 is the set of arcs. Each node v′ ∈ V2 corresponds to a transmission node and each
arc a ∈ A2 corresponds to an optical fibre. Every node u in V1 has its corresponding
node u′ in V2. The graph G2 is such that if there exists an arc (u′, v′) between two
nodes u′ and v′ of V2, then (v′, u′) is also in A2. In this way, the link can be used in
both directions between u′ and v′.

Suppose that we have n ∈ Z+ available subbands. We denote by W = {1, 2, ..., n},
the set of indices associated with these subbands. Every subband w ∈ W has a certain
capacity C and a cost c(w) > 0, w ∈ W . Moreover, a subband installed over an arc
e ∈ A1 is a copy of this arc. Each pair (e, w) such that w is installed over the arc
e = (u, v), is associated with a path in G2 connecting nodes u′ and v′. Let ∆ew ⊂ A2

be a subset of arcs containing this path. The same path in G2 may be assigned to
several subbands of W . Nevertheless, an arc a ∈ A2 can be associated at most once
with a given subband w. This comes from an engineering restriction that will be called
disjunction constraint. In other words, if the subband w is installed p times, p ∈ Z+

over different arcs e1, . . . , ep of A1, then the pairs (ei, w), i = 1, . . . , p, have to be
assigned p paths in G2 that are arc-disjoint.

Now let K be a set of commodities in G1. Each commodity k ∈ K has an origin
node ok ∈ V1, a destination node dk ∈ V1 and a traffic value Dk > 0. We suppose,
without loss of generality that Dk ≤ C, for all k ∈ K. Note that a pair of nodes
(u, v) may correspond to several pairs (ok, dk), k ∈ K, since there might exist several
commodities whose origin is u and destination is v. A path in G1 has to be assigned
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to each commodity k ∈ K connecting its origin node ok and its destination node dk.
Let Ck ⊂ A1 be a subset of arcs containing this path. Every section of a routing path
uses the subbands installed over the arcs of A1. Thereby, we will say that a pair (e, w),
e ∈ A1, w ∈ W is used by a commodity k, if w is installed on e and (e, w) is involved
in the routing of k. Furthermore, several commodities are allowed to use the same
subband w, if its capacity allows it. However, one commodity can not be split into
several subbands or several paths. Note that some extra arcs might be associated to k,
in addition to its routing, but they are not materially used by k. Similarly, a subband
may be installed on an arc of G1 without being used for routing any commodity. Note
that the total traffic flowing along an arc must be at most the overall capacity installed
on this arc.

Definition 4 Optical Multi-Band Network Design (OMBND): Given two bi-directed
graphs G1 and G2, a set of installable subbands W , the installation cost c(w) for each
subband w, and a set of commodities K, we wish to determine the subbands to be
installed over the arcs of G1 such that

(i) the commodities can be routed in G1,

(ii) a path in G2 is associated with each installed subband,

(iii) the total cost is minimum.

In addition to the design cost, we will impact a physical routing cost bew(a) for every
arc of V2 × V2 involved in the routing of a pair (e,w) such that w is installed on e.

In what follows, we will assume that G2 = (V2, A2) is also a complete graph. This
is a relevant assumption, since the problem when G2 is not complete can reduce to
the case when G2 is complete. Indeed, it is possible to introduce a weigh system that
penalizes the utilization of a fictive arc ( an arc (u′, v′) such that (u′, v′) /∈ A2). Then,
one can write an adequate objective function and obtain a solution using the initial
arcs of A2, whenever this is possible. To do this, it suffices to associate a large cost
with the fictive arcs of G2. Let b be this cost function.

bew(a) =

{
1, if a ∈ A2,

M, if a ∈ V2 × V2 \ A2.
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v2 − v4 {(v2, v5), wr}, {(v5, v4),wb}

v2 − v5 {(v2, v5), wr}

Figure 5.2: Feasible solution for OMBND problem (a)

where M is a large integer value. We also make the assumption that the number of
available subbands is sufficiently large (polynomial in the size of the instance). In this
way, one can install as much subbands as possible and easily obtain a feasible solution.
Note that such an assumption is possible in practice because the number of subbands
per fiber is significantly large regarding to the number of commodities. Figures 5.2 and
5.3 depict two feasible solutions for an instance of OMBND problem. This instance is
composed by two graphs G1 and G2 corresponding to a bilayer network. The virtual
layer contains six nodes denoted v1 to v6, while the physical layer holds six nodes
denoted v′1 to v′6. We can see here that each virtual node vi, i ∈ {1, . . . , 6}, is associated
with a physical node v′i, i ∈ {1, . . . , 6}. Only a subset of arcs is shown to allow a clearer
reading of the figure. Consider four commodities whose origin-destination nodes are
v1 − v3, v1 − v4, v2 − v4, and v2 − v5, and with the traffic values 5, 19, 20 and 5 Gb/s,
respectively. We suppose given a set of four available subbands denoted wg, wr, wb and
wp, each one having a capacity of 25 Gb/s.

Two solutions are given in Figure 5.2 and Figure 5.3. First, solution (a) consists in
installing subbands wg, wr, wp and wb respectively on the arcs (v1, v3), (v2, v5), (v3, v4)
and (v5, v4). Both routing of commodities and pairs (arc, subband) are summarized in
Figure 5.2. For example, C1 = {(v1, v3)} and C

2 = {(v1, v3), (v3, v4)} while ∆(v1,v3),wg
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Figure 5.3: Feasible solution for OMBND problem (b)

= {(v′1, v′2), (v′2, v′3)} and ∆(v3,v4),wp
= {(v′3, v′4)}. Indeed, the first commodity is routed

along the path {(v1, v3)} using the subband wg and the pair {(v1, v3), wg} is itself
associated with path {(v′1, v′2), (v′2, v′3)} in G2, and so on.

Figure 5.3 shows a second feasible solution with a different configuration of routing
for the commodities and subbands. In this solution, subbands wg, wr, wb and wp are
installed on arcs (v1, v4), (v2, v4), (v2, v5) and (v1, v3), respectively. Note that, in this
solution, each commodity k is associated with a routing path corresponding to the arc
(ok, dk). In addition, all the installed subbands G1 are assigned paths in G2. Note that
both solutions (a) and (b) are feasible for the problem. However, solution (a) seems
to be cost-efficient in comparison to solution (b). In fact, in solution (b), the cost
impacted by physical routing of the subbands is higher than in solution (a).

Note that, if the subband wr was used in solution (b) instead of subband wp (if wr

was installed on both arcs (v1, v3) et (v2, v4)), then solution (b) would reduce to solution
(c1) (see Figure 5.4) which is infeasible. In fact, arc (v′2, v

′
3) is associated twice with

subband wr, which makes the disjunction constraint violated. An alternative routing
is given in solution (c2) (Figure 5.4) which is feasible.
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Figure 5.4: Infeasible solution for OMBND

5.2 Cut Formulation

In what follows we will first introduce some necessary notations, in order to give an
integer linear programming formulation to OMBND problem. Let T ⊂ V1 be a subset
of nodes. We denote by δ+G1

(T ) (resp. δ−G1
(T )), the directed cut induced by T in G1.

In other words, δ+G1
(T ) (resp. δ−G1

(T )) is the set of arcs of A1 having their initial node
(resp. terminal node) in T and their terminal node (resp. initial node) in V1 \ T . The
cut δ+G1

(T ) is defined as follows :

δ+G1
(T ) = {e = (u, v) ∈ A1 with u ∈ T and v /∈ T}

By the same way, we introduce T ⊂ V2, as a subset of nodes in G2. Let us define the
directed cut δ+G2

(T ) (resp. δ−G2
(T )) as a subset of arcs having their initial node (resp.

terminal node) in T and their terminal node (resp. inital node) in V2 \ T . The cut
δ+G2

(T ) is defined as follows :

δ+G2
(T ) = {a = (u′, v′) ∈ A2 with u′ ∈ T and v′ /∈ T}

Now we will present an integer linear programming formulation using three sets of



5.2 Cut Formulation 91

T V2 \ T

G2

δ+G2
(T )

δ−G2
(T )

Figure 5.5: Directed cut in G2

variables. First, the design variables y give the subbands selected for installation on
the arcs of G1 and that can be used to route the commodities. The second family of
variables are routing variables for the subbands denoted z, they allow to associate a
path in G2 to each pair (e, w), e ∈ A1, w ∈ W . The last family of variables, denoted
x, are routing variables for the commodities.

Let y ∈ RA1×W be a variable such that, for each arc e ∈ A1 and for each subband
w ∈ W

yew =

{
1, if w is installed on e,

0, otherwise.

let z ∈ RA1×W×A2 be such that for each arc e ∈ A1, for each subband w ∈ W and for
each arc a ∈ A2

zewa =

{
1, if a belongs to the path in G2 associated with pair (e, w),

0, otherwise.

Moreover, let x ∈ RK×A1×W be such that for each commodity k ∈ K, for each arc
e ∈ A1 and for each subband w ∈ W

xkew =

{
1, if k uses (e, w) for its routing,

0, otherwise.
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An instance of OMBND is defined by the quadruplet (G1, G2, K, C). Let S(G1, G2, K, C)

denote the set of feasible solutions of OMBND problem, associated with an instance
(G1, G2, K, C). A vector (x, y, z) associated with a solution of S(G1, G2, K, C) satisfies
the following inequalities:

min
∑

e∈A1

∑

w∈W

c(w)yew +
∑

e∈A1

∑

w∈W

∑

a∈A2

bew(a)zewa

∑

e∈δ+
G1

(T )

∑

w∈W

xkew ≥ 1,
∀k ∈ K, ∀T ⊂ V1,

∅ 6= T 6= V1, ok ∈ T, dk /∈ T,
(5.1)

∑

k∈K

Dkxkew ≤ Cyew, ∀e ∈ A1, ∀w ∈ W, (5.2)

∑

a∈δ+
G2

(T )

zewa ≥ yew,
∀e = (u, v) ∈ A1, ∀w ∈ W,

∀T ⊂ V2, ∅ 6= T 6= V2, u
′ ∈ T, v′ /∈ T,

(5.3)

∑

e∈A1

zewa ≤ 1, ∀w ∈ W, ∀a ∈ A2, (5.4)

xkew ∈ {0, 1}, 0 ≤ xkew ≤ 1, ∀k ∈ K, ∀e ∈ A1, ∀w ∈ W, (5.5)

yew ∈ {0, 1}, 0 ≤ yew ≤ 1, e ∈ A1, ∀w ∈ W, (5.6)

zewa ∈ {0, 1}, 0 ≤ zewa ≤ 1, ∀e ∈ A1, ∀w ∈ W, ∀a ∈ A2. (5.7)

Inequalities (5.1) are the cut constraints. They will also be referred to as connectivity
constraints. They ensure that a path in G1 exists for each commodity k between nodes
ok and dk. Inequalities (5.2) are the capacity constraints for each subband installed
over an arc of G1. They ensure that the flow using the subband w on arc e does not
exceed the capacity of w. They also ensure that the overall capacity installed on arc e is
large enough to carry the traffic using e. Inequalities (5.3) are the subband connectivity
constraints. The guarantee, for each pair (e, w) where w is installed on e = (u, v), that
a path in G2 is associated with (e, w) between nodes u′ and v′. Inequalities (5.4) are
referred to as disjunction constraint. They express the fact that each subband can be
associated at most once to an arc in G2. Finally, inequalities (5.5)-(5.7) are the trivial
constraints.

Theorem 5.1 The set {(x, y, z) ∈ {0, 1}(K+1+A2)×A1×W : (x, y, z) satisfies (5.1) −
(5.4)} corresponds to the convex hull of incidence vectors of solutions in S(G1, G2, K, C).
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Proof. The incidence vector of any solution of OMBND problem clearly satisfies in-
equalities (5.1)-(5.7). Let (x̃, ỹ, z̃) be a vector of {0, 1}(K+1+A2)×A1×W that does not
induce a feasible solution of OMBND problem. Suppose that (x̃, ỹ, z̃) satisfies inequal-
ities (5.1) and inequalities (5.3)-(5.7). We will show that at least one inequality (5.2)
is violated by (x̃, ỹ, z̃). Let k be commodity of K. We know, by inequalities (5.1)
(and by Menger’s theorem) that the exists a path between the origin node of k ok and
its destination dk. Inequalities (5.3) and (5.4) state that there exists a path in G2

for each pair (e, w), w ∈ W , e ∈ A1, such that w is installed on e. Moreover, every
section of this path satisfies the disjunction constraints. As (x̃, ỹ, z̃) is not feasible for
OMBND problem, there is one arc say ẽ which have not receive enough subbands to
carry the commodities using it. In other words, at least one subband w̃ is used without
being installed, or its capacity is exceeded by the traffic flowing along ẽ. Consequently,
inequality (5.2) associated with (ẽ, w̃) is violated and the result follows.

Similarly, we can show that any vector (x, y, z) of {0, 1}(K+1+A2)×A1×W that does not
satisfy some inequality among (5.1)-(5.4) is not feasible for OMBND problem. �

Besides, we can easily check that with every solution of OMBND, we can associate a
vector (x, y, z) that verifies inequalities (5.1)-(5.7). Thus, OMBND problem is equiva-
lent to the following integer program

min{(x, y, z) ∈ {0, 1}(K+1+A2)×A1×W : (x, y, z) satisfies (5.1)− (5.4)} (5.8)

Theorem 5.2 The linear relaxation of (5.8) can be solved in polynomial time.

Proof. Since inequalities (5.2) and (5.4) are in polynomial number, the complexity
of the linear relaxation of (5.8) depends only on the complexity of separation problems
related to inequalities (5.1) and (5.3) as well. Let us denote by (x, y, z) a fractional
solution to be cut off. Furthermore, the separation of inequalities (5.1) reduces to |K|
minimum okdk-cuts in G1, with weights xk, k ∈ K on the pairs (e, w) ∈ A1 ×W . And
the separation of inequalities (5.4) reduces to compute |A1||W | minimum uv-cuts in G2

with weights zew, e ∈ A1, w ∈ W on the arcs of A2. Both minimum cut computations
can be done in polynomial time. �

Definition 5 A solution S of OMBND problem is given by two subsets of arcs F1, F2

(with F2 eventually empty), |K| subsets of arcs C1, . . ., Ck, of A1, a subset of subbands
W of W installed on the arcs of F1 ∪ F2, a subset of arcs ∆ of A2, and |A1| × |W |
subsets of arcs ∆ew, e ∈ A1, w ∈ W , in such a way that
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(i) at least one subband is installed on each arc of F1 ∪ F2,

(ii) F1 =
⋃

k∈K Ck,

(iii) Ck, k ∈ K, contains a path between ok and dk,

(iv) ∆ =
⋃

e∈F1∪F2,w∈W ∆ew,

(v) with every arc e = (u, v) ∈ F1 ∪ F2 and w ∈ W , one can associate an arc subset
∆ew (which may be empty), in such a way that if w is installed on e, then ∆ew

contains a path, say Pew ⊆ ∆ew between u′ and v′,

(vi) for every w ∈ W , any arc of ∆ belongs to at most one path Pew, for e ∈ F1 ∪ F2.

We will denote by Γ the pairs (e, w) such that e ∈ (F1 ∪F2) and w ∈ W such that w
is installed on e. We then define the solution S by S = (F1, F2,∆,W ). The incidence
vector of S, (xS, yS, zS) ∈ RK×A1×W × RA1×W × RA1×W×A2, will be given by:

xS
kew =

{
1, if e ∈ Ck and (e, w) ∈ Γ,

0, otherwise.

ySew =

{
1, if w ∈ W, e ∈ F1 ∪ F2 and (e, w) ∈ Γ,

0, otherwise.

zSew(a) =

{
1, if a ∈ ∆ew,

0, otherwise.

5.3 Associated polytope

In this section, we introduce and discuss the OMBND polytope, that is the convex
hull of the solutions of problem (5.8). Given an instance of OMBND, defined by the
quadruplet (G1, G2, K, C), we denote by P (G1, G2, K, C) this convex hull of incidence
vectors S(G1, G2, K, C), that is

P (G1, G2, K, C) := conv{(x, y, z) ∈ RK×A1×W × RA1×W × RA1×W×A2 :
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(x, y, z) satisfies (5.1)− (5.4)}

In what follows, we will characterize the dimension of polytope P (G1, G2, K, C) and
investigate the facial aspect of inequalities (5.1)-(5.7).

Theorem 5.3 P (G1, G2, K, C) is full dimensional.

Proof. Assume that P (G1, G2, K, C) is contained in the hyperplane defined by the
linear equation

αx+ βy + γz = δ (5.9)

where α = (αk
ew, k ∈ K, e ∈ A1, w ∈ W ) ∈ RK×A1×W , β = (βew, e ∈ A1, w ∈ W ) ∈

RA1×W , γ = (γew
a , e ∈ A1, w ∈ W, a ∈ A2) ∈ RA1×W×A2 and δ ∈ R. We will show that

α=0, β=0, γ=0 and that P (G1, G2, K, C) can not be included in the hyperplane (5.9),
since it is not empty. To this end, let us first construct a solution S0 = (F 0

1 , F
0
2 ,∆

0,W 0)

of the problem.

For each commodity k ∈ K, we consider a path in G1 between its origin and destina-
tion nodes, consisting of arc (ok, dk). This is possible since G1 is complete. We install
over this arc one subband. In other words, every subband is assigned at most to one
commodity. Note that every arc (u, v) receives as much subbands as there are demands
going from u to v. All the installed subbands are supposed to be different. After that,
we associate with each subband, installed over (ok, dk), k ∈ K, a path in G2 consisting
in the arc (o′k, d

′
k). Again, this is possible since G2 is also a complete graph.

Let S0 = (F 0
1 , F

0
2 ,∆

0,W 0), be the solution given by F 0
1 = {(ok, dk), k ∈ K}, F 0

2 = ∅,
∆0 = {(o′k, d′k), k ∈ K} and W 0 the subset of |K| different subbands installed on the
arcs of F 0

1 .

Note that, as all the set up subbands are different, every considered path between
o′k and d′k is associated with different subbands, and therefore, disjunction constraints
(5.4) are satisfied. Moreover, since the capacities of the subbands are all greater than
or equal to the commodity values, and a different subband is associated with each
commodity, we have that capacity constraints (5.2) are also satisfied. Furthermore, by
construction, the solution given above also satisfies the cut constraints (5.1) and (5.3).
Thus the solution S0 is feasible.

Consider a pair (e, w) ∈ A1 ×W . Let S1 = (F 1
1 , F

1
2 ,∆

1,W 1) be a solution obtained
from S0 by adding an arc f ∈ A2 \∆0 to ∆0

ew, while the other elements of S0 remain
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the same. In other words, S1 is such that F 1
1 = F 0

1 , F 1
2 = F 0

2 , ∆1 = ∆0 ∪ {f}, and W 1

= W 0.

Obviously, S1 is also feasible for the problem. As S0 and S1 are both feasible, their
incidence vectors (xS0

, yS
0
, zS

0
) and (xS1

, yS
1
, zS

1
) both satisfy equality (5.9). Hence,

αxS0

+ βyS
0

+ γzS
0

= αxS1

+ βyS
1

+ γzS
1

= αxS0

+ βyS
0

+ γzS
0

+ γew
f

This implies that γew
f = 0. As f , e and w are chosen arbitrarily in A2 \∆0, A1 and

W , respectively, we obtain that

γew
f = 0, for all f in A2 \∆0, e ∈ A1 and w ∈ W. (5.10)

Now let f = (u′, v′) ∈ ∆0, e = (u, v) ∈ A1 and w ∈ W . Suppose first that f ∈
∆0

ew. Consider the solution S2 = (F 2
1 , F

2
2 ,∆

2,W 2) such that F 2
1 = F 2

2 , F 2
2 = ∅, ∆2 =

(∆0 ∪ {f1, f2}) \ {f}, W 2 = W 0, where f1 = (u′, s), f2 = (s, v′) with s ∈ V2 \ {u′, v′}.
In particular, ∆2

e′w′ = ∆0
e′w′ if (e′, w′) 6= (e, w) and ∆2

ew = (∆0
ew∪{f1, f2}){f}. As both

solutions S0 and S2 are feasible, their incidence vectors satisfy (5.9). It follows that
γew
f = γew

f1
+ γew

f2
. As by 5.10, γew

f1
= γew

f2
= 0, we get γew

f = 0.

If f /∈ ∆0
ew, by considering the same solution S0 where we add f to ∆0

ew, we obtain
that γew

f = 0. We thus have, γew
f = 0 for all f ∈ ∆0, e ∈ A1 and w ∈ W . Hence,

γew
a = 0, for all a ∈ A2, e ∈ A1, and w ∈ W. (5.11)

Next, we will show that βew = 0, for all (e, w) ∈ A1 ×W .

Consider an arc g = (u, v) ∈ A1 \ F 0
1 . Let us install a subband ω ∈ W over g. Let

S3 = (F 3
1 , F

3
2 ,∆

3,W 3), such that F 3
1 = F 0

1 , F 3
2 = F 0

2 ∪ {g}, ∆3 = ∆0 ∪ {(u′, v′)} and
W 3 = W 0 ∪ {ω}. Solution S3 is clearly feasible and its incidence vector satisfies (5.9).
Therefore, we get

βgω = 0, for all g ∈ A1 \ F 0
1 and ω ∈ W. (5.12)

Now suppose that g = (u, v) ∈ F 0
1 . Let w be a subband installed on g and k

be a commodity of K using the pair (g, w). Let S4 = (F 4
1 , F

4
2 ,∆

4,W 4) be a solution
obtained from S0 as follows. We consider two additional arcs g1 = (u, s) and g2 = (s, v)

of A1 \ F 0
1 , where s ∈ V1 \ {u, v}. And both g1 and g2 are added to the solution S0 by

receiving the subband w. In this solution, commodity k is moved from g to path {g1,
g2}. In other words, the routing of k uses g1, g2 instead of g. Then, S4 is such that F 4

1 =
F 0
1 ∪{g1, g2}, F 4

2 = F 0
2 , ∆4 = ∆0∪{(u′, s′), (s′, v′)}, where s′ ∈ V2\{u′, v′}. In addition,
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note that W 4 = W 0 and Γ4 = Γ0 ∪ {(g1, w), (g2, w)}. C4
k = (C0

k \ {g})∪ {g1, g2}, while
the remaining elements of C0 do not change in C4. The solution S4 is clearly feasible
for OMBND problem.

Now we will introduce the solution S5 which is obtained from S4 by removing the
pair (g, w) from Γ4. Recall that, in S4, (g, w) is not involved any more in the routing of
k. In consequence, the removal of (g, w) does not affect the feasibility of this solution,
which is actually ensured, since all the constraints of the problem are satisfied. Note
that, in S5, all the subsets are similar to those of S4, except that Γ5 = Γ4 \ {(g, w)}.
As both S4 and S5 are feasible, (xS4

, yS
4
, zS

4
) and (xS5

, yS
5
, zS

5
) verify (5.9). Hence,

we get βgw = 0. As g and w are arbitrary in F 0
1 and W , we obtain that

βew = 0, for all e ∈ F 0
1 and for all w ∈ W. (5.13)

And, by (5.12) and (5.13), we have

βew = 0, for all e ∈ A1 and for all w ∈ W. (5.14)

Now let us show that αk
ew = 0, for all k ∈ k, e ∈ A1, and w ∈ W .

Consider a commodity k ∈ K, an arc g = (u, v) ∈ A1 \ F 0
1 , and a subband ω ∈ W .

We will install ω over g. Let S6 = (F 6
1 , F

6
2 ,∆

6,W 6) be a solution defined as follows.
F 6
1 = F 0

1 ∪ {g}, F 6
2 = F 0

2 , ∆6 = ∆0 ∪ {(u′, v′)} and W 6 = W 0 ∪ {ω}. In particular, Γ6

= Γ0 ∪ {(g, ω)}, and ∆6
gω = ∆0

gω ∪ {(u′, v′)}. Moreover, C6
k = C0

k, for all k ∈ K \ {k}
and C6

k
= C0

k
∪ {g}, while ∆6

ew = ∆0
ew, if (e, w) 6= (g, ω) and ∆6

ew = ∆0
ew ∪ {(u′, v′)} if

(e, w) = (g, ω). S6 is obviously a feasible solution. Hence, both incidence vectors of S0

and S6 verify (5.9), and consequently, we have,

αk
gω + βgω + γgω

(u′,v′) = 0,

As by (5.11) and (5.14), βgω = γgω

(u′,v′) = 0, we get αk
gω = 0. Since g ∈ A1 \ F 0

1 , ω ∈ W

and k ∈ K are chosen arbitrarily and all the subbands play the same role, we obtain
that

αk
ew = 0, for all k ∈ K, e ∈ A1 \ F 0

1 and w ∈ W. (5.15)

Suppose now that g = (ok, dk) ∈ F 0
1 . Consider the subband w0 ∈ W 0, such that

(g, w0) is involved in the routing of some commodity, say k. Let S7 be a solution
obtained from S0 as follows. We pick two arcs g1 = (ok, s) and g2 = (s, dk) of A1 \ F 0

1 ,
with s ∈ V1 \ {ok, dk}. We install w0 on both g1 and g2, and we associate with pairs
(g1, w0) and (g2, w0) paths {(o′

k
, s′)} and {(s′, d′

k
)}, respectively, with s′ ∈ V2 \ {o′k, d

′
k
}.

Then, S7 = (F 7
1 , F

7
2 ,∆

7,W 7), where F 7
1 = (F 0

1 ∪ {g1, g2}) \ {g}, F 7
2 = F 0

2 , ∆7 =
∆0 ∪ {(o′

k
, s′), (s′, d′

k
)} and W 7 = W 0. Consider here C7

k = C0
k, for all k ∈ K \ {k} and
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C7
k

= (C0
k
∪ {g1, g2}) \ {g}. Furthermore, ∆7

ew = ∆0
ew if (e, w) /∈ {(g1, w0), (g2, w0)},

while ∆7
g1w0

= ∆0
g1w0
∪ {(o′

k
, s′)} and ∆7

(s′,d′
k
)w0

= ∆0
g2w0
∪ {(s′, d′

k
)}. Solution S7 is also

feasible, and its incidence vector as one of S0 verifies equality (5.9). Thus we obtain
that

αk
gw0

+ βgw0 + γgw0

(o′
k
,d′

k
) = αk

g1w0
+ αk

g2w0
+ βg1w0 + βg2w0 + γg1w0

(o′
k
,s′) + γg2w0

(s′,d′
k
),

By (5.11), γgw0

(o′
k
,d′

k
) = γg1w0

(o′
k
,s′) = γg2w0

(s′,d′
k
) = 0. By (5.14) and (5.15) we also have βgw0 =

βg1w0 = βg2w0 = 0 and αk
g1w0

= αk
g2w0

= 0. This yields αk
gw0

= 0. As k, g and w0 are
chosen arbitrarily in K, F 0

1 and W , we get

αk
ew = 0, for all k ∈ K, e ∈ F 0

1 , and w ∈ W. (5.16)

Hence, by (5.15) and (5.16), we obtain

αk
ew = 0, for all k ∈ K, e ∈ A1, and w ∈ W. (5.17)

All together, and by (5.11), (5.13) and (5.16), α = β = γ = 0. Moreover, since
there exists at least one non-zero solution in polyhedron P (G1, G2, K, C), it can not be
included in hyperplane (5.9). Consequently, P (G1, G2, K, C) is full dimensional. �

5.3.1 Trivial inequalities

We can first remark that every inequality yew ≥ 0, associated with a subband w ∈ W

and an arc e ∈ A1 is dominated by the capacity constraint (5.2) associated with e and
w. In what follows, we will focus on the inequalities yew ≤ 1, for all a ∈ A1 and for all
w ∈ W .

Theorem 5.4 For ẽ ∈ A1 and w̃ ∈ W , inequality yẽw̃ ≤ 1 is facet defining for
P (G1, G2, K, C)

Proof. Let us denote by Fẽw̃ the face induced by inequality yẽw̃ ≤ 1, which is given
by

F
ẽw̃ = {(x, y, z) ∈ P (G1, G2, K, C) : yẽw̃ = 1}

We denote the inequality yẽw̃ ≤ 1 by αx + βy + γz ≤ δ. Let λx + µy + νz ≤ ξ be a
valid inequality that defines a facet F of P (G1, G2, K, C). Suppose that F

ẽw̃ ⊆ F. We
show that there exists ρ ∈ R such that (α, β, γ) = ρ(λ, µ, ν).
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We will show that µew = 0, for all (e, w) ∈ (A1 ×W ) \ {(ẽ, w̃)}.

Consider the solution S0 = (F 0
1 , F

0
2 ,∆

0,W 0) described in proof of Theorem 5.3. Sup-
pose that ẽ /∈ F 0

1 ∪F 0
2 . Then, let S1 be a solution obtained from S0, by adding ẽ = (u, v)

to the solution and installing the subband w̃ on ẽ. Suppose that (ẽ, w̃) is associated
with path {(u′, v′)} in G2 but is not involved in the routing of any commodity. In other
words, S1 = (F 1

1 , F
1
2 ,∆

1,W 1), where F 1
1 = F 0

1 , F 1
2 = F 0

2 ∪ {ẽ}, ∆1 = ∆0 ∪ {(u′, v′)}
and W 1 = W 0∪{w̃}. In particular, we have that ∆1

ew = ∆0
ew if (e, w) 6= (ẽ, w̃) and ∆1

ẽw̃

= {(u′, v′)}. It is clear that S1 is a feasible solution as it satisfies all the constraints of
(5.1)-(5.7).

First, let us prove that νew
a = 0, for all e ∈ A1, w ∈ W and a ∈ A2.

Consider an arc a = (s, t) of A2 \ ∆1. Let e and w be an arc of A1 and a subband
of W , respectively. Consider the solution S2 that is obtained from S1 by associating
arc a with the pair (e, w) in addition to ∆1

ew. In other words, S2 = (F 2
1 , F

2
2 ,∆

2,W 2),
where F 2

1 = F 1
1 , F 2

2 = F 1
2 , ∆2 = ∆1 ∪ {a}, and W 2 = W 1. Note that ∆2

eiwi
= ∆1

eiwi
if

(ei, wi) 6= (e, w) and ∆2
ew = ∆1

ew∪{a}. S2 is clearly feasible and both incidence vectors
of S2 and S1 belong to F and thus to Fẽw̃. Hence, it follows that

λxS1

+ µyS
1

+ νzS
1

= λxS2

+ µyS
2

+ νzS
2

= λxS1

+ µyS
1

+ νzS
1

+ νew
a ,

Which implies that νew
a = 0. As a, e and w are chosen arbitrarily in A2 \∆1, A1 and

W , we get

νew
a = 0,

for all e ∈ A1, for all w ∈ W,

and for all a ∈ A2 \∆1,
(5.18)

Now assume that a = (s, t) is in ∆1. Let a1 = (s, r) and a2 = (r, t) be two arcs of
A2 \ ∆1, with r ∈ V2 \ {s, t}. In particular a ∈ ∆1

ew for some e ∈ A1 and w ∈ W .
Consider the solution S3 obtained from S1 by replacing the arc a with arcs a1 and a2
(see Figure 5.6). More formally, S3 = (F 3

1 , F
3
2 ,∆

3,W 3), where F 3
1 = F 1

1 , F 3
2 = F 1

2 , ∆3

= (∆1 \ {a}) ∪ {a1, a2}, and W 3 = W 1.

Note that ∆3
eiwi

= ∆1
eiwi

if (ei, wi) 6= (e, w) while ∆3
ew = (∆1

ew \ {a}) ∪ {a1, a2}. It is
easy to see that S3 is a feasible solution. Moreover, both incidence vectors of S3 and
S1 verify

λxS1

+ µyS
1

+ νzS
1

= λxS3

+ µyS
3

+ νzS
3

= λxS1

+ µyS
1

+ νzS
1 − νew

a + νew
a1

+ νew
a2
,

Thus, we get
−νew

a + νew
a1

+ νew
a2

= 0,
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By (5.18), we have that νew
a1

= νew
a2

= 0. We thus obtain,

νew
a = 0,

for all e ∈ A1, for all w ∈ W,

and for all a ∈ ∆1,
(5.19)

Hence, by (5.18) and (5.19) we get

νew
a = 0,

for all e ∈ A1, for all w ∈ W,

and for all a ∈ A2,
(5.20)

Let e be an arc of F 1
2 such that e /∈ ⋃

k∈K C1
k and w ∈ W 1 is installed on e. Consider

the solution S4, obtained from S1 by also considering the arc e for the routing of some
commodity k. S4 = (F 4

1 , F
4
2 ,∆

4,W 4), where F 4
1 = F 1

1 ∪ {e}, F 4
2 = F 1

2 \ {e}, ∆4 = ∆1

and W 4 = W 1. Note that C4
i = C1

i if i 6= k, and C4
k = C1

k ∪ {e}. One can easily check
that S4 is a feasible solution. Moreover, both incidence vectors of S4 and S1 are in F

and in F˜̃. Thus

λxS1

+ µyS
1

+ νzS
1

= λxS4

+ µyS
4

+ νzS
4

= λxS1

+ λk
ew + µyS

1

+ νzS
1

,

which implies that λk
ew = 0. As k, e and w are chosen arbitrarily in K, F 1

2 and W , we
get

λk
ew = 0,

for all k ∈ K, e ∈ F 1
2 ,

for all w ∈ W 1,
(5.21)

Before showing that λk
ew = 0, for all k ∈ K, e ∈ A1 \ (F 1

1 ∪ F 1
2 ), and for all w ∈ W , we

need to prove that µew = 0, for all e ∈ A1 \ F 1
1 ∪ F 1

2 and for all w ∈ W .

Assume that e = (s, t) is an arc of A1 \ (F 1
1 ∪ F 1

2 ) and let w be a subband of W .
Consider the solution S5 obtained by S1 as follows. We install the subband w on e

and we associate with the pair (e, w) the path {(s′, t′)} in G2, with (s′, t′) ∈ A2 \∆1.
In this solution, we assume that e /∈ ⋃

k∈K C5
k. S

5 = (F 5
1 , F

5
2 ,∆

5,W 5), where F 5
1 = F 1

1 ,
F 5
2 = F 1

2 ∪{e}, ∆5 = ∆1∪{(s′, t′)} and W 5 = W ∪{w}. More precisely, we have ∆5
eiwi

= ∆1
eiwi

if (ei, wi) 6= (e, w) while ∆5
ew = ∆5

ew ∪ {(s′, t′)}. The solution S5 is obviously
feasible, and both incidence vectors of S5 and S1 are in F and Fẽw̃. Thus, we have

λxS1

+ µyS
1

+ νzS
1

= λxS5

+ µyS
5

+ νzS
5

= λxS1

+ µyS
1

+ µew + νzS
1

,

which implies that µew = 0. As e and w are chosen arbitrarily in A1 \ (F 1
2 ∪ F 1

2 ) and
W , respectively. It follows that,

µew = 0, for all e ∈ A1 \ (F 1
1 ∪ F 1

2 ), w ∈ W, (5.22)

Now consider an arc e = (s, t) of A1 \ (F 1
1 ∪ F 1

2 ). Let w be a subband of W and k

any commodity of K. Let us introduce the solution S6, obtained from S1 as follows.
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We install the subband w on the arc e, and we associate with the formed pair (e, w)

path {(s′, t′)} in G2, where (s′, t′) ∈ A2 \ ∆1. Then, we also associate e with the
routing of commodity k in addition to its initial routing path. In other words, S6 =
(F 6

1 , F
6
2 ,∆

6,W 6), where F 6
1 = F 1

2 ∪ {e}, F 6
2 = F 1

2 , ∆6 = ∆1 ∪ {(s′, t′)}, and W 6 =
W 1 ∪ {w}. Note that ∆6

eiwi
= ∆1

eiwi
if (ei, wi) 6= (e, w) and ∆6

ew = ∆1
ew ∪ {(s′, t′)}.

Moreover, C6
i = C1

i , if i 6= k while C6
k = C1

k ∪ {e}. S6 is also a feasible solution, and
both incidence vectors of S6 and S1 verify

λxS1

+ µyS
1

+ νzS
1

= λxS6

+ µyS
6

+ νzS
6

= λxS1

+ λk
ew + µyS

1

+ µew + νzS
1

+ νew
(s′,t′),

which implies that
λk
ew + µew + νew

(s′,t′) = 0,

We have that νew
(s′,t′) = 0 by (5.20), and µew = 0 by (5.22). Thus, we get λk

ew = 0. As
k, e and w are chosen arbitrarily in K, A1 \ (F 1

1 ∪ F 1
2 ), and w ∈ W , we obtain

λk
ew = 0,

for all k ∈ K, for all e ∈ A1 \ (F 1
1 ∪ F 1

2 ),

and for all w ∈ W,
(5.23)

Suppose now that e = (u, v) is an arc of F 1
1 and let w be the subband of W 1 installed

on e. We assume that e ∈ C
1
k, for some commodity k. Let e1 = (u, r), e2 = (s, r) be

two arcs of A1 \ (F 1
1 ∪ F 1

2 ), with s ∈ V1 \ {u, v}. Consider the solution S7, obtained
from S1 by replacing the arc e with e1 and e2. We install the subband w on both e1
and e2, then we associate with pairs (e1, w), (e2, w) the paths {(u′, r′)}, {(r′, v′)} in G2,
respectively, where (u′, r′), (r′, v′) ∈ A2. Figure 5.6 shows how a node r (respectively)
may be inserted so as to replace any arc by a path between its end nodes.

S7 = (F 7
1 , F

7
2 ,∆

7,W 7), where F 7
1 = (F 1

2 \ {e})∪ {e1, e2}, F 7
2 = F 1

2 ∪ {e}, ∆7 = ∆1 ∪
{(u′, s′), (s′, v′)}, and W 7 = W 1. Note that ∆7

eiwi
= ∆1

eiwi
if (ei, wi) /∈ {(e1, w), (e2, w)}

while ∆7
e1w

= ∆1
e1w
∪ {(u′, s′)} and ∆7

e2w
= ∆1

e2w
∪ {(s′, t′)}. Finally, C7

i = C1
i , if i 6= k

while C7
k = (C1

k \ {e}) ∪ {e1, e2}. It is clear that S7 is a feasible solution. Here, both
incidence vectors of S7 and S1 are in F. Thus, we have

λxS1

+ µyS
1

+ νzS1 = λxS7

+ µyS
7

+ νzS7 =

λxS1

+ λk
e1w

+ λk
e2w
− λk

ew + µyS
1

+ µe1w + µe2w + νzS1 + νe1w
(u′,s′) + νe2w

(s′,v′),

which gives
λk
e1w

+ λk
e2w
− λk

ew + µe1w + µe2w + νe1w
(u′,s′) + νe2w

(s′,v′) = 0,

We have that λk
e1w

= λk
e2w

= 0, by (5.23), µe1w = µe2w = 0 by (5.22), and νe1w
(u′,s′) =

νe2w
(s′,v′) = 0 by (5.20). Thus, we get λk

ew = 0. As k and e are chosen arbitrarily in K

and F 1
1 , respectively, then we obtain

λk
ew = 0,

for all k ∈ K, for all e ∈ F 1
1 ,

and for all w ∈ W 1,
(5.24)
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Figure 5.6: Getting further solutions by inserting a node

Consequently, by (5.21), (5.23) and (5.24), we conclude that

λk
ew = 0,

for all k ∈ K, for all e ∈ A1,

and for all w ∈ W,
(5.25)

Suppose now that e = (u, v) ∈ (F 1
1 ∪ F 1

2 ) \ {ẽ}, and let w be the subband of W 1

installed on e. Let f = (u, r) and g = (r, t) be two arcs of A1 \ (F 1
1 ∪ F 1

2 ), with
s ∈ V1 \ {u, v}.

If e ∈ F 1
1 and e ∈ C1

k for some commodity k, then we will consider the solution S8

obtained from S1 as follows. We replace e by f and g and we install the subband w on
both f and g. We assign to the pairs (f, w), (g, w) the paths {(u′, r′)} and {(r′, v′)}.
Moreover, we consider that the routing of k uses f and g instead of e. More formally,
S8 = (F 8

1 , F
8
2 ,∆

8,W 8), where F 8
1 = (F 1

1 \{e})∪{f, g}, F 8
2 = F 1

2 , ∆8 = (∆1\{(u′, v′)})∪
{(u′, r′), (r′, v′)}, W 8 = W 1. Note that ∆8

eiwi
= ∆1

eiwi
if (ei, wi) /∈ {(e, w), (f, w), (g, w)},

∆8
ew = ∆1

ew \ {(u′, v′)}, ∆8
fw = ∆1

fw ∪ {(u′, r′)} and ∆8
gw = ∆1

gw ∪ {(r′, v′)}. Also note
that C

8
i = C

1
i , if i 6= k while C

8
k = (C1

k \ {e}) ∪ {f, g}. S8 is clearly feasible, and both
incidence vectors of S8 and S1 are in Fẽw̃, and then in F. Thus, we have

λxS1

+ µyS
1

+ νzS
1

= λxS8

+ µyS
8

+ νzS
8

=
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λxS1

+ λk
fw + λk

gw − λk
ew + µyS

1 − µew + µfw + µgw + νzS
1 − νew

(u′,v′) + νfw

(u′,s′) + νgw

(s′,v′),

By (5.20), (5.25) and (5.22) We have that νew
(u′,v′) = νfw

(u′,r′) = νgw

(r′,v′) = 0, λk
fw = λk

gw =
λk
ew = 0, and µfw = µgw = 0. Thus, we get µew = 0. As e is chosen arbitrarily in F 1

1 ,
then

µew = 0, for all e ∈ F 1
1 , and for all w ∈ W, (5.26)

Let e be an arc of A1 and w be a subband of W . Suppose that e ∈ F 1
2 and w is

installed on e. Then we will construct the solution S9 from S1 by removing e as it
is not used by any commodity. S9 = (F 1

1 , F
1
2 \ {e},∆1,W 1), where the entries of S9

are the same than those of S1, except for subset F 1
2 who looses an element. Moreover,

note that Γ9 = Γ1 \ {(e, w)}. It is clear that deleting e from F 1
2 does not impact

on the feasibility of the solution. Hence, S9 is feasible, and both (xS9
, yS

9
, zS

9
) and

(xS1
, yS

1
, zS

1
) belong to Fẽw̃ and thus, to F. Then, comparing S9 and S1 leads to

λxS1

+ µyS
1

+ µew + νzS
1

= λxS9

+ µyS
9

+ νzS
9

,

We then have that µew = 0. As e was chosen arbitrarily in F 1
2 and the subbands of

W are interchangeable, we get

µew = 0, for all e ∈ F 1
2 , and for all w ∈ W, (5.27)

Consequently, by (5.22), (5.26) and (5.27), we can then deduce that µew = 0 for all
(e, w) ∈ (A1 ×W )× {(ẽ, w̃)}. Hence, µẽw̃ = ρ, which ends the proof. �

Let us now study the facial structure of trivial constraints associated with x variables.

