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Abstract

In this thesisﬂ we study a variant of the Routing and Spectrum Assignment problem (RSA),
namely the Constrained-Routing and Spectrum Assignment (C-RSA). The C-RSA prob-
lem is a key issue when dimensioning and managing a new generation of optical networks,
called spectrally flexible optical networks. The C-RSA can be stated as follows. Given an
undirected, loopless, and connected graph G, an optical spectrum S of available contiguous
frequency slots, and a multiset of traffic demands K between pairs of origins and destinations,
the C-RSA consists of assigning for each traffic demand k € K a path in G between its origin
and destination, and an interval of contiguous frequency slots in S so that some technological
constraints are satisfied, and some linear objective function is optimized. First, we propose an
integer linear programming formulation for the C-RSA. We identify several families of valid
inequalities for the associated polytope. Some of these inequalities are obtained by using the
so-called conflict graphs. Moreover, we prove that these inequalities are facet-defining for the
associated polytope under some necessary and sufficient conditions. In addition, we develop
separation algorithms for these inequalities. Using these results, we devise a Branch-and-Cut
(B&C) algorithm for the problem, and discuss experimental results using this algorithm. A
second part of the thesis is devoted to an extended formulation for the C-RSA. A column gen-
eration algorithm is developed to solve its linear relaxation. We prove that the related pricing
problem is equivalent to the so-called resource constrained shortest path problem, which is
well known to be NP-hard. For this, we propose a pseudo-polynomial time algorithm using
dynamic programming. Using this, we devise Branch-and-Price (B&P) and Branch-and-Cut-
and-Price (B&C&P) algorithms to solve the problem. An extensive experimental study with
comparisons between the different B&C, B&P, and B&C&P algorithms is also presented.
Next, we turn our attention to the Spectrum Assignment (SA) sub-problem. It has been
shown to be equivalent to the problems of wavelength assignment, interval coloring, and
dynamic storage allocation that are well known to be NP-hard. To the best of our knowl-
edge, a polyhedral approach to the SA problem has not been considered before, even to
its equivalent problems. For this, first, we propose an integer linear programming compact
formulation and investigate the facial structure of the associated polytope. Moreover, we
identify several classes of valid inequalities for the polytope and prove that these inequalities
are facet-defining. We further discuss their separation problems. Based on these results, we
devise a Branch-and-Cut (B&C) algorithm for the SA problem, along with some computa-
tional results are presented.

Keywords: optical network, network design, integer programming, polyhedron, facet, sepa-
ration, branch-and-cut, branch-and-price, branch-and-cut-and-price, dynamic programming.
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Introduction

The global Internet Protocol (IP) traffic is expected to reach 396 exabytes per month by
2022, up from 194.4 Exabytes per month in 2020 [33]. Optical transport networks are then
facing a serious challenge related to continuous growth in bandwidth capacity due to the
growth of global communication services and networking: mobile internet network (e.g., 5th
generation mobile network), cloud computing (e.g., data centers), Full High-definition (HD)
interactive video (e.g., TV channel, social networks) [28], etc... as shown in Figure To
sustain the network operators face this trend of increase in bandwidth, a new generation of
optical transport network architecture called Spectrally Flexible Optical Networks (SFONs)
(called also FlexGrid Optical Networks) has been introduced as promising technology because
of their flexibility, scalability, efficiency, reliability, and survivability [26][28] compared with
the traditional FixedGrid Optical Wavelength Division Multiplexing (WDM)[I37][138]. In
SFONSs the optical spectrum is divided into small spectral units, called frequency slots [148].
They have the same frequency of 12.5 GHz where WDM uses 50 GHz [163] as recommended
by ITU-T [4]. This can be seen as an improvement in resource utilization.
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Figure 1: Historical Evolution of Optical Transport Networks [160].

The concept of slots was proposed initially by Masahiko Jinno et al. in 2008 [83], and later
explored by the same authors in 2010 [174]. We refer the reader to [96] for more information
about the architectures, technologies, and control of SFONs.