Theorem 5.5 For k̃ ∈ K, ẽ ∈ A1 and w̃ ∈ W , inequality xk̃ẽw̃ ≤ 1 is facet defining
for P (G1, G2, K, C)

Proof. Let us denote by Fk̃ẽw̃ the face induced by inequality xk̃ẽw̃ ≤ 1, which is given
by

F
k̃ẽw̃ = {(x, y, z) ∈ P (G1, G2, K, C) : xk̃ẽw̃ = 1},

We denote the inequality xk̃ẽw̃ ≤ 1 by αx + βy + γz ≤ δ. Let λx + µy + νz ≤ ξ be
a valid inequality that defines a facet of P (G1, G2, K, C). Suppose that Fk̃ẽw̃ ⊆ F. We
show that there exists ρ ∈ R such that (α, β, γ) = ρ(λ, µ, ν).

We will show that λk
ew = 0, for all (k, e, w) ∈ (K × A1 ×W ) \ {(k̃, ẽ, w̃)}.



104 Optical Multi-Band Network Design : polyhedral study

Consider the solution S0 = (F 0
1 , F

0
2 ,∆

0,W 0) described in proof of Theorem 5.3.
Suppose that ẽ = (u, v) /∈ F 0

1 ∪F 0
2 . Let S1 be a solution obtained from S0 by installing

the subband w̃ on ẽ, and adding ẽ to the solution. In this solution, we associate with
(ẽ, w̃) the path in G2 given by {(u′, v′)}, where (u′, v′) ∈ A2. We will also consider
the arc ẽ for the routing of the commodity k̃. In other words, S1 = (F 1

1 , F
1
2 ,∆

1,W 1),
where F 1

1 = F 0
1 ∪ {ẽ}, F 1

2 = F 0
2 , ∆1 = ∆0 ∪ {(u′, v′)}, and W 1 = W 0 ∪ {w̃}. Note that

C1
i = C0

i if i 6= k̃, and C1
k̃

= C0
k̃
∪ {ẽ}. We also have ∆1

ew = ∆0
ew if (e, w) 6= (ẽ, w̃) while

∆1
ẽw̃ = ∆0

ẽw̃ ∪ {(u′, v′)}.

The solution S1 is feasible and its incidence vector belongs to both Fk̃ẽw̃ and F. In
what follows, we will use S1 as a reference solution. In other words, all the constructed
solutions will be derived from S1.

First, let us show that νew
a = 0, for all e ∈ A1, and for all w ∈ W .

Let a = (s′, t′) be an arc of A2 that is not used in the solution S1 (a /∈ ∆1). Let e be
an arc of A1, and let w be a subband of W . We will construct the solution S2, derived
from S1 by adding the arc a to the set ∆1

ew. S2 = (F 2
1 , F

2
2 ,∆

2,W 2) is then described
as follows. F 2

1 = F 1
1 , F 2

2 = F 1
2 , ∆2 = ∆1∪{a} and W 2 = W 1. Note that ∆2

eiwi
= ∆1

eiwi

if (ei, wi) 6= (e, w) and ∆2
ew = ∆1

ew ∪ {a}. One can easily check that S2 is a feasible
solution. Moreover, both incidence vectors of S1 and S2 belong to F and then, to Fk̃ẽw̃.
Thus, we have

λxS1

+ µyS
1

+ νzS
1

= λxS2

+ µyS
2

+ νzS
2

= λxS1

+ µyS
1

+ νzS
1

+ νew
a ,

which implies that νew
a = 0. As a, e and w are chosen arbitrarily in A1 \∆1, A1 and

W , we get

νew
a = 0,

for all e ∈ A1, for all w ∈ W,

and for all a ∈ A2 \∆1,
(5.28)

Now suppose that a = (s′, t′) is a part of the solution S1. In other words, a is an
arc of ∆1 associated with some pair (e, w) of the solution ((e, w) ∈ Γ1). Let f =
(s′, r′) and g = (r′, t′) be two arcs of A2 \ ∆1, with r′ ∈ V2 \ {s′, t′}. Consider the
solution S3, obtained from S1 by replacing the arc a by f and g. More formally, S3

= (F 3
1 , F

3
2 ,∆

3,W 3), where F 3
1 = F 1

1 , F 3
2 = F 1

2 , ∆3 = (∆1 \ {a}) ∪ {f, g}, and W 3 =
W 1. Note that ∆3

eiwi
= ∆1

eiwi
if (eiwi) 6= (e, w) and ∆3

ew = (∆1
ew \ {a}) ∪ {f, g}. The

solution S3 is obviously feasible, and both incidence vectors of S1 and S3 verify

λxS1

+µyS
1

+νzS
1

= λxS3

+µyS
3

+νzS
3

= λxS1

+µyS
1

+νzS
1−νew

a +νew
f +νew

g , (5.29)

which implies that −νew
a + νew

f + νew
g = 0. By (5.28) νew

f = νew
g = 0, we obtain νew

a =
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0. As a is chosen arbitrarily in ∆1, we conclude that

νew
a = 0,

for all e ∈ A1, for all w ∈ W,

and for all a ∈ ∆1,
(5.30)

Conequently, by (5.28) and (5.30), we conclude that

νew
a = 0,

for all e ∈ A1, for all w ∈ W,

and for all a ∈ A2,
(5.31)

Now let us show that µew = 0, for all e ∈ A1 and for all w ∈ W .

To do this, we will consider an arc e ∈ A1 and a subband w ∈ W that do not enter in
the composition of S1. In other words, e = (u, v) is an arc of A1 \ (F 1

1 ∪F 1
2 ) and w is a

subband of W . Let us construct the solution S4, derived from S1 as follows. We set up
the subband w on the arc e, and we assign to the pair (e, w) the path {(u′, v′)} in G2.
We assume that (e, w) is not associated with the routing of any commodity. In other
words, S4 = (F 4

1 , F
4
2 ,∆

4,W 4), where F 4
1 = F 1

1 , F 4
2 = F 1

2 ∪ {e}, ∆4 = ∆1 ∪ {(u′, v′)},
and W 4 = W 1 ∪ {w}. Note that e /∈ ⋃

k∈K C4
k, while ∆4

eiwi
= ∆1

eiwi
, if (eiwi) 6= (e, w)

and ∆4
ew = ∆1

ew ∪ {(u′, v′)}. It is clear that S4 is a feasible solution. Moreover, both
incidence vectors of S1 and S4 are in F and in Fk̃ẽw̃. Thus, we have

λxS1

+ µyS
1

+ νzS
1

= λxS4

+ µyS
4

+ νzS
4

= λxS1

+ µyS
1

+ µew + νzS
1

+ νew
(u′,v′),

and it follows that
µew + νew

(u′,v′) = 0,

We have that νew
(u′,v′) = 0 by (5.31). Hence, we get µew = 0. As e and w are chosen

arbitrarily in A1 \ (F 1
1 ∪ F 1

2 ) and W , respectively, we obtain

µew = 0, for all e ∈ A1 \ (F 1
1 ∪ F 1

2 ), and for all w ∈ W, (5.32)

Assume now that e = (u, v) ∈ F 1
2 , and w is the subband of W 1 that is installed on

e. Let us consider a solution S5 obtained from S1 by removing the pair (e, w) from
Γ1. Clearly, this does not impact on feasibility of the solution and both incidence
vectors (xS5

, yS
5
, zS

5
) and (xS1

, yS
1
, zS

1
) belong to Fk̃ẽw̃, and then, they also belong to

F. Hence, comparing S1 and S5 gives

λxS1

+ µyS
1

+ µew + νzS
1

= λxS5

+ µyS
5

+ νzS
5

Thus, we get µew = 0. Since e and w are chosen arbitrarily in F 1
2 and W , we obtain

µew = 0, for all e ∈ F 1
2 , w ∈ W, (5.33)
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Assume that e = (u, v) is in F 1
1 , and let w be the subband of W 1 that is installed

on e. Suppose that e ∈ C1
k, where k is some commodity of K. We will introduce the

solution S6, obtained from S1 by replacing e with arcs f and g. We install the subband
w on both f and g, then we associate the pairs (f, w) and (g, w) with paths {(u′, s′)}
and {(s′, v′)}, in G2, respectively. In this solution, we consider that the routing of the
commodity k uses f and g instead of its initial routing that uses e. More formally, S6 =
(F 6

1 , F
6
2 ,∆

6,W 6), where F 6
1 = (F 1

1 \{e})∪{f, g}, ∆6 = (∆1\{(u′, v′)})∪{(u′, s′), (s′, v′)},
and the other subsets of S1 do not change. In particular, we have C6

i = C1
i if i 6= k, and

C6
k = (C1

k\{e})∪{f, g}. Also note that ∆6
eiwi

= ∆1
eiwi

if (ei, wi) /∈ {(e, w), (f, w), (g, w)},
while ∆6

ew = ∆1
ew \ {(u′, v′)}, ∆6

fw = ∆1
fw ∪ {(u′, s′)} and ∆6

gw = ∆1
gw ∪ {(s′, v′)}.

It is clear that S6 is a feasible solution. Moreover, if we reintroduce the arc e to S6,
we obtain a solution S7 which is also feasible. In S7, we have F 7

2 = F 6
2 ∪ {e} and ∆7

ew

= ∆6
ew ∪ {(u′, v′)}. The other elements of S6 remain the same. The incidence vectors

of S6 and S7 are in Fk̃ẽw̃, and thus in F. Hence, they verify

λxS6

+ µyS
6

+ νzS
6

= λxS7

+ µyS
7

+ νzS
7

= λxS6

+ µyS
6

+ µew + νzS
6

+ νew
(u′,v′),

which gives
µew + νew

(u′,v′) = 0,

We have by (5.31) that νew
(u′,v′) = 0. Thus, we get µew = 0. As the arc e is chosen

arbitrarily in F 1
1 , we obtain

µew = 0, for all e ∈ F 1
1 , w ∈ W, (5.34)

Consequently, and by (5.32), (5.33) and (5.34), we conclude that

µew = 0, for all e ∈ A1 and w ∈ W, (5.35)

Next we will show that λk
ew = 0, for all (k, e, w) ∈ (K × A1 ×W ) \ {(k̃, ẽ, w̃)}.

Suppose first that e = (u, v) is an arc of A1 \ (F 1
1 ∪ F 1

2 ) (e does not belong to the
reference solution S1). Let w be a subband of W and k some commodity of K. We
will consider the solution S8, obtained from S1 as follows. We install the subband w

on e and we associate with the pair (e, w) the path consisting in (u′, v′) of A2. We will
also consider the arc e for the routing of k. The solution S8 = (F 8

1 , F
8
2 ,∆

8,W 8), where
F 8
1 = F 1

1 ∪ {e}, F 8
2 = F 1

2 , ∆8 = ∆1 ∪ {(u′, v′)}, and W 8 = W 1 ∪ {w}. S8 is clearly
feasible and both incidence vectors of S1 and S8 satisfy

λxS1

+ µyS
1

+ νzS
1

= λxS8

+ µyS
8

+ νzS
8

= λxS1

+ λk
ew + µyS

1

+ µew + νzS
1

+ νew
(u′,v′),
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We have that µyS
1

= 0, and νew
(u′,v′) = 0, by (5.35) and (5.31) respectively. Thus, it

follows that λk
ew = 0. As e and w are chosen arbitrarily in A1 \ (F 1

1 ∪ F 1
2 ) and w ∈ W ,

respectively, we get

λk
ew = 0, for all k ∈ K, e ∈ A1 \ (F 1

1 ∪ F 1
2 ), and w ∈ W, (5.36)

Now let us show that λk
ew = 0, for all e ∈ (F 1

1 ∪ F 1
2 ) \ {ẽ}, and w ∈ W .

If e is in F 1
2 \ {ẽ}, then we can construct a solution say S9, obtained from S1 by also

considering e for the routing of some commodity k. S9 is such that F 9
1 = F 1

1 ∪{e} and
F 9
2 = F 1

2 \ {e}, the other subsets of S1 remain the same in S9. Note that C9
i = C1

i , if
i 6= k and C9

k = C1
k ∪ {e}. It is easy to see that S9 is feasible. Moreover, the incidence

vectors of S1 and S9 belong to F
k̃ẽw̃, thus they satisfy

λxS1

+ µyS
1

+ νzS
1 − (λxS9

+ µyS
9

+ νzS
9

)− λk
ew = 0

Since e, k and w are chosen arbitrarily in F 1
2 \ {ẽ}, K and W , we obtain

λk
ew = 0, for all k ∈ K, e ∈ F 1

2 \ {ẽ}, and w ∈ W, (5.37)

Now suppose that e ∈ F 1
1 \ {ẽ}. In particular, suppose that e ∈ C1

k for some k,
and let w be the subband of W 1 installed on e. Recall that f = (u, s) and g = (s, v)

denote two arcs of A1 \ (F 1
1 ∪ F 1

2 ). We will construct a solution S10 obtained from
S1 by installing subband w on both f and g. The commodity k is then rerouted on
f and g (instead of e). Let us assign to (f, w) the path {(u′, s′)} with (u′, s′) ∈ A2

while (g, w) is assigned path {(s′, v′)}, (s′, v′) ∈ A2. The obtained solution is described
as follows. S10 = (F 10

1 , F 10
2 ,∆10,W 10), where F 10

1 = (F 1
1 \ {e}) ∪ {f, g}, and ∆10 =

(∆1 \ {(u′, v′)}) ∪ {(u′, s′), (s′, v′)}. Note that C10
k = (C1

k \ {e}) ∪ {f, g} while ∆10
ew =

∆1
ew\{(u′, v′)}, ∆10

fw = ∆1
fw∪{(u′, s′)} and ∆10

gw = ∆1
gw∪{(s′, v′)}. All the other subsets

of S1 remain the same. S10 is obviously feasible. Moreover, incidence vectors of S1

and S10 are in F
k̃ẽw̃, and then, in F. Thus, we have

λxS1

+ µyS
1

+ νzS
1

= λxS10

+ µyS
10

+ νzS
10

λxS1 − λk
ew + λk

fw + λk
gw + µyS

1 − µew + µfw + µgw + νzS
1 − νew

(u′,v′) + νfw

(u′,s′) + νgw

(s′,v′),

By (5.31), (5.35) and (5.36), we have that νew
(u′,v′) = νfw

(u′,s′) = νgw

(s′,v′) = µew = µfw = µgw

= λk
fw = λk

gw = 0. Thus, it remains that λk
ew = 0. As the arc e is chosen arbitrarily in

(F 1
1 ∪ F 1

2 ) \ {ẽ}, we get

λk
ew = 0, for all k ∈ K, e ∈ (F 1

1 ∪ F 1
2 ) \ {ẽ}, w ∈ W, (5.38)
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Let us show now that λk
ẽw = 0, for all (k, w) ∈ (K ×W ) \ {(k̃, w̃)}.

Let k be some commodity of K, w be a subband of W \ {w̃}. Let us consider the
solution S11, obtained from S1 as follows. We set up the subband w on the arc ẽ, and
we associate the pair (ẽ, w) with the path {(u′, v′)}. We also consider ẽ for the routing
of k, in addition to its initial routing path. S11 is such that Γ11 = Γ1 ∪ {(ẽ, w)}, C11

i

= C1
i if i 6= k and C11

k = C1
k ∪ {ẽ}. Note that ∆11

ẽw = ∆1
ẽw ∪ {(u′, v′)} = {(u′, v′)}. The

other subsets describing S11 remain the same as in S1. Both incidence vectors of S1

and S11 are in Fk̃ẽw̃, thus they satisfy

λxS1

+ µyS
1

+ νzS
1

= λxS11

+ µyS
11

+ νzS
11

=

λxS1

+ λk
ẽw + µyS

1

+ µtildeew + νzS
1

+ ν ẽw
(u′,v′),

We have that ν ẽw
(u′,v′) = µtildeew = 0, by (5.31) and (5.35). Thus, this implies that λk

ẽw

= 0. As k and w are chosen arbitrarily in (K ×W ) \ {(k̃, w̃)} respectively, we obtain

λk
ẽw = 0, for all (k, w) ∈ (K ×W ) \ {(k̃, w̃)}, (5.39)

Consequently, all together, we obtain that

λk
ew =

{
ρ, if (k, e, w) = (k̃, ẽ, w̃),

0, otherwise.

�

Theorem 5.6 For k̃ ∈ K, ẽ ∈ A1 and w̃ ∈ W , inequality xk̃ẽw̃ ≥ 0 is facet defining
for P (G1, G2, K, C)

Proof. Let us denote by F
k̃ẽw̃ the face induced by inequality xk̃ẽw̃ ≥ 0, which is given

by
F

k̃ẽw̃ = {(x, y, z) ∈ P (G1, G2, K, C) : xk̃ẽw̃ = 0},
We denote the inequality xk̃ẽw̃ ≥ 0 by αx + βy + γz ≤ δ. Let λx + µy + νz ≤ ξ be
a valid inequality that defines a facet of P (G1, G2, K, C). Suppose that Fk̃ẽw̃ ⊆ F. We
show that there exists ρ ∈ R such that (α, β, γ) = ρ(λ, µ, ν).

We will show that λk
ew = 0, for all (k, e, w) ∈ (K × A1 ×W ) \ {(k̃, ẽ, w̃)}.

Consider the solution S0 = (F 0
1 , F

0
2 ,∆

0,W 0) described in proof of Theorem 5.3. In
what follows, we will suppose that (ẽ, w̃) is in the solution S0 and involved in the
routing of k̃.
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Let w be a subband of W \W 0. Consider the solution S1 obtained from S0 as follows.
We replace the subband w̃ installed on ẽ by any subband w ∈ W \ {w̃} in the solution.
The pair (ẽ, w) is assigned the path {(u′, v′)} in G2, where (u′, v′) ∈ ∆0. In this way, the
commodity k̃ may use (ẽ, w) for its routing instead of (ẽ, w̃). Note that this operation
leads to xS1

ẽw̃ = 0 while xS0

ẽw̃ = 1. S1 = (F 1
1 , F

1
2 ,∆

1,W 1), where W 1 = W 0 ∪ {w}, and
∆1

ẽw = ∆0
ẽw ∪ {(u′, v′)}, while the other subsets of S1 remain the same as in S0. The

solution S1 is clearly feasible and it will be considered as a reference solution in the
rest of the proof.

First let us show that νew
a = 0, for all e ∈ A1, w ∈ W and a ∈ A2.

Let a = (s, t) be an arc of A2 \ ∆1. Let e and w be an arc of A1 and a subband
of W , respectively. Consider the solution S2, obtained from S1 by adding the arc a.
S2 = (F 2

1 , F
2
2 ,∆

2,W 2) where ∆2
ew = ∆1

ew ∪ {a}, and all the remaining subsets are the
same as in S1. It is easy to see that S2 is a feasible solution. Moreover, both incidence
vectors of S1 and S2 are in Fk̃ẽw̃ (and in F). Thus,

λxS1

+ µyS
1

+ νzS
1

= λxS2

+ µyS
2

+ νzS
2

= λxS1

+ µyS
1

+ νzS
1

+ νew
a ,

which implies that νew
a = 0. As the arc a is chosen arbitrarily in A2 \∆1, we get

νew
a = 0, for all e ∈ A1, w ∈ W, a ∈ A1 \∆1, (5.40)

Suppose now that a belongs to the solution S1. In other words, a is an arc of ∆1
ew,

where e ∈ A1 and w is in W . Let f = (s′, r′) and g = (r′, t′) be two arcs of A2 \∆1,
with r′ ∈ V2 \ {s, t}. Let us introduce the solution S3, obtained from S1 by replacing a

by the arcs f and g. The solution S3 = (F 3
1 , F

3
2 ,∆

3,W 3) is described as follows. ∆3
ew

= (∆1
ew \ {a})∪{f, g}, and all the other subsets of S3 are the same as in S1. S3 is still

a feasible solution, and both incidence vectors of S1 and S3 satisfy

λxS1

+ µyS
1

+ νzS
1

= λxS3

+ µyS
3

+ νzS
3

= λxS1

+ µyS
1

+ νzS
1 − νew

a + νew
f + νew

g ,

since they belong to Fk̃ẽw̃ and F as well. This implies that - νew
a + νew

f + νew
g = 0. We

have νew
f = νew

g = 0, by (5.40), we get νew
a = 0. As one can chose arbitrarily a in ∆1,

we obtain
νew
a = 0, for all e ∈ (A1, w ∈ W, a ∈ ∆1, (5.41)

Hence, by (5.40) and (5.41), we conclude that

νew
a = 0, for all e ∈ A1, w ∈ W, a ∈ A2, (5.42)

Next, we will show that µew = 0, for all e ∈ A1 and w ∈ W .
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Given an arc e = (s, t) ∈ A1 which does not appear in the solution S1. Let w be a
subband of W . Let us construct a solution S4 by adding the arc e to the solution S1.
We set up the subband w on the arc e, and we assign the arc (s′, t′) of A2 to the pair
(e, w) as a routing path. S4 = (F 4

1 , F
4
2 ,∆

4,W 4), where F 4
1 = F 1

1 , F 4
2 = F 1

2 ∪ {e}, ∆4

= ∆1 ∪ {(s′, t′)} and W 4 = W 1 ∪ {w}. Here, we have ∆4
ew = ∆1

ew ∪ {(s′, t′)} while the
other subsets of ∆1 do not change. In addition, we assume that e is not involved in
the routing of any commodity. The solution S4 is feasible and its incidence vector as
one of S1 are in Fk̃ẽw̃ (and in F), so they verify

λxS1

+ µyS
1

+ νzS
1

= λxS4

+ µyS
4

+ νzS
4

= λxS1

+ µyS
1

+ µew + νzS
1

+ νew
(s′,t′),

which implies that µew + νew
(s′,t′) = 0. We have νew

(s′,t′) = 0 by (5.42). Then, it follows
that µew = 0. As e was chosen arbitrarily in A1 \ (F 1

1 ∪ F 1
2 ), we get that

µew = 0, for all e ∈ A1 \ (F 1
1 ∪ F 1

2 ), w ∈ W, (5.43)

Now assume that e is in F 1
1 ∪ F 1

2 . Let f = (s, r) and g = (r, t) be two arcs of
A1 \ (F 1

1 ∪ F 1
2 ), with r ∈ V1 \ {s, t}. We will construct three solutions S5 and S6 and

S7 in order to show that µew = 0, for e ∈ F 1
1 ∪ F 1

2 , w ∈ W .

First, suppose that e ∈ F 1
2 . Consider the solution S5, that is obtained from S1 by

replacing the arc e by f and g. We assume that the subband w, initially installed on
e is reused for both f and g. The pairs (f, w) and (g, w) are then assigned the arcs
(s′, r′) and (r′, t′) of A2 for their routing in G2, respectively. This solution is feasible,
and both incidence vectors of S1 and S5 satisfy

λxS1

+ µyS
1

+ νzS
1

= λxS5

+ µyS
5

+ νzS
5

=

λxS1

+ µyS
1 − µew + µfw + µgw + νzS

1 − νew
(s′,t′) + νfw

(s′,r′) + νgw

(r′,t′),

since they belong to Fk̃ẽw̃ and F. We have that νew
(s′,t′) = νfw

(s′,r′) = νgw

(r′,t′) = 0, by (5.42),
while µfw = µgw = 0 by (5.43). We then get µew = 0. As e is chosen arbitrarily in F 1

2 ,
we obtain

µew = 0, for all e ∈ F 1
2 , w ∈ W, (5.44)

If e ∈ F 1
1 , then e is considered in the routing of some commodity, say k (e ∈ C1

k).
Let us construct the solution S6 based on S1, and where the arc e is replaced by f

and g. Again, we consider that the subband w is reused for the arcs f and g. We
assume that (f, w) and (g, w) are assigned the arcs (s′, r′) and (r′, t′), respectively. In
this solution, the commodity k is rerouted in f and g (instead of e). More formally,
S6 is described as follows. S6 = (F 1

1 , F
1
2 ,∆

6,W 6), where F 6
1 = (F 1

1 \ {e}) ∪ {f, g}
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and ∆6 = (∆1 \ {(s′, t′)}) ∪ {(s′, r′), (r′, t′)}. In particular F 6
1 and ∆6 are such that,

C6
k = (C1

k \ {e}) ∪ {f, g}, ∆6
ew = ∆1

ew \ {(s′, t′)}, ∆6
fw = ∆1

fw ∪ {(s′, r′)} and ∆6
gw =

∆1
gw ∪ {(r′, t′)}.

Now consider the solution S7 which is obtained from S6 by adding the arc e to the
solution. We set up the subband w on the arc e and we assign the arc (s′, t′) to the pair
(e, w). S7 = (F 7

1 , F
7
2 ,∆

7,W 7), where F 7
2 = F 6

2 ∪ {e}, ∆7
ew = ∆6

ew ∪ {(s′, t′)} and the
other subsets are still the same as in S6. Both solutions are feasible and their incidence
vectors are in Fẽẽw̃ and F. Thus, we have

λxS6

+ µyS
6

+ νzS
6

= λxS7

+ µyS
7

+ νzS
7

= λxS6

+ µyS
6

+ µew + νzS
6

+ νew
(s′,t′),

which gives µew + νew
(s′,t′) = 0. By (5.42), we have that νew

(s′,t′) = 0, and thus µew = 0.
As the arc e was chosen arbitrarily in F 1

1 \ {ẽ}, we get

µew = 0, for all e ∈ F 1
1 , w ∈ W, (5.45)

Hence, by (5.43), (5.44) and (5.43), we obtain

µew = 0, for all e ∈ A1, w ∈ W, (5.46)

Finally, let us show that λk
ew = 0, for all (k, e, w) ∈ (K ×A1 ×W ) \ {(k̃, ẽ, w̃)}.

Suppose that e = (u, v) is in A1 \ (F 1
1 ∪ F 1

2 ) and let k be some commodity of K.
Consider the solution S8, obtained from S1 by also considering the arc e for the routing
of k. In other words, e is added to the solution, and receives a subband w ∈ W . The
pair (e, w) is then assigned the path {(u′, v′)} in G2. S8 = (F 8

1 , F
8
2 ,∆

8,W 8) where F 8
1

= F 1
1 ∪ {e}, F 8

2 = F 1
2 , ∆8 = ∆1 ∪ {(u′, v′)} and W 8 = W 1 ∪ {w}. In particular, we

have that C8
k = C1

k ∪ {e} and ∆8
ew = ∆1

ew ∪ {(u′, v′)}, while the remaining subsets still
the same as in S1. S8 is a feasible solution, and both incidence vectors of S1 and S8

verify
λxS1

+ µyS
1

+ νzS
1

= λxS8

+ µyS
8

+ νzS
8

λxS1

+ λk
ew + µyS

1

+ µew + νzS
1

+ νew
(u′,v′),

which gives that λk
ew + µew + νew

(u′,v′) = 0. We know by (5.42) and (5.46), that µew =
νew
(u′,v′) = 0. Thus, we get λk

ew = 0. As e and k are chosen arbitrarily in A1 \ (F 1
1 ∪ F 1

2 )

and K, respectively, we obtain

λk
ew = 0, for all k ∈ K, e ∈ A1 \ (F 1

1 ∪ F 1
2 ), w ∈ W, (5.47)

Now consider e = (u, v) ∈ (F 1
1 ∪ F 1

2 ) \ {ẽ}, and let w be the subband installed on e.
Suppose that e ∈ C1

k for some commodity k. Let S9 be a solution, obtained from S1
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by replacing e with two arcs f = (u, s) and g = (s, v) of A1 \ (F 1
1 ∪ F 1

2 ). Both f and
g receive the subband w, and we associate with the pairs (f, w) and (g, w) the arcs
(u′, s′), (s′, v′) of A2, respectively. We also consider the arcs f and g for the routing of
k (instead of e). S9 = (F 9

1 , F
9
2 ,∆

9,W 9), where F 9
1 = (F 1

1 \ {e}) ∪ {f, g}, F 9
2 = F 1

2 , ∆9

= ∆1 ∪ {(u′, s′), (s′, v′)} and W 9 = W 1. In particular, F 9
1 and ∆9 are such that C9

k =
(C1

k \ {e}) ∪ {f, g}, ∆9
fw = ∆1

fw ∪ {(u′, s′)} and ∆9
gw = ∆1

gw ∪ {(s′, v′)}.

Let us introduce the solution S10, obtained by reinserting the arc e in the solution S9.
In this solution, we consider the arc e for the routing of the commodity k, instead of f
and g. More formally, the solution S10 = (F 10

1 , F 10
2 ,∆10,W 10) is described as follows.

F 10
1 = F 9

1 ∪ {e} while the remaining subsets are still the same as in S9. The solutions
S9 and S10 are both feasible, and as their incidence vectors belong to F

k̃ẽw̃ (and to F),
they verify

λxS9

+ µyS
9

+ νzS
9

= λxS10

+ µyS
10

+ νzS
10

=

λxS9

+ λk
ew − λk

fw − λk
gw + µyS

9

+ µew + νzS
9

which gives that λk
ew − λk

fw − λk
gw + µew = 0. By (5.46) and (5.47), we have that µew

= 0 and λk
fw = λk

gw = 0. Thus, we have that λk
ew = 0. As, e was chosen arbitrarily in

(F 1
1 ∪ F 1

2 ) \ {ẽ}, we obtain

λk
ew = 0, for all k ∈ K, e ∈ (F 1

1 ∪ F 1
2 ) \ {ẽ}, w ∈ W, (5.48)

Now suppose that e = ẽ, and let w ∈ W \ {w̃} be the subband installed on ẽ. Recall
that, by construction of S1, we have ẽ ∈ C1

k̃
. Let w′ be a subband of W \ {w̃, w}. We

will construct a solution S11, based on S1, where we replace the subband w installed
on ẽ, by the subband w′. The pair (ẽ, w′) is then assigned the path {(u′, v′)} in G2.
S11 = (F 11

1 , F 11
2 ,∆11,W 11), where, ∆11

ẽw′ = ∆1
ẽw′ ∪ {(u′, v′)}, and W 11 = W 1 ∪ {w′},

the other subsets of S1 remain unchanged. S11 is clearly feasible, and both inicidence
vectors of S1 and S11 satisfy

λxS1

+µyS
1

+ νzS
1

= λxS11

+µyS
11

+ νzS
11

= λxS1

+λk̃
ẽw′ +µyS

1

+µẽw′

+ νzS
1

+ ν ẽw′

(u′,v′),

We have by (5.42) and (5.46) that µẽw′

= ν ẽw′

(u′,v′) = 0. Thus, it follows that λk̃
ẽw′ = 0.

As w′ was chosen arbitrarily in W \ {w̃}, we obtain that

λk̃
ẽw, for all w ∈ W \ {w̃}, (5.49)

Thus, we conclude that

λk
ew = 0, for all , (k, e, w) ∈ (K ×A1 ×W ) \ {(k̃, ẽ, w̃)}, (5.50)

Consequently, we conclude by (5.42), (5.46) and (5.50), we can deduce that λk
ew = 0,

for all (k, e, w) ∈ (K ×A1 ×W ) \ {(k̃, ẽ, w̃)}, while λk̃
ẽw̃ = ρ, which ends the proof. �
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Next, we will investigate the facial structure of trivial constraints related to z vari-
ables. Note that each inequality zewa ≤ 1, associated with a subband w ∈ W , an arc
e ∈ A1 and an arc a ∈ A2, is dominated by a disjunction constraint (5.4), associated
with w and a. Thus, we will only study inequalities zewa ≥ 0, for all e ∈ A1, w ∈ W

and a ∈ A2.

Theorem 5.7 For ẽ ∈ A1, w̃ ∈ W and ã ∈ A2, inequality zẽw̃ã ≥ 0 is facet defining
for P (G1, G2, K, C).

Proof. Let us denote by Fẽw̃
ã the face induced by inequality zẽw̃ã ≥ 0, which is given

by
F

ẽw̃
ã = {(x, y, z) ∈ P (G1, G2, K, C) : zẽw̃ã = 0}

We denote the inequality zẽw̃ã ≥ 0 by αx + βy + γz ≤ δ. Let λx + µy + νz ≤ ξ be a
valid inequality that defines a facet F of P (G1, G2, K, C). Suppose that F

ẽw̃
ã ⊆ F. We

show that both inequalities are equal up to a scalar ρ ∈ R∗.

First, let us show that νew
a = 0, for all (e, w, a) ∈ (A1 ×W × A2) \ {(ẽ, w̃, ã)}.

Consider the solution S0 = (F 0
1 , F

0
2 ,∆

0,W 0) described in proof of Theorem 5.3. We
will assume without loss of generality that (ẽ, w̃, ã) does not belong to the solution S0.
In other words, the subband w̃ is not installed on the arc ẽ, and the pair (ẽ, w̃) is not
associated with the arc ã for its routing in G2. Let a be an arc of A2 \∆0 such that
a 6= ã and (e, w) be some pair of A1 ×W . We will introduce the solution S1 obtained
from S0 by adding a to ∆0

ew. The solution given by S1 = (F 0
1 , F

0
2 ,∆

0 ∪ {a},W 0) is
feasible for the problem, and its incidence vector belongs to Fẽw̃

ã and F as well. Thus,
we have

λxS0

+ µyS
0

+ νzS
0

= λxS1

+ µyS
1

+ νzS
1

= λxS0

+ µyS
0

+ νzS
0

+ νew
a ,

which implies that νew
a = 0. As the arcs a and e, and the subband w are chosen

arbitrarily in the subsets A2 \∆0, A1 and W , we get

νew
a = 0, for all e ∈ A1, w ∈ W, a ∈ A2 \ (∆0 ∪ {ã}), (5.51)

Now if a = (s′, t′) ∈ ∆0, in particular a ∈ ∆0
ew, with e ∈ A1, w ∈ W , then consider two

arcs of A2 \ (∆0 ∪ {ã}), denoted (s′, r′) and (r′, t′). Consider the solution S ′1 obtained
from S0 by replacing the arc a by (s′, r′) and (r′, t′) in ∆0

ew. In other words, S ′1 =
(F 0

1 , F
0
2 , (∆

0 \ {a}) ∪ {(s′, r′), (r′, t′)},W 0) where ∆′1
ew = (∆0

ew \ {a}) ∪ {(s′, r′), (r′, t′)}
and ∆′1

eiwi
= ∆0

eiwi
if (ei, wi) 6= (e, w). S ′1 remains clearly feasible, and its incidence

vector verifies

λxS0

+µyS
0

+ νzS
0

= λxS′1

+µyS
′1

+ νzS
′1

= λxS0

+µyS
0

+ νzS
0 − νew

a + νew
(s′,r′)+ νew

(r′,t′),
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and it follows that −νew
a + νew

(s′,r′) + νew
(r′,t′) = 0. As by (5.51), νew

(s′,r′) = νew
(r′,t′) = 0, we

have that νew
a = 0. Since a is chosen arbitrarily in ∆0, we get

νew
a = 0, for all e ∈ A1, w ∈ W, a ∈ ∆0, (5.52)

Thus, and by (5.51) and (5.52), we obtain

νew
a = 0, for all e ∈ A1, w ∈ W, a ∈ A2, (e, w, a) 6= (ẽ, w̃, ã), (5.53)

In what follows, we will show that µew = 0, for all e ∈ A1, w ∈ W .

Suppose that e = (u, v) is an arc of A1 \ (F 0
1 ∪F 0

2 ) and w a subband of W . Consider
the solution S2 obtained from S0 by installing the subband w on the arc e, then adding
(e, w) to the solution. We associate the arc (u′, v′) of A2 \∆0 with the routing of (e, w).
We will assume that no commodity uses this pair for its routing. S2 is then given by
(F 0

1 , F
0
2 ∪{e},∆0∪{(u′, v′)},W 0∪{w}), where ∆2

ew = ∆0
ew if (e, w) 6= (e, w) and ∆2

ew =
∆0

ew ∪ {(u′, v′)}}. It is not hard to see that S2 is a feasible solution. Hence, it satisfies

λxS0

+ µyS
0

+ νzS
0

= λxS2

+ µyS
2

+ νzS
2

= λxS0

+ µyS
0

+ µew + νzS
0

+ νew
(u′,v′),

that is to say that µew + νew
(u′,v′) = 0. We have that νew

(u′,v′) = 0 by 5.53. Thus, µew = 0.
As e and w are selected out of the solution, we get

µew = 0, for all e ∈ A1 \ (F 0
1 ∪ F 0

2 ), w ∈ W, (5.54)

Assume that e and w are used in the solution S0. In other words, e = (u, v) ∈
(F 0

1 ∪F 0
2 ) and w is installed on e. Then, e ∈ F 0

1 , as F 0
2 is empty. In particular, let k be

a commodity such that e ∈ C
0
k. Let f = (u, r) and g = (r, v) be two arcs of A1 \ (F 0

1 ∪
F 0
2 ) ∪ {ẽ}. Consider the solutions S ′2 and S ′′2 which are obtained from S0 as follows.

S ′2 is constructed by adding the arcs f and g to the solution S0. Both arcs receive the
subband w, and the pairs (f, w) and (g, w) are assigned the arcs (u′, r′) and (r′, v′) of
A2 \∆0. We assume that the commodity k uses f and g instead of e. The solution S ′2

is then described as follows ((F 0
1 \ {e}) ∪ {f, g}, F 0

2 ∪ {e},∆0 ∪ {(u′, r′), (r′, v′)},W 0),
where C′2

k = (C0
k \{e})∪{f, g}, while ∆′2

fw = ∆0
fw∪{(u′, r′)} and ∆′2

gw = ∆0
gw∪{(r′, v′)}.

S ′′2 is obtained by simply removing the arc e from the solution S ′2. In other words,
S ′′2 = (F ′2

1 , F ′2
2 \{e},∆′0,W ′2). Both solutions S ′2 and S ′′2 are feasible for the problem,

and their incidence vectors belong to Fẽw̃
ã and F. Thus, they verify

λxS′2

+ µyS
′2

+ νzS
′2

= λxS′′2

+ µyS
′′2

+ νzS
′′2

= λxS′2

+ µyS
′2 − µew + νzS

′2

,
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which implies that µew = 0. As e is selected arbitrarily in the solution, we get

µew = 0, for all e ∈ F 0
1 ∪ F 0

2 , w ∈ W, (5.55)

By (5.54) and (5.55), we have that

µew = 0, for all e ∈ A1, w ∈ W, (5.56)

Next, we will show that λk
ew = 0, for all k ∈ K, e ∈ A1 and w ∈ W .

Let k be a commodity of K, and let (e, w) be some pair of A1 ×W . Two cases may
hold here.

Case 1.

Suppose that (e, w), e = (u, v) does not appear in the solution S0. We will consider a
solution S3 obtained by adding (e, w) to Γ0, that is to install the subband w on the arc e.
We associate to (e, w) the path in G2 composed by arc (u′, v′), where (u′, v′) ∈ A2\{ã},
and we consider the arc e for the routing of k, in addition to its initial routing. More
formally, S3 = (F 3

1 , F
3
2 ,∆

3,W 3), where F 3
1 = F 0

1 ∪ {e}, F 3
2 = F 0

2 , ∆3 = ∆0 ∪ {(u′, v′)}
and W 3 = W 0 ∪ {w}. In particular, Γ3 = Γ0 ∪ {(e, w)}, ∆3

ew = ∆0
ew ∪ {(u′, v′)} and

C
3
k

= C
0
k
∪ {e}. It is clear that S3 induces a feasible solution for OMBND problem,

and its incidence vector belongs to Fẽw̃
ã , and thus, it also belong to F. Comparing

(xS3
, yS

3
, zS

3
) and (xS0

, yS
0
, zS

0
) yields

λk
ew + µew + νew

(u′,v′) = 0,

As by (5.53) and (5.56), we have λk
ew = 0, we can conclude that

λk
ew = 0, for all k ∈ K, (e, w) ∈ (A1 ×W ) \ Γ0, (5.57)

Case 2.

Now assume that (e, w) ∈ Γ0. Note that the case where e ∈ F 0
2 is rather easy, so we

will assume that e ∈ C0
k for some commodity k of K. Suppose without loss of generality

that (e, w) are not involved in the routing of commodity k. Let w′ be a subband of W
different from w. We will install w′ on the arc e and associate (e, w′) with the routing
of k. In other words, we set the entry xS0

kew′ to 1. The pair (e, w′) is associated with
path {(u′, v′)} in G2. Note that in this solution, we just move the commodity k from
the subband w to the subband w′ on the same arc e. This means that k still use arc
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e for its routing, but is carried by subband w′ instead of w. Let us denote by S4 the
solution described above. It is clear that S4 is feasible as all the constraints of (5.8)
are satisfied. We will derive an other solution, based on S4, that consists in associating
the arc e with the commodity k, in addition to its initial routing. Then, we can set
the entry xS4

kew
to 1, and induce a feasible solution. Note that this is possible, since

operations done in S4 allow to free up the capacity of w, which can now be used for k.
The solution S5 is obviously feasible, and both incidence vectors of S4 and S5 belong
to Fẽw̃

ã , and thus, to F. Hence, we obtain that λk
ew = 0. Since k, e and w are arbitrary

and interchangeable in K, A1 and W , we obtain

λk
ew = 0, for all k ∈ K, (e, w) ∈ Γ0, (5.58)

Consequently, and by (5.57) and (5.58), we get

λk
ew = 0, for all k ∈ K, (e, w) ∈ A1 ×W, (5.59)

All together, we obtain that all the coefficients are equal to zero except ν ẽw̃
ã which is

equal to some ρ ∈ R. �

5.3.2 Disjunction constraints

In this section, we study the facial structure of disjunction constraints. Let ã = (u′, v′)

and w̃ be an arc of A2 and a subband of W , respectively. We denote by Fw̃
ã , the face

induced by the inequality (5.4). In other words,

F
w̃
ã = {(x, y, z) ∈ P (G1, G2, K, C) :

∑

e∈A1

zew̃ã = 1}.

In what follows, we show that (5.4) are facet defining.

Theorem 5.8 For w̃ ∈ W and ã ∈ A2, the inequality
∑

e∈A1
zew̃ã ≤ 1 defines a facet

of P (G1, G2, K, C).

Proof. Let αx + βy + γz ≤ δ be the disjunction constraint (5.4) related to the arc
ã and the subband w̃. Consider the valid inequality, denoted λx + µy + νz ≤ ξ, that
defines a facet F for P (G1, G2, K, C). Suppose that Fw̃

ã . We will show that there exists
ρ ∈ R such that (α, β, γ) = ρ(λ, µ, ν).
Consider the solution S0 = (F 0

1 , F
0
2 ,∆

0,W 0) described in proof of Theorem 5.3. Sup-
pose that w̃ /∈ W 0, and ã /∈ ∆0. We will introduce a new solution S1, obtained from
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S0 by adding the subband w̃ to W 0. We assume that w̃ is installed on some arc, say e

= (o1, d1), but the pair (e, w̃) is not involved in the routing of any commodity. S1 =
(F 1

1 , F
1
2 ,∆

1,W 1), is then defined as follows. F 1
1 = F 0

1 , F 1
2 = F 0

2 , ∆1 = ∆0 and W 1 =
W ∪ {w̃}. In particular, note that ∆1

ew = ∆0
ew if w 6= w̃, and ∆1

ew̃ = {(o′1, d′1)} ∪ {ã}.
In other words, a new subband w̃ is added to the arc e = (o1, d1), and the pair (e, w̃)

is assigned two arcs in G2, (o′1, d
′
1) and ã.

The solution S1 is clearly feasible, and its incidence vector belongs to both F
w̃
ã and

F. Moreover, S1 will be considered as a reference solution in the rest of the proof.

First, let us show that νew
a = 0, for all e ∈ A1 and for all (w, a) ∈ (A2×W )\{(w̃, ã)}.

Let e be an arc of A1, w a subband of W and a an arc of A2 \∆1. Let us introduce
the solution S2, obtained from S1, by adding a to ∆1

ew. In other words, the pair (e, w)
is assigned the arc a. S2 = (F 2

1 , F
2
2 ,∆

2,W 2), where ∆2
ew = ∆1

ew ∪ {a} = {a}, and the
other elements of S2 remain the same as in S1.

We can easily see that the solution S2 is feasible, and its incidence vector belongs to
Fw̃
ã and F. Thus, we have

λxS1

+ µyS
1

+ νzS
1

= λxS2

+ µyS
2

+ νzS
2

= λxS1

+ µyS
1

+ µew + νzS
1

+ νew
a ,

which gives νew
a = 0. As e, w, and a were chosen arbitrarily in A1, W and A2 \∆1, we

obtain
νew
a = 0, for all e ∈ A1, w ∈ W, and a ∈ A2 \∆1, (5.60)

Suppose now that we select an arc a = (s′, t′) in the subset ∆1 \ {ã}. Let e and w

be an arc of A1 and a subband of W , respectively, such that a ∈ ∆1
ew. Let a1 = (s′, r′)

and a2 = (r′, t′) be two arcs of A2 \∆1, with r′ ∈ V2 \ {s′, t′}. Consider the solution S3,
which is obtained from S1, by replacing a in S2 by a1 and a2. S3 = (F 3

1 , F
3
2 ,∆

3,W 3),
where ∆3

ew = (∆1
ew \ {a}) ∪ {a1, a2}. The solution S3 is feasible and both incidence

vectors of S1 and S3 verify

λxS1

+ µyS
1

+ νzS
1

= λxS3

+ µyS
3

+ νzS
3

= λxS1

+ µyS
1

+ νzS
1 − νew

a + νew
a1

+ νew
a2
,

Thus, we have that −νew
a + νew

a1
+ νew

a2
= 0. By (5.60), we know that νew

a1
= νew

a2
= 0.

We then obtain νew
a = 0. As e, w and a were chosen arbitrarily in A1, W , and ∆1 \{ã},

respectively, we get that

νew
a = 0, for all e ∈ A1, w ∈ W, and a ∈ ∆1 \ {ã}, (5.61)

We can conclude, by (5.60) and (5.61) that

νew
a = 0, for all e ∈ A1, w ∈ W, and a ∈ A2, (w, a) 6= (w̃, ã), (5.62)
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Next, we will show that µew = 0, for all e ∈ A1 and for all w ∈ W .

Let e = (s, t) and w be an arc of A1 \ (F 1
1 ∪F 1

2 ) and W \W 1, respectively. Consider
the solution S4, defined as follows. We install the subband w over the arc e, and we
assign to the pair (e, w) the arc (s′, t′) in G2. In other words, S4 = (F 4

1 , F
4
2 ,∆

4,W 4),
where F 4

2 = F 1
2 ∪{e}, ∆4

ew = ∆1
ew∪{(s′, t′)} and W 4 = W 1∪{w}. All the other subsets

defining S4 remain the same as in S1. S4 is clearly feasible, and both incidence vectors
of S1 and S4 belong to Fw̃

ã and F, thus

λxS1

+ µyS
1

+ νzS
1

= λxS4

+ µyS
4

+ νzS
4

= λxS1

+ µyS
1

+ µew + νzS
1

+ νew
(s′,t′),

which implies µew + νew
(s′,t′) = 0. As by (5.62), νew

(s′,t′) = 0, we get µew = 0. The arc e

and the subband w were chosen arbitrarily in A1 \ (F 1
1 ∪ F 1

2 ) and W ∪W 1, hence, we
obtain

µew = 0, for all e ∈ A1 \ (F 1
1 ∪ F 1

2 ), w ∈ W \W 1, (5.63)

Assume now that e and w belong to the solution S1. In other words, e is an arc of
(F 1

1 ∪ F 1
2 ), and w ∈ W 1. We will use three solutions S5, S6 and S7 in order to show

that µew = 0, for all e ∈ (F 1
1 ∪ F 1

2 ), and for all w ∈ W 1.

First, suppose that e = (s, t) ∈ F 1
2 is not involved in the routing of any commodity.

Let w ∈ W 1, be the subband installed on e. Consider the arcs f = (s, r) and g =
(r, t), with r ∈ V1 \ {s, t} that do not appear in S1. Consider the solution S5, obtained
from S1 as follows. The arc e is replaced by f and g, and the subband w, initially
installed on e is reused for both f and g. Moreover, the pairs (f, w) and (g, w) are
assigned the arcs f ′ = (s′, r′) and g′ = (r′, t′), respectively. f ′ and g′ are not considered
in the solution S1. More formally, S5 is such that F 5

2 = (F 1
2 \ {e}) ∪ {f, g}, ∆5

ew =
∆1

ew \ {(s′, t′)}, ∆5
fw = ∆1

fw ∪ {(s′, r′)} and ∆5
gw = ∆1

gw ∪ {(r′, t′)}. The other subsets
of S1 remain unchanged.

It is easy to see that S5 is a feasible solution. Moreover, its incidence vector, as one
of S1, satisfy

λxS1

+ µyS
1

+ νzS
1

= λxS5

+ µyS
5

+ νzS
5

= λxS1

+ µyS
1 − µew + µfw + µgw + νzS

1

+ νzS
1

+ νfw

(s′,r′) + νgw

(r′,t′),

which gives
−µew + µfw + µgw + νfw

(s′,r′) + νgw

(r′,t′) = 0,

We have by (5.62) that νfw

(s′,r′) + νgw

(r′,t′) = 0. It follows then that −µew + µfw + µgw =
0. As by (5.63), µfw = µgw = 0, we get µew = 0. The arc e is chosen arbitrarily in F 1

2 .
Thus we get

µew = 0, for all e ∈ F 1
2 , w ∈ W, (5.64)
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Assume now that e = (s, t) is in F 1
1 and let w be the subband installed on e. Suppose

that e ∈ C1
k, where k is some commodity of K. Consider the solution S6, obtained from

S1 by replacing e by arcs f and g. The subband w is reused for both f and g, while the
pairs (f, w) and (g, w) are assigned the arcs (s′, r′) and (r′, t′) of A2 \∆1, respectively.
The commodity k is supposed to use the arcs f and g for its routing, instead of e. In
other words, S6 is such that F 6

1 = (F 1
1 \ {e}) ∪ {f, g}, C6

k = (C1
k \ {e}) ∪ {f, g}, while

∆6
fw = ∆1

fw ∪ {(s′, r′)} and ∆6
gw = ∆1

gw ∪ {(r′, t′)}.

We introduce the solution S7, obtained from S6 by reintroducing the arc e to the
solution S6. e receives the subband w, and (e, w) is assigned again the arc (s′, t′). S7

= (F 7
1 , F

7
2 ,∆

7,W 7), where F 7
1 = F 6

1 ∪ {e} and the other entries remain the same as in
S6.

Both solutions S6 and S7 are feasible, and their incidence vectors belong to Fw̃
ã and

F. Thus, they satisfy

λxS6

+ µyS
6

+ νzS
6

= λxS7

+ µyS
7

+ νzS
7

= λxS6

+ µyS
6

+ µew + νzS
6

,

we thus obtain µew = 0. The arc e was selected arbitrarily in the subset F 1
1 , we conclude

that,
µew = 0, for all e ∈ F 1

1 , w ∈ W, (5.65)

We can conclude by (5.63), (5.64) and (5.65) that

µew = 0, for all e ∈ A1, w ∈ W. (5.66)

Next, we will show that λk
ew = 0, for all k ∈ K, for all e ∈ A1 and for all w ∈ W .

Suppose that e = (s, t) is an arc of A1 \ (F 1
1 ∪ F 1

2 ), and w is a subband of W \W 1.
Consider the solution S8 obtained from S1 as follows. Let us install w on the arc e,
and assign to the pair (e, w) the arc (s′, t′). We associate (e, w) with the routing of
some commodity, say k. S8 is such that C8

k = C1
k ∪ {e}, ∆8

ew = ∆1
ew ∪ {(s′, t′)} and W 8

= W 1 ∪ {w}. One can easily check that S8 is a feasible solution. In addition, both
incidence vectors of S1 and S8 verify

λxS1

+ µyS
1

+ νzS
1

= λxS8

+ µyS
8

+ νzS
8

= λxS1

+ λk
ew + µyS

1

+ µew + νzS
1

+ νew
(s′,t′),

which implies that
λk
ew + µew + νew

a = 0,
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We have that µew = νew
a = 0, by (5.66) and (5.62). Thus, we get λk

ew = 0. As e, w and
k were chosen arbitrarily in A1 \ (F 1

1 ∪ F 1
2 ), W \W 1 and K, we obtain

λk
ew = 0, for all k ∈ K, e ∈ A1 \ (F 1

1 ∪ F 1
2 ), w ∈ W \W 1, (5.67)

Suppose now that e = (s, t) is an arc of the solution. If e ∈ F 1
2 , we associate e with

the routing of the commodity k ∈ K, and define a solution S9, where C9
k = C1

k ∪ {e}.
S9 is a feasible solution, and both incidence vectors of S1 and S9 allow to state that

λk
ew = 0, for all k ∈ K, e ∈ F 1

2 , w ∈ W, (5.68)

Finally, if e = (s, t) ∈ F 1
1 , and w is the subband installed on e. Suppose that e is

involved in the routing of the commodity k. We consider the solution S10, obtained
from S1 as follows. We replace e by two arcs f = (s, r) and g = (r, t) of A1 \ (F 1

1 ∪F 1
2 ),

and we install w on both f and g. The commodity k is associated the arcs f and g

instead of e for its routing. S10 is such that F 10
1 = (F 1

1 \ {e})∪ {f, g}, ∆10
fw = {(s′, r′)}

and ∆10
gw = {(r′, t′)}. In particular, we have C10

k = (C1
k \ {e})∪{f, g}. The solution S10

is feasible, and both incidence vectors of S1 and S10 are in F. So they verify

λxS1

+ µyS
1

+ νzS
1

= λxS10

+ µyS
10

+ νzS
10

= λxS1 − λk
ew + λk

fw + λk
gw + µyS

1 − µew + µfw + µgw + νzS
1

,

We have by (5.66) and (5.68) that λk
ew = 0. As we selected e and k arbitrarily in F 1

1

and K, we obtain
λk
ew = 0, for all k ∈ K, e ∈ F 1

1 , w ∈ W, (5.69)

Hence, (5.67), (5.68) and (5.69) allow to conclude that

λk
ew = 0, for all k ∈ K, e ∈ A1, w ∈ W, (5.70)

Now we will show that all the coefficient ν related to (ã, w̃) are equal.

Recall that in the solution S0, the arc ã belongs to a subset ∆0
ew̃, where e ∈ A1. We

will introduce a solution S11. To this end, consider an arc ẽ ∈ A1, ẽ = (s, t), and a
subband w ∈ W \ {w̃}. We will install w on the arc e, then move w̃ from e to ẽ. In
other words, yS

11

ew̃ = 0, yS
11

ew = 1, and yS
11

ẽw̃ = 1 (see Figure 5.7).

In this solution, the pairs (e, w) and (ẽ, w̃) are associated path in G that are {(u′, v′)}
and {(s′, t′)}, where (s′, t′) ∈ A2. However, we will associate ã with the routing of both
pairs (e, w) and (ẽ, w̃). More formally, S11 is such that S11 = (F 0

1 , F
0
2 ∪ {e},∆0 ∪
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s
t

u v

u’ v’

t’
s’

w w̃

ẽe

ã
G2

w̃

G1

Figure 5.7: Obtaining S11 from S0

{(s′, t′)},W 0 ∪ {w}), where Γ11 = (Γ0 \ {(e, w̃)}) ∪ {(e, w), (ẽ, w̃)}. Moreover, ∆11
ew =

∆0
ew ∪ {(u′, v′), ã} and ∆11

ẽw̃ = ∆0
ẽw̃ ∪ {(s′, t′), ã}. The solution S11 is clearly feasible,

as routing path holding enough capacity are still available for the commodities of
K and the installed subbands, so all the constraints of (5.8) are satisfied. Hence,
(xS11

, yS
11
, zS

11
) belongs to F. Thus, comparing S11 and S0 yields

νew̃
ã = νew

ã + ν ẽw̃
ã ,

As by (5.62) νew
ã = 0, we get νew̃

ã = ν ẽw̃
ã . Since, the arcs e, ẽ are arbitrary in A2, we

conclude that there exists a scalar ρ ∈ R, such that

νew̃
ã = ρ, for all e ∈ A1, (5.71)

In consequence, and by (5.62), (5.66) and (5.70), we get

νew̃
ã =

{
ρ, for all e ∈ A1,

0, otherwise.

Thus, (α, β, γ) = ρ(λ, µ, ν) with ρ ∈ R, and the results follows. �

5.3.3 Cut inequalities

In what follows, we will investigate the facial structure of cut inequalities (5.1).

Theorem 5.9 For k̃ ∈ K, every cut inequality defines a facet of P (G1, G2, K, C).
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Proof. Let T ⊆ V1 such that T = {ok̃} and T = V1 \ {ok̃}. Observe that the arc
(ok̃, dk̃) ∈ δ+G1

(T ), as G1 is a complete graph. Let us denote inequality
∑

w∈W

∑

e∈δ+
G1

(T )

xk̃
ew ≥ 1

by αx + βy + γz ≥ δ, and let λx + µy + νz ≥ ξ be a facet defining inequality of
P (G1, G2, K, C), such that

F
k̃ = {(x, y, z) ∈ P (G1, G2, K, C) : αx+ βy + γz = δ}

⊆ F = {(x, y, z) ∈ P (G1, G2, K, C) : λx+ µy + νz = ξ}
We will show that (α, β, γ) = ρ(λ, µ, ν) for some ρ ∈ R.

First, let us show that coefficients νew
a = 0, for all e ∈ A1, w ∈ W and a ∈ A2.

Consider the solution S0 = (F 0
1 , F

0
2 ,∆

0,W 0) described in proof of Theorem 5.3. S0

is a feasible solution and its incidence vector belongs to Fk̃ and F. Let a be an arc of
A2. If a ∈ A2 \∆0, then it is clear that (F 0

1 , F
0
2 ,∆

0 ∪ {a},W 0) still induces a feasible
solution for the problem. In particular, a can be added to any subset ∆0

ew, with e ∈ A1

and w ∈ W . Let this solution be denoted by S ′0. Since

λxS0

+ µyS
0

+ νzS
0

= λxS′0

+ µyS
′0

+ νzS
′0

= λxS0

+ µyS
0

+ νzS
0

+ νew
a ,

which implies that νew
a = 0. As one can select any a in A2 \∆0, we can state that

νew
a = 0, for all e ∈ A1, w ∈ W, a ∈ A2 \∆0, (5.72)

Suppose that a = (s′, t′) is an arc of the subset ∆0 (a is used in S0). In particular
a ∈ ∆0

ew, for some e ∈ A1, w ∈ W . Let (s′, r′) and (r′, t′) be two arcs of A2 \ ∆0,
with r′ ∈ V2 \ {s′, t′}. Consider the solution S ′′0 = (F ′′0

1 , F ′′0
2 ,∆′′0,W ′′0), where ∆′′0 =

(∆0 \ {a})∪ {(s′, r′), (r′, t′)}. S ′′0 is a feasible solution, and its incidence vector belong
to Fk̃ and F, so

λxS0

+µyS
0

+νzS
0

= λxS′′0

+µyS
′′0

+νzS
′′0

= λxS0

+µyS
0

+νzS
0−νew

a +νew
(s′,r′)+νew

(r′,t′),

and it follows that −νew
a + νew

(s′,r′) + νew
(r′,t′) = 0. We have by (5.72) that νew

(s′,r′) = νew
(r′,t′)

= 0, then we get νew
a = 0. As a was chosen arbitrarily in ∆0, we obtain

νew
a = 0, for all e ∈ A1, w ∈ W, a ∈ ∆0, (5.73)

Consequently, by (5.72) and (5.73), we conclude that

νew
a = 0, for all e ∈ A1, w ∈ W, a ∈ A2, (5.74)
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Next, we will show that µew = 0, for all e ∈ A1 and w ∈ W .

Let e be an arc of A1. Assume first that e = (u, v) ∈ A1 \ (F 0
1 ∪ F 0

2 ) (e is not used
in the solution S0), and let w be a subband of W \W 0. One can easily see that the
subsets (F 0

1 , F
0
2 ∪ {e},∆0 ∪ {(u′, v′)},W 0 ∪ {w}) induces a feasible solution. Let us

denote this solution by S1. Since (xS1
, yS

1
, zS

1
) ∈ F, we have

λxS0

+ µyS
0

+ νzS
0

= λxS1

+ µxS1

+ νzS
1

= λxS0

+ µyS
0

+ µew + νzS
0

+ νew
(u′,v′),

which implies µew + νew
(u′,v′) = 0. By (5.74), we have that νew

(u′,v′) = 0. Thus, µew = 0.
As we selected e and w arbitrarily in A1 \ (F 0

1 ∪ F 0
2 ) and W \W 0, we get

µew = 0, for all e ∈ A1 \ (F 0
1 ∪ F 0

2 ), w ∈ W \W 0, (5.75)

Now, suppose that e = (u, v) ∈ (F 0
1 ∪F 0

2 ). Since the subset F 0
2 is empty, by construc-

tion of S0, then e ∈ F 0
1 . In particular, assume that e ∈ C0

k, for k ∈ K, and w is the
subband installed on e. Let f = (u, r) and g = (r, v) be two arcs of A1 \(F 0

1 ∪F 0
2 ), with

r ∈ V1\{u, v}. Consider the solutions S2 and S ′2 defined as follows. S2 is obtained from
S0 by installing the subband w on both f and g, and assigning with the couples (f, w)
and (g, w) the arcs (u′, r′) and (r′, v′) of A2, respectively. In addition, the commodity k

uses f and g instead of e for its routing. More formally, S2 = (F 2
1 , F

2
2 ,∆

2,W 2), where
F 2
1 = F 0

1 ∪ {f, g}, C2
k = (C0

k \ {e})∪ {f, g}, F 2
2 = F 0

2 ∪ {e}, ∆2
fw = ∆0

fw ∪ {(u′, r′)} and
∆2

gw = ∆0
gw ∪ {(r′, v′)}.

S2 is a feasible solution for the problem, and its incidence vector verifies

λxS0

+ µyS
0

+ νzS
0

= λxS2

+ µyS
2

+ νzS
2

λxS0

+−λk
ew + λk

fw + λk
gw + µyS

0

+ µfw + µgw + νzS
0

+ νfw

(u′,r′) + νgw

(r′,v′),

As by (5.74), we have νfw

(u′,r′) = νgw

(r′,v′) = 0, it follows that

−λk
ew + λk

fw + λk
gw + µfw + µgw = 0, (5.76)

The solution S ′2 results from the removal of the arc e of S0. As for solution S2, e is
replaced by the arcs f and g for the routing of the commodity k. Since S ′2 is feasible,
and both incidence vectors of S0 and S ′2 are in F, we have

λxS0

+ µyS
0

+ νzS
0

= λxS′2

+ µyS
′2

+ νzS
′2

λxS0

+−λk
ew + λk

fw + λk
gw + µyS

0

+−µew + µfw + µgw + νzS
0

+ νfw

(u′,r′) + νgw

(r′,v′),



124 Optical Multi-Band Network Design : polyhedral study

Again, we have νfw

(u′,r′) = νgw

(r′,v′) = 0, by (5.74), and thus

−λk
ew + λk

fw + λk
gw +−µew + µfw + µgw = 0, (5.77)

By (5.76) and (5.77), we have −µew + µfw + µgw = 0. We yet know that µfw = µgw =
0 by (5.75), which yields µew = 0. As e was selected arbitrarily in F 0

1 , we get

µew = 0, for all e ∈ F 0
1 ∪ F 0

1 , w ∈ W, (5.78)

We conclude, by (5.75) and (5.78) that

µew = 0, for all e ∈ A1, w ∈ W, (5.79)

Finally, we will show that λk
ew = 0, for all e ∈ A1 \ δ+G1

(T ), w ∈ W .

First, suppose that k ∈ K \ {tildek}. Let e = (u, v) and w be an arc of A1 such that
e /∈ (F 0

1 ∪F 0
2 ) and a subband of W \W 0, respectively. The subsets (F 0

1 ∪ {e}, F 0
2 ,∆

0 ∪
{(u′, v′)},W 0∪{w}), with F 0

1 ∪{e} = (
⋃

i∈K\{k̃} C
0
i )∪(C0

k∪{e}) clearly induces a feasible

solution of the problem. We will denote by S3 this solution. Since (xS3
, yS

3
, zS

3
) ∈ F,

we have

λxS0

+ µyS
0

+ νzS
0

= λxS3

+ µyS
3

+ νzS
3

= λxS0

+ λk
ew + µyS

0

+ µew + νzS
0

+ νew
(u′,v′),

which gives λk
ew + µew + νew

(u′,v′) = 0. We have by (5.74) and (5.79) that µew = νew
(u′,v′)

= 0. Thus, λk
ew = 0. We selected e and w arbitrarily in A1 \ (F 0

1 ∪ F 0
2 ) and W \W 0,

respectively. Hence, we obtaine

λk
ew = 0, for all k ∈ K \ {k̃}, e ∈ A1 \ (F 0

1 ∪ F 0
2 ), w ∈ W \W 0, (5.80)

Now, if e ∈ C
0
k ⊆ F 0

1 and w is the subband used for e in the solution S0, then the
subsets (F 0

1 , F
0
2 ,∆

0, (W 0\{w})∪{w̃}), where w̃ ∈ W \W 0, induces a feasible solution of
the problem. This solution will be referred to as S ′3. Note that ∆′3

ew̃ = ∆0
ew̃ ∪{(u′, v′)}.

The incidence vector of S ′3 satisfies

λxS0

+ µyS
0

+ νzS
0

= λxS′3

+ µyS
′3

+ νzS
′3

=

λxS0 − λk
ew + λk

ew̃ + µyS
0 − µew + µew̃ + νzS

0

+ νew̃
(u′,v′),

which leads to −λk
ew + λk

ew̃ − µew + µew̃ + νew̃
(u′,v′) = 0. As by (5.74), (5.79), and (5.80),

we have λk
ew̃ = µew = µew̃ = νew̃

(u′,v′) = 0. The remaining term, that is λk
ew, is also equal
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to zero. Since the couple (e, w) was chosen arbitrarily in the solution S0, we conclude
that

λk
ew = 0, for all k ∈ K \ {k̃}, e ∈ F 0

1 ∪ F 0
2 , w ∈ W 0, (5.81)

We still have to show that λk̃
ew = 0, for all e ∈ A1 \ δ+G1

(T ), w ∈ W .

To do this, we will consider two cases : e is used in the solution and the subband w

is installed on e, e does not appear in the solution.

Case 1.

Suppose that e = (u, v) /∈ F 0
1 , and let w be a subband that was not used before.

Then, S4 = (F 0
1 ∪ {e}, F 0

2 ,∆
0 ∪ {(u′, v′)},W 0 ∪ {w}), with (u′, v′) ∈ A2 defines a

feasible solution of the problem. Notice that F 0
1 ∪{e} =

⋃
i∈K\{k̃} C

0
i ∪ (C0

k̃
∪{e}). Since

λxS0

+ µyS
0

+ νzS
0

= λxS4

+ µyS
4

+ νzS
4

=

λxS0

+ λk̃
ew + µyS

0

+ µew + νzS
0

+ νew
(u′,v′),

and it follows that λk̃
ew + µew + νew

(u′,v′) = 0. By (5.74) and (5.79), we have λk̃
ew = 0. As

e and w were chosen arbitrarily in A1 \ (δ+G1
(T ) ∪ (F 0

1 )) and W \W 0, respectively, we
obtain that

λk̃
ew = 0, for all e ∈ A1 \ (F 0

1 ), w ∈ W \W 0, (5.82)

Case 2.

Now, if e ∈ F 0
1 , e /∈ δ+G1

(T ), let w be the subband installed on e. Observe that, as e

appears in the solution, but as it does not belong to δ+G1
(T ), it can not be involved in

the routing of k̃. In other words, e ∈ C0
i , with i ∈ K \ {k̃}. In this case, we install an

additionnal subband on e, say w̃. The couple (e, w̃) is associated with the routing of
k̃.

Consider the solution S ′4 = (F 0
1 , F

0
2 ,∆

0,W 0∪{w̃}), is clearly feasible. Note that F ′4
0

= F 0
1 =

⋃
i∈K\{k̃} C

0
i ∪ (C0

k̃
∪ {e}), and ∆′4

ew̃ = ∆0
ew̃ ∪ {(u′, v′)}. As the incidence vector

of S ′4 belongs to F, we have

λk̃
ew̃ + µew̃ + νew̃

ew̃ = 0,

Since µew̃ = νew̃
ew̃ = 0, we obtain λk̃

ew̃ = 0. As e was chosen arbitrarily in F 0
1 \ δ+G1

(T ),
it follows that

λk̃
ew = 0, for all e ∈ F 0

1 , w ∈ W \W 0, (5.83)
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In consequence, and by (5.80), (5.81), (5.82) and (5.83), we obtain that

λk̃
ew = 0, for all e ∈ A1 \ δ+G1

(T ), w ∈ W, (5.84)

and
λk
ew = 0, for all k ∈ K \ {k̃}, e ∈ A1, w ∈ W, (5.85)

Now let us show that all the coefficient λ related to k̃ and the arcs of δ+G1
(T ) are

equal.

Recall that commodity k̃ is associated with path {(ok̃, dk̃)} in solution S0. Let us
denote by w the subband installed on (ok̃, dk̃) in S0. Consider the solution S5, where
we introduce three additional arcs (ok̃, u), (u, v) and (v, dk̃) in the subset F 0

1 . We will
shift the subband w from (ok̃, dk̃) to the arcs (ok̃, u), (u, v) and (v, dk̃), and associate
the path {(ok̃, u), (u, v), (v, dk̃)} with the routing of k̃ instead of its initial routing path
(see Figure 5.8).

u v

T

ok̃

V1 \ T

dk̃

Figure 5.8: Obtaining the solution S5

Furthermore, we assign a path in G2 to each pair (e, w) such that w is installed on
e. Indeed, the pair ((ok̃, u), w), ((e, v), w) and ((v, dk̃), w) are associated with paths
{(o′

k̃
, u′)}, {(u′, v′)} and {(v′, d′

k̃
)}, respectively, with (o′

k̃
, u′), (u′, v′), (v′, d′

k̃
) ∈ A2. It is

clear that the solution S5 is clearly feasible and differs from S0 in what k̃ crosses the
cut using the arc (u, v) instead of (ok̃, dk̃). Thus, we can set xS0

k̃(u,v)w
to 1 while xS0

k̃(o
k̃
,d

k̃
)w

is set to 0. Comparing both incidence vectors of S6 and S0 gives us

λk̃
(o

k̃
,d

k̃
)w = λk̃

(o
k̃
,u)w + λk̃

(u,v)w + λk̃
(v,d

k̃
)w,

By (5.84), we get that λk̃
(o

k̃
,d

k̃
)w = λk̃

(u,v)w. Since (u, v) is arbitrary in δ+G1
(T ), we conclude

that
λk̃
ew = ρ, for all e ∈ δ+G1

(T ), w ∈ W, (5.86)
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Hence, all together, we obtain that

λk
ew =

{
ρ, if k = k̃, and for all e ∈ δ+G1

(T ),

0, otherwise.

Thus, (α, β, γ) = ρ(λ, µ, ν), and the results follows. �

In this section, we will show that inequalities (5.3) define facets for P (G1, G2, K, C).

Theorem 5.10 For ẽ = (ũ, ṽ) ∈ A1, w̃ ∈ W , every cut inequality (5.3) defines a facet
of P (G1, G2, K, C).

Proof. Consider a subset of nodes T of V2 such that ũ′ ∈ T and ṽ′ ∈ T = V2 \ T . Let
us denote inequality zẽw̃(δ+G2

(T )) ≥ yẽw̃ by αx + βy + γz ≥ δ, and let λx + µy + νz

≥ ξ be a valid inequality that defines a facet F of P (G1, G2, K, C), such that

F
ẽw̃ = {(x, y, z) ∈ P (G1, G2, K, C) : zẽw̃(δ+G2

(T ))− yẽw̃ = 0} ⊆ F.

We show that there exists a scalar ρ ∈ R such that (α, β, γ) = ρ(λ, µ, ν).

To do this, let us first show that νew
a = 0, for all a ∈ A2, (e, w) ∈ (A1×W )\{(ẽ, w̃)}.

Consider the solution S0 = (F 0
1 , F

0
2 ,∆

0,W 0) defined in proof of Theorem 5.3. Observe
that in both cases, whether (ẽ, w̃) ∈ Γ0 or not (xS0

, yS
0
, zS

0
) ∈ Fẽw̃. In fact, if (ẽ, w̃) ∈

Γ0, then ẽ = (ok, dk) for some commodity k, and hence yS
0

ẽw̃ = 1, zS
0

ẽw̃((o
′
k, d

′
k)) = 1, and

zS
0

ẽw̃(a) = 0 for all a ∈ A2 \ (o′k, d′k). Thus, zS
0

ẽw̃(δ
+
G2
(T )) = 1.

If (ẽ, w̃) /∈ Γ0, then yS
0

ẽw̃ = 0, and in consequence, zS
0

ẽw̃(a) = 0, for all a ∈ A2, and trivially
(xS0

, yS
0
, zS

0
) ∈ Fẽw̃.

Let a ∈ A2 \ ∆0 and (e, w) ∈ (A1 × W ) \ (ẽ, w̃). We define the solution S1 which
is obtained from S0 by adding arc a to ∆0

ew. S1 = (F 0
1 , F

0
2 ,∆

1,W 0), where ∆1 =
∆0 ∪ {a}, with ∆1

eiwi
= ∆0

eiwi
if (ei, wi) 6= (e, w) and ∆1

ew = ∆0
ew ∪ {a}. Solution S1 is

feasible for the problem and its incidence vector is in Fẽw̃. Hence, (xS1
, yS

1
, zS

1
) and

also (xS0
, yS

0
, zS

0
) belong to F, we get

λxS0

+ µyS
0

+ νzS
0

= λxS1

+ µyS
1

+ νzS
1

= λxS0

+ µyS
0

+ νzS
0

+ νew
a

which implies that νew
a = 0. Since the elements a, e and w were chosen arbitrarily in

the sets A2 \∆0, A1 \ {ẽ}, W \ {w̃}, respectively, we obtain

νew
a = 0, for all (e, w) ∈ (A1 ×W ) \ {(ẽ, w̃)}, a ∈ A2 \∆0 (5.87)
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Now, consider an arc a = (s′, t′) ∈ A2 that is used in the solution S0 (a ∈ ∆0). Assume
that a ∈ ∆0

ew, where (e, w) ∈ Γ0. Let S2 be a solution, obtained from S0 by replacing
the arc a by f = (s′, r′) and g = (r′, t′), with r′ ∈ V2\{s′, t′} in the subset ∆0

ew. Clearly,
the solution S2 is feasible, and its incidence vector belongs to Fẽw̃. Thus, we have

λxS0

+ µyS
0

+ νzS
0

= λxS2

+ µyS
2

+ νzS
2

= λxS0

+ µyS
0

+ νzS
0 − νew

a + νew
f + νew

g ,

that gives −νew
a + νew

f + νew
g = 0. As by (5.87), νew

f = νew
g = 0, we obtain νew

a = 0. The
arc a we selected arbitrarily in the subset ∆0, we then conclude that

νew
a = 0, for all (e, w) ∈ Γ0, a ∈ Delta0, (5.88)

Thus, by (5.87) and (5.88), we get

νew
a = 0, for all (e, w) ∈ (A1 ×W ) \ {(ẽ, w̃)}, a ∈ A2, (5.89)

Consider again solution S0. For the rest of the proof, we will suppose without loss
of generality that ẽ = (ok, dk) for some k ∈ K, and (ẽ, w̃) ∈ Γ0. Let a be an arc of
A2 \ δ+G2

(T ). Consider the solution S3 obtained from S0 by adding a to ∆0
ẽw̃. As both

(xS0
, yS

0
, zS

0
) and (xS3

, yS
3
, zS

3
) are in F

˜̃ and hence in F, it follows that ν ẽw̃
a = 0. As

a is arbitrary in A2 \∆+
G2
(T ), we have that

ν ẽw̃
a = 0, for all a ∈ A2 \ δ+G2

(T ), (5.90)

Now, we will show that all the coefficients ν ẽw̃
a are the same for the arcs of the cut

δ+G2
(T ). Indeed, let a = (u′, v′) be an arc of δ+G2

(T ) different from (o′k, d
′
k). Consider the

solution S4 obtained from S0 by replacing in ∆0 the arc (o′k, d
′
k) by the path (o′k, u

′),
(u′, v′), (v′, d′k). Remark that the nodes o′k and u′ (respectively d′k and v′) may be the
same. We have that (xS4

, yS
4
, zS

4
) belongs to Fẽw̃ and also to F. In consequence,

ν ẽw̃
(o′

k
,d′

k
) = ν ẽw̃

(o′
k
,u′) + ν ẽw̃

(u′,v′) + ν ẽw̃
(v′,d′

k
),

By (5.90), it follows that ν ẽw̃
(o′

k
,d′

k
) = ν ẽw̃

(u′,v′). This implies that

ν ẽw̃
a =

{
ρ, for some ρ ∈ R, for all a ∈ δ+G2

(T ),

0, otherwise.
(5.91)

Next, we will show that µew = 0, for all (e, w) ∈ (A1 ×W ).

Let e = (u, v) be an arc of A1 \ (F 0
1 ∪F 0

2 ) and w ∈ W \W 0 such that (e, w) 6= (ẽ, w̃).
Consider the solution S5, constructed from S0 by adding (e, w) to Γ0. S5 is then
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defined as follows (F 0
1 , F

0
2 ∪ {e},∆0 ∪ {a = (u′, v′)},W 0 ∪ {w}). The solution S5 is

clearly feasible, and (xS5
, yS

5
, zS

5
) ∈ Fẽw̃, thus we have

λxS0

+ µyS
0

+ νzS
0

= λxS5

+ µyS
5

+ νzS
5

= λxS0

+ µyS
0

+ µew + νzS
0

+ νew
a ,

and it follows that µew + νew
a = 0. As νew

a = 0, by (5.89), we obtain µew = 0. Since the
arc e and the subband w were selected arbitrarily out of the solution, we get

µew = 0, for all e ∈ A1 \ (F 0
1 ∪ F 0

2 ), w ∈ W \W 0, (5.92)

Now, if e = (u, v) is selected among the arcs used in the solution S0, then e ∈ F 0
1 \{ẽ}.

Let us denote by w the subband installed on e. In other words, (e, w) ∈ Γ0 and e ∈ C0
k,

for some commodity k. Here, we need to introduce two solutions S6 and S7. Let f

= (u, r) and g = (r, v) be two arcs of A1 \ (F 0
1 ∪ F 0

2 ), with r ∈ V1 \ {u, v}. First,
consider the solution S6 which is obtained from S0 by adding (f, w) and (g, w) to Γ0.
In particular, (f, w) and (g, w) are added to C

0
k. S6 = (F 6

1 , F
6
2 ,∆

6,W 0), where F 6
1

= (F 0
1 \ {e}) ∪ {f, g}, F 6

2 = F 0
2 ∪ {e} and ∆6 = ∆0 ∪ {(u′, r′), (r′, v′)} with ∆6

fw =
∆0

fw ∪ {(u′, r′)} and ∆6
gw = ∆0

gw ∪ {(r′, v′)}.

Consider now the solution S7 that is obtained by removing e from the solution S6.
S7 = (F 6

1 , F
7
1 ,∆

6,W 6), where F 7
2 = F 6

2 \ {e}. Both solutions S6 and S7 are clearly
feasible, and their incidence vectors are in Fẽw̃, thus (xS6

, yS
6
, zS

6
) and (xS7

, yS
7
, zS

7
)

are in F. Hence, we get

λxS0

+ µyS
0

+ νzS
0

= λxS6

+ µyS
6

+ νzS
6

=

λxS7

+ µyS
7

+ νzS
7

= λxS6

+ µyS
6 − µew + νzS

6

,

And it follows that µew = 0. Since, e is chosen arbitrarily in F 0
1 ∪ F 0

2 , we obtain

µew = 0, for all (e, w) ∈ Γ0, (5.93)

Therefore, by (5.92) and (5.93), we get that

µew = 0, for all e ∈ A1, w ∈ W, (e, w) 6= (ẽ, w̃), (5.94)

Finally, we will show that λk
ew = 0, for all k ∈ K, e ∈ A1 and w ∈ W .

Consider the solution S8, obtained from S0 as follows. Let e = (u, v) be an arc of
∈ A1 \ (F 0

1 ∪F 0
2 ) and w a subband of W \W 0. We add (e, w) to Γ0 and e to C0

k, where k

is a commodity of K. Then, the solution S8 is such that S8 = (F 8
2 , F

0
2 ,∆

8,W 8), where
F 8
1 = F 0

1 ∪ {e}, ∆8 = ∆0 ∪ {(u′, v′)} with ∆8
ew = ∆0

ew ∪ {(u′, v′)} and ∆8
eiwi

= ∆0
eiwi
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if (ei, wi) 6= (e, w), and W 8 = W 0 ∪ {w}. The solution S8 is clearly feasible, and its
incidence vector verifies

λxS0

+ µyS
0

+ νzS
0

= λxS8

+ µyS
8

+ νzS
8

= λxS0

+ λk
ew + µyS

0

+ µew + νzS
0

+ νew
(u′,v′),

as it belongs to Fẽw̃ and F. Hence, it follows that

λk
ew + µew + νew

(u′,v′) = 0,

As νew
(u′,v′) = 0, by (5.89), and µew = 0 by (5.94), we get λk

ew = 0. Since the arc e and
the subband w are chosen arbitrarily in A1 \ (F 0

1 ∪ F 0
2 ) and W \W 0, respectively (out

of the solution S0), it implies that

λk
ew = 0, for all k ∈ K, e ∈ A1 \ (F 0

1 ∪ F 0
2 ), w ∈ W \W 0, (5.95)

Now suppose that e = (u, v) ∈ A1 and w ∈ W are such that (e, w) ∈ Γ0. Assume
that e ∈ C0

k, where k is a commodity of K. Let f = (u, r) and g = (r, v) be two arcs
of A1 \ (F 0

1 ∪ F 0
2 ). Consider the solution S9 that is obtained from S0 by replacing

the arc e by f and g in C0
k. Here we reuse the subband w for both f and g. In

other words, (f, w) and (g, w) are added to Γ0. The solution S9 is then defined as
follows. S9 = (F 9

1 , F
9
2 ,∆

9,W 0), where F 9
1 = (F 0

1 \ {e}) ∪ {f, g}, F 9
2 = F 0

2 ∪ {e}, ∆9

= ∆0 ∪ {(u′, r′), (r′, v′)}. Notice that ∆9
fw = ∆0 ∪ {(u′, r′)} = {(u′, r′)} while ∆9

gw =
∆0

gw ∪ {(r′, v′)}. Also remark that C9
k = (C0

k \ {e}) ∪ {f, g}, while the other subsets of
F 9
1 remain the same. It is clear that the solution S9 is feasible for the problem, and its

incidence vector belongs to Fẽw̃ and F. Thus,

λxS0

+ µyS
0

+ νzS
0

= λxS9

+ µyS
9

+ νzS
9

= λxS0 − λk
ew + λk

fw + λk
gw + µyS

0

+ µfw + µgw + νzS
0

+ νfw

(u′,r′) + νgw

(r′,v′),

which implies that

−λk
ew + λk

fw + λk
gw + µfw + µgw + νfw

(u′,r′) + νgw

(r′,v′) = 0,

By (5.89), (5.94) and (5.95), we get λk
ew = 0. Since the arc e is chosen arbitrarily in

the subset F 0
1 , we obtain

λk
ew = 0, for all k ∈ K, e ∈ F 0

1 ∪ F 0
2 , w ∈ W, (5.96)

Hence, by (5.95) and (5.96), we conclude that

λk
ew = 0, for all k ∈ K, e ∈ A1, w ∈ W, (5.97)
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Consider now the solution S
0

obtained from S0 by replacing in F 0
1 ẽ = (ok, dk) by

(ok, r), (r, dk), and assigning to both arcs (ok, r) and (r, dk) the subband w̃. Hence, the
new set ∆

0
is given by (∆0 \ (o′k, d′k))∪ {(o′k, r′), (r′, d′k)}. We have yS

0

ẽw̃ = 0, and zS
0

ẽw̃(a)

= 0, for all a ∈ A2. As (xS
0

, yS
0

, zS
0

) ∈ F
ẽw̃, (xS

0

, yS
0

, zS
0

) ∈ F. This implies that ξ =
0.

By considering the solution S0, we have

µẽw̃ + ν ẽw̃
(o′

k
,d′

k
) = 0,

From (5.91), it follows that µẽw̃ = −ρ.

All together, we have obtained

λk
ew = 0, for all k ∈ K, e ∈ A2, w ∈ W,

ν ẽw̃
a =

{
ρ, for some ρ ∈ R, for all a ∈ δ+G2

(T ),

0, otherwise.

µew =

{
−ρ, for (e, w) = (ẽ, w̃),

0, otherwise.

Thus, (α, β, γ) = ρ(λ, µ, ν), and the proof is complete. �

5.3.4 Capacity inequalities

We will focus on the facial structure of the capacity constraints given by inequalities
(5.2).

Theorem 5.11 For ẽ ∈ A1 and w̃ ∈ W , inequality (5.2) defines facet for P (G1, G2, K, C)

only if the following holds

(i) for all k′ ∈ K, there exists a subset Rk′ ⊂ K such that
∑

k∈Rk′
Dk = C,
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(ii) for each k′, k′′ ∈ K, there exists Rk′, Rk′′, such that Rk′ ⊂ K \ {k′′}, k′ ∈ Rk′,
Rk′′ ⊂ K \ {k′′}, k′′ ∈ Rk′′, such that

∑

k∈Rk′

Dk =
∑

k∈Rk′′

Dk = C.

Proof. (i) Suppose that the first condition is not verified. Then, the face induced
by inequality

∑
k∈K Dkxkẽw̃ ≤ Cyẽw̃ is contained in the face induced by xk̃ẽw̃ =

0. In fact, since there is no subset Rk̃ verifying
∑

k∈R
k̃
Dk = C, we can not find

a solution such that xk̃ẽw̃ = 1 that satisfies inequality (5.2) with equality.

(ii) Now assume that condition (ii) is not verified. Then, every solution of the of the
face induced by

∑
k∈K Dkxkẽw̃ ≤ Cyẽw̃ either does not use the pair (ẽ, w̃), or both

k′ and k′′ use (ẽ, w̃). Consequently, each solution of the face also verifies

xk′ẽw̃ = xk′′ẽw̃,

but this inequality can not be a multiple of
∑

k∈K Dkxkẽw̃ ≤ Cyẽw̃, which is a
contradiction.

�

Theorem 5.12 For ẽ ∈ A1 and w̃ ∈ W , inequality (5.2) defines facet for P (G1, G2, K, C)

if the following holds

(i) conditions (i), (ii) of Theorem 5.11 are satisfied,

(ii) Dk = q, for all k ∈ K, where q ∈ R+ (the commodities are equivalent in size).

Proof. Suppose that there exists a subset of commodities K̃ such that
∑

k∈K̃ Dk =
C. This is possible because of condition (i) of Theorem 5.11. Let us denote by αx +
βy + γz ≤ δ the capacity inequality (5.2) induced by the arc ẽ and the subband w̃,
and let

F
ẽw̃ = {(x, y, z) ∈ P (G1, G2, K, C) :

∑

k∈K

Dkxkẽw̃ − Cyẽw̃ = 0},

Let λx + µy + νz ≤ ξ be a valid inequality that defines a facet of P (G1, G2, K, C).
Suppose that Fk̃

ẽw̃ ⊆ F. We show that there exists ρ ∈ R such that (α, β, γ) = ρ(λ, µ, ν).
We will construct a feasible solution S0 that satisfies (5.2) with equality.
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For each commodity k ∈ K \ K̃, we consider a path in G1 between its origin and
destination nodes, consisting of arc (ok, dk). We install over this arc a subband wk.
In other words, every subband is assigned at most one commodity. We install the
subband w̃ on the arc ẽ = (u, v) (ẽ may be equal to some arc (ok, dk), k ∈ K \ K̃).
We will assume without loss of generality that ẽ /∈ {(ok, dk), k ∈ K}. Then, we
install a subband wi on each arc (oi, u), u 6= di and a subband w′

i on each arc (v, di),
v 6= oi, where i ∈ K̃. Every couple (e, w) such that w is installed on e = (s, t) is
associated the arc (s′, t′) in A2. This is possible since G2 is a complete graph, and the
installed subbands are all different. Observe that, in this solution, each commodity
k ∈ K \ K̃ uses the couple ((ok, dk), wk) for its routing, while the commodities of K̃
have a path of length at most three {(oi, u), (u, v), (v, di)}, i ∈ K̃. Moreover, note that
a subband is associated to each commodity of K \ K̃, while the commodities of K̃ use
different subbands on the arcs (oi, u), (v, di), i ∈ K̃ and share the same subband w̃ on
the arc ẽ. More formally, the solution S0 is such that S0 = (F 0

1 , F
0
2 ,∆

0,W 0), where
F 0
1 = {(⋃k∈K\K̃(ok, dk)) ∪ (

⋃
i∈K̃{(oi, u), (v, di)}) ∪ {ẽ}}, F 0

2 = ∅, ∆0 = {(o′k, d′k), k ∈
K \ K̃} ∪ {(o′i, u′), (v′, d′i), i ∈ K̃} ∪ {(u′, v′)} and W 0 contains all the used subbands.

Observe that all the subbands installed here are different, thus, disjunction con-
straints (5.4) are satisfied. Moreover, since the capacities of the subbands are greater
than or equal to the commodity values, and a different subband is associated with each
commodity of K \ K̃, we have the capacity constraints (5.2), that are also satisfied.
Note that the unique subband that may be shared by all the commodities of K̃, is
w̃, and this is possible since

∑
k∈K̃ Dk = C, by hypothesis. Therefore, the capacity

constraints (5.2) are again satisfied. Furthermore, by construction, the solution given
above also satisfies the connectivity constraints (5.1) and (5.3). Consequently, the
solution S0 is feasible for the problem.

Now, let us show that us show that νew
a = 0, for all e ∈ A1, w ∈ W and a ∈ A2.

To do this, we will introduce the solution S1 that is obtained from S0 by simply
adding to ∆0, an arc a of A2 \∆0. Assume that a is added to the subset ∆0

ew where
e ∈ A1 and w ∈ W . Then, S1 = (F 0

1 , F
0
2 ,∆

0 ∪ {a},W 0), with ∆1
ew = ∆0

ew ∪ {a} and
∆1

eiwi
= ∆0

eiwi
if (ei, wi) 6= (e, w). It is not hard to see that S1 is still feasible. Moreover,

both incidence vectors of S0 and S1 belong to F
ẽw̃ and F. Thus, they satisfy

λxS0

+ µyS
0

+ νzS
0

= λxS1

+ µyS
1

+ νzS
1

= λxS0

+ µyS
0

+ νzS
0

+ νew
a ,

which implies that νew
a = 0. Since a is chosen arbitrarily out of the solution, and so as

for e in A1 and w ∈ W , we get

νew
a = 0, for all e ∈ A1, w ∈ W, a ∈ A1 \∆0, (5.98)
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Suppose now that the arc a = (s′, t′) ∈ A2 belongs to the solution, more precisely
a ∈ ∆0

ew where e ∈ A1 and w ∈ W . And let, f = (s′, r′) and g = (r′, t′) be two arcs of
A2 \∆0. Consider the solution S ′1 obtained from S0 by replacing the arc a by f and
g in ∆0

ew. S ′1 is then equal to (F 0
1 , F

0
2 , (∆

0 \ {a}) ∪ {f, g},W 0). S ′1 is clearly feasible,
and its incidence vector verifies

λxS0

+ µyS
0

+ νzS
0

= λxS′1

+ µyS
′1

+ νzS
′1

= λxS0

+ µyS
0

+ νzS
0 − νew

a + νew
f + νew

g ,

which gives −νew
a + νew

f + νew
g = 0. As by (5.98), νew

f = νew
g = 0, we get νew

a which is
also equal to 0. Since the arc a is chosen arbitrarily within the solution, it follows that

νew
a = 0, for all e ∈ A1, w ∈ W, a ∈ ∆0, (5.99)

In consequence, we have

νew
a = 0, for all e ∈ A1, w ∈ W, a ∈ A1, (5.100)

Next, we will show that µew = 0, for all (e, w) ∈ (A1 ×W ) \ {(ẽ, w̃)}.

Consider the solution S2, obtained from S0 by adding an arc e = (s, t) ∈ A1\(F 0
1 ∪F 0

2 )

to the solution. The arc e receives a subband w that is not used in S0. The couple
(e, w) is then assigned the arc (s′, t′) of A2 \∆0 and is not involved in the routing of
any commodity. In other words, S2 = (F 0

1 , F
0
2 ∪ {e},∆0 ∪ {(s′, t′)},W 0 ∪ {w}). Note

that ∆2
ew = ∆0

ew ∪ {(s′, t′)} while ∆2
eiwi

= ∆0
eiwi

if (ei, wi) 6= (e, w). It is easy to check
that the solution S2 is feasible. In addition, its incidence vector belongs to Fẽw̃ and F.
Thus, we have

λxS0

+ µyS
0

+ νzS
0

= λxS2

+ µyS
2

+ νzS
2

= λxS0

+ µyS
0

+ µew + νzS
0

+ νew
(s′,t′),

and it follows that µew + νew
(s′,t′) = 0. Since νew

(s′,t′) = 0, by (5.100), we have µew = 0. As
e and w are selected arbitrarily in the sets A1 \ (F 0

1 ∪ F 0
2 ) and W \W 0, we get

µew = 0, for all e ∈ A1 \ (F 0
1 ∪ F 0

2 ), w ∈ W \W 0, (5.101)

Assume now that e = (s, t) is an arc of the solution, and let w be the subband installed
on e. As F 0

2 = ∅, this means that e is in F 0
1 \ {ẽ}. In particular, e ∈ C0

k, where k is
some commodity of K. Then, let f = (s, r) and g = (r, t) be two arcs of A1 \ (F 0

1 ∪F 0
2 ).

We will define a new solution S ′2 that is obtained from S0 as follows. The arcs f and
g are added to the solution and receive the subband w. The couples (f, w) and (g, w)

are assigned the arcs (s′, r′) and (r′, t′), respectively (their corresponding arcs in A2).
In this solution, (f, w) and (g, w) are supposed to be involved in the routing of k. In
other words, k uses f and g instead of e. More formally, S ′2 = ((F 0

1 \{e})∪{f, g}, F 0
2 ∪
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{e},∆0 ∪ {(s′, r′), (r′, t′)},W 0), where C′2
k = (C0

k \ {e})∪{f, g}, ∆′2
fw = ∆0

ew ∪{(s′, r′)},
∆′2

gw = ∆0
ew ∪ {(r′, t′)}, and the remaining subsets still the same. The solution S ′2 is

obviously feasible. Consider the solution S ′′2, that is obtained by removing the arc e

from S ′2. S ′′2 = (F ′2
1 , F ′2

2 \ {e},∆′2,W ′2) is also feasible for the problem. In addition,
both incidence vectors of S ′2 and S ′′2 belong to Fẽw̃ and F. Hence,

λxS′2

+ µyS
′2

+ νzS
′2

= λxS′′2

+ µyS
′′2

+ νzS
′′2

= λxS′2

+ µyS
′2 − µew + νzS

′2

,

which implies that µew = 0. Since the arc e is chosen arbitrarily in F 0
1 \ {ẽ}, we obtain

µew = 0, for all e ∈ F 0
1 \ {ẽ}, w ∈ W 0, (5.102)

and it follows that

µew = 0, for all (e, w) ∈ (A1 ×W ) \ {(ẽ, w̃)}, (5.103)

It remains to show that λk
ew = 0, for all k ∈ K, (e, w) ∈ (A1 ×W ) \ {(ẽ, w̃)}.

Consider the solution S3 obtained from S0 by including to the solution an arc e =
(s, t) of A1 \ (F 0

1 ∪F 0
2 ). The arc e receives a subband w ∈ W and (e, w) is assigned the

arc (s′, t′) of A2\∆0. Moreover, we assume in this solution that (e, w) is involved in the
routing of some commodity, say k. The solution S3 is then equal to (F 0

1 ∪{e}, F 0
2 ,∆

0∪
{(s′, t′)},W 0 ∪ {w}), where C

3
k = C

0
k ∪ {e} and ∆3

ew = ∆0
ew ∪ {(s′, t′)}. It is clear that

the solution S3 is feasible for the problem. Furthermore, its incidence vector satisfies

λxS0

+ µyS
0

+ νzS
0

= λxS3

+ µyS
3

+ νzS
3

= λxS0

+ λk
ew + µyS

0

+ µew + νzS
0

+ νew
(s′,t′),

which implies that λk
ew + µew + νew

(s′,t′) = 0. As by (5.100) and (5.103), we have µew =

νew
(s′,t′) = 0, it follows that λk

ew = 0. Since e, w and k are chosen arbitrarily in the subsets
A1 \ (F 0

1 ∪ F 0
2 ), W and K, we get

λk
ew = 0, for all k ∈ K, e ∈ A1 \ (F 0

1 ∪ F 0
2 ), w ∈ W, (5.104)

Now if e = (s, t) is an arc of (F 0
1 ∪F 0

2 )\{ẽ} = F 0
1 \{ẽ} and w is a subband installed on e.

Assume that e ∈ C0
k where k is a commodity of K. Let f = (s, r) and g = (r, t) be two

arcs of A1 \ (F 0
1 ∪F 0

2 ). Then, consider the solution S ′3 = ((F 0
1 \ {e})∪ {f, g}, F 0

2 ,∆
0 ∪

{(s′, r′), (r′, t′)},W 0), where C′3
k = (C0

k \ {e})∪ {f, g} while ∆′3
fw = ∆0

fw ∪ {(s′, r′)} and
∆′3

gw = ∆0
fw ∪ {(r′, t′)}. S ′3 is also feasible for the problem, and its incidence vector

belongs to F
ẽw̃. Therefore, we have

λxS0

+ µyS
0

+ νzS
0

= λxS′3

+ µyS
′3

+ νzS
′3
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= λxS0 − λk
ew + λk

fw + λk
gw + µyS

0

+ µfw + µgw + νzS
0

+ νfw

(s′,r′) + νgw

(r′,t′),

and it follows that −λk
ew + λk

fw + λk
gw + µfw + µgw + νfw

(s′,r′) + νgw

(r′,t′) = 0. As by (5.100)

we have νfw

(s′,r′) = νgw

(r′,t′) = 0, by (5.103) we have µfw = µgw = 0, and λk
fw = λk

gw = 0
by (5.104), we obtain λk

ew = 0. Since the arc e is chosen arbitrarily in (F 0
1 ∪ F 0

2 ) \ {ẽ},
we get

λk
ew = 0, for all k ∈ K, e ∈ (F 0

1 ∪ F 0
2 ) \ {ẽ}, w ∈ W, (5.105)

Hence, by (5.104) and (5.105), we have

λk
ew = 0, for all k ∈ K, e ∈ A1 \ {ẽ}, w ∈ W, (5.106)

Now let us turn ourselves to the coefficients µ and λ related to (ẽ, w̃).

Consider again the solution S0. Let k′, k′′ be two commodities such that k′ ∈ K̃ and
k′′ ∈ K \ K̃. Note that k′ and k′′ are interchangeable in solution S0 since Dk′ = Dk′′,
by condition (ii). Then, let us introduce the solution S4 obtained from S0 by replacing
k′ in (ẽ, w̃) by k′′. In other words, we associate (ẽ, w̃) with the routing of k′′ while k′

uses an other path. Comparing both solutions yields λk′

ẽw̃ = λk′′

ẽw̃. Since k′ and k′′ are
arbitrary, we get

λk
ẽw̃ = ρ = Dk, for all k ∈ K,

Furthermore, by replacing S0 in λx + µy + νz ≤ ξ , we obtain
∑

k∈K̃ Dk ≤ µẽw̃.
Since S0 belongs to F, it verifies

∑
k∈K̃ Dkρ = µẽw̃. In addition, by supposition we

have
∑

k∈K̃ Dk = C. Consequently, we get µẽw̃ = C. Thus, (α, β, γ) = ρ(λ, µ, ν), and
the results follows. �

5.4 Valid inequalities and facets

In what follows, we present several families of inequalities that are valid for OMBND
problem. We give the necessary conditions and sufficient conditions for some of them
to define facets.

5.4.1 Capacitated Cutset Inequalities

In this section, we will present a first class of valid inequalities arising directly from
the capacity requirement of the problem. Similar inequalities have been introduced
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by Magnanti[78], then studied by Barahona [13] and Bienstock et al. [30] for different
variants of capacitated network loading problem.

Consider the graphs of Figure 5.9 which hold four nodes denoted 1 to 4 for graphs (a)
and (b), and 1’ to 4’ for graph (c). The instance contains three commodities, denoted
k1, k2 and k3, all going from node 1 to node 3, with values Dk1 = Dk2 = Dk3 = 6. The
capacity of a subband is C = 10.

2/3
1/3
1

4/5
1

4/5
1

1’ 2’

3’4’

(c)

1 2

34

1 2

34

(b)

(a)

z

e1

e2
e3

e4

e5

e6

x

y

Figure 5.9: First fractional solution

Figure 5.9 shows a fractional solution (x, y, z) for this instance, whose representation
is subdivided into three graphs, each one associated with a family of variables. Graphs
(a) and (b) are associated with G1. They are related with variables x and y, respec-
tively. Values of variables z are reported in graph (c), which is associated with G2.
In this solution, the same subband, denoted w is installed over arcs e1, e2 and e3 (see
Figure 5.9 (b)). The paths associated with k1, k2, k3, and with the pairs (ei, w), i = 1,
2 3, as well, can be found in graphs (a) and (c). The solution for the design variables
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y is particularly given by ye1w1
= ye6w1

= 4
5
, ye2w1

= 1, and 0 for the other entries (see
Figure 5.9 (b)).

It is clear that (x, y, z) satisfies all the constraints of the linear relaxation of (5.8).
However, y violates the inequality

ye1w + ye2w + ye5w ≥ 2,

which is valid for OMBND problem.

In what follows, we give a generalization of this inequality for P (G1, G2, K, C), that
will be referred to as capacitated cutset inequalities.

Given a partition of G1 nodes in two subsets T and T = V1 \ T . We denote by K(T )

(respectively K(T )) the commodities of K having their origin and destination nodes in
the subset T (respectively in T ), while the remaining subset of K will be denoted by
P+ and P−. Note that P+ (respectively P−) is the subset of commodities having their
origin node in T (respectively in T ) and their destination node in T (respectively in T ).
We will also denote by D(P+) the total traffic amount of the commodities of K having
their origin in T and their destination in T . In other words, D(P+) =

∑
k∈P+ Dk,

and D(P−) =
∑

k∈P− Dk. Moreover, recall that BP (P+) is the smallest number of
subbands needed to carry the commodities of P+.

Proposition 5.13 Let T ⊆ V1, ∅ 6= T 6= V1, then the following cut-set inequality
∑

e∈δ+
G1

(T )

∑

w∈W

yew ≥ ⌈
D(P+)

C
⌉ (5.107)

is valid for P (G1, G2, K, C).

Proof. The total capacity of the subbands installed over the cut must be greater than
or equal to the traffic amount of the commodities going from T to T = V1\T and using
the arcs of that cut. Then, inequality

C
∑

e∈δ+
G1

(T )

∑

w∈W

yew ≥ D(P+)

Is clearly valid. One can divide this inequality by C, round up the right-hand side and
thus, obtain the inequality

∑

e∈δ+
G1

(T )

∑

w∈W

yew ≥ ⌈
D(P+)

C
⌉

which is valid for P (G1, G2, K, C). �
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In this section, we will provide the conditions under which cut-set inequalities (5.107)
define facets for P (G1, G2, K, C). Let T̃ be a subset of V1, and P+ (respectively P−)
a subset of commodities having their origin node is in T̃ (respectively in V1 \ T̃ ) and
their destination node in V1 \ T̃ (respectively in T̃ ). We also denote by K(u, v) the set
of commodities such that K(u, v) = {k ∈ K : ok = u, dk = v, uv ∈ A1}.

Theorem 5.14 The cutset inequality (5.107) induced by T̃ and P+ defines a facet of
P (G1, G2, K, C), only if ⌈D(P+)

C
⌉ = BP (P+).

Proof. Let (x, y, z) a fractional solution satisfying all constraint of linear relaxation
of (5.8) but such that (5.107) is violated. Let P+ the set of commodities crossing
the cut inducing a violated inequality. Suppose that ⌈D(P+)

C
⌉ < BP (P+) for those

commodities. In this case, (5.107) can not be tight, since the commodities of P+ might
not fit in ⌈D(P+)

C
⌉ subbands, and thus (5.107) does not induce a proper face. �

Theorem 5.15 The cutset inequality (5.107) induced by T̃ and P+ defines a facet of
P (G1, G2, K, C) if

(i) ⌈D(P+)
C
⌉ = BP (P+),

(ii) BP (P+ ∪ {k}) = BP (P+), for all k ∈ K \ P+,

(iii) ∀ k′ ∈ P+, ∃ k′′ ∈ P+ such that Dk′ + Dk′′ ≤ C,

(iv) ∀k ∈ P+, BP (P+ \ {k}) = BP (P+) -1.

Proof. Suppose that conditions (i) to (iv) of Theorem 5.15 are fulfilled. Let us denote
by αx + βy + γz ≥ δ the capacitated cutset inequality induced by T̃ , and let

F̃ = {(x, y, z) ∈ P (G1, G2, K, C) :
∑

e∈δ+
G1

(T̃ )

∑

w∈W

yew = BP (P+)}.

We first show that F̃ is a proper face of P (G1, G2, K, C). To do this, let us construct
a feasible solution S0 that satisfies (5.107) with equality.

For each pair of nodes (s, t) ∈ T̃ (respectively in V1 \ T̃ ), we install BP (K(s, t))

different subbands on the arc (s, t) of A1. Notice that if there is no commodity k ∈ K

such that ok = s and dk = t we do not use (s, t) in the solution. Moreover, each
commodity k in K(T̃ ) (respectively in K(V1 \ T̃ )) is associated with path {(s, t)} =
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{(ok, dk)} and the subband wk. Note that, in this solution, a subband wk may be
associated with more than one commodity (see Figure 5.10).

Now, we choose a node u ∈ T̃ and a node v ∈ V1\T̃ . Observe that (u, v) ∈ δ+G1
(T̃ ). We

then install on the arcs (ok, u) (respectively (v, dk)) of A1, BP (K(ok, u)) (respectively
BP (v, dk)) new subbands of W , while (u, v) receives BP (P+) new subbands. Note that
(u, v) is the only arc of the cut δ+G1

(T̃ ) that is used in this solution. We do the same
operation for the commodities of P−. Furthermore, we associate with each pair (e, w)
such that w is installed on e = (i, j) the arc (i′, j′) of A2. This is possible since G2 is a
complete graph. Notice that, in this solution, each commodity k ∈ K(T̃ ) (respectively
in K(V1 \ T̃ )) uses the subband wk on path {ek}, ek = (ok, dk) for its routing, while
the commodities of P+ have a path of length at most three {(oi, u), (u, v), (v, di)},
i ∈ P+. The node u (respectively v) can obviously be equal to some oi (respectively
di), i ∈ P+. Moreover, in this solution, every commodity of K uses at least one subband
for its routing, and we assume that all the set up subbands are different so that the
disjunction constraints (5.4) are satisfied. Also note that many commodities may share
the same subband, however, as BP (K(s, t)) subbands are installed on each pair of
nodes s, t ∈ T̃ and V1 \ T̃ , we ensure that the capacity constraints (5.2) are satisfied.
In this solution, a path in G1 is assigned to each commodity of K. Moreover, a path is
also associated with every pair (e, w) such that w is installed on e. Furthermore, both
capacity constraints (5.2) and disjunction constraints (5.4), are satisfied, as enough
different subbands are installed on each arc used in the solution. It is not hard to see
that S0 induces a feasible solution of P (G1, G2, K, C) whose incidence vector satisfies
αx + βy + γz ≥ δ with equality. Hence, F̃ 6= ∅ and, therefore, is a proper face of
P (G1, G2, K, C).

Now suppose that there exists a facet defining inequality λx + µy + νz ≥ ξ such
that

F̃ ⊆ F = {(x, y, z) ∈ P (G1, G2, K, C) : λx+ µy + νz = ξ}.
We will show that there exists a scalar ρ ∈ R such that (α, β, γ) = ρ(λ, µ, ν).

Let us first show that νew
a = 0, for all e ∈ A1, w ∈ W and a ∈ A2.

Consider an arc a ∈ A2 \∆0, and a pair (e∗, w∗) ∈ A1 ×W . Clearly, the solution S1

= (F 0
1 , F

0
2 ,∆

1,W 0), where ∆1
eiwi

= ∆0
eiwi

and ∆1
e∗w∗ = ∆0

e∗w∗ ∪ {a} is a solution of the
P (G1, G2, K, C) and its incidence vector satisfies αx + βy + γz ≥ δ with equality. It
then follows that

λxS0

+ µyS
0

+ νzS
0

= λxS1

+ µyS
1

+ νzS
1

= λxS0

+ µyS
0

+ νzS
0

+ νe∗w∗

a ,
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Figure 5.10: Solution S0

which implies that νe∗w∗

a = 0. Since, a, e∗ and w∗ are arbitrary in A2 \∆0, A1 and W ,
we obtain

νew
a = 0, for all e ∈ A1, w ∈ W, a ∈ A2 \∆0, (5.108)

Now let a = (s′, t′) ∈ ∆0, such that a ∈ ∆0
e∗w∗ for some (e∗, w∗) ∈ Γ0. Then, consider

the solution S2 obtained from S0 by replacing a by (s′, r′) and (r′, t′) in ∆0
e∗w∗ , with

(s′, r′), (r′, t′) ∈ A2 \∆0 and r′ ∈ V2 \ {s′, t′}. S2 = (F 0
1 , F

0
2 ,∆

2,W 0), with ∆2
ew = ∆0

ew

and ∆2
e∗w∗ = (∆0

e∗w∗ \ {a}) ∪ {(s′, r′), (r′, t′)} is obviously feasible for P (G1, G2, K, C).
As its incidence vector belongs to F̃ and thus, to F, we have

λxS0

+ µyS
0

+ νzS
0

= λxS2

+ µyS
2

+ νzS
2

=

λxS0

+ µyS
0

+ νzS
0 − νe∗w∗

a + νe∗w∗

(s′,r′) + νe∗w∗

(r′,t′),

which gives that νe∗w∗

a = νe∗w∗

(s′,r′) + νe∗w∗

(r′,t′). As by (5.108), νe∗w∗

(s′,r′) = νe∗w∗

(r′,t′) = 0, νe∗w∗

a is
also equal to zero which yields

νew
a = 0, for all e ∈ A1, w ∈ W, a ∈ ∆0, (5.109)

Thus, by (5.108) and (5.109), we obtain

νew
a = 0, for all e ∈ A1, w ∈ W, a ∈ A2. (5.110)

Next, we will show that µew = 0, for all e ∈ A1 \ δ+G1
(T̃ ) and w ∈ W .

Let e∗ = (s, t) ∈ A1 \ (F 0
1 ∪ F 0

2 ) such that e /∈ δ+G1
(T ). Let w∗ be a subband of

W . We introduce the solution S3, obtained from S0 by adding e∗ to the subset F 0
2 .
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Thus, S3 = (F 0
1 , F

0
2 ∪ {e∗},∆0 ∪ {(s′, t′)},W 0 ∪{w∗}), where (s′, t′) ∈ A2 \∆0, induces

a feasible solution of P (G1, G2, K, C). Note that Γ3 = Γ0 ∪ (e∗, w∗). In addition,
(xS3

, yS
3
, zS

3
) ∈ F̃, and then, (xS3

, yS
3
, zS

3
) ∈ F. Hence we have

λxS0

+ µyS
0

+ νzS
0

= λxS3

+ µyS
3

+ νzS
3

=

λxS0

+ µyS
0

+ µe∗w∗

+ νzS
0

+ νe∗w∗

(s′,t′),

and it follows that µe∗w∗

= −νe∗w∗

(s′,t′). Consequently, and by (5.110), we obtain µe∗w∗

=
0. Since e∗ and w∗ are arbitrarily selected in A1 \ (F 0

1 ∪ F 0
2 ) and W , we get

µew = 0, for all e ∈ A1 \ (F 0
1 ∪ F 0

2 ), e /∈ δ+G1
(T̃ ), w ∈ W, (5.111)

Now consider an arc e∗ = (s, t) ∈ F 0
1 ∪ F 0

2 = F 0
1 such that e∗ /∈ δ+G1

(T̃ ). Let w∗

be a subband installed on e∗ and assume that e∗ ∈ C0
k∗ for some commodity k∗ ∈

K. Consider the solution S4 defined as follows. S4 = (F 0
1 ∪ {(s, r), (r, t)}, F 0

2 ,∆
0 ∪

{(s′, r′), (r′, t′)},W 0), with (s, r), (r, t) ∈ A1\F 0
1 ∪F 0

2 , r ∈ V1\{s, t} and (s′, r′), (r′, t′) ∈
A2 \∆0, r′ ∈ V2 \ {s′, t′}. Notice that Γ4 = Γ0∪{((s, r), w∗), ((r, t), w∗)}. Moreover, C4

k

= C0
k if k 6= k∗ and C4

k∗ = (C0
k∗ \{e∗})∪{(s, r), (r, t)}, while ∆4

(s,r)w∗ = ∆0
(s,r)w∗∪{(s′, r′)}

and ∆4
(r,t)w∗ = ∆0

(r,t)w∗ ∪ {(r′, t′)}. We will construct a further solution S5, obtained
from S4 by removing the pair (e∗, w∗) from Γ4. More formally, S5 is such that S5 =
(F 4

1 , F
4
2 ,∆

4,W 4), and Γ5 = Γ4 \ {(e∗, w∗)}. Both solutions S4 and S5 are feasible for
P (G1, G2, K, C) and their incidence vectors belong to F̃ and then, to F. In consequence,
it follows that

λxS4

+ µyS
4

+ νzS
4

= λxS5

+ µyS
5

+ νzS
5

= λxS4

+ µyS
4 − µe∗w∗

+ νzS
4

,

Hence, we get that µe∗w∗

= 0. Since e∗ is arbitrary in (F 0
1 ∪ F 0

2 ) \ δ+G1
(T̃ ), we conclude

that
µew = 0, for all e ∈ (F 0

1 ∪ F 0
2 ) \ δ+G1

(T̃ ), (e, w) ∈ Γ0, (5.112)

By (5.111) and (5.112) we obtain

µew = 0, for all e ∈ A1 \ δ+G1
(T̃ ), w ∈ W. (5.113)

In what follows, we will show that λk
ew = 0, for all k ∈ K, e ∈ A1 and w ∈ W .

Let e∗ = (s, t) be an arc A1 \ (F 0
1 ∪F 0

2 ) that does not belong to δ+G1
(T̃ ) and let w∗ be

a subband of W . Consider the solution S6, obtained from S0 by installing w∗ on e∗,
and adding e∗ to any subset C0

k∗ , k
∗ ∈ K. This means setting xS0

k∗e∗w∗ to 1. Then S6 =
(F 0

1 ∪ {e∗}, F 0
2 ,∆

0 ∪ {(s′, t′)},W 0 ∪ {w∗}), where (s′, t′) ∈ A2 \∆0. Observe that Γ6 =
Γ0 ∪ {(e∗, w∗)}. In addition, note that C6

k = C0
k if k 6= k∗ and C6

k∗ = C0
k∗ ∪ {e∗}, while
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∆6
e∗w∗ = ∆0

e∗w∗ ∪ {(s′, t′)} and ∆6
ew = ∆0

ew if (e, w) 6= (e∗, w∗). It is easy to see that S6

induces a feasible solution of P (G1, G2, K, C) whose incidence vector verifies λx + µy

+ νz ≥ ξ with equality. Hence, we have that

λk∗

e∗w∗ + µe∗w∗

+ νe∗w∗

(s′,t′) = 0,

Since µe∗w∗

= νe∗w∗

(s′,t′) = 0, by (5.110) and (5.113), we obtain that λk∗

e∗w∗ = 0. As e∗, w∗

and k∗ are arbitrary, we get

λk
ew = 0, for all k ∈ K, e ∈ A2 \ (F 0

1 ∪ F 0
2 ), e /∈ δ+G1

(T̃ ), w ∈ W, (5.114)

Now consider an arc e∗ = (s, t) of (F 0
1 ∪F 0

2 ) and let w∗ be a subband of W such that
(e∗, w∗) ∈ Γ0. Assume without loss of generality that e∗ is different from (u, v), and
that the pair (e∗, w∗) is associated with the routing of some commodity, say k∗. Let us
introduce the solution S7, obtained from S0 by replacing e∗ in C0

k∗ by two arcs (s, r) and
(r, t) of A1 \ (F 0

1 ∪F 0
2 ). Then, S7 = (F 0

1 ∪{(s, r), (r, t)}, F 0
2 ,∆

0 ∪{(s′, r′), (r′, t′)},W 0),
where (s′, r′), (r′, t′) ∈ A2 \∆0, Γ7 = Γ0 ∪ {((s, r), w∗), ((r, t), w∗)}, and C7

k∗ = (C0
k∗ \

{e∗}) ∪ {(s, r), (r, t)}. Also remark that ∆7
(s,r)w∗ = ∆0

(s,r)w∗ ∪ {(s′, r′)} while ∆7
(r,t)w∗ =

∆0
(r,t)w∗ ∪ {(r′, t′)}. It is clear that S7 is a feasible solution whose incidence vector is in

F̃ and F. Hence, we have
λk∗

e∗w∗ = λk∗

(s,r)w∗ + λk∗

(r,t)w∗ ,

which implies that λk∗

e∗w∗ = 0, as λk∗

(s,r)w∗ = λk∗

(r,t)w∗ = 0 by (5.114). Furthermore, since

(e∗, w∗) is arbitrary in Γ0, e∗ /∈ δ+G1
(T̃ ), we get

λk
ew = 0, for all k ∈ K, (e, w) ∈ Γ0, e /∈ δ+G1

(T̃ ), (5.115)

Now consider a commodity k∗ ∈ K. We will show that coefficient λ related to
commodities of K and arcs of δ+G1

(T̃ ) are equal to zero. Two cases may hold here.

Case 1.

Suppose that k∗ ∈ K \ P+. Consider an arc e∗ of δ+G1
(T̃ ) and a subband w∗ of W .

We will assume that e∗ = (u, v), since the arcs of the cut δ+G1
(T̃ ) are interchangeable.

Also suppose that w∗ is installed on e∗. Consider the solution S8, obtained from S0 by
associating e∗ to k∗ in addition to its routing. In other words, S8 = (F 0

1 , F
0
2 ,∆

0,W 0)

and C8
k∗ = C0

8 ∪ {e∗}. Condition (ii) makes the solution feasible for the problem, as
it allows capacity constraints to be satisfied. Thus, S8 as well as S0 belong to F,
and consequently to F. Hence, both incidence vectors (xS0

, yS
0
, zS

0
) and (xS0

, yS
0
, zS

0
)

satisfy the following

λxS8

+ µyS
8

+ νzS
8

= λxS0

+ µyS
0

+ νzS
0

+ λk∗

e∗w∗ ,
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Figure 5.11: Obtaining the solution S9

which yields λk∗

e∗w∗ = 0. Since, k∗, e∗ and w∗ are arbitrary in K \ P+, δ+G1
(T̃ ) and W ,

we obtain that

λk
ew = 0, for all k ∈ K \ P+, e ∈ δ+G1

(T̃ ), w ∈ W, (5.116)

Case 2.

Now consider the case where k∗ ∈ P+, and k be a commodity of P+ such that
Dk∗ + Dk ≤ C. Such a commodity exists because of condition (iii). Let e∗ = (s, t)

be an arc of δ+G1
(T̃ ) and let w∗ be one of the commodities installed on (u, v). We will

construct a solution S9 obtained from S0 by moving w∗ from arc (u, v) to arc (s, t),
and associating with ((s, t), w∗) the path {(s′, t′)} in G2. In this solution, we will also
replace (u, v) in the routing path of k∗ by {(u, s), e∗, (t, v)}, where (u, s) and (t, v) are
two arcs of A1 \ δ+G1

(T̃ ). (u, s) and (t, v) also receive the subband w∗ and are assigned
the paths {(u′, s′)} and {(t′, v′)}, in G2, respectively. S9 is feasible, since we know,
by condition (iv) that capacity constraints (5.2) are satisfied. Now let us derive a
solution S10 which slightly differs from S9 in that we associate (s, t) to k in addition
to its routing. Again, this is possible thanks to condition (iii). This variation in the
solution induces xS10

k(s,t)w∗ = 1 while xS9

k(s,t)w∗ = 0. Solution S10 is clearly feasible, and

both incidence vectors (xS9
, yS

9
, zS

9
) and (xS10

, yS
10
, zS

10
) are in F̃, and then, also in F.

Thus, we obtain that λk
(s,t)w∗ = 0. By the interchangeability argument on the elements

of P+, δ+G1
(T̃ ) and W , we get

λk
ew = 0, for all k ∈ P+, e ∈ δ+G1

(T̃ ), w ∈ W, (5.117)

And, by (5.114), (5.115), (5.116) and (5.117), we finally obtain

λk
ew = 0, for all k ∈ K, e ∈ A1, w ∈ W, (5.118)
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We still have to show that all the coefficients µew are the same for the arcs of the cut
δ+G1

(T̃ ).

Indeed, let e∗ = (s, t) be an arc of δ+G1
(T̃ ), different from (u, v). Recall that BP (P+)

different subbands are installed over the arc (u, v). Let w be one of these subbands.
Consider the solution S9 where we replace the pair ((u, v), w) in Γ0 by ((u, s), w),
((s, t), w) and ((t, v), w), with (u, s), (t, v) ∈ A1 \ (F 0

1 ∪ F 0
2 ) (Figure 5.11). Comparing

solutions S0 and S9 give

µ(u,v)w = µ(u,s)w + µ(s,t)w + µ(t,v)w + ν
(u,s)w
(u′,s′) + ν

(s,t)w
(s′,t′) + ν

(t,v)w
(t′,v′) ,

By (5.110) and (5.113), we obtain that

µ(u,v)w = µ(s,t)w,

Since (s, t) is arbitrary in δ+G1
(T̃ ), we get

µew =

{
ρ, for some ρ ∈ R∗, for all e ∈ δ+G1

(T̃ ), w ∈ W,

0, otherwise.
(5.119)

Hence, all together, and when replacing (xS0
, yS

0
, zS

0
) in hyperplane λx + µy + νz ≥ ξ

we obtain
ρ
∑

w∈W

∑

e∈δ+
G1

(T̃ )

yew = ξ,

Note that ρ 6= 0, since F 6= ∅. Consequently,
∑

w∈W

∑
e∈δ+

G1
(T̃ ) yew = ξ/ρ = ⌈D(P+)

C
⌉.

Thus, (α, β, γ) = ρ(λ, µ, ν), and the proof is complete. �

5.4.2 Flow-Cutset Inequalities

In what follows, we will describe a set of strong valid inequalities for P (G1, G2, K, C)

that are a generalization of cutset inequalities presented below. Similar inequalities
have been introduced by Chopra et al. [31] and were discussed in [8], [21] and [93] for
network design problems where discrete modular capacities are installed on the arcs of
the graph.

Consider a fixed non empty subset of nodes T ⊆ V1 and a partition F , F of the cut
δ+G1

(T ) induced by T (figure 5.12). We denote by P+ the set of commodities having
their origin node in T and their destination node in T . In other words, P+ = K(T, T ),
and D(P+) =

∑
k∈P+ Dk.
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δ+G1
(T )

F

F

T T = V1 \ T

Figure 5.12: Flow-cutset inequality configuration

Proposition 5.16 The following flow-cutset inequalities are valid for P (G1, G2, K, C)

∑

w∈W

∑

e∈F

yew +
∑

w∈W

∑

e∈F

∑

k∈P+

xkew ≥ ⌈
D(P+)

C
⌉. (5.120)

Proof. It is clear that the following inequalities are valid for P (G1, G2, K, C), as they
express the connectivity constraints for the commodities of P

∑

w∈W

∑

e∈δ+
G1

(T )

xkew ≥ 1, for all k ∈ P,

Multiplying by Dk and summing over the commodities of P allows to obtain
∑

w∈W

∑

e∈δ+
G1

(T )

∑

k∈P

Dkxkew ≥ D(P ), (5.121)

that is also valid for P (G1, G2, K, C). In addition, we have from the capacity constraints
(5.2), restricted to the commodities of P and the arcs of F , that

∑

k∈P

Dkxkew − Cyew ≤ 0, for all e ∈ F,w ∈ W,

is valid and leads to the following inequality, when summing over F and W

∑

w∈W

∑

e∈F

Cyew −
∑

w∈W

∑

e∈F

∑

k∈P

Dkxkew ≥ 0, (5.122)
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Recall that δ+G1
(T ) = F ∪ F . Consequently, by doing (5.121) + (5.122), and dividing

the resulting inequality by C, we get

∑

w∈W

∑

e∈F

yew +
∑

w∈W

∑

e∈F

∑

k∈P

Dk

C
xkew ≥

D(P )

C
, (5.123)

Moreover, the trivial constraints xkew ≥ 0, for all k ∈ P , e ∈ F , w ∈ W , can be
multiplied by (1− Dk

C
) for all k ∈ P , and by summing over P , F and W , we obtain

∑

w∈W

∑

e∈F

∑

k∈P

(1− DK

C
)xkew ≥ 0, (5.124)

Notice that this inequality is valid for P (G1, G2, K, C), since Dk ≤ C, for all k ∈ K

and (1− DK

C
) ≥ 0, for all k ∈ K. Now by doing (5.123) + (5.124) we get

∑

w∈W

∑

e∈F

yew +
∑

w∈W

∑

e∈F

∑

k∈P

xkew ≥
D(P )

C
, (5.125)

(5.120) is then obtained from inequality (5.125) by rounding up its right hand side. �

In what follows we will investigate the facial structure of flow-cutset inequalities and
provide necessary conditions and sufficient conditions under which the constraints de-
fine facets of P (G1, G2, K, C).

Theorem 5.17 A flow-cutset inequality (5.120) defines a facet of P (G1, G2, K, C),
different from (5.107) only if the following conditions hold

(i) F 6= ∅ 6= F ,

(ii) D(P+) > C,

(iii) D(P+) is not a multiple of C,

(iv) ⌈D(P+)
C
⌉ = BP (P+),

(v) BP (P+) < |P+|,

(vi) ∃ q ( P+ such that BP (P+ \ q) ≤ BP (P+)− |q|,

(vii) ∀k ∈ K \ P+ such that BP (P+ ∪ {k}) ≤ BP (P+).
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Proof. Let T be a subset of nodes of V1 and T = V1 \ T . Consider the cut δ+G1
(T )

induced by T , and let F , F be a partition of δ+G1
(T ). Now consider the flow-cutset

inequality induced by T and F

∑

e∈F

∑

w∈W

yew +
∑

e∈F

∑

w∈W

∑

k∈P

xkew ≥ ⌈
D(P )

C
⌉.

(i) Assume that F = δ+G1
(T ) (F = ∅). Then, (5.120) is equivalent to

∑

w∈W

∑

e∈F

yew ≥ ⌈
D(P+)

C
⌉,

which reduces to the cutset inequality (5.107) when ⌈D(P+)
C
⌉ = BP (P+). Hence,

(5.120) cannot be a facet of P (G1, G2, K, C) different from (5.107). If F = ∅,
then F = δ+G1

(T ) and (5.120) is equivalent to

∑

e∈δ+
G1

(T )

∑

w∈W

∑

k∈P+

xkew ≥ ⌈
D(P+)

C
⌉, (5.126)

which implies that the number of commodities allowed to use the cut δ+G1
(T ) is

greater than or equal to ⌈D(P+)
C
⌉. Note that ⌈D(P+)

C
⌉ ≤ |P+|, as Dk ≤ C, for all

k ∈ P+. Thus, inequality (5.126) is dominated by inequality
∑

k∈P+

∑

e∈δ+
G1

(T )

∑

w∈W

xkew ≥ |P+|,

that is the sum of the connectivity constraints (5.1) over the commodities of P+.
Thus, (5.120) can not define a facet for P (G1, G2, K, C).

(ii) Now if D(P+) < C. Then, (5.120) is equivalent to
∑

w∈W

∑

e∈F

yew +
∑

w∈W

∑

e∈F

∑

k∈P+

xkew ≥ 0,

which is nothing but a linear combination of trivial inequalities yew ≥ 0, and
xkew ≥ 0, summed up over the subsets F , W and P+, F , W , respectively.

(iii) If D(P+)/C is integer, then (5.120) can be obtained from inequalities (5.1), (5.2)
and the trivial constraints xkew ≥ 0.

(iv) Suppose that ⌈D(P+)
C
⌉ < BP (P+). Then inequality (5.120) does not induce a

proper face, as it may be empty.
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(v) Now assume that BP (P+) = |P+|. Then, inequality (5.120) is equivalent to the
following expression

∑

e∈F

∑

w∈W

yew +
∑

k∈P+

∑

e∈F

∑

w∈W

xkew ≥ BP (P+) = |P+|,

which is a linear combination of inequalities (5.126) and trivial constraints yew
summed up over F and W . Hence, (5.120) can not define a facet.

(vi) Suppose that condition (vi) is not verified, that is to say BP (P+\q) ≥ BP (P+)−
q + 1 for all q ( P+. Then we can find no solution with xkew = 1, for some
commodity k ∈ P+, e ∈ F and w ∈ W . In other words, the face induced by
(5.120) is included in

F = {(x, y, z) ∈ P (G1, G2, K, C) : xkew = 0, fork ∈ q, e ∈ F,w ∈ W},

and then, (5.120) can not define a facet.

(vii) Now if there exists a commodity k in K\P+ such that BP (P+\{k}) ≥ BP (P+)+

1. Then it is not possible to identify a solution of the problem with xkew = 1, for
e ∈ F ∪ F , w ∈ W . In this case also, the face induced by (5.120) is included in

F = {(x, y, z) ∈ P (G1, G2, K, C) : xkew = 0, fork ∈ q, e ∈ F,w ∈ W},

and then, (5.120) can not define a facet.

�

Theorem 5.18 A flow-cutset inequality (5.120) defines a facet of P (G1, G2, K, C),
different from (5.107) if the following conditions are satisfied

(i) conditions (i) to (vii) of Theorem 5.18,

(ii) if |F | = 1, for each k ∈ P+, BP (P+ \ {k}) ≤ BP (P+) - 1,

(iii) if |F | = 1, for each k ∈ P+, ∃k′ ∈ P+ : Dk + Dk′ ≤ C.

Proof. Suppose that conditions (i) to (iii) are satisfied. Let αx + βy + γz ≥ δ

denote the flow-cutset inequality produced by T and F , and let

F̃ = {(x, y, z) ∈ P (G1, G2, K, C) :
∑

e∈F

∑

w∈W

yew +
∑

k∈P+

∑

e∈F

∑

w∈W

xkew = ⌈D(P+)

C
⌉},
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Let us first show that F̃ 6= ∅. To this end, we will construct a solution S0 whose
incidence vector belongs to F̃.

We install, for each k ∈ K(T ) (resp. k ∈ K(T )), a subband wk on the arc (ok, dk).
This is to associate with every commodity of K(T ) (resp. K(T )) a path linking ok and
dk composed by one arc, and entirely contained in T (resp. in T ). Recall that for the
commodities of K(T ) (resp. K(T )), both nodes ok and dk are in T (resp. T )). This
solution is such that each arc (i, j) of A1(T ) (resp. A1(T )), receives as many subbands
as there exist commodities with (ok, dk) = (i, j), k ∈ K(T ) (resp. k ∈ K(T )). In other
words, every commodity k of K(T ) ∪K(T ) is associated with the pair (ek, wk) for its
routing, where ek = (ok, dk) (see Figure 5.13).

Recall that P+ (resp. P−) commodities of K having their origin in T (resp. T ) and
their destination in T (resp. T ). Consider two nodes u, s in T and two nodes v, t
in T . Note that u, s (resp. v, t) may be the same. Notice that both arcs (u, v) and
(s, t) belong to the directed cut δ+G1

(T ). And, we can assume without loss of generality
that (u, v) ∈ F and (s, t) ∈ F . Now, for every commodity k ∈ P+ (resp. P−), we
install a subband wk over the arc (ok, u) (resp. (ok, v)). Similarly, we install a subband
wk over (v, dk) (resp. (u, dk)), for every k ∈ P+ (resp. P−). We then set up ⌈D(P+)

C
⌉

different subbands on the arc (u, v), so as all the commodities of P+ may be routed
across the cut δ+G1

(T ) by using (u, v). Note that we exactly need BP (P+) subbands to
route commodities of P+. The same is done on the arc (v, u), so as the commodities
of P− may be routed as well from their origins in T , to their destinations in T using
the cut δ−G1

(T ). Remark that nodes ok and u (resp. dk and v) may coincide. Observe
that, (u, v) is the unique arc of δ+G1

(T ) used in this solution. In addition, we assign to
each pair (e, w) such that w ∈ W is installed on e = (i, j) ∈ A1, the path {(i′, j′)} in
G2. This is possible since G2 is a complete graph, and no two established subbands
are associated with the same path. So both constraints given by (5.3) and (5.4) are
satisfied. Remark that, in this solution, every installed subband is associated with
at most one commodity, except for the subbands set up on (u, v). Indeed, several
commodities may share the same subband on this arc, and the solution is feasible, as
we do not need more than BP (P+) subbands to pack all the commodities of P+. Thus,
it is clear that the remaining constraints of the problem are satisfied, as a feasible path
is ensured for each commodity of K. The solution S0 is clearly feasible for OMBND
problem. Moreover, its incidence vector is such that

∑

e∈F

∑

w∈W

yS
0

ew =
∑

w∈W

yS
0

(u,v)w = ⌈D(P+)

C
⌉,

∑

k∈P+

∑

e∈F

∑

w∈W

xS0

kew = 0.
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Thus, by condition (iv), the solution S0 satisfies αx + βy + γz ≥ δ with equality. And
hence, (xS0

, yS
0
, zS

0
) belongs to F̃, and then to F. Hence, F̃ 6= ∅ is a proper face of

P (G1, G2, K, C). In what follows, we give a more formal definition of S0.

vu

ts

δG1(T )

o4

o1

d1

F

o2

d5

d3

o3

T T

o5

d2

BP (P+)

F

d4

BP (P−)

Figure 5.13: Solution S0

S0 = (F 0
1 , F

0
2 ,∆

0,W 0), where F 0
1 is the set of all arcs of A1 used by the traffic in

the solution described above. F 0
2 = ∅. ∆0 is the set of paths assigned to the installed

subbands and W 0 is the set of subbands used in S0. Observe that, in this solution, a
path is assigned to each commodity of K. Indeed, C0

k = {(ok, dk)} if k ∈ K(T )∪K(T ),
C0
k = {(ok, u), (u, v), (v, dk)} if k ∈ P+, and C0

k = {(ok, v), (v, u), (u, dk)} if k ∈ P−.
Moreover, for each pair (e, w), such that w is installed on e = (i, j), ∆0

ew = {(i′, j′)},
with (i′, j′) ∈ A2.

Let λx + µy + νz ≥ ξ be a constraint that defines a facet of P (G1, G2, K, C) and
such that

F̃ ⊆ F = {(x, y, z) ∈ P (G1, G2, K, C) : λx+ µy + νz = ξ}.
We will show that there exists a scalar ρ ∈ R such that (α, β, γ) = ρ(λ, µ, ν). First, let
us prove that νew

a = 0, for all e ∈ A1, w ∈ W and a ∈ A2.

Consider an arc a ∈ A2 \ ∆0 and a pair (e∗, w∗) ∈ A1 ×W . It is not hard to see
that the solution S1 = (F 0

1 , F
0
2 ,∆

1,W 0), where ∆1
e∗w∗ = ∆0

e∗w∗ ∪ {a} and ∆1
ew = ∆0

ew

for (e, w) 6= (e∗, w∗) is feasible for P (G1, G2, K, C). Moreover, (xS1
, yS

1
, zS

1
) ∈ F̃ ⊆ F.
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Thus, we have the following

λxS0

+ µyS
0

+ νzS
0

= λxS1

+ µyS
1

+ νzS
1

= λxS0

+ µyS
0

+ νzS
0

+ νe∗w∗

a ,

which implies that νe∗w∗

a = 0. Since, a, e∗ and w∗ are arbitrary in A2 \∆0, A1 and W ,
we obtain

νew
a = 0, for all e ∈ A1, w ∈ W, a ∈ A2 \∆0, (5.127)

Now let a = (i′, j′) be an arc of ∆0
e∗w∗ , where (e∗, w∗) is some pair of Γ0. Consider then

the solution S2 obtained from S0 by replacing a by arcs (i′, r′), (r′, j′) in ∆0
e∗w∗ . The

arcs (i′, r′) and (r′, j′) are in A2 \ ∆0, with r′ ∈ V2 \ {i′, j′}. S2 = (F 0
1 , F

0
2 ,∆

2,W 0),
where ∆2

e∗w∗ = (∆0
e∗w∗ \ {a}) ∪ {(i′, r′), (r′, j′)} and ∆2

ew = ∆0
ew for (e, w) 6= (e∗, w∗).

S2 is obviously feasible, and its incidence vector belongs to F̃ and then to F. Thus, we
have

λxS0

+µyS
0

+νzS
0

= λxS2

+µyS
2

+νzS
2

= λxS0

+µyS
0

+νzS
0 −νe∗w∗

a +νe∗w∗

(i′,r′)+νe∗w∗

(r′,j′),

which leads to −νe∗w∗

a + νe∗w∗

(i′,r′) + νe∗w∗

(r′,j′) = 0. Since by (5.127), νe∗w∗

(i′,r′) = νe∗w∗

(r′,j′) = 0, we
get νe∗w∗

a = 0. As a is selected arbitrarily in ∆0, we obtain

νew
a = 0, for all (e, w) ∈ Γ0, a ∈ ∆0, (5.128)

Hence, by (5.127) and (5.128), we have

νew
a = 0, for all e ∈ A1, w ∈ W, a ∈ A2, (5.129)

Next, we will show that µew = 0, for all (e, w) ∈ (A1 \ F )×W .

Consider first an arc e∗ = (i, j) that does not belong to the solution S0. That is
to say e∗ ∈ A1 \ (F ∪ F 0

1 ∪ F 0
2 ). Then one may install any subband, say w∗, over e∗

and form a new solution S3 = (F 3
1 , F

3
2 ,∆

3,W 3), where F 3
1 = F 0

1 , F 3
2 = F 0

2 ∪ {e∗}, ∆3

= ∆0 ∪ {(i′, j′)} and W 3 = W 0 ∪ {w3}. In particular, Γ3 = Γ0 ∪ {(e∗, w∗)}, ∆3
e∗w∗ =

{(i′, j′)} while ∆3
ew = ∆0

ew for (e, w) 6= (e∗, w∗). It is clear that S3 is a feasible solution
whose incidence vector is in F and hence, inF̃. Thus,

λxS0

+ µyS
0

+ νzS
0

= λxS3

+ µyS
3

+ νzS
3

= λxS0

+ µyS
0

+ µe∗w∗

+ νzS
0

+ νe∗w∗

a ,

which yields µe∗w∗

+ νe∗w∗

a = 0. And by (5.129), we get µe∗w∗

= 0. As e∗ and w∗ are
chosen arbitrarily in A1 \ (F ∪ F 0

1 ∪ F 0
2 ) and W respectively, we obtain

µew = 0, for all e ∈ A1 \ (F ∪ F 0
1 ∪ F 0

2 ), w ∈ W, (5.130)

Now suppose that e∗ ∈ F 0
1 (recall that F 0

2 is empty). Suppose without loss of
generality, that e∗ /∈ F , and let w∗ be a subband such that (e∗, w∗) ∈ Γ0. Suppose



5.4 Valid inequalities and facets 153

that the pair (e∗, w∗) is involved in the routing of a commodity k∗. Then, consider
two arcs f = (i, r) and g = (r, j) of A1 \ (F ∪ F 0

1 ∪ F 0
2 ), where r ∈ V1 \ {i, j}. Let us

introduce the solution S4 which is obtained from S0 by adding f and g to F 0
1 . Both

f and g receive the subband w∗ and we associate them to the routing of k∗ (instead
of e∗). S4 = (F 0

1 ∪ {f, g}, F 0
2 ,∆

0 ∪ {(i′, r′), (r′, j′),W 0}). Note that here we have Γ4

= Γ0 ∪ {(f, w∗), (g, w∗)}, ∆4
fw∗ = {(i′, r′)} and ∆4

gw∗ = {(r′, j′)}. Also note that C4
k∗

= (C0
k∗ \ {e∗}) ∪ {f, g}. In addition, we will consider the solution S5, obtained by

removing the pair (e∗, w∗) from Γ4. Remark that this is not equivalent to removing
e∗ from the solution S4, as e∗ may be supporting further subbands. Obviously, both
solutions S4 and S5 are feasible, and their incidence vectors belong to F and hence, to
F̃. Moreover, every component of (xS4

, yS
4
, zS

4
) equals the corresponding component

in (xS4
, yS

4
, zS

4
) except for yS

4

e∗w∗ whose value is 1 while yS
5

e∗w∗ is set to 0. Hence, the
corresponding coefficient µe∗w∗

equals to 0. As e∗ is arbitrary in (F 0
1 ∪ F 0

2 ), e
∗ /∈ F , we

obtain
µew = 0, for all e ∈ F 0

1 ∪ F 0
2 , e /∈ F,w ∈ W, (5.131)

In consequence, we have by (5.130) and (5.131) that

µew = 0, for all (e, w) ∈ (A1 \ F )×W, (5.132)

The case where e∗ ∈ F will be treated further in the proof.

In what follows, we will examine the λ coefficients related to commodities not in P+.

Consider a commodity k∗ of K\P+. We will show that λk∗

ew = 0 for all (e, w) ∈ A1×W .
Let e∗ = (i, j) and w∗ be an arc of A1 and a subband of W , respectively, such that
w∗ is not already installed on e∗. First, assume that e∗ /∈ F . Consider the solution S6

obtained from S0 as follows. We install w∗ on e∗ and we associate e∗ to the commodity
k∗ in addition to its initial routing. In other words, the component xS6

k∗e∗w∗ = 1 while
xS0

k∗e∗w∗ = 0. Furthermore, we assign to (e∗, w∗) a path {(i′, r′), (r′, j′)}, where r′ is
some node of V2 \ {i′, j′}, that is not used in S0. Clearly, the solution S6 is feasible for
the problem and (xS6

, yS
6
, zS

6
) ∈ F̃ ⊆ F. Hence, we have

λxS6

+ µyS
6

+ νzS
6

= λxS0

+ λk∗

e∗w∗ + µyS
0

+ µe∗w∗

+ νzS
0

+ νe∗w∗

(i′,r′) + νe∗w∗

(r′,j′),

which implies, by (5.129) and (5.132) that λk∗

e∗w∗ = 0. As k∗, e∗, and w∗ are arbitrary
elements in K \ P+, A1 \ F and W , we get

λk
ew = 0, for all k ∈ K \ P+, e ∈ A1 \ F,w ∈ W.

Suppose now that e∗ is an arc of F . Note that if |F | = 1, then e∗ = (u, v). Let w∗

be some subband installed on e∗, such that w∗ still has enough residual capacity to
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carry k∗. Because of condition (vii), we know that such subband exists. Consider the
solution S7, obtained from S0 by associating e∗ to the commodity k∗. Here the routing
of k∗ does not change, we only set the variable xS7

k∗e∗w∗ to 1 while xS0

k∗e∗w∗ = 0. More
formally, S7 = (F 7

1 , F
7
2 ,∆

7,W 7) where C7
k∗ = C0

k∗ ∪ {e∗} and the other elements of S0

do not change. Clearly S7 is feasible and both (xS0
, yS

0
, zS

0
) and (xS7

, yS
7
, zS

7
) belong

to F̃ and hence to F. Thus, we have that λk∗

e∗w∗ = 0. As k∗, e∗ and w∗ are arbitrary in
K \ P+, F and W , we get

λk
ew = 0, for all k ∈ K \ P+, e ∈ F,w ∈ W.

Now, let us look at the λ coefficients related to the commodities of P+.

Let k∗ be a commodity of P+ and e∗ = (i, j) an arc of A1 such that e∗ /∈ (F ∪ F ).
Consider a subband w∗ ∈ W such that (e∗, w∗) /∈ Γ0, and (i′, r′), (r′, j′) two arcs of
A2\∆0, where r′ ∈ V2\{i′, j′}. Let S8 be a solution obtained from S0 by adding (e∗, w∗)

to Γ0 and e∗ to C0
k∗ . In other words, w∗ is installed on e∗, and k∗ is assigned arc e∗ in

addition to its initial routing path contained in C0
k+

. In addition, (e∗, w∗) is associated
with the path {(i′, r′), (r′, j′)}, that is to say ∆8

e∗w∗ = ∆0
e∗w∗ ∪{(i′, r′), (r′, j′)}. Clearly,

S8 forms a feasible solution for OMBND problem, and its incidence vector as well as
one of S0 verify

λxS8

+ µyS
8

+ νzS
8

= λxS0

+ λk∗

e∗w∗ + µyS
0

+ µe∗w∗

+ νzS
0

+ νe∗w∗

(i′,r′) + νe∗w∗

(r′,j′),

By (5.129) and (5.132), this yields λk∗

e∗w∗ = 0. As k∗ and e∗ are arbitrary in P+ and
A1 \ (F ∪ F ), respectively, we obtain

λk
ew = 0, for all k ∈ P+, e ∈ A1 \ (F ∪ F ), w ∈ W,

In what follows, we will turn ourselves to arcs of F , and show that λk
ew = 0, for

k ∈ P+, e ∈ F and w ∈ W .

First, if |F | = 1, that is to say F = {(u, v)}. Let k∗ be a commodity of P+ and
let w∗ be some subband of W that is installed on (u, v) in the solution S0. Consider
the solution S11 that is obtained from S0 as follows. The subband w∗ is involved in
the routing of k∗ while the remaining BP (P+) - 1 subbands are re-assigned for the
routing of the left P+ \ {k∗} commodities using (u, v). Condition (ii) ensures that this
induces a feasible solution (see Figure 5.14). Now let k′ be a commodity of P+ \ {k∗}
and such that Dk∗ + Dk′ ≤ C. This is possible since condition (iii) guarantees that
such a commodity exists. Consider the solution S12, which slightly differs from S11 in
what follows. We associate with k′ the subband w∗ in addition to its initial routing.
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u

s t

v

1
F

δG1(T )

o6

d7

d2o2

d5o5

BP (P ) - 1

T T

o7

d6F

ok∗

dk∗

Figure 5.14: Getting the solution S11

In other words, xS12

k′(u,v)w∗ is set to 1, while xS11

k′(u,v)w∗ = 0. Clearly, S12 is feasible for the

problem, and both incidence vectors of S11 and S12 belong to F̃, and then to F. Hence,
we obtain that λk′

(u,v)w∗ = 0. As k∗ is arbitrary in P+, we get

λk
ew = 0, for all k ∈ P+, e ∈ F,w ∈ W,

Furthermore, we will show that λ related to commodities of P+ on arcs of F and µ

coefficients for F are equal. Let k∗ be some commodity of P+ and let w∗ the subband
used for its routing along the arc (u, v). Consider the solution S13 obtained by S0 as
follows. We move the subband w∗ from (u, v) to (s, t) and we install two subbands
w′ and w′′ on the arcs (ok∗ , s) and (t, dk∗). We then replace the routing of k∗ by
{(ok∗, s), (s, t), (t, dk∗)} (the initial routing is {(ok∗, u), (u, v), (v, dk∗)}). This solution
is feasible as condition (ii) ensures that enough capacity is available on (u, v) to carry
the commodities of P+ \ {k∗}. The solution S13 is obviously feasible for the problem,
and comparing (xS13

, yS
13
, zS

13
) and (xS0

, yS
0
, zS

0
) gives

λk∗

(u,v)w∗ + µ(u,v)w∗

= λk∗

(s,t)w∗ + µ(s,t)w∗

,

Together with (5.132), () implies that µ(u,v)w∗

= λk∗

(s,t)w∗ . As k∗, w∗ and (s, t) are
arbitrary in P+, W and F , we obtain that those coefficients are equal to a positive
scalar ρ

µ(u,v)w = λk
(s,t)w = ρ, for all k ∈ P+, (s, t) ∈ F ,w ∈ W,

Suppose now that |F | ≥ 2. Let e∗ = (i, j) be an arc of F different from (u, v).
Consider two commodities k′, k′′ of P+, such that Dk′ + Dk′′ ≤ C. Condition (iii)
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guarantees that such commodities exists. Recall that in S0, all the commodities of
P+ are routed along (u, v). Let w∗ be the subband installed on (u, v) and involved
in the routing of k

′

. We will consider a new solution S14 obtained from S0 as follows
: we install w∗ on (i, j) and replace the routing path {(ok′, u), (u, v), (v, dk′)} of k′ by
{(ok′, i), (i, j), (j, dk′)} (see Figure 5.15). By condition (ii), the remaining traffic can
be routed along (u, v) using the left BP (P ) − 1 subbands. It is clear that S14 is a
feasible solution for the problem. Now consider the solution S15, obtained from S14 as
follows : associate with the commodity k′′ one more arc, namely (i, j). Note that k′′ is
still routed through (u, v). Arc (i, j) is just added to the solution. As Dk′ +Dk′′ ≤ C,
the capacity constraint (5.2) related to ((i, j), w∗) is satisfied. Hence, S15 is feasible.
Moreover, as the incidence vectors of S14 and S15 both belong to F̃ and hence to F,
we have that λk′′

(i,j)w∗ = 0.

1
w’’

w’

u

s t

v

i jF

δG1(T )

ok′

o6

d7

d2o2

d5o5

BP (P ) - 1

T T

o7

d6F

dk′

Figure 5.15: Obtaining the solution S14

Now let us show that all the coefficients λ related to the commodities of P+ and the
arcs of F are equal.

Let k∗ be a commodity different from k′ (commodity whose routing is changed in
S14). Consider an arc (i, j) ∈ F different from (u, v) and w∗ a subband installed on
(u, v) and involved in the routing of k∗. We will construct a solution S16 similar to S14,
that is obtained from S0 as follows. We shift w∗ from (u, v) to (i, j) and we replace the
routing path of k∗ by {(ok∗, i), (i, j), (j, dk∗)}. The remaining operations are all similar
to solution S14. Obviously, S16 is feasible for the problem, and incidence vectors of
S14 and S16 both belong to F̃ and then to F. Thus, comparing the components of
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(xS14
, yS

14
, zS

14
) and (xS16

, yS
16
, zS

16
) yields λk′

(i,j)w∗ = λk∗

(u,v)w∗ . As commodities k′ and
k∗ are arbitrary in P+, we obtain that all the coefficients λk

ew, k ∈ P+, e ∈ F , w ∈ W

are equal and, in consequence

λk
ew = 0, for all k ∈ P+, e ∈ F,w ∈ W,

We will go over the coefficients related to the demands in P+ and the arcs of F at
the end of the proof. Let us first get back to the coefficients µ for the arcs of F .

Simply compare solutions S14 and S0, together with (5.129), (5.132) and (), allows
to conclude that

µ(i,j)w∗

= µ(u,v)w∗

,

Since the arc (i, j) is arbitrary in F , we get the equality of coefficients µ for the arcs
of F . Hence, we conclude that there exists a positive scalar ρ ∈ R, such that

µew = ρ, for all e ∈ F,w ∈ W,

The last case of our proof concerns the coefficients of commodities of P+ related to
arcs of F .

Consider the commodity k∗ ∈ P+, and let w∗ be a subband installed on (u, v), such
that the pair ((u, v), w∗) is involved the routing of k∗. Assume that w∗ is moved from
(u, v) to the arc (s, t) (see Figure 5.16). This allows to introduce the later arc in the
solution S0. Let us install subbands w′ and w′′ on arcs (ok∗, s) and (t, dk∗), respectively.
In this way, k∗ is assigned the path {(ok∗, s), (s, t), (t, dk∗)} instead of the initial routing
path {(ok∗ , u), (u, v), (v, dk∗)}. And the sections of this path are themselves assigned
the paths {(o′k∗, s′)}, {(s′, t′)} and {(t′, d′k∗)} in G2, respectively.

Let us denote by S17 the solution described above, and give in what follows its differ-
ent subsets. S17 = (F 0

1∪{(ok∗ , s), (s, t), (t, dk∗)}, F 0
2 ,∆

0∪{(o′k∗, s′), (s′, t′), (t′, d′k∗)},W 0∪
{w′, w′′}). S17 is obviously feasible, and (xS17

, yS
17
, zS

17
) together with (xS0

, yS
0
, zS

0
)

belong to F̃ and then to F. In addition, S17 is such that
∑

e∈F

∑

w∈W

yS
17

ew =
∑

w∈W

yS
17

(u,v)w = BP (P+)− 1,

∑

e∈F

∑

w∈W

yS
17

ew = yS
17

(s,t)w∗ = 1,

∑

k∈P+

∑

e∈F

∑

w∈W

xS17

kew = xS17

k∗(s,t)w∗ = 1.
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Figure 5.16: Obtaining the solution S17

Comparing both incidence vectors (xS17
, yS

17
, zS

17
) and (xS0

, yS
0
, zS

0
) induces the

following

λxS17

+ µyS
17

+ νzS
17

= λxS0 − λk∗

(u,v)w∗ + λk∗

(ok∗ ,s)w
′ + λk∗

(s,t)w∗ + λk∗

(t,dk∗ )w
′′

+µyS
0 −µ(u,v)w∗

+µ(ok∗ ,s)w
′

+µ(s,t)w∗

+µ(t,dk∗ )w
′′

+ νzS
0

+ ν
(ok∗ ,s)w

′

(o′
k∗

,s′) + ν
(s,t)w∗

(s′,t′) + ν
(t,dk∗ )w

′′

(t′,d′
k∗

) ,

By (5.129), (5.132), () and (), it remains from the previous equality that λk∗

(s,t)w∗ =
µ(u,v)w∗

. As k∗ is arbitrary in P+, we conclude that all the coefficients λ of P+ and F

are equal up to the scalar ρ.

λk
ew = ρ, for k ∈ P+, e ∈ F,w ∈ W,

To summarize, all together, we finally get

νew
a = 0, for all e ∈ A1, w ∈ W, a ∈ A2,

µew =

{
ρ, for some scalar ρ ∈ R∗

+, for all e ∈ F,w ∈ W,

0, otherwise.

λk
ew =

{
ρ, for k ∈ P+, e ∈ F,w ∈ W,

0, otherwise.

Note that ρ 6= 0, since F 6= ∅. Thus, replacing the values of our coefficients in λx +
µy + νz ≥ ξ, yields

∑

e∈F

∑

w∈W

ρyew +
∑

k∈P+

∑

e∈F

∑

w∈W

ρxk
ew ≥ ξ



5.4 Valid inequalities and facets 159

And, as (xS0
, yS

0
, zS

0
) ∈ F, it follows that ρBP (P ) = ξ and hence ξ

ρ
= BP (P+), which

completes the proof. �

5.4.3 Clique-based Inequalities

In what follows, we will study an additional class of inequalities that are valid for
P (G1, G2, K, C). These inequalities are based on the so-called clique inequalities in-
troduced by Manfred Padberg in the context of stable set polytope investigation [89].
They have also been studied in [14] for the Balanced Induced Subgraph problem, where
authors provide necessary conditions for these inequalities to define facets. More gen-
erally, clique inequalities arise in problems where conflicts may occur between objects
(see [60, 25]). In order to identify these facet-defining inequalities, we will introduce
the definition of a conflict graph for an instance of OMBND problem.

Definition 6 A conflict graph H is composed by a set of nodes N and a set of edges
E. Each node n ∈ N is a commodity of K and two commodities u, v are connected by
an edge (u, v) ∈ E if and only if u and v cannot be packed in a subbband together. In
other words, there exists an edge (u, v) in E is and only if Du + Dv > C.

D1 = 3

D5 = 5

D4 = 7 D3 = 2

D2 = 8

Figure 5.17: The conflict graph associated with 5 commodities

A clique C ⊆ N in the conflict graph H is a set a set of nodes such that an edge
is associated with each pair (u, v), u, v ∈ C. In other words, C is a set of nodes that
induces a complete subgraph of H . Consequently, two nodes u and v of a clique C

cannot be included together in a subband, that is to say u and v cannot be associated
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with the same pair (e, w), e ∈ A1 and w ∈ W . A clique C is said to be maximal if it
cannot be extended by including one more node that is connected to the other nodes.

Two commodities k′ and k′′ are said to be compatible if the corresponding nodes in
H are not adjacent.

The Figure 5.17 represents the conflict graph associated with an instance of the
OMBND problem with five commodities. In other words, |K| = |N | = 5. The available
subbands have a capacity C = 10. In this example, two cliques are represented C1 =
{2, 4, 5} and C2 = {1, 2}. The maximal clique in H is C1.

Figure 5.18 shows a partial description of a fractional solution denoted (x, y, z) ob-
tained by solving the linear relaxation of OMBND for the following instance. Consider
a graph of six nodes, denoted 1 to 6 (see Figure 5.18), and a set of three installable
subbands, namely w1, w2 and w3. The capacity of each subband is C = 10. The
instance includes six commodities, denoted k1, to k6 with the traffic amounts Dk1 =
Dk2 = Dk3 = Dk4 = 6, and Dk5 = Dk6 = 4. The values of design variables y are such
that ye1w1

= ye6w3
= 0.6, ye2w1

= ye3w1
= 1, ye4w1

= 0.4, ye5w1
= 0.2 and ye7w2

= 0.33.
We can remark that e1, e2, e3, e4 and e5 receive the subband w1, while e6 receives the
subband w3 and two subbands, namely, w1 and w2 are installed on e7.

45

6 3

21

e2

e1

e3

e4

e5

e6

e7

Figure 5.18: Second fractional solution

Let us focus on pair (e7, w1) whose corresponding entry in y is 0.66. Consider the
conflict graph related to the commodities of this instances (see Figure 5.19), that will
be called H . Figure 5.19 shows a graph of six nodes, denoted k1 to k6, each one
corresponding to a commodity of the instance described above. We can see that there
exists an edge between each pair of nodes such that the associated commodities are
not compatible. A weight w(ki) is associated with each node ki, i = 1, . . ., 6, which
is given by the value of xkie7w1. In other words, nodes whose weight is different from
zero induce commodities that uses e7 and particularly w1 for their routing.
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k4

k3

k1 k2

xk4e7w1
= 0.66

xk2e7w1
= 0.44

k6

k5

Figure 5.19: The associated conflict graph H

Although fractional solution (x, y, z) satisfies all constraints of linear relaxation of
(5.8), it violates the following inequality

xk2e7w1 + xk4e7w1 ≤ ye7w1, (5.133)

which is valid for P (G1, G2, K, C) polytope.

Observe that commodities k1, k2, k3 and k4 form a clique in the conflict graph H ,
as no two commodities among them can fit in a subband. Hence, (5.133) can be
strengthened to give the following inequality

xk1e7w1 + xk2e7w1 + xk3e7w1 + xk4e7w1 ≤ ye7w1, (5.134)

which is also valid for P (G1, G2, K, C). In what follows, we prove that these inequalities
belong to a more general class of valid inequalities for P (G1, G2, K, C) polytope, that
we refer to as clique-based inequalities.

Proposition 5.19 Let C ⊆ K be a clique in the conflict graph, and (ẽ, w̃) ∈ A1 ×W ,
then the following clique-based inequality

∑

k∈C

xkẽw̃ − yẽw̃ ≤ 0, (5.135)

is valid for P (G1, G2, K, C).

Proof. The proof is quite trivial. Indeed, two commodities belong to the clique C if
they can not be packed together in one subband on a given arc. So they can not be
associated with the same pair (ẽ, w̃). In other words, each edge (u, v) of the clique C

represents an infeasible packing of the commodities u and v in the subband w̃. �
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Theorem 5.20 Let C̃ ⊆ N be a clique in the conflict graph H. Let ẽ = (u, v) and w̃

be an arc of A1 and a subband of W , respectively. The clique-based inequality (5.135)
induced by C̃ and (ẽ, w̃) define a facet of P (G1, G2, K, C), if and only if the C̃ is maxi-
mal.

Proof. We will denote by αx + βy + γz ≤ δ the inequality (5.135) produced by C̃

and (ẽ, w̃), and let F̃ be the face induced by this inequality. We will first show that F̃
is a proper face of P (G1, G2, K, C). To this end, we will construct a feasible solution
S0 whose incidence vector belongs to F̃.

Consider the solution S0 defined in the proof of Theorem 5.3. Suppose without loss of
generality that ẽ and w̃ are not used in the solution S0 ((ẽ, w̃) /∈ Γ0). Let us introduce
the solution S1, obtained from S0 by adding the pair (ẽ, w̃) to Γ0. We assign to (ẽ, w̃)

the path {(u′, v′)} in G2. The pair (ẽ, w̃) is then associated with some commodity
of the clique C̃, say k̃. Every remaining commodity of C̃ is associated with the path
{(ok, dk)}, and uses the subband wk, as described in the construction of S0. More
formally, this solution is equivalent to S1 = (F 0

1 ∪ {ẽ}, F 0
2 ,∆

0 ∪ {(u′, v′)},W 0 ∪ {w̃}).
It is easy to see that S1 is a feasible solution for the problem. In addition, yS

1

ẽw̃ = 1,
while

∑
k∈C̃ x

S1

kẽw̃ = xS1

k̃ẽw̃
= 1. Hence, (xS1

, yS
1
, zS

1
) belongs to F̃, and F̃ 6= ∅ is a proper

face of P (G1, G2, K, C).

Consider a facet-defining inequality denoted by λx + µy + νz ≤ 0 and let F be the
face induced by this inequality, and such that

F̃ ⊆ F = {(x, y, z) ∈ P (G1, G2, K, C) : λx+ µy + νz = ξ},

We will show that (α, β, γ) = ρ(λ, µ, ν). Let us first show that νew
a = 0, for all e ∈ A1,

w ∈ W and a ∈ A2.

Let a∗ be an arc of A2 \∆0. Consider the solution S2, obtained from S1 by adding
the arc a∗ to some pair (e∗, w∗) of A1 ×W . The solution S2 = (F 1

1 , F
1
2 ,∆

2,W 1), with
∆2

e∗w∗ = ∆1
e∗w∗ ∪ {a∗} and ∆2

ew = ∆1
ew for (e, w) ∈ (A1 ×W ) \ {(e∗, w∗)}, is clearly

feasible and its incidence vector belongs to F̃ and then, to F. Hence, we have that
νe∗w∗

a∗ = 0. As a∗, e∗ and w∗ are arbitrary in A2 \∆1, A1 and W , it follows that

νew
a = 0, for all e ∈ A1, w ∈ W, a ∈ A2 \∆1, (5.136)

Now assume that a∗ = (s′, t′) is used in the solution S1, that is to say a∗ ∈ ∆1
e∗w∗

for some pair (e∗, w∗) ∈ A1 × W . Then, the solution S3 = (F 1
1 , F

1
2 , (∆

1 \ {a∗}) ∪
{(s′, r′), (r′, t′)},W 1), with (s′, r′), (r′, t′) ∈ A2 \∆1 and r′ ∈ V2 \{s′, t′}, is also feasible.
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Moreover, (xS3
, yS

3
, zS

3
) ∈ F̃ and hence, (xS3

, yS
3
, zS

3
) ∈ F. Thus, comparing solutions

S3 and S1 give
νe∗w∗

a∗ = νe∗w∗

(s′,r′) + νe∗w∗

(r′,t′),

which implies, by (5.136), that νe∗w∗

a∗ = 0. Since a∗ is chosen arbitrarily in ∆1, we get

νew = 0, for all e ∈ A1, w ∈ W, a ∈ ∆1, (5.137)

we then obtain by (5.136) and (5.137)

νew
a = 0, for all e ∈ A1, w ∈ W, a ∈ A2, (5.138)

Now we will show that coefficient µ, related to the pairs (e, w) of A1 ×W \ {(ẽ, w̃)}
are equal to zero.

Let e∗ = (s, t) and w∗ be an arc of A1 and a subband of W , respectively, such that
(e∗, w∗) ∈ A1×W \Γ1. Consider the solution S4, obtained from S1 by adding e∗ to F 1

2

and (e∗, w∗) to Γ1. We assign to (e∗, w∗) the path {(s′, t′)} where (s′, t′) ∈ A2 \∆1. The
solution S4 is then defined as follows. S4 = (F 1

1 , F
1
2 ∪ {e∗},∆1 ∪ {(s′, t′)},W 1 ∪ {w∗})

where Γ4 = Γ1 ∪ {(e∗, w∗)}, ∆4
e∗w∗ = ∆1

e∗w∗ ∪ {(s′, t′)} and ∆4
ew = ∆1

ew, for (e, w) 6=
(e∗, w∗). The solution S4 is obviously feasible, and its incidence vector (xS4

, yS
4
, zS

4
)

belongs to F̃ and, consequently, to F. Thus, we have µe∗w∗

+ νe∗w∗

(s′,t′) = 0, which implies
that µe∗w∗

= 0, by (5.138). Since e∗ and w∗ are arbitrary in A1 \(F 1
1 ∪F 1

2 ) and W \W 1,
we get

µew = 0, for all (e, w) ∈ (A1 ×W ) \ Γ1, (5.139)

Assume now that (e∗, w∗) ∈ Γ1 \ {(ẽ, w̃)}, and let k∗ be a commodity of K such
that e∗ = (s, t) ∈ C1

k∗ . Recall that k̃ is the only commodity of the clique C̃ that
uses (ẽ, w̃), and suppose that k∗ 6= k̃. Let f = (s, r), g = (r, t) be two arcs of A1 \
(F 1

1 ∪ F 1
2 ), and (s′, r′), (r′, t′) be the corresponding arcs in A2. Consider the solution

S5 that is obtained from S1 by adding the pairs (f, w∗), (g, w∗) to Γ1 and assigning
to them the paths {(s′, r′)}, {(r′, t′)}, respectively. Moreover, f and g are added to
C
1
k∗ . In other words, k∗ uses the path {f, g} and the associated subbands, instead

of the original routing path {e∗}. These operations lead to a feasible solution S5 =
(F 1

1 ∪ {f, g}, F 1
2 ,∆

1 ∪ {(s′, r′), (r′, t′)},W 1) whose incidence vector belongs to F̃ and
then, to F. Now, consider a new feasible solution S6, obtained from S5 by removing the
pair (e∗, w∗) from the subset Γ5. We then obtain a further feasible solution S6, different
from S5 in what yS

5

e∗w∗ = 1, while yS
6

e∗w∗ = 0. It is clear that (xS6
, yS

6
, zS

6
) ∈ F̃ ⊆ F, we

then have
λxS6

+ µyS
6

+ νzS
6

= λxS5

+ µyS
5

+ µe∗w∗

+ νzS
5

,
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and it follows directly that µe∗w∗

= 0, which yields

µew = 0, for all (e, w) ∈ Γ1 \ (ẽ, w̃), (5.140)

Since (e∗, w∗) is arbitrarily selected in Γ1. 5.139 and 5.140 together give

µew = 0, for all (e, w) ∈ (A1 ×W ) \ (ẽ, w̃), (5.141)

Next, we will show that λk
ew = 0, for all (k, e, w) ∈ (K × A1 ×W×) \ C̃× {(ẽ, w̃)}.

Let (e∗, w∗) be any pair of (A1 ×W ) \ {(ẽ, w̃)}, and let k∗ be some commodity of
K. Suppose first that (e∗, w∗) is not a part from solution S1. Then let us consider the
solution S7, obtained from S1 by adding (e∗, w∗) to Γ1. In other words, yS

7

e∗w∗ = 1 while
yS

1

e∗w∗ = 0. In particular we also add e∗ to the set C1
k∗ , that is to set the element xS7

k∗e∗w∗

to 1, while xS1

k∗e∗w∗ = 0. Furthermore, we add the arc (s′, t′) ∈ A2 to ∆1
e∗w∗ , which means

to associate the path {(s′, t′)} to (e∗, w∗) (zS
7

e∗w∗(s′,t′) = 1 whereas zS
1

e∗w∗(s′,t′) = 0). The
solution constructed above is given by S7 = (F 1

1∪{e∗}, F 1
2 ,∆

1∪{(s′, t′)},W 1∪{w∗}) and
is clearly feasible for the OMBND problem. In addition, its incidence vector satisfies
λx + µy + νz ≤ ξ with equality, and it belongs to F̃, and consequently to F. Hence,
we get

λk∗

e∗w∗ + µe∗w∗

+ νe∗w∗

(s′,t′) = 0,

and, by (5.138) and (5.141), we consequently obtain λk∗

e∗w∗ = 0. As the pair (e∗, w∗) is
arbitrarily chosen in (A1 ×W ) \ Γ1, and so as for k∗, we get

λk
ew = 0, for all k ∈ K, (e, w) ∈ (A1 ×W ) \ Γ1, (5.142)

Now if (e∗, w∗) ∈ Γ1 \ {(ẽ, w̃)} where e∗ = (s, t), then consider a commodity of K, say
k∗ such that e∗ ∈ C1

k∗. Let f = (s, r), g = (r, t) be two arcs of A1 \ (F 1
1 ∪ F 1

2 ) and
f ′ = (s′, r′), g′ = (r′, t′) be two arcs of A2 \ ∆1. Consider the solution S8, obtained
from S1 as follows. We relocate commodity k∗ in the path formed by f and g instead
of its original routing path, then we remove the pair (e∗, w∗) from Γ1, as it becomes
no more used. The subband w∗ is then reused for both f and g. More formally, S8 =
(F 8

1 , F
8
2 ,∆

8,W 8), where F 8
1 = F 1

1 ∪ {(f, g)}, F 8
2 = F 1

2 , ∆8 = ∆1 ∪ {f ′, g′} and W 8 =
W 1. In particular, note that Γ8 = Γ1 ∪ {(f, w∗), (g, w∗)}, C8

k∗ = (C1
k∗ \ {e∗}) ∪ {f, g},

∆8
fw∗ = ∆1

fw∗ ∪ {f ′} while ∆8
gw∗ = ∆1

gw∗ ∪ {g′}. It is straightforward to see that S8

induces a feasible solution, and comparing both incidence vectors of S8 and S1 allows
to get

λk∗

fw∗ + λk∗

gw∗ + µfw∗

+ µgw∗

+ νfw∗

f ′ + νgw∗

g′ = λk∗

e∗w∗ + µe∗w∗

,

which implies by (5.138), (5.141) and (5.142) that λk∗

e∗w∗ = 0. Since (e∗, w∗) is arbitrary,
we get

λk
ew = 0, for all k ∈ K, (e, w) ∈ Γ1 \ {(ẽ, w̃)}, (5.143)
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Thus, by 5.142 and 5.143 we obtain

λk
ew = 0, for all k ∈ K, (e, w) ∈ (A1 ×W ) \ {(ẽ, w̃)}, (5.144)

Now let us turn ourselves to coefficients λ related to commodities of K \ C̃ and (ẽ, w̃).

Consider a commodity k∗ of K \ C̃. It is clear that k∗ is compatible with at least one
commodity of the clique C̃, otherwise C̃ should not be maximal. Let k̃ be a commodity
of C̃ such that k∗ and k̃ are compatible, and (ẽ, w̃) are involved in the routing of k̃.
Then, consider the solution S9, obtained from S1 by associating the pair (ẽ, w̃) with the
commodity k∗, that is to set element xS1

k∗ẽw̃ to 1. In other words, C9
k∗ = C

1
k∗ ∪{ẽ}. Note

that, here, (ẽ, w̃) is involved in the routing of two commodities that are compatible. So,
no capacity constraint is violated and the solution verifies all the remaining constraints.
S9 still then obviously feasible for the problem, and its incidence vector satisfies λx +
µy + νz ≤ ξ with equality. In consequence, we have that λk∗

ẽw̃ = 0. And one can state
that

λk
ẽw̃ = 0, for all k ∈ K \ C̃, (5.145)

since k∗ is arbitrary in K \ C̃.

Now let us show that all the coefficient λ related to commodities of C̃ and (ẽ, w̃) are
equal, which is to show that λk

ẽw̃ = ρ, for all k ∈ C̃, ρ ∈ R+.

Recall that k̃ denote the commodity using (ẽ, w̃) in the solution S1 and let k∗ be a
commodity of C̃ \ {k̃}. Consider the solution S10, obtained from S1 by switching roles
of k̃ and k∗ in the use of (ẽ, w̃). More precisely, we move ẽ from C1

k̃
to C1

k∗ . The pair

(ẽ, w̃) is then associated with the routing of k∗ instead of one of k̃. This modification
does not impact on feasibility of the solution, and yS

10

ẽw̃ = 1 while
∑

k∈C̃ x
S10

kẽw̃ = xS10

k∗ẽw̃ =
1. Then, (xS10

, yS
10
, zS

10
) belongs to F̃ and, consequently, it also belongs to F. Hence,

the following is true

λxS10

+ µyS
10

+ νzS
10

= λxS1 − λk̃
ẽw̃ + λk∗

ẽw̃ + µyS
1

+ νzS
1

,

which implies that λk̃
ẽw̃ = λk∗

ẽw̃. Since the commodities k∗ and k̃ are arbitrary and
interchangeable in C̃, we conclude that there exists a positive scalar ρ ∈ R such that

λk
ẽw̃ = ρ, for all k ∈ C̃, (5.146)

The last part of the proof is to show that λk
ẽw̃ = - µẽw̃, for every commodity k of C̃.

Recall that the solution S0 is such that (ẽ, w̃) /∈ Γ0. In other words, (ẽ, w̃) is not
used in S0 and no commodity of C̃ is associated with (ẽ, w̃). In consequence, yS

0

ẽw̃ = 0,
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and
∑

k∈C̃ x
S0

kẽw̃ = 0. Moreover, (xS0
, yS

0
, zS

0
) ∈ F̃ ⊆ F. Thus, replacing (xS0

, yS
0
, zS

0
)

in the hyperplane inducing F gives us ξ = 0. Furthermore, by replacing (xS1
, yS

1
, zS

1
)

in the same hyperplane, we get

λk̃
ẽw̃ + µẽw̃ = 0,

and it follows by (5.146) that
µẽw̃ = −ρ, (5.147)

All together, we get

νew
a = 0, for all e ∈ A1, w ∈ W, a ∈ A2,

µew =

{
−ρ, if (e, w) = (ẽ, w̃),

0, otherwise.

λk
ew = 0, for all (k, e, w) ∈ (K × A1 ×W ) \ (C̃× {(ẽ, w̃)}),

λk
ẽw̃ =

{
ρ, if k ∈ C̃,

0, otherwise.

Consequently, (α, β, γ) = ρ(λ, µ, ν), and the proof is complete. �

5.4.4 Cover Inequalities

Cover inequalities Cover inequalities have been introduced independently by Balas [12],
Hammer et al. [59] and Wolsey [108] for the knapsack problem. They have also been
used more recently for problems where knapsack appears as an embedded structure,
like the Generalised Assignment Problem [56, 29] and the capacitated newtork design
problems [49, 32]. The reader is referred to [69, 9] for detailed surveys on strong valid
inequalities related to knapsack structures.

Definition 7 A cover I ⊆ K is a subset of commodities such that
∑

k∈ID
k > C. A

cover is said to be minimal if it does not contain any cover as a subset.

In other words, I is a set of commodity that can not be packed together in a subband,
as their total traffic amount exceeds the subband capacity.
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Figure 5.20: Examples of covers in an instance with C = 10

Example Suppose that K includes five commodities k1 to k5, with the following
traffic amounts 3, 6, 2, 4 and 4. Then, capacity constraints (5.2) would be 3xk1ew +
6xk2ew + 2xk3ew + 4xk4ew + 4xk5ew ≤ 10, for all (e, w) ∈ A1 ×W . The sets {k1, k2, k3}
and {k1, k4, k5} form covers, as Dk1 + Dk2 + Dk3 = 3 + 6 + 2 > 10, and Dk1 + Dk4

+ Dk5 = 3 + 4 + 4 > 10 (see Figure 5.20). The cover inequalities induced by these
subsets are then given as follows:

xk1ew + xk2ew + xk3ew ≤ 2yew, ∀(e, w) ∈ A1 ×W,

xk1ew + xk4ew + xk5ew ≤ 2yew, ∀(e, w) ∈ A1 ×W.

Proposition 5.21 Consider an arc ẽ ∈ A1, a subband w̃ ∈ W and a subset of com-
modities Ĩ ⊆ K defining a cover. Then, the following inequality

∑

k∈Ĩ

xkẽw̃ ≤ (|Ĩ| − 1)yẽw̃ (5.148)

is valid for P (G1, G2, G2, K, C).

Proof. If yẽw̃ = 0, then it is clear that no commodity can use ẽ and w̃, that is to say
xkẽw̃ = 0, for all k ∈ K, in particular for all k ∈ Ĩ. Now suppose that yẽw̃ = 1, and∑

k∈Ĩ xkẽw̃ ≥ (|Ĩ| − 1)yẽw̃ + 1 = |Ĩ|. This means that all the commodities of Ĩ use (ẽw̃).
In other words, xkẽw̃ = 1, for all k ∈ Ĩ, which violates the capacity constraint (5.2)
induced by (ẽ, w̃). Contradiction. �
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Cover inequalities define facets under some known conditions (see [86, 107]). They
should also define facets for P (G1, G2, K, C) polytope with appropriate additional con-
ditions. Furthermore, note that facets based on covers and extensions of covers may
be derived by using procedure as sequentiel lifting (see [55, 90]).

5.5 Conclusion

In this chapter, we have proposed a cut-based integer linear programming formulation.
We studied the basic properties of the associated polytope, and performed a facial
investigation of the basic inequalities. We have also introduced further valid inequalities
and discussed necessary conditions and sufficient conditions for these inequalities to
define facets. The next chapter will be dedicated to the description of the Branch-and-
Cut algorithm to solve the OMBND problem, and to give an insight of the efficiency
of theoretical results provided within this chapter.
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In this chapter we present a branch-and-cut algorithm that we have devised and imple-
mented to solve the optical multi-band network design problem. This algorithm is based
on the polyhedral results introduced in the previous chapter. The purpose of this chap-
ter is to substantiate the efficiency of the valid inequalities described in the polyhedral
study, and provide exact solutions for realistic instances of networks.



170 Branch-and-Cut Algorithm for OMBND problem

6.1 Branch-and-Cut algorithm for Cut formulation

6.1.1 Overview

We describe the framework of our algorithm. Consider given two graphs G1 = (V1, A1)

and G2 = (V2, A2), that instantiate the virtual layer and the physical layer of the net-
work, respectively. Also suppose given a set of commodities K where each commodity
k is characterized by a pair (ok, dk) ∈ V1 × V1 and a traffic value Dk. We consider a
set W of available subbands having a capacity C. A cost vector c ∈ RW×A1

+ , is given
as well.

To start the optimization, we set up the restricted linear program given by the
degree cuts associated with the origin and destination nodes of the commodities of K,
the capacity constraints (5.2) and the disjunction constraints (5.4), together with the
trivial constraints. Inequalities (5.3) are not included in this restricted linear program.
We will denote this formulation by LPinitial

Min
∑

e∈A1

∑

w∈W

c(w)yew +
∑

e∈A1

∑

w∈W

∑

a∈A2

zewa

s.t :
∑

w∈W

∑

e∈δ+
G1

(s)

xk
ew ≥ 1, ∀k ∈ K, s ∈ {ok, dk},

∑

k∈K

Dkxk
ew ≤ Cyew, ∀e ∈ A1, ∀w ∈ W,

∑

e∈A1

zewa ≤ 1, ∀w ∈ W, ∀a ∈ A2,

0 ≤ xk
ew ≤ 1, ∀k ∈ K, e ∈ A1,

0 ≤ yew ≤ 1, ∀w ∈ W, e ∈ A1,

0 ≤ zewa ≤ 1, ∀e ∈ A1, ∀w ∈ W, ∀a ∈ A2.

We denote by (x, y, z), x ∈ RK×W×A1, y ∈ RW×A1, z ∈ RW×A1×A2, the optimal
solution of the restricted linear relaxation of OMBND problem. This solution is feasible
for the problem if (x, y, z) is an integer vector that satisfies all the cut constraints
of type (5.1) and (5.3). In most of the cases, the solution obtained by this way is
not feasible for OMBND problem. We then manage to identify, at each iteration
of the algorithm, valid inequalities that are violated by the solution of the current
restricted linear program. This is referred to as the separation problem. Namely, given
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a class of valid inequalities, the separation problem is to check whether if the solution
(x, y, z) meets all the inequalities of this class, and, if this is not the case, to find an
inequality that is violated by (x, y, z). The detected inequalities are then added to the
current linear program, and such procedure is reiterated until no violated inequality
can be identified. The algorithm use then to branch over the fractional variables. The
algorithm 6 summarizes the principal steps of the branch-and-cut algorithm.

Algorithm 6: Branch-and-cut algorithm

Data : two graphs G1 = (V1, A1) and G2 = (V2, A2), a set of commodities K, a set
of available subbands W , and a cost vector c ∈ IRW×A1.
Output : optimal solution of OMBND problem, or best feasible upper bound.

1: LP ← LPinitial

2: solve the linear program LP.
let (x, y, z) be the optimal solution of LP.

3: If (x, y, z) is feasible for OMBND then

(x, y, z) is an optimal solution. STOP
4: If constraints (cut, capacitated cutset) violated by (x, y, z) are found then

add them to LP.
go to 2.

5: else

create two sub-problems by branching on a fractional variable.
6: return the best solution for all the sub-problems.

The branch-and-cut algorithm includes the inequalities described in the previous
chapter, and their separations are accomplished in the following order

1. cut inequalities

2. min set I inequalities

3. capacitated cutset inequalities

4. flow-cutset inequalities

5. clique-based inequalities

6. cover inequalities

7. min set II inequalities
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Observe that all the inequalities are global (i.e., valid for the whole Branch-and-Cut
tree), and several inequalities may be added at each iteration. Furthermore, we move
to the next class only if no violated inequalities of the current class is identified. Our
strategy is to try to detect violated inequalities at each node of the Branch-and-Cut
tree, in order to obtain the best possible lower bound by strengthening the linear
relaxation, and thus limit the number of generated nodes.

In the sequel, we describe the separation procedures embedded in our algorithm.
We use exact and heuristic algorithms as well, depending on the class of inequalities.
Except for cut inequalities (5.4), all the separation routines are applied on the graph
G1. In fact, weighs, given by the current solution (x, y, z), are distributed on the arcs
of G1. We present beforehand our feasibility test.

6.1.2 Feasibility test

Since OMBND cut formulation holds an exponential number of cut constraints, they
can not be enumerated and added explicitly to the initial linear programming formu-
lation. Thus, an optimal solution of the initial linear program is not needfully feasible,
even if it is integer. Actually, this solution must satisfy all the cut constraints. To deal
with this, we have added a feasibility test that checks whether if a given solution is
feasible or not. This test is based on an implementation of the so-called push-relabel
algorithm of Goldberg and Tarjan [54] for computing the maximum flow/minimum cut
in a graph.

6.1.3 Separation of Cut constraints

6.1.3.1 Connectivity constraints

The separation problem consists, given a vector (x, y, z), in deciding whether this
solution meets all the inequalities (5.1), and if not, to identify an inequality of this
class, violated by (x, y, z) and add it to the current linear program. Such problem may
be solved by using the Goldberg and Tarjan’s preflow push-relabel algorithm [54] on
the graph G1, by considering for each commodity the cost x associated with the pairs
(e, w), e ∈ A1, w ∈ W . Recall that each commodity is assigned a path in G1 using
the subbands installed on the arcs of A1. In addition, a subband set up over an arc is
considered as a copy of that arc. Hence, for every commodity k, the pairs (e, w) are
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assigned a weigh c(e, w) = xk
ew. This algorithm produces for each commodity k, the

minimum cut separating ok and dk, using the previously defined weigh function.

Due to maximum flow - minimum cut theorem of Ford and Fulkerson [47], it is
possible to solve the problem of finding a minimum cut in polynomial time. Actually,
the algorithm of Goldberg and Tarjan for maximum flow is one of the fastest known
maximum flow algorithms. This algorithm is also the most commonly used, as it is
the case in LEMON GRAPH [3] which is a C++ library. This algorithm has a worst
case complexity of O(n2

1

√
m1) where n1 and m1 are the number of nodes and arcs of

G1, respectively. Furthermore, the algorithm requires for each commodity k ∈ K a
minimum cut computation. Then, the separation of cut constraints (5.1) for k ∈ K

has a worst-case complexity of O(n2
√
m). Therefore, the separation algorithm for cut

constraints (5.1) for all k ∈ K is exact and runs in O(n2t
√
m), where t = |K|.

6.1.3.2 Subband connectivity constraints

For the cut constraints (5.3), we have to solve the separation problem that consists
in deciding, each pair (e, w) ∈ A1 × W , such that subband w is installed on the
arc e = (u, v), whether if there exists a cut constraint (5.3) violated by the solution
(x, y, z). One has to identify, for each pair (e, w) ∈ A1 ×W , such that subband w is
installed on the arc e = (u, v), the minimum cut in the graph G2 separating u′ and
v′, u′, v′ ∈ V2. Recall that theses inequalities ensure that a path is associated with
each (e, w) whenever w is installed on e. In other words, (e, w) may be viewed as a
commodity for the physical layer. Furthermore, for every pair (e, w), the weighs of the
arcs in G2 are given by the value of zewa , a ∈ A2. By the same way as the previous cut
constraint, we use the Goldberg and Tarjan maximum flow algorithm. For each pair
(e, w) This algorithm has a worst case complexity of O(n2

√
m). Hence, the separation

algorithm has a complexity of O(n2mq
√
m), where q = |W |.

6.1.4 Separation of Capacitated Cut inequalities

Given a solution (x, y, z), the separation problem associated with the capacitated cut-
set inequalities is to identify an inequality of this class, violated by (x, y, z), if such
inequality exists. The separation problem associated with cutset inequalities has been
proven NP-hard in general [30]. In our case, the separation problem related to capac-
itated cut-set inequalities (5.107) is also NP-hard. Therefore, we have developed two
heuristics to separate the capacitated cutset inequalities. The former is based on the
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so-called n-cut heuristic, proposed by Bienstock et al. in [30] for the minimum cost
capacity installation for multicommodity network flows. We adapt this heuristic in
order to make it suitable with our problem.

This heuristic works as follows. For any commodity k ∈ K, we check whether if there
is a path in G1 connecting nodes ok and dk, and using only pair (e, w), e ∈ A1, w ∈ W

with yew > 0. Since this can be performed by using any path finding algorithm, we
use Dijkstra’s algorithm. If such path does not exist, then it is clear that a capacitated
cutset inequality is violated. This inequality is induced by a subset of nodes T such
that ok ∈ T and dk /∈ T . If a path between ok and dk is identified in G1 for each
commodity k, then we randomly pick a subset of nodes, say T ⊆ V1, 0 6= T 6= V1,
and we identify the subset of commodity P+ having their origin node in T and their
destination in V1 \ T . After that, we compute the right-hand side, and we check if the
constraint thus constructed is violated or not. Since we check the existence of a path
for each commodity between its origin and its destination, the worst-case complexity
of this procedure is O(|K|(m1|W |+ n1log(n1))), where n1 = |V1| and m1 = |A1|.

In the second separation heuristic, we use Goldberg-Tarjan max-flow algorithm to
find violated capacitated cut-set inequalities (5.107). We attribute to each pair (e, w) ∈
A1 ×W the capacity yew, and determine for each k ∈ K a minimum okdk-dicut in G1,
say δ+G1

(T ∗), with T ∗ ⊆ V1. We then identify the subset of commodities P+ ⊆ K

passing through this directed cut. We finally add inequality

∑

e∈δ+
G1

(T ∗)

∑

w∈W

yew ≥ ⌈D(P+)

C
⌉,

in case it is violated. This procedure is based on max-flow computations, thus the
worst case complexity is O(n2

1t
√
m1).

6.1.5 Separation of Flow-Cutset inequalities

Now we discuss our separation procedure for the flow-cutset inequalities (5.120). Atamtürk
shows in [8] that the separation problem associated with of a more general form of flow-
cutset inequalities is NP-hard even for one commodity. In case of a multiple commodity
set, the complexity of simultaneously determining P+ and F is not known [93]. As we
do not know an efficient procedure to separate flow-cutset inequalities in general, we
use here a simple heuristic based on Goldberg-Tarjan max-flow algorithm. The main
idea is to identify, for each commodity the minimum cut separating its origin and its
destination, then to consider the subset of commodities whose origin and destination
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nodes are separated by the current cut. In other words, for each k ∈ K, we assign the
capacity yew + xk

ew to each pair (e, w) ∈ A1 ×W , and we compute the minimum cut
separating ok from dk in the graph G1. Let δ+G1

(T ∗), T ∗ ⊆ V1, denote this cut. We then
pick an arbitrary subset of arcs, say F ∗ of δ+G1

(T ∗), such that ∅ 6= F ∗ 6= δ+G1
(T ∗). We

then determine the subset of commodities P+ ⊆ K using δ+G1
(T ∗). If D(P+)/C is not

integer, we add the succeeding flow-cutset inequality
∑

e∈F ∗

∑

w∈W

yew +
∑

k∈P+

∑

e∈F
∗

∑

w∈W

xk
ew ≥ ⌈

D(P+)

C
⌉,

if it is violated by the current fractional solution (x, y, z).

6.1.6 Separation of Clique-based and Cover inequalities

Given a fractional solution (x, y, z), and a pair (ẽ, w̃) ∈ A1 × W . The separation
problem associated with the clique-based inequalities (5.135) consists in identifying a
clique C∗ in the conflict graph H , such that

∑

k∈C∗

xk
ew > yew,

If there is some. To do so, we use a greedy algorithm introduced by Nemhauser and
Sigismondi [85] for the independant set problem. This heuristic works as follows. We
first construct the conflict graph H = (V,E) where each node v ∈ V corresponds to a
commodity in K and an edge e ∈ E exists between two nodes u, v ∈ V if Du + Dv >
C. For each pair (e, w) ∈ A1 ×W , we assign a weight to each node v of V that is xv

ew,
then we choose a node, say u, having the largest weight and we set C∗ = {u}. We then
iteratively add to C∗ the maximum weighted node of V \C∗ whenever it is neighbouring
all the nodes of the current clique C∗. We add the clique-based inequality induced by
C∗ if it is violated.

We use a similar approach to identify violated cover inequalities (5.148) if any. In-
deed, we put the largest weighted node u in N∗, then we repeat the following operation

Let v be the maximum weighted node of V \N∗, then we simply insert v to N
∗ if

N∗ ∪ {v} does not form a clique

until a cover is obtained (
∑

v∈N∗ Dv > C). Every node v ∈ N∗ such that
∑

i∈N∗\{v} D
i >

C is deleted from the subset N∗. Finally, we add the inequality
∑

k∈N∗

xk
ew ≤ (|N∗| − 1)yew,
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Figure 6.1: Clique and cover configurations in the conflict graph

if it is violated. Note that there exists plenty more sophisticated algorithms to solve the
separation problem associated with cover inequalities (see for example [36, 50, 9, 69, 68]
and references therein for separation of cover inequalities and [58, 69] for lifted cover
inequalities), but our first idea was to take advantage from the separation performed
for the clique-based inequalities and try to find subsets of commodities that form
covers, if the heuristic fails to identify a clique. Besides, we consider only violated
clique (respectively cover) inequalities where |C∗| ≥ 3 (respectively |N∗| ≥ 3) in our
branch-and-cut algorithm.

We show in figure 6.1 an example of fractional point where yew = 2
3

for some pair
(e, w) and we have six commodities with the values D1 = 7, D2 = 6, D3 = 5, D4 =
7, D5 = 4, D6 = 3 and the facilities have a capacity C = 10. We have assigned to
each node a weigh wi, i = 1, . . . , 6 that is the value of xi

ew. Then, we can see that
the subset of nodes surrounded by the blue dashed lines induces the violated clique
inequality x1

ew + x2
ew + x3

ew + x4
ew ≤ yew, while the subset the green dashed lines subset

induces the following cover inequality x1
ew + x5

ew + x6
ew ≤ 2yew which is also violated by

the current fractional solution.

6.2 Computational results

Based on the polyhedral results presented in the former sections, we devised a branch-
and-cut algorithm to solve OMBND problem. Similarly to implementation features
described in Chapter 4, the Branch-and-Cut algorithm for OMBND problem has been
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implemented in C++, using Cplex 12.5 callable library [2]. Also recall that we used
the LEMON GRAPH C++ library for the Goldberg-Tarjan max-flow algorithm. It
was tested on a processor Intel Core i5-3210M CPU 2.50GHz × 4 with 3.7 Gb RAM,
running under ubuntu 12.10 platform. We fixed the maximum CPU time to 5 hours.

6.2.1 Instances description

The results show in this chapter have been obtained by solving instances coming from
real networks as well as realistic topologies. For all the instances, the graph G1 repre-
senting the virtual (subbands) layer is supposed to be complete. The cost induced by
installing each subband is given by

c(w) = (1 + w)c,

where w is the subband index and c is a fixed cost associated with the ROADM
generating the subband. This cost is justified by our wish to install the subbands
progressively. In other words, a subband wi is not used before wi−1 is filled. We
also take into account the length of routing path in G2 associated with each installed
subband. This length is given in terms of number of sections in the path. Note that
we use the same objective function for both classes of instances.

The realistic instances come from SNDlib [1] library. The graph G1 is obtained by
considering an edge between each pair of nodes. Moreover, if the topology corresponds
to a non directed graph, we replace each edge by two anti-parallel arcs in both G2 and
G1. The number of available subbands per arc is set to |W | = 5 for all the instances.
Based on these topologies, we have considered two sub-classes of instances. The first one
is obtained by using SNDlib topologies with randomly generated traffic commodities.
We have tested 3 examples of each instance size and we give the average of the results
for these examples. The second sub-class uses SNDlib topologies and traffic matrices.
We pick the K most important commodities for each topology and traffic matrix. We
have considered the topologies pdh, polska, nobel_us, atlanta, newyork, nobel_germany,
geant, ta1, france, and india35.

The real instances are derived from real network topologies provided by Orange
Labs. Three topologies of real instances are considered here, all related to Bretagne
area backhaul network. The traffic commodities, as well as the subbands capacities
are also given by Orange Labs. For each topology, we have considered three subband
capacities C = 10 Gbit/s, C = 12.5 Gbit/s and C = 25 Gbit/s, so as to compare the
performances of each type of OFDM multi-band solution.
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Our experimental results are reported in tables of following sections. The entries of
the columns in these tables are:

|V2| : number of nodes in G2,

|A2| : number of arcs,

|K| : number of commodities,

NcI : number of generated connectivity constraints,

NcII : number of generated subband connectivity constraints,

NMSI : number of min set I inequalities generated,

NCCS : number of capacitated cutset inequalities generated,

NFCS : number of flow-cutset inequalities generated,

NC : number of clique inequalities generated,

NCo : number of cover inequalities generated,

NMSII : number of min set II inequalities generated,

nodes : number of nodes in the Branch-and-Cut tree,

o/p : number of problem solved to optimality over number of tested

instances (only for instances with randomly generated traffic),

Gap : the relative error between the best upper bound (optimal

solution if the problem has been solved to optimality) and the lower

bound obtained at the root node of the Branch-and-Cut tree

(before branching),

TT : total CPU time in h:m:s,

TTsep : CPU time spent in performing the constraints separation, in seconds.

6.2.2 Effectiveness of the constraints

Before giving the results of our experiments for the instances described above, we
first propose to evaluate the impact of the valid inequalities that we use within the
Branch-and-Cut algorithm. To this end, we show some numerical results obtained by
considering, on one hand the basic cut formulation (5.1)-(5.7), and adding the valid
inequalities on the other hand. We have tested our approach on a subset of instances
whose topologies are pdh, polska, nobel_us, newyork and geant. We rely here on three
criteria to make our comparison: the gap, the number of nodes in the Branch-andt-Cut
tree, and the CPU time computation. The results reported in Table 6.1.

Table 6.1 shows results obtained for graphs having up to 22 nodes, and 72 arcs. The
number of commodities ranges from 2 to 14. It appears clearly from this table that
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Basic B&C B&C with valid inequalities

Instance |V2| |A2| |K| Gap Nodes TT Gap Nodes TT

pdh 10 68 2 0.00 1 13 0.00 1 5

pdh 10 68 4 22.22 115 254 0.00 1 16

pdh 10 68 6 11.17 71 140 3.00 3 541

pdh 10 68 8 20.17 10205 7071 6.11 10 1514

pdh 10 68 10 25.64 34709 18000 22.54 6 1593

pdh 10 68 12 17.54 2454 3573 4.63 104 4833

pdh 10 68 14 1.39 31 560 0.00 1 133

polska 12 36 2 0.00 1 5 0.00 1 4

polska 12 36 4 23.18 462 726 0.00 1 49

polska 12 36 6 0.00 1 51 0.00 1 44

polska 12 36 8 29.92 40201 18000 10.68 144 2299

polska 12 36 10 13.40 34896 18000 3.95 56 2059

polska 12 36 12 36.75 30954 18000 13.19 3114 18000

polska 12 36 14 34.48 14983 18000 8.27 1115 13768

nobel_us 14 42 2 0.00 1 21 0.00 1 20

nobel_us 14 42 4 31.33 58 308 0.00 1 140

nobel_us 14 42 6 0.00 1 62 0.00 1 59

nobel_us 14 42 8 34.93 17921 18000 2.72 3 978

nobel_us 14 42 10 36.89 15682 18000 7.74 205 12653

nobel_us 14 42 12 41.20 5479 18000 7.77 322 12016

nobel_us 14 42 14 42.95 10937 18000 28.33 513 18000

newyork 16 98 2 0.00 1 25 0.00 1 51

newyork 16 98 4 33.09 2421 5514 0.00 1 273

newyork 16 98 6 20.47 380 1459 0.00 1 270

newyork 16 98 8 35.52 19739 18000 0.00 1 634

newyork 16 98 10 13.87 44 306 3.22 11 6102

newyork 16 98 12 33.09 18179 18000 11.65 88 18000

newyork 16 98 14 14.97 7769 9942 0.00 1 1064

geant 22 72 2 0.00 1 17 0.00 1 38

geant 22 72 4 13.33 40 436 0.00 1 264

geant 22 72 6 27.65 4126 4773 0.00 1 305

geant 22 72 8 42.76 25860 18000 0.22 3 7577

geant 22 72 10 15.18 24635 18000 3.57 17 8716

geant 22 72 12 47.27 20686 18000 5.75 2 18000

geant 22 72 14 41.46 17057 18000 6.23 14 18000

Table 6.1: The impact of adding valid inequalities

the formulation with valid inequalities performs much more better than the basic for-
mulation on all the instances. In fact, we first notice from Table 6.1 that using valid
inequalities enables solving some instances that are not solved to optimality when con-
sidering the basic formulation. See for example instance nobel_us with 8 commodities,
that is not solved to optimality within 5 hours when using the basic formulation. In-
troducing valid inequalities allows to solve this instances in less than one hour. Also
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we can see that both gap value and CPU time are smaller when adding the valid in-
equalities, for all the considered instances. In fact, 17 among the considered instances
are solved to optimality at the root node by using valid inequalities, while only 7 in-
stances are solved at the root node without adding cuts. Furthermore, observe that the
number nodes in the Branch-and-Cut tree decreases drastically when introducing valid
inequalities. For example, see instance geant_8, where the Branch-and-Cut algorithm
for basic formulation explores no less than 25860 nodes, while this number drops to 3
nodes, by adding valid inequalities.

All these observations lead us to conclude that using valid inequalities to strengthen
linear relaxation of (5.1)-(5.7) is a key issue to solve efficiently OMBND problem. As
we could see, this enabled to improve significantly the gap value, number of Branch-
and-Cut tree as well as the time for computation.

Table 6.2 shows more accurately the gap evolution when adding the valid inequalities
progressively. In fact, the column Gap(0) contains the gap values for basic formulation
and Gap(6) contains the gap value when considering all the cuts. The remaining
columns are intermediate gap values obtained by considering an additional family of
valid inequalities. The constraints are separated in the order given in section 6.1. It
appears from Table 6.2 that the gap value decreases when adding valid inequalities.
However, it seems that some inequalities are more efficient than other in strengthening
the linear relaxation. In fact, the most significant improvement is observed when
adding Min Set I inequalities (see columns Gap(0) and Gap(1)). Adding capacitated
cutset and flow-cutset inequalities also allows to improve the gap value, while only
a slight gain is notified when adding the remaining families of valid inequalities. In
practice, their interest lies in the number of nodes in the Branch-and-Cut tree, which
gets smaller as further families of valid inequalities are being separated.

In what follows, we will get benefit from these valid inequalities to solve realistic and
real instances.

6.2.3 Realistic instances

Our first series of experiments concerns the SNDlib topologies with randomly generated
traffic commodities. The instances considered here have graphs with 10 up to 24
nodes and the graphs vary from sparse (like for polska) to highly meshed (like for ta1)
topology. The number of commodities for each size of graph ranges from 2 to 18 with
values generated randomly in the interval ]ǫC, C], with ǫ = 0.2 for these instances. For
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Table 6.2: Effectiveness of the cuts - Gap evolution

Instance V A K Gap(0) Gap(1) Gap(2) Gap(3) Gap(4) Gap(5) Gap(6)

pdh 10 68 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00

pdh 10 68 4 22.22 0.00 0.00 0.00 0.00 0.00 0.00

pdh 10 68 6 11.17 3.00 3.00 3.00 3.00 3.00 3.00

pdh 10 68 8 20.17 6.11 6.11 6.11 6.11 6.11 6.11

pdh 10 68 10 25.64 22.67 22.54 22.54 22.54 22.54 22.54

pdh 10 68 12 17.54 6.63 4.76 4.63 4.63 4.63 4.63

pdh 10 68 14 1.39 0.29 0.00 0.00 0.00 0.00 0.00

polska 12 36 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00

polska 12 36 4 23.18 3.64 0.00 0.00 0.00 0.00 0.00

polska 12 36 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00

polska 12 36 8 29.92 12.38 12.36 10.68 10.68 10.68 10.68

polska 12 36 10 13.40 4.03 3.95 3.95 3.95 3.95 3.95

polska 12 36 12 36.75 13.50 13.50 13.47 13.19 13.19 13.19

polska 12 36 14 34.48 15.63 9.60 8.27 8.27 8.27 8.27

nobel_us 14 42 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nobel_us 14 42 4 31.33 0.00 0.00 0.00 0.00 0.00 0.00

nobel_us 14 42 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nobel_us 14 42 8 34.93 3.00 2.72 2.72 2.72 2.72 2.72

nobel_us 14 42 10 36.89 16.00 8.84 8.16 7.74 7.74 7.74

nobel_us 14 42 12 41.20 41.13 41.13 8.10 7.77 7.77 7.77

nobel_us 14 42 14 42.95 33.82 32.41 28.33 28.33 28.33 28.33

newyork 16 98 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00

newyork 16 98 4 33.09 0.00 0.00 0.00 0.00 0.00 0.00

newyork 16 98 6 20.47 0.00 0.00 0.00 0.00 0.00 0.00

newyork 16 98 8 35.52 0.00 0.00 0.00 0.00 0.00 0.00

newyork 16 98 10 13.87 4.27 3.27 3.27 3.27 3.22 3.22

newyork 16 98 12 33.09 24.08 11.97 11.65 11.65 11.65 11.65

newyork 16 98 14 14.97 1.35 0.00 0.00 0.00 0.00 0.00

geant 22 72 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00

geant 22 72 4 13.33 0.00 0.00 0.00 0.00 0.00 0.00

geant 22 72 6 27.65 0.00 0.00 0.00 0.00 0.00 0.00

geant 22 72 8 42.76 3.11 1.11 0.22 0.22 0.22 0.22

geant 22 72 10 15.18 5.54 4.14 4.14 3.57 3.57 3.57

geant 22 72 12 47.27 16.96 8.71 8.46 8.46 5.85 5.75

geant 22 72 14 41.46 17.60 14.37 13.42 13.42 6.23 6.23

each instance size, we have generated 3 examples. The results are reported in Table
6.3.

It appears from Table 6.3 that 20 over 45 groups of instances have been solved to
optimality within the fixed time limit. Besides, only 6 groups of instances among the
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Figure 6.2: Polska network

remaining groups could not obtain any optimal solution over the three tested instances,
within 5 hours. Observe that no more than 4 groups of instances among those solved to
optimality have a gap value greater than 20%. For the remaining groups of instances,
apart from newyork with |K| = 6, the gap does not exceed 30%.

Table 6.3 also shows that the difficulty of solving an instance is not only related to
its size, but also to the nature of the commodities. For example, instances polska with
12 commodities are solved to optimality within the time limit, while 2 over 3 instances
polska with 10 commodities are solved to optimality. Even though the second group
of instances are larger in size, they are solved more easily. In fact, OMBND problem
presents the same behaviour as CSLND problem (see Chapter 4) in terms of difficulty
of instance. Moreover, it should be emphasized again that parallel arcs of G1 are
considered as additional commodities. Indeed, since two levels of routing must be
performed, there are |K| + |W |(n1(n1 − 1)) commodities, where n1 = |V1|, |K| being
the traffic demands and |W |(n1(n1− 1)) the number of subbands that can be installed
in G1.

Remark also that an important number of min set I, capacitated cutset and flows-
cutset inequalities are being generated along the Branch-and-Cut tree, which means
that they are helpful for solving the problem. However, the number of clique and cover
inequalities separated is less high. This can be explained by the fact that each arc of
G1 potentially induces the same cliques (respectively cover subsets), since it depends
on the commodities size. Thus, if all the commodities are "small" regarding to the
capacity of a subband, then clique and eventually cover inequalities are unlikely to
appear.

Figure 6.2 shows the topology of a realistic instance having 12 nodes and 36 arcs,
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Figure 6.3: Design solution in G1
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Figure 6.4: Routing in G2

namely polska. Figures 6.3 and 6.4 depict a partial description of the solution obtained
for polska graph with |K| = 10 and |W | = 5. In particular, Figure 6.3 shows the design
solution in terms of number of subbands installed in G1. In fact, a link is represented
in this graph for each installed subband. This solution requires only one subband per
link. Note that the commodities use these links for their routing. We can see in Figure
6.4 the solution in term of routing for the subbands. It is easy to check that a path in
G2 is associated with each link supporting a subband in G1.

The second series of experiments that we have conducted concerns SNDlib instances
with realistic traffic commodities. We have considered instances with graphs having
10 to 35 nodes while the commodities number varies from 2 to 20 commodities, 2 to
10 commodities for larger instances. A total of 70 instances have been tested. Among
them, 38 instances have been solved to optimality within the time limit. The remaining
instances, often having more than 18 commodities could not reach the optimal solution
after 5 hours of computation. Also we can see that, for the smaller instances that could
be solved to optimality, the gap value does not exceed 30% are the number of nodes
in the Branch-and-Cut tree remains reasonable. 35 among the instances for which the
algorithm provided an optimal solution have been solved in less than 3 hours.

Similarly to random instances, some instances may be more difficult to solve than
other instances, even larger in size. In fact, we could previously see that the proportion
occupied by a traffic commodity in a subband capacity was a key factor in the difficulty
of an instance. Yet this does not totally explain the algorithm behaviour for some
instances. For example, instances atlanta seem to be harder to solve than newyork
which are larger in size. In fact, the algorithm could not reach the optimal solution
from 8 commodities for atlanta instances. This behaviour is in reality caused by some
conflict that may arise in the subband routing, because of the disjunction constraints.
Actually, the topology of atlanta instances corresponds to a graph that is not so dense,
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Instance |V2| |A2| |K| Opt NcI NcII NmsI NCCS NFCS NC NCo NmsII Nodes Gap TT

pdh 10 68 2 3/3 24.00 156.33 7.33 1.00 0.00 0.00 0.00 0.00 13.33 9.87 29.70

pdh 10 68 4 3/3 114.33 1133.33 57.67 9.33 8.33 0.00 0.67 0.00 151.00 28.51 393.80

pdh 10 68 6 3/3 134.66 643.33 40.67 19.33 31.67 31.67 1.33 0 71.33 12.33 262.48

pdh 10 68 8 3/3 426.67 2405.33 92.00 60.00 800.00 4.00 18.00 1.00 730.33 24.44 3145.93

pdh 10 68 10 3/3 247.00 832.67 74.33 33.00 83.67 2.33 0.67 0.00 40.67 7.19 350.93

pdh 10 68 12 3/3 625.67 1504.00 150.67 72.33 1389.67 31.67 6.33 1.33 194.67 10.29 2244.68

pdh 10 68 14 3/3 450.33 1030.00 113.00 57.33 1031.33 11.00 6.33 0.00 63.33 5.95 1259.59

pdh 10 68 16 2/3 478.67 1047.33 133.00 23.00 7021.67 17.33 3.67 0.67 191.67 2.83 6061.61

pdh 10 68 18 0/3 3602.67 1703.33 124.67 40.67 11683.67 12.00 815.00 0.00 493.33 6.54 18000.00

polska 12 36 2 3/3 38.67 292.67 22.00 1.67 2.67 0.00 0.00 0.00 8.33 7.05 26.54

polska 12 36 4 3/3 122.00 1187.00 55.67 8.67 15.33 0.00 1.67 0.00 70.33 16.90 264.58

polska 12 36 6 3/3 164.33 1508.00 35.00 21.33 57.00 0.33 0.00 0.00 168.67 11.62 471.90

polska 12 36 8 3/3 435.67 1817.67 89.00 59.00 490.00 4.00 4.33 0.00 161.00 12.06 872.21

polska 12 36 10 2/3 536.33 2782.33 185.33 61.33 6473.33 12.00 1.67 0.00 1263.67 9.08 6142.68

polska 12 36 12 3/3 1071.67 3042.00 197.33 81.33 5191.00 57.00 29.67 0.33 549.33 6.30 6224.30

polska 12 36 14 2/3 1019.67 3896.33 259.67 73.67 7919.00 31.33 42.67 0.00 918.33 11.53 9440.76

polska 12 36 16 2/3 955.33 3484.33 166.33 62.33 7991.67 30.67 15.33 0.33 852.33 13.81 10248.26

polska 12 36 18 2/3 1234.67 3881.33 286.00 46.00 7527.67 78.33 14.67 0.33 1098.00 8.77 12166.49

nobel_us 14 42 2 3/3 46.33 476.00 3.67 0.67 0.00 0.00 0.00 0.00 20.67 13.78 127.57

nobel_us 14 42 4 3/3 174.00 1812.33 74.67 13.00 4.33 0.00 0.00 0.00 127.33 15.72 807.94

nobel_us 14 42 6 3/3 228.33 1241.00 34.33 19.00 149.33 1.67 0.67 0.00 116.33 9.22 1001.01

nobel_us 14 42 8 3/3 715.00 2873.33 195.33 92.33 566.33 13.33 5.67 0.33 366.00 12.20 3429.44

nobel_us 14 42 10 2/3 1504.67 5064.67 214.00 120.67 4303.33 30.67 34.67 0.67 1388.67 19.05 14031.90

nobel_us 14 42 12 2/3 1529.00 4793.00 294.33 93.67 4377.67 76.00 1.67 2.33 1350.67 14.83 15391.00

nobel_us 14 42 14 0/3 1543.33 4569.33 256.67 116.33 8392.33 59.00 19.33 1.00 877.33 26.14 18000.00

nobel_us 14 42 16 1/3 1755.33 5120.33 301.67 105.33 4693.33 114.33 0.67 0.00 828.33 16.35 17840.40

nobel_us 14 42 18 1/3 1440.67 3590.33 318.33 55.00 8551.00 78.67 8.33 0.00 211.33 13.53 15614.03

newyork 16 98 2 3/3 23.33 205.67 15.00 0.00 0.00 0.00 0.00 0.00 7.33 5.73 78.60

newyork 16 98 4 3/3 327.67 3683.00 57.33 32.33 60.00 0.00 2.33 0.00 1185.00 30.14 5032.24

newyork 16 98 6 2/3 686.00 5251.33 95.00 50.33 334.33 0.67 7.33 0.00 1033.33 38.88 10273.94

newyork 16 98 8 3/3 720.67 2982.67 115.00 56.00 651.00 10.33 6.00 0.33 238.00 21.77 6384.00

newyork 16 98 10 2/3 664.00 2763.67 186.33 43.67 1554.67 9.67 3.33 0.67 315.00 14.74 8385.19

newyork 16 98 12 1/3 1102.33 4453.67 217.00 104.00 915.33 52.00 8.00 0.00 672.33 24.31 13484.55

newyork 16 98 14 2/3 1721.00 4043.33 245.33 109.00 1822.67 38.67 4.33 0.00 308.67 15.01 17578.47

newyork 16 98 16 2/3 911.67 3468.00 170.67 107.67 1484.33 16.67 8.33 0.00 291.00 10.37 14519.00

newyork 16 98 18 1/3 1428.33 3492.00 264.33 105.00 1924.00 48.00 6.33 0.33 330.00 6.35 16097.23

ta1 24 102 2 3/3 27.00 258.33 30.67 0.33 0.00 0.00 0.00 0.00 129.00 8.27 430.00

ta1 24 102 4 1/3 377.67 4749.33 131.67 14.00 16.67 0.00 2.33 0.00 75.33 16.26 653.67

ta1 24 102 6 1/3 464.67 4377.33 255.33 39.67 19.00 0.33 0.33 0.00 133.00 9.98 15096.67

ta1 24 102 8 0/3 937.00 6481.33 426.00 115.67 53.67 2.33 0.00 0.00 60.00 13.42 18000.00

ta1 24 102 10 2/3 169.00 3551.67 19.33 32.67 82.33 0.33 0.00 0.00 2.33 7.10 810.45

ta1 24 102 12 2/3 2.67 287.67 5.33 0.00 0.00 0.00 0.00 0.00 15.00 20.26 357.88

ta1 24 102 14 0/3 779.89 6955.22 148.11 166.00 199.00 19.00 4.67 0.00 146.00 14.74 18000.00

ta1 24 102 16 0/3 249.33 3414.00 23.33 33.00 93.00 4.00 0.33 0.00 515.00 21.16 18000.00

ta1 24 102 18 0/3 996.33 10244.33 157.67 150.33 1187.33 45.33 1.67 0.00 185.67 15.51 18000.00

Table 6.3: Branch-and-Cut results for SNDlib instances with randomly generated traffic
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which makes more challenging to find a workable routing for the subbands that does
not yield a too large cost. Besides, it should be pointed out that CPU time spent by the
algorithm in performing separation of valid inequalities can be important. In fact, we
noticed that this time could reach more than 50% of the tota CPU time of computation
(see for example instances newyork with 10 and 12 commodities). More precisely, we
noticed that the separation procedure for generating flow-cutset inequalities is the most
time consuming routine.

In what follows, we intend to propose an alternative approach to get full advantage
of our valid inequalities in solving real instances of networks provided by Orange Labs.

6.2.4 Real instances

Results given in previous section for SNDlib instances with both random and realistic
commodities have shown that, even though valid inequalities added are very helpful, it
still difficult to tackle real instances by using an approach fully oriented on cuts. Ac-
tually, since CPU time dedicated to identify violated valid inequalities may constitute
an important part of the total time, we propose a second Branch-and-Cut algorithm
using a flow based formulation for the problem. This allows to save the time dedicated
to separate basic cut constraints, since they are replaced by flow conservation con-
straints in the compact formulation. This formulation is given in Chapter 7, and holds
a polynomial number of constraints, while the variables are the same as in formulation
(5.1)-(5.7). The separation routines as well as the order for inserting valid inequalities
remains the same as in previous Branch-and-Cut algorithm.
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Figure 6.5: A real instance with 9 nodes
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Instance |V2| |A2| |K| NcI NcII NmsI NCCS NFCS NC NCo NmsII Nodes Gap TT TTsep

pdh 10 68 2 6 44 0 0 0 0 0 0 1 0.00 8 0

pdh 10 68 4 40 158 119 0 0 0 0 0 1 0.00 23 0

pdh 10 68 6 123 363 204 6 30 0 0 0 1 0.00 74 10

pdh 10 68 8 2435 1808 2000 7 64 0 1 0 245 6.00 5191 42

pdh 10 68 10 5861 1082 2000 8 217 0 3 0 2 13.40 4500 340

pdh 10 68 12 1498 1454 540 15 2004 0 0 0 112 10.05 4311 1167

pdh 10 68 14 1494 1738 647 24 2004 0 0 0 177 2.50 4939 1312

pdh 10 68 16 3141 1241 2000 12 2002 0 1 0 88 8.88 18000 1433

pdh 10 68 18 4317 2298 2001 10 2002 0 0 0 869 16.68 18000 1178

pdh 10 68 20 3641 1840 2000 6 164 0 1 0 733 7.40 18000 122

nobel_us 14 42 2 17 86 0 0 0 0 0 0 1 0.00 6 0

nobel_us 14 42 4 135 1385 51 12 4 0 0 0 1 12.22 455 285

nobel_us 14 42 6 52 254 0 0 0 0 0 0 1 0.00 21 2

nobel_us 14 42 8 446 1945 198 60 47 12 0 0 33 18.84 502 258

nobel_us 14 42 10 1759 5245 180 147 8795 41 56 0 67 17.74 1239 654

nobel_us 14 42 12 1221 4807 319 76 4465 56 3 5 111 11.18 1427 680

nobel_us 14 42 14 1706 4514 298 109 7611 123 0 1 210 5.67 1443 740

nobel_us 14 42 16 189 10240 167 16 1129 7 0 0 254 14.33 1533 590

nobel_us 14 42 18 540 10078 141 60 6813 78 6 0 826 17.00 5438 2845

nobel_us 14 42 20 1528 9023 263 66 9378 57 2 0 126 19.37 12343 4528

atlanta 15 44 2 165 2682 0 12 2000 0 0 0 2493 21.63 4366 1899

atlanta 15 44 4 1519 5718 363 26 2000 0 0 0 2972 25.71 9247 2792

atlanta 15 44 6 2951 5227 2001 22 61 0 0 0 315 3.94 3580 78

atlanta 15 44 8 2277 9661 786 31 2001 1 0 0 3065 27.20 18000 8791

atlanta 15 44 10 3680 9823 2005 10 0 0 0 0 4363 40.41 18000 4

atlanta 15 44 12 4975 8260 2001 22 0 0 0 0 11823 41.96 18000 13

atlanta 15 44 14 3655 9214 2004 10 0 0 0 0 4379 48.72 18000 4

atlanta 15 44 16 4148 8943 2001 10 0 0 0 0 2531 34.14 18000 3

atlanta 15 44 18 2354 9801 467 9 2004 0 0 0 1827 33.81 18000 6760.46

atlanta 15 44 20 5708 9915 2001 20 0 0 0 0 2681 34.07 18000 6

newyork 16 98 2 13 36 0 0 0 0 0 0 1 0.00 9 0

newyork 16 98 4 28 95 0 0 0 0 0 0 1 0.00 21 1

newyork 16 98 6 33 148 0 0 0 0 0 0 1 0.00 28 3

newyork 16 98 8 118 687 9 0 0 0 0 0 35 10.53 1275 974

newyork 16 98 10 658 3041 108 60 368 7 0 0 281 9.58 9081 6686

newyork 16 98 12 645 2203 117 41 711 1 0 0 94 20.29 9122 5384

newyork 16 98 14 1047 2708 233 96 871 7 0 1 226 14.70 18000 12322

newyork 16 98 16 551 10100 149 63 4564 2 0 0 359 25.86 10082 2319

newyork 16 98 18 1569 10153 312 175 11271 5 0 0 512 25.88 18000 4768

newyork 16 98 20 1328 10245 261 103 11389 5 0 0 264 27.94 18000 3171

nobel_germany 17 52 2 0 24 0 0 0 0 0 0 1 0.00 4 0

nobel_germany 17 52 4 19 1684 1 0 0 0 0 0 862 0.00 697 69

nobel_germany 17 52 6 183 6353 14 33 39 0 0 0 1599 41.20 2674 377

nobel_germany 17 52 8 210 6872 21 48 129 0 0 0 945 41.60 4460 765

nobel_germany 17 52 10 244 7634 113 66 234 8 0 0 1124 40.86 5700 829

france 25 90 2 33 101 0 0 0 0 0 0 1 0.00 43 1

france 25 90 4 172 1074 0 19 2 0 0 0 17 25.00 938 505

france 25 90 6 1037 4912 0 95 105 5 0 0 92 37.50 5952 2875

france 25 90 8 1934 6277 0 151 176 12 0 0 128 18.94 10230 5184

france 25 90 10 1118 4079 0 119 16 3 0 0 139 11.24 18000 5507

india 35 160 2 0 42 0 0 0 0 0 0 4 30.00 295 2

india 35 160 4 68 2029 10 0 0 0 0 0 61 36.75 17230 540

india 35 160 6 38 2451 15 6 219 0 0 0 2 47.00 18000 680

india 35 160 8 1146 5074 0 143 23 3 0 0 2 42.34 18000 5386

Table 6.4: Branch-and-Cut results for SNDlib instances with realistic traffic



6.2 Computational results 187

Instance |V2| |A2| |K| NMSI NCCS NFCS NC NCo NMSII Nodes Gap TT

Bretagne_10 9 20 15 36 39 597 0 2 0 42 29.49 107

Bretagne_10 9 20 20 36 38 353 8 6 0 24 35.34 104

Bretagne_10 9 20 25 31 30 1344 0 0 0 8 40.26 18000

Bretagne_10 9 20 30 30 23 2341 0 0 0 4 33.77 18000

Bretagne_10 9 20 35 22 16 960 0 0 0 2 48.48 18000

Bretagne_10 9 20 42 39 20 590 2 0 0 12 38.42 18000

Bretagne_12 9 20 5 6 1 43 0 5 0 368 32.17 37

Bretagne_12 9 20 10 126 31 165 0 103 0 4483 43.28 3044

Bretagne_12 9 20 15 24 24 951 0 4 1 22 44.53 76

Bretagne_12 9 20 20 42 41 98 0 11 0 22 48.63 46

Bretagne_12 9 20 30 24 35 443 0 2 0 28 47.68 18000

Bretagne_12 9 20 35 33 32 256 0 0 0 25 38.98 18000

Bretagne_12 9 20 42 118 23 122 0 0 0 787 24.50 18000

Bretagne_25 9 20 5 28 14 373 0 3 0 1888 26.00 150

Bretagne_25 9 20 10 34 24 399 0 0 0 2101 24.20 340

Bretagne_25 9 20 15 49 74 652 0 11 0 249 28.33 1036

Bretagne_25 9 20 20 73 44 821 5 6 0 327 33.33 1100

Bretagne_25 9 20 30 112 81 789 11 4 0 23509 39.93 18000

Bretagne_25 9 20 42 139 66 1203 0 4 0 16704 24.56 18000

Bretagne_10 22 52 5 3 3 0 0 0 0 1 0.00 22

Bretagne_10 22 52 10 28 8 164 4 0 0 32 34.00 302

Bretagne_10 22 52 15 21 8 347 0 0 0 38 41.30 1242

Bretagne_10 22 52 20 21 4 5 0 0 0 14 36.96 247

Bretagne_10 22 52 30 28 28 1076 1 0 0 16 47.71 18000

Bretagne_12 22 52 5 31 17 376 0 24 0 5776 38.71 12138

Bretagne_12 22 52 10 67 49 6192 4 47 1 2082 44.77 18000

Bretagne_12 22 52 15 6 0 3 0 5 0 38 43.76 209

Bretagne_12 22 52 20 36 17 3825 1 13 2 60 44.78 18000

Bretagne_12 22 52 20 26 33 1483 0 0 0 16 37.96 18000

Bretagne_25 22 52 5 511 419 4465 21 14 3 7149 31.00 18000

Bretagne_25 22 52 10 9 22 3308 0 0 4 273 49.00 18000

Bretagne_25 22 52 15 38 12 9825 0 0 21 876 53.00 18000

Table 6.5: Branch-and-Cut results for real instances

The tested instances have graphs with 9 to 45 nodes and a number of commodities
that varies between 5 and 42 for the smaller instances. Figure 6.5 shows the topology
of the first group of instances. In particular, we have considered |W | = 4 for all the
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instances, and three possible subband capacities, namely C = 10 Gbit/s, 12.5 Gbit/s
and 25 Gbit/s. Table 6.5 shows the results obtained for two over the three families of
instances considered. We further give and example of solution obtained when solving
an instance with 45 nodes and 10 commodities.
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Figure 6.6: A real instance with 45 nodes and |K| = 10

It appears from Table 6.5 that 16 instances among the 32 tested instances were solved
to optimality within the CPU time limit. Except for Bretagne_12 with 5 commodities,
an optimal solution could be obtained within one hour for all the solved instances.
Several observations can be maid based on these results. First concerning instances
Bretagne with 9 nodes, we can see that we get better results when using a larger
subband capacity C. This is due to the topology of these instances which is quite
sparse (see Figure 6.5). Basically, finding a feasible routing for the commodities by
using less subbands is a challenging task because of the graph topology. Indeed, the
disjunction constraints make difficult to reuse the same paths in G2 for the installed
subbands. Besides, when C = 25 Gbit/s, commodities are more likely to be packed in
the same subbands, which makes easier to find a good solution within the fixed time
limit.

We noticed from Table 6.5 that results for instances with 22 nodes gets better when
C = 10 Gbit/s. In fact, since the graph holds more nodes and arcs, it offers more pos-
sible paths, and hence more routing alternatives for both commodities and subbands.
Finally, we notice that an important number of cover inequalities are generated for
these instances. In fact, the traffic commodities here are relatively small and tends to
have the same size. Cover inequalities are then more expected to appear than clique
based inequalities.
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Figure 6.8: Routing in G2

Figure 6.6 shows a real instance related to the backhaul network of Bretagne area.
This instance consists of 45 nodes and 10 commodities that must be routed. The
number of available subbands is |W | = 4 and the capacity of each subband is set to C

= 25 Gbits/s. The instance have been solved by the Branch-and-Cut algorithm within
3 hours. The optimal solution obtained for this instance is depicted in Figure 6.7 and
Figure 6.8.

6.3 Concluding remarks

In this chapter we have described a Branch-and-Cut algorithm to solve efficiently
OMBND problem. This algorithm is based on the polyhedral results introduced in
Chapter 5. We have first presented an overview of the main steps in the algorithm,
then we discussed the separation problems associated with valid inequalities introduced
in the previous chapter. We have tested our approach on SNDlib instances with realistic
and randomly generated traffic commodities. We could show the gain provided by the
separated valid inequalities regarding to the basic cut formulation. In particular, Min
Set I, capacitated cutset and flow-cutset inequalities reduce the integrality gap at the
root node, and solve OMBND problem more effectively. The remaining classes of valid
inequalities improve the Branch-and-Cut algorithm but not significantly. However, it
seems that more sophisticated separation routines are necessary to get full advantage
of these valid inequalities without paying too much in CPU time.

Alternatively, these valid inequalities are further used within a Branch-and-Cut
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framework, to strengthen the flow-based formulation given in Chapter 7. This ap-
proach enabled to tackle real instances provided by Orange Labs, and to get good
solutions for the problem within few hours. Also it could be of great interest to use a
primal heuristic to get quickly good feasible solutions, and being able to handle larger
instances.

In the subsequent, we discuss further modelling approaches for OMBND problem and
present new algorithms for the problem using paths. We study the underlying column
generation procedures and embed them within a Branch-and-Price framework.
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In this chapter, we present a column generation approach to tackle the OMBND prob-
lem. First we propose a compact formulation for the problem that is used to deduce a
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path formulation, obtained by a Dantzig-Wolfe decomposition. This path formulation
holds a polynomial number of constraints, and two families of path variables that may
be exponential. We then devise a Branch-and-Price algorithm using a double column
generation procedure to solve the path formulation. A further "aggregated" path formu-
lation is presented for the problem. We manage to solve this formulation using a second
Branch-and-Price algorithm based on a two-stage column generation. Both approaches
are then compared empirically, and some experiments are conducted on random and
realistic instances to show their efficiency.

7.1 Path formulation

In this section, we give two integer linear programming formulations based on path
variables. For this purpose, we first introduce a compact (node-arc) formulation for
the OMBND problem, that will be the starting point of a Dantzig-Wolfe decomposition
to get path formulations.

7.1.1 Compact formulation

Let us first introduce some necessary notations. In this formulation, we use the families
of variables introduced in formulation (5.1)-(5.7) (see Chapter 5). Recall that y ∈
{0, 1}|A1||W | are referred to as design variables, and are such that for each e ∈ A1 and
for each w ∈ W

yew =

{
1, if w is installed on e,

0, otherwise.

Also, let z ∈ RA1×W×A2 be such that for each arc e ∈ A1, for each subband w ∈ W

and for each arc a ∈ A2

zewa =

{
1, if a belongs to a path in G2 associated with pair (e, w),

0, otherwise.

Moreover, let x ∈ RK×A1×W such that for each commodity k ∈ K, for each arc e ∈ A1

and for each subband w ∈ W

xk
ew =

{
1, if k uses (e, w) for its routing,

0, otherwise.
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We will denote by m1 and m2 the number of arcs of G1 and G2, respectively. That is
to say, m1 = |A1| and m2 = |A2|. Furthermore, for each node s in V1, we denote by
δ+(s) (resp. δ−(s)) the set of arcs in A1 outgoing (resp. incoming) from s. Similarly,
we denote by δ+(s′) (resp. δ−(s′)) the set of arcs in A2 outgoing (resp. incoming) from
s′, for each node s′ in V2.

Consider then the following integer programming formulation:

min
∑

e∈A1

∑

w∈W

c(w)yew

∑

e∈δ−(s)

∑

w∈W

xk
ew −

∑

e∈δ+(s)

∑

w∈W

xk
ew =






1, if s = dk,

−1, if s = ok,

0, otherwise,

∀k ∈ K,

∀s ∈ V1,
(7.1)

∑

k∈K

Dkxk
ew ≤ Cyew, ∀e ∈ A1, w ∈ W, (7.2)

∑

a∈δ−(s′)

zewa −
∑

a∈δ+(s′)

zewa =





yew, if s′ = v′,

−yew, if s′ = u′,

0, otherwise,

∀e = (u, v) ∈ A1,

∀w ∈ W,

∀s′ ∈ V2,

(7.3)

∑

e∈A1

zewa ≤ 1, ∀w ∈ W, ∀a ∈ A2, (7.4)

0 ≤ xk
ew ≤ 1, xk

ew ∈ {0, 1}, ∀k ∈ K, e ∈ A1, w ∈ W, (7.5)

0 ≤ yew ≤ 1, yew ∈ {0, 1}, ∀e ∈ A1, w ∈ W, (7.6)

0 ≤ zewa ≤ 1, zewa ∈ {0, 1}, ∀e ∈ A1, w ∈ W, a ∈ A2. (7.7)

In this formulation, there are m1|W | binary design variables, |K|m1|W | flow variables
for the routing of commodities in G1, and m1|W |m2 flow variables for the routing of
installed subbands in G2. The objective is to minimize the total cost of the design,
which is the overall cost driven by the subbands installation.

Equalities (7.1) are the flow conservation constraints for commodities of K. They
ensure that a path is associated with each k ∈ K, between its origin node and its
destination node, by using arcs of A1 and subbands installed therein. They will be re-
ferred to as commodities routing constraints. Inequalities (7.2) are capacity constraints
for the subbands. They guarantees that the flow using a certain arc does not exceed
the capacity of any subband carried by that arc. Moreover, such a constraint, as we
could see in previous chapters, ensures that a feasible solution can be obtained by in-
stalling enough subbands on G1. Equalities (7.3) are the flow conservation constraints
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for the routing of installed subbands. They ensure that a path in G2 is associated with
each pair (e, w) ∈ A1 ×W , between nodes corresponding to the extremities of e. Also
recall that inequalities (7.4) express the disjunction constraints for the subbands of
W . Finally, (7.5) to (7.7) are the trivial and integrity constraints associated with the
variables of the formulation.

Note that the linear relaxation of this formulation is obtained by considering inequal-
ities

0 ≤ xk
ew ≤ 1, ∀k ∈ K, e ∈ A1, w ∈ W, (7.8)

0 ≤ yew ≤ 1, ∀e ∈ A1, w ∈ W, (7.9)

0 ≤ zewa ≤ 1, ∀e ∈ A1, w ∈ W, a ∈ A2. (7.10)

instead of inequalities (7.5)-(7.7).

It is straightforward to see that integer linear programming formulation (7.1)-(7.7) is
equivalent to OMBND problem. Formulation (7.1)-(7.7) will be referred to as compact
formulation since the variables of the model as well as the constraints, are in polynomial
number.

This model, as well as compact formulation of CSLND problem (see Chapter 3),
suffers from many symmetries due to the large number of possible subbands location,
and routing alternatives for both commodities and subbands. Thus, it is unlikely that
handling the compact formulation by using a Branch-and-Bound approach allows to
solve the problem efficiently, for realistic instances.

Besides, it is quite intuitive and natural to reformulate this model using path vari-
ables. In fact, the compact formulation suggests that underlying structures embedded
in the problem, would benefit from being exploited. Furthermore, as we could see in
Chapter 5, a solution to OMBND problem is essentially given by a set of paths in both
graphs G1 and G2 (corresponding to virtual and physical layer respectively).

In what follows, we will apply a Dantzig-Wolfe decomposition to the compact formu-
lation (7.1)-(7.7) in order to obtain a first path formulation.

7.1.2 Dantzig-Wolfe decomposition

The Dantzig-Wolfe decomposition was originally introduced by Dantzig and Wolfe, in
1960, for solving large scale integer linear programming problems [103]. This technique
becomes now widely used for providing reformulations of ILP problems having specific
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structure, and tighter linear relaxation bounds (see [103, 105] and references therein
for more details on this approach).

We propose here a Dantzig-Wolfe decomposition on the compact formulation (7.1)-
(7.7). However, let us first introduce some necessary notations.

Recall that the subbands installed on arcs of G1 are used independently by the
commodities for their routing. In other words, every subband set up on an arc is
considered as a copy of that arc. Consequently, G1 is such that there exists |W |
parallel arcs between each pair of nodes u, v ∈ V1 × V1. We will re-use the notation
(e, w) ∈ A1 ×W to designate a pair such that w may be installed on e. (e, w) also
denotes the copy having index w, of arc e. It In what follows, we will consider a path
in G2 between two nodes u′, v′ ∈ V2 as a sequence of arcs {a1, a2, . . . , ar}, such that
a1 = (u′, i′), i′ ∈ V2 \ {u′} and ar = (j′, v′), j′ ∈ V2 \ {v′}. Similarly, we define a path
in G1 between nodes u and v as a sequence of pairs {(e1, w1), (e2, w2), . . . , (er, wr)},
where e1 = (u, i), i ∈ V1 \ {u}, er = (j, v), j ∈ V1, and w1, w2, . . . , wr are the copies of
e1, e2, . . . , er used (see Figure 7.1).

w3

w2

w1

v1 v2
w2

w1

w3 v3

v1
w3

w2

w1

w3v2
w2

w1

v3

Figure 7.1: Two non equivalent paths in G1

We then let Πk be the set of paths routing k, computed in graph G1, and using pairs
(e, w) ∈ A1 ×W . By the same way, we denote by Pew the set of paths associated with
(e, w), computed in G2 and using arcs of A2. We define the coefficients aewk (π), e ∈ A1,
w ∈ W , k ∈ K, π ∈ Πk, that indicates whether if a pair (e, w) ∈ A1 ×W belongs
to a path π that may be selected to route k, and 0 otherwise. We also introduce a
coefficient baew(p), for a ∈ A2, e ∈ A1, w ∈ W , p ∈ Pew, that takes the value 1 if arc a

is involved in the path associated with (e, w), and 0 otherwise.

For each path π ∈ Πk, we define the variable xk(π), that takes the value 1 if π is
used for the routing of k, and 0 otherwise. xk will be referred to as commodity path
variables. Also, for each path p ∈ Pew, we define the binary variable zew(p) that takes
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the value 1 if p is selected to be assigned to (e, w), and 0 otherwise. zew will be referred
to as subband path variables. Both families of path variables are linked with the original
"arc" variables. This relationship is given by

xk
ew =

∑

π∈Πk

aewk (π)xk(π), for all k ∈ K, (e, w) ∈ A1 ×W, (7.11)

zewa =
∑

p∈Pew

baew(p)z
ew(p), for all (e, w) ∈ A1 ×W, a ∈ A2. (7.12)

Replacing the right hand-side of equalities (7.11) and (7.12) in formulation (7.1)-(7.7),
yields a new formulation, given in what follows

min
∑

e∈A1

∑

w∈W

c(w)yew

∑

π∈Πk

xk(π) ≥ 1, ∀k ∈ K, (7.13)

∑

k∈K

∑

π∈Πk

aewk (π)Dkxk(π) ≤ Cyew, ∀(e, w) ∈ A1 ×W, (7.14)

∑

p∈Pew

zew(p) ≥ yew, ∀(e, w) ∈ A1 ×W, (7.15)

∑

e∈A1

∑

p∈Pew

baew(p)z
ew(p) ≤ 1, ∀a ∈ A2, w ∈ W, (7.16)

0 ≤ xk(π) ≤ 1, xk(π) ∈ {0, 1}, ∀k ∈ K, π ∈ Πk, (7.17)

0 ≤ yew ≤ 1, yew ∈ {0, 1}, ∀(e, w) ∈ A1 ×W, (7.18)

0 ≤ zew(p) ≤ 1, zew(p) ∈ {0, 1}, ∀(e, w) ∈ A1 ×W,

p ∈ Pew

. (7.19)

By a commonly admitted result in network flow theory, inequalities (7.13) and (7.15)
are equivalent to inequalities (7.1) and (7.3), respectively (see [5]). The remaining
constraints are clearly the same as in (7.1)-(7.7). Inequalities (7.13)-(7.19) constitutes
a path formulation for OMBND problem. Replacing constraints (7.17)-(7.19) by the
following constraints

0 ≤ xk(π) ≤ 1, ∀k ∈ K, π ∈ Πk, (7.20)

0 ≤ yew ≤ 1, ∀(e, w) ∈ A1 ×W, (7.21)

0 ≤ zew(p) ≤ 1, ∀(e, w) ∈ A1 ×W, p ∈ Pew. (7.22)
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gives the linear relaxation of path formulation.

This formulation holds a polynomial number of constraints with the same structure
as in formulation (7.1)-(7.7). However, the number of variables may be exponential.
Indeed, there is a huge number of candidates paths in both graphs G1 and G2. The
column generation is a method that suits well to this kind of formulations.

In what follows, we describe such procedure and apply it how it can be applied to
solve the linear relaxation of (7.13)-(7.19).

7.1.3 Double column generation

Column generation is a technique for solving linear programming formulations having
a huge (exponential) number of variables. This approach consists in solving iteratively
the problem with a subset of columns (path variables). We start the process by solving
the linear program restricted to a subset of variables. Then at each iteration, an
auxiliary (pricing) problem identifies the variables that should enter the current basis.
If the auxiliary problem fails to identify additional variables, then the current solution
is optimal for the linear program with all the variables.

In our case, formulation (7.13)-(7.19) holds two families of path variables, too large
to appear explicitly in the formulation. Those families of variables correspond to paths
computed in two different graphs, by considering different costs on the arcs. Therefore,
we use two pricing problems, each one providing a subset of paths belonging to one of
the families. In what follows, we describe the procedure that is used to generate the
subset of variables that will appear in the initial linear program.

7.1.3.1 Initial solution

We use a heuristic procedure based on an idea presented in [20] to construct a feasible
solution for OMBND problem. This procedure mainly consists in following steps.

Let H = (VH , AH) be a graph corresponding to the solution in terms of design
variables. In other words, H is a sub-graph such that VH = V1, and AH containing
arcs of G1 where at least one subband is installed.

1) We start with AH = ∅,
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2) Then, for each commodity k ∈ K, we try to identify a path in H using the
pre-installed subbands,

3) If such path exists, we associate it with k. Otherwise, we add ak = (ok, dk) to
AH and set up a subband, say wk, over this arc.

4) We associate a path in G2 with the pair (ak, wk) such that none of its sections
has been assigned to subband wk before.

5) If such path does not exists, we replace wk by a subband that has not been used
in previously, and we go back to step 2.

We assume that the set of available subbands W is large enough, so that a feasible
solution, even expensive, can be identified. Moreover, it is clear that paths computed
in H correspond to paths in G1.

Let us denote by P1 and P2, the set of paths identified in H and G2, respectively. We
then start the column generation procedure with a subset of variables corresponding
to paths of P1 ∪ P2. The linear programming formulation (7.13)-(7.16)-(7.20)-(7.22)
restricted to the design variables together with a subset of variables will be referred to
as Restricted Master Problem (RMP).

7.1.3.2 Pricing problems

Now, let us denote by (x∗, y∗, z∗) the solution given by the restricted master problem.
We will denote by α, β, γ and δ the dual variables associated with inequalities (7.13)-
(7.16) of the path formulation. These dual variables are such that αk ∈ R+ for each
k ∈ K, βew ∈ R− and γew ∈ R+ for each (e, w) ∈ A1 ×W , while δaw ∈ R− for each
a ∈ A2, w ∈ W . The reduced cost associated with each path variable xk(π), k ∈ K,
π ∈ Πk is then denoted by rck, and given by the following expression

rck(π) = −(αk +
∑

e∈A1

∑

w∈W

aewk (π)βew) (7.23)

while the reduced cost related to each path variable zew(p), where (e, w) ∈ A1 ×W ,
p ∈ Pew, is denoted by rcew, and is given by

rcew(p) = −(γew +
∑

a∈A2

bewa (p)δaw) (7.24)

Therefore, we define, for each commodity k ∈ K, the pricing problem, as looking for a
path such that rck = min{rck : π ∈ Πk} and rck < 0, or concluding that no such path
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exists. Observe that, for each k ∈ K, and for each path π ∈ Πk, rck is composed by a
fixed term, namely −αk that depends only on k, and a second term, which is related to
(e, w) ∈ A1 ×W . Recall that a path in G1 is supposed to be formed by a sequence of
pairs (e, w) ∈ A1×W , such that w is installed on e. Thus, one may consider every dual
variable βew as a weight settled on the pair (e, w). In consequence,

∑
e∈A1

∑
w∈W βew

might be viewed as the length of the path π. Since we are looking for a path in Πk

that minimizes the function rck, this problem can be seen as a shortest path problem
in the graph G1.

By the same way, we define the pricing problem related to subband path variables
as follows. For each pair (e, w) ∈ A1×W , we wish to identify a path such that rcew =
min{rcew(p) : p ∈ Pew} and rcew < 0, or concluding that no such path exists. Again,
for each pair (e, w) ∈ A1 ×W , and for each path p ∈ Pew, rcew is composed by a fixed
term −γew, and a term depending on arcs of A2. Dual variables δ may be viewed as
weights impacted on arcs of A1. Thus, the pricing problem in this case is equivalent to
a shortest path problem in graph G2.

Remark 7.1 Both pricing problems for commodity and subband path variables can be
solved in polynomial time.

Indeed, since βew < 0 for all (e, w) ∈ A1×W , and δaw < 0, for all a ∈ A2, the weights
on pairs (e, w) and arcs a are non negative. Thus, both pricing problems can be solved
efficiently by using Dijkstra’s algorithm [41].

If the value of the shortest path in G1 is such that rck < 0 for some k ∈ K, then,
at least one commodity path variable should be added to the RMP. Similarly, if the
shortest path in G2 is such that rcew < 0 for some (e, w) ∈ A1 ×W , then at least one
subband path variable has to enter the current basis. If no path variable is identified
by pricing problems (rck > 0, for all k ∈ K, and rcew > 0, for all (e, w) ∈ A1 ×W ),
then the optimal solution of the current linear program is also optimal for the linear
relaxation of path formulation.

Figure 7.2 shows an example of solution obtained by solving linear relaxation of
path formulation. This instance includes a unique commodity going from v1 to v3.
The path in G1 associated with this commodity is given by {(e1, w2), (e2, w1)}. First
section of this routing path, namely (e1, w2), is itself assigned the path {a5, a6, a7} in
G2. Now suppose that we are looking for new path variables to be added to the current
linear programming formulation. Then, Figure 7.3 shows how dual variables may be
distributed on both graphs G1 and G2 to solve the pricing problems.
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Figure 7.2: A solution of the path formulation
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Figure 7.3: Graphs G1 and G2 with dual variables

Observe that, in G1, the pairs (e1, w2), (e2, w1) that are involved in the routing of our
commodity receive the weights −Dkβe1w2 and −Dkβe2w1. The path {(e1, w2), (e2, w1)}
then has a length given by −Dkβe1w2 −Dkβe2w1 . Note that only dual variables related
to pairs (e, w) ∈ A1 × W are distributed on G1 since the fixed term −αk can be
considered after shortest path computation. Similarly, the section (e1, w1) for example
is assigned a path in G2 having weights −δa5w2, −δa6w2 and −δa7w2 . Again, the weights
of arcs in G2 are only given by dual variables related to arcs a. The fixed term −γew

will also be added to the length of shortest path, after it is identified.

The solution provided by LP relaxation solved by column generation may not be
integer. Therefore, it is not necessary a solution to OMBND problem. One has then
to embed column generation procedure within a Branch-and-Bound algorithm in order
to get an integer solution. This is known as a Branch-and-Price algorithm.

In section 7.3 we will describe a Branch-and-Price algorithm we have developed
to solve OMBND problem. Before that, we present a new path formulation for the
problem, which saves us the use of two independent pricing problems.
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7.2 Aggregated path formulation

In this section describe a new approach to model OMBND problem using paths. This
approach consists in first introducing an additional path formulation based on design
variables together with commodity path variables. In addition, we use a new set of in-
dicator coefficients that have a specific structure, so that they can express informations
related to both graphs G1 and G2 simultaneously.

The objective here, is to attempts to overcome those two pricing problems that
operate independently, and to get benefits from the relationship between G1 and G2

to embed a double information in a unique family of path variables. We introduce a
two-stage procedure to price out those path variables, and present how the so-obtained
column generation can be integrated within a Branch-and-Price framework (see section
7.3). Some experiments are conducted to show the performances of both Branch-and-
Price algorithms, the numerical results are presented in section 7.4.

7.2.1 Path formulation

Consider the design variables y and commodity path variables x defined in the previous
section. Recall that commodity path are computed in graph G1. We will define a set
of coefficients, denoted ϕ. Let k be a commodity of K and π a path of Πk. For each
pair (e, w) ∈ A1 ×W and each arc a ∈ A2, ϕew

a (π) is such that

ϕew
a (π) =

{
1, if π uses the pair (e, w) in G1 and it is assigned a path in G2 using a,

0, otherwise.

Figure 7.4 depicts a path in G1 between nodes v1 and v4, that will be denoted π.
This path is composed by pairs (e1, w2), (e2, w1) and (e3, w2). Each section of π is itself
associated with a path in G2. For example, (e2, w1) is assigned the path {a2, a3}. In
this example, coefficients ϕ will take the following values: ϕe1w2

a1
(π) = 1, ϕe2w1

a2
(π) =

ϕe2w1
a3

(π) = 1, ϕe3w2
a4

= 1, while ϕew
a (π) = 0 for the remaining entries.
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Figure 7.4: Two associated paths

Using this new coefficient, together with design and commodity path variables, we
give the following integer linear programming formulation for OMBND problem:

min
∑

e∈A1

∑

w∈W

c(w)yew

∑

π∈Πk

xk(π) ≥ 1, ∀k ∈ K, (7.25)

∑

k∈K

∑

π∈Πk

ϕew
a (π)Dkxk(π) ≤ Cyew, ∀e ∈ A1, w ∈ W, a ∈ A2, (7.26)

∑

e∈A1

∑

k∈K

∑

π∈Πk

ϕew
a (π)xk(π) ≤ 1, ∀a ∈ A2, w ∈ W, (7.27)

0 ≤ xk(π) ≤ 1, xk(π) ∈ {0, 1}, ∀k ∈ K, π ∈ Πk, (7.28)

0 ≤ yew ≤ 1, yew ∈ {0, 1}, ∀(e, w) ∈ A1 ×W. (7.29)

In this formulation there is a polynomial number of constraints and design variables,
but a huge number of commodity path variables. Observe that all the constraints of the
problem are expressed by formulation (7.25)-(7.29). Indeed, inequalities (7.25) are the
commodity routing constraints. They ensure that a path in G1 is associated with each
commodity for its routing. Inequalities (7.26) are the capacity constraints for every
pair (e, w) of A1 ×W . Remark that they also appear for each a ∈ A2, since a belong
to the definition of coefficient ϕ. Inequalities (7.27) express indirectly the disjunction
constraints for every arc a ∈ A2 and every subband w ∈ W . In fact, each arc a used in
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a path associated with some section of π (π ∈ Πk, for k ∈ K) is assigned at most once
with subband w. This formulation will be referred to as aggregated path formulation.

Notice that, since we projected out subband path variables, the solution will be given
by a set of subbands to install on G1 as well as a set of paths for commodities routing.
However, it is possible to reconstruct a complete description of the solution for OMBND
problem, as coefficient ϕ will somehow bring out the path in G2 associated with each
pair (e, w) ∈ A1 ×W such that w is installed on e.

Similarly to formulation (7.13)-(7.19), the number of commodity path variables here
may be exponential. Therefore, using column generation to solve the linear relaxation
of (7.25)-(7.29) is required. In what follows, we describe the details of such procedure
applied to aggregated path formulation.

7.2.2 Column generation

In this procedure, we solve the linear relaxation of (7.25)-(7.29) with an initial subset
of paths (RMP). These path are computed in G1 and generated using the procedure
described in 7.1.3.1. Then we look for missing paths with negative reduced cost by
solving a two-stage pricing problem. In such paths are identified, we add them to the
RMP and repeat the process until no additional path may be generated.

Let us denote by α, β and γ the dual variables associated with the constraints (7.25)-
(7.27), respectively. α is such that for each k ∈ K, αk ∈ R−, β is such that βewa ∈ R+,
for each e ∈ A1, w ∈ W and a ∈ A2. Finally, dual variables γ are such that γaw ∈ R+.
Therefore, the reduced cost related to each commodity path variable xk(π), k ∈ K,
π ∈ Πk, is given by the following expression

rck(π) = −(αk +
∑

e∈A1

∑

w∈W

∑

a∈A2

ϕew
a (π)(Dkβewa + γaw))

Hence, we define for each commodity k ∈ K, the pricing problem, as trying to
identify a path such that rck = min{rck(π) : π ∈ Πk} and rck < 0. Note that here, this
operation can be carried in two stages. First, dual variables γ are distributed on arcs
of G2, so that for each (e, w), every arc a ∈ A2 receives −γaw. Then, for each (e, w),
we compute the shortest path in G2 using weights γ. Let us denote by p this path, and
l(e, w) its length. The second step consists in setting on each pair (e, w) ∈ A1 ×W ,
a weight given by −Dkβew

a + l(e, w), where a ∈ p. We then compute the shortest
path in G1 between nodes ok and dk. If the value of the shortest path in G1 is such
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that rck < 0, then the corresponding commodity path variable should be added to the
current linear program.

Note that, although the generated variable is related to a path in G1, its reduced
cost takes into account dual information impacted on both graphs G1 and G2.

(a)(b)
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G1 G2 −γa7w2
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) + l(e1w2)

Figure 7.5: Graphs G1 and G2 with dual variables (from the aggregated path formula-
tion)

Figure 7.5 shows an example of instance where each set of arcs carries its corre-
sponding weight in terms of dual variables. In fact, we can see in Figure 7.5 (a) the
first step of the pricing process, which consists in impacting weights based on γ dual
variables on each arc of A2. For example, the shortest path in G2, corresponding to
(e1, w2) is {a5, a6, a7}. The length of this shortest path is a part of the weight assigned
to pair (e1, w2), that receives −Dk(βe1w2

a5
+ βe1w2

a6
+ βe1w2

a7
) + l(e1w2), where l(e1w2) =

−(γa5w2 + γa6w2 + γa7w2) (see Figure 7.5 (b)). It remains then to compute the shortest
path in G1, using weights based on the first step, together with dual variables β.

All the weights based on dual variables and impacted on arcs of G1 and G2 are
positive, hence we can use Dijkstra’s shortest path algorithm for both steps of the
pricing procedure. Note that the column generation here does not allow to get a
feasible solution for OMBND problem, since this solution might not be integer.

In what follows, we describe how both column generation procedures are embedded
within Branch-and-Bound framework, to get the so-called Branch-and-Price algorithm,
and to solve OMBND problem.
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7.3 Branch-and-Price

We have developed two Branch-and-Price algorithms, based on path formulations pro-
posed for OMBND problem. In next section, we will describe the framework of those
algorithms.

7.3.1 Overview

Consider given two graphs G1, G2, a set of commodities K and a set of available
subbands W . Also recall that a cost c(w) > 0 is associated with each subband of W .
In both path formulations, we consider that this cost increases with the index of the
subband. Typically, we let c(w1) ≤ c(w2) ≤ cw3 ≤ . . . ≤ c(wr), where r = |W |. This
assumption comes from a practical requirement, that is subbands i + 1 should not be
installed before subband i is installed. In some sense, this supposition is helpful for the
model handling, since it also allows to break some symmetries on pairs (e, w).

To start the optimization, we set up both linear relaxations of (7.13)-(7.19) and
(7.25)-(7.29), restricted to a subset of path variables. The initial subset of path vari-
ables is generated using the procedure described in section 7.1.3.1 for both formulations.
Let us denote by (x, y, z) the optimal solution of the restricted linear relaxation of path
formulation (respectively aggregated path formulation). Then, we solve the two pric-
ing problems (respectively the two stage pricing problem), and add the generated path
variables to the current LP, if any.

The main steps of Branch-and-Price algorithm for path formulation are summarized
in Algorithm 7. Note that for the aggregated path formulation, steps 3 to 9 are replaced
by solving the two stage pricing problem for all k ∈ K, and add the path minimizing
rck(π), π ∈ Πk and with rck < 0, if such path exists.

7.3.2 Branching

Let (P) denote the linear program at a given node of the Branch-and-Price tree. Sup-
pose that the optimal solution of linear relaxation of (P) is fractional. Let (x, y, z) be
this fractional solution. The branching phase, consists in choosing a fractional variable
say x1 among those in (x, y, z), and create two sub-problems (P1) and (P2) by adding
either constraint x1 ≤ ⌊x1⌋ or x1 ≥ ⌈x1⌉ to (P). In our problem, it is to fix x1 either
to 0 or 1.
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Algorithm 7: Branch-and-Price algorithm for path formulation

Data : two graphs G1 = (V1, A1) and G2 = (V2, A2), a set of commodities K, a set
of available subbands W , and a cost vector c ∈ IRW .
Output : optimal solution of OMBND problem, or best feasible upper bound.

1: LP ← LPinitial;
2: solve the linear program LP;

let (x, y, z) be the optimal solution of LP;
3: Consider the dual variables and solve the two pricing problems;
4: If for all (e, w) ∈ A1 ×W , p ∈ Pew, rcew > 0 then

5: If for all k ∈ K, π ∈ Πk, rck > 0 then

6: go to 10;
7: else

8: Add the variables induced by rcew and rcew with negative reduced cost;
9: go to 2
10: If (x, y, z) is integer then

11: (x, y, z) is optimal for OMBND. Stop;
12: else

13: Create two sub-problems by branching on design variables first;
14: forall open sub-problem do

15: go to 2;
16: return the best optimal solution for all sub-problems.

Several branching strategies have been developed to choose efficiently a fractional
variables to branch on. In particular, most of the branching strategies proposed for
path-based formulations are defined on original (arc flow) variables. In [16], Barnhart
et al. propose a generalization of Ryan and Foster [97] branching rule for origin-
destination integer multicommodity flow problems. This strategy consists in forbidding
the use of some specific arcs in the considered paths. Such operation may be performed
either by adding branching constraints that correspond to the forbidden arcs, or by
removing those arcs from the graph when computing the shortest path (see [45] for
a good tutorial on column generation and branch-and-price applied to vehicle routing
problems). We refer the reader to [103, 105, 106] for more details on branching schemes
in IP column generation.

In our case, we have observed that branching first on design variables was very
strong, and only few path variables remain fractional after that, for both formulations.
This can be explained by the close relationship between variables in both formulations.
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Thus, we have used the following strategy. First we perform branching on fractional
design variables y by choosing the variable with fraction close to 0.5 and high absolute
objective function coefficient. Fixing design variables helps to get few remaining path
variables that still fractional. If all the design variables are integer, then we perform
branching on path variables by setting their value either to 0 or 1.

Based on these features, we devised two Branch-and-Price algorithms for OMBND
problem by using the path and aggregated path formulations. We have tested our
approaches on a set of random and realistic instances. The results are shown in the
coming section.

7.4 Computational experiments

7.4.1 Implementation’s feature

We have implemented the Branch-and-Price algorithms described in the previous sec-
tion in C++ using ABACUS 3.2 [4] to handle the Branch-and-Price tree, and CPLEX
12.5 [2] as LP solver. Our approach was tested on a processor Intel Core i5-3210M
CPU 2.50GHz × 4 with 3.7 Gb RAM, running under ubuntu 12.10 platform. We fixed
the maximum CPU time to 3 hours.

Both algorithms were tested on random and realistic instances of network. The
realistic instances are obtained from SNDlib data for instances dfn_bwin, dfn_gwin,
newyork and france.

Note that we have performed the same data pre-processing as described in Chapter
4. The entries of the different tables presented in the sequel are the following:

V2 : number of nodes in G2,

A2 : number of arcs,

K : number of commodities,

Gap : the relative error between the best upper bound (optimal

solution if the problem has been solved to optimality) and the lower

bound obtained provided by the compact formulation,

columns : number of generated path variables,

nodes : number of nodes in the Branch-and-Cut tree,

TT : total CPU time in h:m:s

TTpricing : CPU time spent in pricing out path variables (in %).
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7.4.2 Managing infeasibility

Branching by setting variables to 0 or 1 may induce an infeasible linear program at a
given level of the Branch-and-Price tree in ABACUS. Therefore, to avoid such situation,
we have considered a set of "artificial" variables appearing in the critical constraints.
We denote by τ and θ these variables and we let τk ∈ R, 0 ≤ τk ≤ 1, for each k ∈ K,
and θew ∈ R, 0 ≤ θew ≤ 1, for each (e, w) ∈ A1 × W . Variables τ are involved in
inequalities (7.13) (path formulation) and (7.25) (aggregated path formulation), while
θ appears in inequality (7.15) in path formulation.

Notice that we do not use such variables in inequalities (7.14), (7.16), (7.26), and
(7.27), since fixing variables to 0 does not affect feasibility of those constraints. We
associate with artificial variables a large cost in the objective function, so that they
penalizes its value if they are not equal to zero. However, these variables ensure that
a feasible solution can always be identified, even if its cost is expensive.

7.4.3 Computational results

Our first series of experiments involve random instances, whose topologies as well as
the commodities were randomly generated. We have considered graphs with 6 to 14
nodes, and at most 18 commodities per instance. Tables 7.1 and 7.2 report the results
given by the column generation and the Branch-and-Price approaches on solving both
path and aggregated path formulations, for random instances. The reported results
concern 35 instances with a number of nodes in the physical layer (graph G2) varying
from 6 to 14 nodes, and a number of arcs varying from 16 to 40. We have considered
up to 18 commodities for each kind of graph, and the number of available subbands is
|W | = 4 except for the 14 nodes instances, where |W | = 5.

Table 7.1 shows in particular the results obtained by both column generation pro-
cedures for linear relaxation of formulations (7.13)-(7.19) and (7.25)-(7.29). The two
last columns contain results provided by the compact formulation, namely the gap and
CPU time computation. Note that the compact formulation is solved by Branch-and-
Bound procedure. It appears from this table that gap provided by path formulation is
equivalent to one of the compact formulation. Indeed, this shows empirically that both
formulations have the same linear relaxations. We also remark that for most of the
instances, the gap provided by path formulation is better than one of aggregated path
formulation. In fact, except for instances with |V2| = 6, |K| = 8, 10 and 11, and |V2|
= 14, |K| = 8, the gap value for path formulation is smaller than one of aggregated
path formulation.
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Table 7.1: Comparing linear relaxations

Path formulation Aggregated path formulation Compact formulation

|V2| |A2| |W| |K| Gap (%) Columns Gap (%) Columns Gap (%) TT

6 16 4 2 25.00 8 25.00 39 25.00 0:05:32

6 16 4 4 47.50 16 47.50 73 47.50 0:07:53

6 16 4 6 45.00 24 53.33 86 45.00 0:10:49

6 16 4 8 41.43 32 37.14 211 41.43 0:49:32

6 16 4 10 47.14 49 41.43 281 47.14 1:00:23

6 16 4 12 48.75 57 43.75 165 48.75 1:45:03

8 24 4 2 0.00 8 0.00 51 0.00 0:08:56

8 24 4 4 25.00 16 25.00 95 25.00 0:21:51

8 24 4 6 33.33 24 33.33 140 33.33 0:29:23

8 24 4 8 6.25 36 6.25 147 6.25 1:02:14

8 24 4 10 15.50 40 28.00 223 15.50 1:12:09

8 24 4 12 12.92 48 26.67 211 12.92 1:02:14

8 24 4 14 21.92 56 25.38 311 21.92 2:31:46

8 24 4 16 32.31 68 33.08 377 32.31 2:49:01

8 24 4 18 35.63 76 36.25 383 35.63 2:52:21

10 36 4 2 0.00 8 0.00 64 0.00 0:10:37

10 36 4 4 50.00 16 50.00 139 50.00 0:18:22

10 36 4 6 3.33 24 3.33 524 3.33 0:32:51

10 36 4 8 44.44 38 55.55 381 44.44 1:44:02

10 36 4 10 57.31 46 59.23 433 57.31 2:05:39

10 36 4 12 56.07 54 57.86 533 56.07 2:55:01

12 46 4 2 0.00 8 0.00 80 0.00 1:15:22

12 46 4 4 33.33 16 33.33 165 33.33 1:35:22

12 46 4 6 46.67 24 46.67 433 46.67 2:09:59

12 46 4 8 47.14 33 47.14 598 47.14 2:23:51

12 46 4 10 33.13 41 37.50 668 33.13 2:45:33

12 46 4 12 20.63 49 25.00 1047 20.63 3:00:00

14 40 5 2 0.00 11 25.00 218 0.00 1:49:32

14 40 5 4 0.00 21 12.50 768 0.00 2:33:01

14 40 5 6 14.29 31 14.29 799 14.29 3:00:00

14 40 5 8 44.40 46 41.11 693 44.40 3:00:00

14 40 5 10 37.51 50 39.23 1079 37.51 3:00:00

14 40 5 12 10.63 61 11.92 836 10.63 3:00:00

14 40 5 14 34.47 71 35.00 943 34.47 3:00:00

14 40 5 16 12.47 130 20.59 1103 12.47 3:00:00

We can see that column generation procedure do not perform the same way for
both path formulations. Indeed, although the number of generated variables in the
first procedure is not so important (less than 100 path variables, except for the last
instance), it is significantly higher for the second procedure. This can be due to the fact
that the aggregated approach might somehow induce a loss of information provided by
the bi-layer structure of the problem, and the interaction between path variables in
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Path formulation Aggregated path formulation

|V2| |A2| |W| |K| columns nodes TT TTpricing (%) columns nodes TT TTpricing (%)

6 16 4 2 8 3 0:00:01 0.00% 98 3 0:00:00 72.72%

6 16 4 4 24 107 0:00:02 17.16% 467 31 0:00:02 74.78%

6 16 4 6 36 219 0:00:23 19.91% 119 5 0:00:01 81.08%

6 16 4 8 39 403 0:00:04 18.13% 234 11 0:00:04 88.13%

6 16 4 10 399 3893 0:00:49 21.00% 457 11 0:00:03 93.85%

6 16 4 12 6249 24819 0:03:45 19.65% 357 11 0:00:02 92.16%

8 24 4 2 8 1 0:00:01 0.00% 51 1 0:00:01 54.54%

8 24 4 4 16 15 0:00:01 9.37% 97 15 0:00:01 63.63%

8 24 4 6 24 65 0:00:03 17.60% 143 65 0:00:03 87.83%

8 24 4 8 32 65 0:00:03 22.14% 415 3 0:00:02 92.64%

8 24 4 10 40 1189 0:00:26 18.40% 378 5 0:00:01 88.54 %

8 24 4 12 48 2585 0:00:59 19.84% 670 5 0:00:01 89.31 %

8 24 4 14 56 2048 0:08:31 18.87% 688 10 0:00:03 86.43 %

8 24 4 16 74 3280 0:16:44 18.52% 598 7 0:00:01 91.22 %

8 24 4 18 82 3580 0:17:00 19.42% 720 15 0:00:23 89.46 %

10 36 4 2 8 1 0:00:00 27.27% 64 1 0:00:00 82.92%

10 36 4 4 16 73 0:00:05 15.54% 150 9 0:00:04 88.54 %

10 36 4 6 62 127 0:00:06 18.94% 645 11 0:00:12 79.43 %

10 36 4 8 205 859 0:01:18 18.76% 436 17 0:00:20 82.09 %

10 36 4 10 481 3559 0:03:06 20.79% 543 23 0:00:57 86.55 %

10 36 4 12 1060 18527 0:28:46 19.70% 712 159 0:01:39 88.63 %

12 46 4 2 8 1 0:00:00 20.00% 80 1 0:00:01 87.80%

12 46 4 4 16 73 0:00:11 14.39% 165 1 0:00:01 86.43 %

12 46 4 6 77 127 0:00:12 17.53% 650 17 0:00:04 87.32 %

12 46 4 8 52 801 0:01:17 17.00% 670 15 0:00:03 88.29 %

12 46 4 10 40 1695 0:02:44 18.05% 769 7 0:00:07 91.43 %

12 46 4 12 260 509 0:01:30 24.08% 2610 117 0:00:02 92.43 %

14 40 5 2 11 1 0:00:00 17.85% 218 1 0:00:00 79.33 %

14 40 5 4 26 1 0:00:00 31.81% 932 179 0:00:58 85.34 %

14 40 5 6 36 17 0:00:08 13.28% 1079 237 0:01:01 92.12%

14 40 5 8 112 491 0:03:25 13.86% 1011 559 0:01:59 89.21 %

14 40 5 10 502 2771 0:18:49 15.82% 2392 3591 0:20:53 95.22 %

14 40 5 12 786 2771 0:19:12 18.06% 1221 2375 0:16:41 93.01 %

14 40 5 14 294 3479 0:20:45 17.90% 1079 3277 0:23:54 87.44 %

14 40 5 16 1722 2051 0:11:12 30.93% 2467 3559 0:28:37 88.65 %

Table 7.2: Branch-and-Price results for random instances

both graphs G1 and G2.

Table 7.2 summarizes the results obtained by both Branch-and-Price algorithms for
solving path and aggregated path formulations. We can see that all the instances
presented in this table were solved to optimality by our Branch-and-Price algorithms
within the time limit. In particular, note that the CPU time for both algorithms is
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smaller then one of the Branch-and-Bound algorithm (last column of Table 7.1). We
can see for example that, even instances with |V2| = 14 and |K| = 6 to 16, for which
Branch-and-Bound algorithm could not prove the optimality of the identified solution
within 3 hours, we could find the optimal solution in a few minutes. This clearly shows
that a column generation based approach performs much more better than a classical
Branch-and-Bound on the compact formulation. Note that, except for some instances,
the number of variables generated within the second Branch-and-Price algorithm is still
higher than one in the first Branch-and-Price. Also we can remark that most of the
added variables are generated in the root node of the Branch-and-Price tree, for both
algorithms. It should be pointed out that the number of nodes in the first Branch-and-
Price tree is more important than in the second Branch-and-Price tree. In other words,
we can observe that in the second algorithm, most of the columns are generated in the
higher level nodes of the second tree, while only few columns are generated along a
large-size tree for the first algorithm.

Our second series of experiments concern realistic instances based on data from
SNDlib for networks dfn_bwin, dfn_gwin, newyork and france. Those instances have
graphs with 10 to 25 nodes, while the number of commodities varies between 4 and 30
for dfn_gwin and newyork (we have considered up to 18 commodities for dfn_bwin and
16 commodities for france). The results of the Branch-and-Price algorithm based on
the double column generation are summarized in Table 7.3. Table 7.4 shows the results
provided by the Branch-and-Price algorithm using the two-stage column generation.

It appears from Table 7.3 that all the considered instances have been solved to
optimality using the Branch-and-Price approach, within the fixed time limit. In fact,
30 instances have been solved to optimality in less than 10 minutes. Moreover, note
that 11 among the 40 tested instances were solved to optimality at the root node.
This can show that our data-preprocessing performs well on realistic instances. Due
to the size and structure of some instances, we can observe that the CPU time spent
by the algorithm in pricing operations increases compared to its average value for
random instances (see Table 7.1). However, it seems that the number of generated
columns in the whole tree is not so important regarding to the size of the instances.
This is thank to our procedure to generate initial paths, that helps to identify a first
set of interesting variables and thus to form a good initial basis. For the remaining
instances, the number of generated path increases with the size of the instance. Yet
our algorithm may perform some strange behaviour. Basically, more path variables are
generated for instance newyork with |K| = 25, than for instance newyork with |K| =
30. We can explain such a result by the fact that the routing of some commodities
may be challenged by the size (traffic amount) of other commodities. Indeed, the
more commodities will be "conflictual" as they can not be packed together in the
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Table 7.3: Branch-and-Price results for SNDlib-based instances - Path formulation

Instance |V2| |A2| |W | |K| gap(%) columns nodes TT TTpricing (%)

dfn_bwin 10 90 4 2 25.00 8 3 0:00:00.28 28.5714%

dfn_bwin 10 90 4 4 12.50 16 3 0:00:00.28 28.5714%

dfn_bwin 10 90 4 6 8.33 41 3 0:00:00.37 45.9459%

dfn_bwin 10 90 4 8 43.75 166 397 0:00:26.60 31.8797%

dfn_bwin 10 90 4 10 40.00 247 859 0:00:44.09 32.4563%

dfn_bwin 10 90 4 12 29.17 49 381 0:00:19.66 29.5015%

dfn_bwin 10 90 4 14 27.59 81 2419 0:02:08.20 30.4992 %

dfn_bwin 10 90 4 16 27.27 510 4265 0:04:00.16 32.82 %

dfn_bwin 10 90 4 18 26.32 219 5913 0:05:42.10 31.48 %

dfn_gwin 11 94 4 2 0.00 10 1 0:00:00.44 36.36 %

dfn_gwin 11 94 4 4 0.00 20 1 0:00:00.44 34.0909%

dfn_gwin 11 94 4 6 0.00 36 1 0:00:00.40 52.5%

dfn_gwin 11 94 4 8 0.00 53 1 0:00:00.5 66.0714%

dfn_gwin 11 94 4 10 0.00 60 1 0:00:00.52 59.6154%

dfn_gwin 11 94 4 12 0.00 78 1 0:00:00.39 58.9744%

dfn_gwin 11 94 4 14 0.00 89 1 0:00:00.42 59.5238%

dfn_gwin 11 94 4 16 5.88 117 7 0:00:02.03 43.34 %

dfn_gwin 11 94 4 18 19.44 133 587 0:01:41.22 28.37 %

dfn_gwin 11 94 4 20 25.00 2499 2755 0:10:50.70 34.05 %

dfn_gwin 11 94 4 25 21.28 1620 2931 0:10:47.54 33.10 %

dfn_gwin 11 94 4 30 20.41 830 2931 0:10:32.60 31.08 %

newyork 16 92 5 2 0.00 10 1 0:00:00:10 28.5714%

newyork 16 92 5 4 0.00 20 1 0:00:00.72 33.33 %

newyork 16 92 5 6 0.00 30 1 0:00:00.77 36.36 %

newyork 16 92 5 8 37.50 567 807 0:08:09.32 26.46 %

newyork 16 92 5 10 40.00 172 2905 0:16:03.30 27.62 %

newyork 16 92 5 12 41.67 1358 6331 0:49:34.92 26.95 %

newyork 16 92 5 14 0.00 104 1 0:00:01.30 58.4615%

newyork 16 92 5 16 6.25 114 35 0:00:13.78 31.35 %

newyork 16 92 5 18 16.67 90 221 0:02:10.97 29.31 %

newyork 16 92 5 20 20.00 100 659 0:07:01.98 28.73 %

newyork 16 92 5 25 20.00 148 4165 0:29:09.84 31.84 %

newyork 16 92 5 30 20.00 100 659 0:06:44.59 29.06 %

france 25 90 5 2 50.00 10 23 0:00:35.99 11.86 %

france 25 90 5 4 37.50 20 91 0:02:25.19 13.75 %

france 25 90 5 6 41.67 30 147 0:06:33.75 15.57 %

france 25 90 5 8 37.50 40 511 0:25:54.95 17.28 %

france 25 90 5 10 40.00 50 2611 1:18:20.44 19.385%

france 25 90 5 12 33.33 60 1987 3:00:00 23.526%

france 25 90 5 14 21.43 70 2245 3:00:00 25.03 %

france 25 90 5 16 26.03 2639 16581 3:00:00 45.23 %
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same subbands, the more instance will be difficult since many arcs might be saturated.
Further path have then to be explored in order to identify relevant variables to introduce
in the current linear program.

Table 7.4 shows the results of Branch-and-Price algorithm for the aggregated path
formulation. We can see from this table that, this algorithm as well as the previous
one allowed to solve to optimality all the tested instances within the CPU time limit.
Observe that the gap values are quite similar to one in Table 7.3. Also remark that,
similarly to column generation procedures, both Branch-and-Price algorithm do not
work the same. In fact, the number of generated columns remains generally higher in
the latter algorithm. However, it seems that from to a certain threshold of instance size
and difficulty, the Branch-and-Price tree becomes slightly better manageable than in
the former algorithm. Basically, instance dfn_gwin with |K| = 20 for example, where
the number of nodes in the first Branch-and-Price tree is 2755, while it is 101 in the
second Branch-and-Price tree. Also the two last rows given by instances france with
|K| = 14 and 16, that are solved to optimality using the second approach, while the
first algorithm could not complete the process within 3 hours. This can be explained by
the fact that, in aggregated path formulation, a good trade-off between the number of
generated columns and the size of the tree, can be achieved. Also, the branching scheme
here induces some decisions that directly affect the size and the form of the tree. Indeed,
the relationship between families of variables might make difficult to perform an efficient
branching on the variables, and induce a large and unbalanced tree. In some sense,
the aggregated formulation could help us to translate an explicit definition of path
variables associated with both physical and virtual layer, to an embedded definition of
variables. In other words, the aggregated path formulation performs better, since we
handle one family of "double" path variables (defined in G1 but implicitly related to a
path in G2), instead of two families, which is somehow easier.

Besides, these observations lead us to believe that branching on a subset of variables
instead of fixing one variables per generated sub-problem may help considerably in
enhancing the process. Also a primal heuristic should allow to prune much more
efficiently the nodes of the tree whose exploration is not relevant.

7.5 Concluding remarks

In this chapter we have introduced a compact formulation for the OMBND problem.
Based on this formulation, we have proposed two path-based formulations for the
problem. The first path formulation considers an explicit decomposition approach, and
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Table 7.4: Branch-and-Price results for SNDlib-based instances - Aggregated path formula-

tion

Instance |V2| |A2| |W | |K| gap(%) columns nodes TT TTpricing (%)

dfn_bwin 10 90 4 2 0.00 129 1 0:00:03.04 87.75%

dfn_bwin 10 90 4 4 12.50 340 3 0:00:04.55 92.70%

dfn_bwin 10 90 4 6 8.33 546 15 0:00:12.00 92.83%

dfn_bwin 10 90 4 8 43.75 588 23 0:00:57.00 89.17 %

dfn_bwin 10 90 4 10 40.00 724 23 0:01:33.00 92.52 %

dfn_bwin 10 90 4 12 29.17 873 35 0:01:44.00 93.46 %

dfn_bwin 10 90 4 14 27.59 1023 129 0:03:56.00 92.08 %

dfn_bwin 10 90 4 16 27.27 1165 253 0:16:32.00 90.38 %

dfn_bwin 10 90 4 18 26.32 876 311 0:20:31.00 94.17 %

dfn_gwin 11 94 4 2 0.00 241 1 0:00:05.47 94.14%

dfn_gwin 11 94 4 4 0.00 537 1 0:00:14.53 98.21%

dfn_gwin 11 94 4 6 0.00 448 1 0:00:09.38 96.80%

dfn_gwin 11 94 4 8 0.00 658 1 0:00:10.77 97.02%

dfn_gwin 11 94 4 10 10.23 785 3 0:00:19.07 95.96%

dfn_gwin 11 94 4 12 13.00 688 7 0:00:57.00 86.83%

dfn_gwin 11 94 4 14 8.73 843 7 0:01:39.00 87.92%

dfn_gwin 11 94 4 16 32.98 926 17 0:03:28.00 93.96%

dfn_gwin 11 94 4 18 5.88 1023 51 0:08:05.00 92.22%

dfn_gwin 11 94 4 20 19.44 876 101 0:10:55.00 88.9%

dfn_gwin 11 94 4 25 25.00 947 127 0:14:48.00 91.9%

dfn_gwin 11 94 4 30 21.28 1034 205 0:28:34.00 94.38%

newyork 16 92 5 2 20.41 526 3 0:00:37.80 95.74 %

newyork 16 92 5 4 12.50 830 7 0:00:50.26 95.80 %

newyork 16 92 5 6 33.2 2188 19 0:02:29.30 94.86 %

newyork 16 92 5 8 25.00 1634 239 0:03:28.00 88.9%

newyork 16 92 5 10 37.50 1435 431 0:07:31.00 89.32 %

newyork 16 92 5 12 40.00 1289 511 0:21:58.00 91.43 %

newyork 16 92 5 14 41.67 2076 873 0:00:12.00 88.74 %

newyork 16 92 5 16 12.50 2198 1021 0:16:53.00 91.28 %

newyork 16 92 5 18 6.25 4389 3287 0:20:42.00 90.33 %

newyork 16 92 5 20 16.67 3741 2719 0:26:18.00 91.28 %

newyork 16 92 5 25 20.00 3827 2501 1:08:37.00 92.33 %

newyork 16 92 5 30 20.00 4659 3283 1:40:53.00 88.84 %

france 25 90 5 2 20.00 51 1 0:00:03.00 90.33 %

france 25 90 5 4 50.00 88 3 0:01:48.00 94.37 %

france 25 90 5 6 37.50 103 7 0:01:44.00 95.12 %

france 25 90 5 8 41.67 114 7 0:00:53.00 94.22 %

france 25 90 5 10 37.50 2378 537 0:43:37.95 88.54 %

france 25 90 5 12 40.00 3439 721 1:40:20.44 89.17 %

france 25 90 5 14 33.33 4392 1077 2:37:48.76 90.27 %

france 25 90 5 16 21.43 5283 1259 2:10:30.09 95.39 %

france 25 90 5 18 27.44 6239 3423 3:00:00 88.28 %



7.5 Concluding remarks 215

induces a column generation procedure requiring two pricing sub-problems. The second
model, namely aggregated path formulation, attempts to give an implicit decomposition
of the problem, where the virtual layer includes informations of the physical layer,
and this, using a family of variables having a specific structure. We have discussed
the pricing problems for both path formulations, and we proved that they reduce to
shortest path problem. We have devised a Branch-and-Price algorithm to solve each
formulation and compared them, to show empirically that they are more efficient than a
Branch-and-Bound for the compact formulation. Finally, we have given some numerical
experiments to show the effectiveness of our approach and to compare both algorithms.

We could see that the Branch-and-Price algorithm brought out by the first path for-
mulation performs generally better than one of the aggregated formulation. Indeed,
although the latter explores less nodes in the Branch-and-Price tree, it spends a sig-
nificant time in pricing out path variables, in particular at the root node. However,
from a certain size of instance, both algorithms do not succeed to solve the problem to
optimality. Several interesting perspectives can be considered to enhance their perfor-
mances. In fact, we should turn ourselves to a more sophisticated branching strategy to
handle the size of Branch-and-Price tree concerning the first path formulation. Besides,
a deeper investigation of the pricing problem for the aggregated formulations should
enable to better control the column generation procedure. Furthermore, take advan-
tage of some of the valid inequalities introduced in Chapter 5, should be a promising
prospect and yield an efficient Branch-and-Cut-and-Price algorithm.





Conclusion

In this dissertation, we have studied a capacitated network design problem, for single-
layer and multilayer telecommunication networks, within a polyhedral context.

In the first part of the thesis, we considered the capacitated single-layer network
design (CSLND) problem. We focused our attention on the arc-set polyhedron asso-
ciated with this problem. We studied a set of functions that are, in fact, relaxations
of the considered problem, when it is restricted to one arc. We investigated the basic
properties of the polyhedra associated with these functions and derived new classes
of valid inequalities. We then described necessary and sufficient conditions for the-
ses inequalities to define facets. We presented an application of these results to the
Bin-Packing function problem. The identified valid inequalities were thereafter used
to devise a Branch-and-Cut algorithm for the CSLND problem. The later was imple-
mented to solve instances from SNDlib with realistic and randomly generated traffic
matrices. The experiments show in particular the efficiency of the valid inequalities
and the separation procedure used in the Branch-and-Cut algorithm.

We studied afterwards a multilayer version of the problem that is OMBND, taking
into account the relationship between both layers of the network. We introduced sev-
eral integer linear programming formulations for the problem. In particular, we studied
the polyhedron associated with the cut formulation, in an attempt to describe strong
valid inequalities for the problem. We investigated the properties of this polyhedron
as well as the facial structure of the basic inequalities. This led us to define several
classes of valid inequalities, that are facets of polyhedron under certain necessary and
sufficient conditions, that we described. These valid inequalities, as well as inequalities
from CSLND polyhedral study, where incorporated within a Branch-and-Cut frame-
work. The obtained algorithm allowed to solve the problem for realistic instances,
and real instances provided by the french telecommunication operator Orange. We
could measure the significant improvement enabled by the introduced inequalities on
strengthening the linear relaxation of the problem.



2 Conclusion

Finally, in a last part of the dissertation, we discussed a compact formulation and
two path decompositions for OMBND problem. In the former path formulation, we
managed to consider explicitly both layers, by using two families of path variables (one
for each layer). As the number of variables was exponential, we developed a column
generation procedure using two pricing problems. In the later path formulation, the
connection between the physical and virtual layers was addressed implicitly. In this
case, we are dealing with a formulation having one family of exponential number path
variables. A second procedure of column generation, with a two-stage pricing problem
was proposed to tackle this formulation. Each of the two column generation procedures
has been embedded within a Branch-and-Price framework. The experimental results
show that both algorithms perform well, compared to the Branch-and-Bound approach.

There are many directions in which the research in this dissertation can be continued
for both considered problems.

In the research of valid inequalities for CSLND problem, we considered an arc-set
relaxation of the problem. Actually, a quite natural extension of this study is to
consider the polyhedron associated with the cut-set relaxation of CSLND problem. In
particular, it will be interesting to know how Min Set I and Min Set II inequalities can
be generalized in the context of a cut-set polyhedron. We expect that their inclusion in
a Branch-and-Cut framework will have a positive impact in enhancing the algorithm.

Concerning OMBND problem, most of the future work revolves around the algorith-
mic aspects. We need to develop more efficient separation heuristics for the Branch-
and-Cut algorithm. It will be also interesting to focus on more sophisticated prepro-
cessing methods in order facilitate the problem resolution. Besides, investigate the
pricing problems associated with the proposed path formulations will help to improve
the effectiveness of the Branch-and-Price approach. Implementing more elaborated
branching strategies is also a possible direction for future study.

Furthermore, we need to develop stronger valid inequalities for the polyhedra of
OMBND and CSLND problems. From a theoretical point of view, it would be inter-
esting to address further relaxations of these problems and to characterize when the
identified valid inequalities define facets of the underlying polyhedra.

After all, the complexity of optical networks and the relevance of current issues
such as the energy-efficient networking, give several interesting extensions for both
considered problems. Also it should be interesting to consider the robust version of the
multilayer network design. Although, the single-layer network design under demand
uncertainty recently started to be a field of interest for many researchers, as far as we
know, there is no work treating the robust network design for two or more layers.
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abstract: A major challenge for nowadays telecommunication actors is to propose so-
lutions to manage the traffic growth, and ensure a smart use of network resources. In
this thesis, we address two dimensioning problems for both single-layer and multilayer
telecommunication networks based on the multi-band OFDM technology, within a poly-
hedral framework. We give several integer linear programming formulations for the con-
sidered problems and investigate the properties of the associated polyhedra. We highlight
the relationship between these problems and other well-know combinatorial optimization
problems such as the Bin-Packing problem. In particular, this relationship is exploited to
derive new classes of valid inequalities. We further carry on an investigation of the facial
structure of these inequalities, and describe efficient algorithms for their separation. We
then devise Branch-and-Cut and Branch-and- Price algorithms to solve both problems.
Several series of experiments are conducted for random, realistic and real networks, of
great interest for Orange Labs. The obtained results show empirically the efficiency of
our approaches.

key words: optical multi-band networks, network design, polytope, facet, Branch-and-
Cut algorithm, Branch-and-Price algorithm.

résumé: L’un des plus grands défis pour les acteurs de télécommunication actuels est
de proposer des solutions afin de gérer la croissance du trafic, et d’assurer une utilisa-
tion intelligente des ressources existant dans un réseau. Dans cette thèse, nous étudions
deux problèmes de dimensionnement de réseaux basés sur la technologie OFDM multi-
bandes, dans un contexte polyédral. Nous proposons différents programmes linéaires en
nombres entiers pour formuler les problèmes considérés et étudions les propriétés des
polyèdres associés. Nous mettons en évidence la relation entre ces problèmes et d’autres
problèmes classique d’optimisation combinatoire tel que le Bin Packing. En particulier,
cette relation est exploitée afin de dériver de nouvelles classes d’inégalités valides. Nous
menons alors une investigation sur la structure faciale des inégalités identifées et décrivons
des algorithmes efficaces pour les problèmes de séparation associés. Nous concevons et
développons des algorithmes de Coupes et Branchements et Génération de colonnes et
Branchements pour résoudre les deux problèmes. Une phase d’expérimentation com-
prenant plusieurs séries de tests est ensuite conduite sur des instances aléatoires, réalistes
et réelles, de grand intérêt pour Orange Labs. Les résultats de ces tests montrent de façon
empirique l’efficacité de notre approche.

mots clés : réseaux optiques multi-bandes, conception de réseaux, polytope, facette,
algorithme de coupes et branchements, algorithme de génération de colonnes et branche-
ments.