The Routing and Spectrum Assignment (RSA) problem plays a primary role when dimen-



sioning and designing of SFONs which is the main task for the development of this next
generation of optical networks. It consists of assigning for each traffic demand, a physical
optical path, and an interval of contiguous slots (called also channels) while optimizing some
linear objective(s) and satisfying the following constraints [69]:

a) spectrum contiguity: an interval of contiguous slots should be allocated to each demand
k with a width equal to the number of slots requested by demand k;

b) spectrum continuity: the interval of contiguous slots allocated to each traffic demand
stills the same along the chosen path;

¢) non-overlapping spectrum: the intervals of contiguous slots of demands whose paths
are not edge-disjoints in the network cannot share any slot over the shared edges.

Numerous research studies have been conducted on the RSA problem since its first appear-
ance. The RSA is known to be an NP-hard problem [I55] [165], and more complex than
the historical Routing and Wavelength Assignment (RWA) problem [74]. Various (mixed)
integer linear programming (ILP) formulations and algorithms have been proposed to solve
it. A detailed survey of spectrum management techniques for SFONs is presented in [165]
where authors classified variants of the RSA problem into: offline RSA which has been ini-
tiated in [126], and online or dynamic RSA which has been initiated in [I75] and recently
developed in [117] and [I89]. Numerous aspects are investigated in the tutorial [25]. This
work focuses on the offline RSA problem. There exist two classes of ILP formulations used
to solve the RSA problem, called edge-path and edge-node formulations. The ILP edge-path
formulation is majorly used in the literature where variables are associated with all possible
physical optical paths inducing an explosion of a number of variables and constraints which
grow exponentially and in parallel with the growth of the instance size: number of demands,
the total number of slots, and topology size: number of links and nodes [69]. To the best
of our knowledge, we observe that several papers which use the edge-path formulation as an
ILP formulation to solve the RSA problem, use a set of precomputed-paths without guaranty
of optimality e.g. in [31], [126], [127], [128], [I72], [192], and recently in [I46]. On the other
hand, column generation techniques have been used by Klinkowski et al. in [143], Jaumard
et al. in [80], and recently by Enoch in [49] to solve the relaxation of the RSA taking into
account all the possible paths for each traffic demand. To improve the LP bounds of the RSA
relaxation, Klinkowsky et al. proposed in [I30] a valid inequality based on clique inequality
separable using a branch-and-bound algorithm. On the other hand, Klinkowski et al. in [I31]
propose a branch-and-cut-and-price method based on an edge-path formulation for the RSA
problem. Recently, Fayez et al. [53], and Xuan et al. [I79], they proposed a decomposition
approach to solve the RSA separately (i.e., R+SA) based on a recursive algorithm and an
ILP edge-path formulation.

To overcome the drawbacks of the edge-path formulation usage, a compact edge-node formu-
lation has been introduced as an alternative for it. It holds a polynomial number of variables
and constraints that grow only polynomially with the size of the instance. We found just a
few works in the literature that use the edge-node formulation to solve the RSA problem e.g.
[17], [172], [192]. Bertero et al. in [14] give a comparative study between several edge-node
formulations and introduce new ILP formulations adapted from the existing ILP formulations
in the literature.

On the other front, and due to the NP-hardness of the C-RSA problem, we found that several
heuristics [45],[106],[148], and recently in [77], greedy algorithms [98], metaheuristics as tabu
search in [65], simulated annealing in [I31], genetic algorithms in [61], [73], [74], [44], ant
colony algorithms in [87], and a hybrid meta-heuristic approach in [I42], have been used to
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solve large sized instances of the RSA problem. Furthermore, some researches start using
some artificial intelligence algorithms [141], see for example [92] and [94], and some deep-
learning algorithms [27], and also machine-learning algorithms in [147][191], and recently in
[187] and [67] to get more perefermonce. Selvakumar et al. gives a survey in [I152] in which
they summarise the most contributions done for the RSA problem before 2019.

In this paper, we are interested in the resolution of a complex variant of the RSA problem,
called the Constrained-Routing and Spectrum Assignment (C-RSA) problem. Here we sup-
pose that the network should also satisfy the transmission-reach constraint for each traffic
demand according to the actual service requirements. To the best of our knowledge a few
related works on the RSA, to say the least, take into account this additional constraint s.t.
the length of the chosen path for each traffic demand should not exceed a certain length (in
kms). Recently, Hadhbi et al. in [69] and [70] introduced a novel tractable ILP based on
the cut formulation for the C-RSA problem with a polynomial number of variables and an
exponential number of constraints that are separable in polynomial time using network flow
algorithms. Computational results show that their cut formulation solves larger instances
compared with those of Velasco et al. in [I72] and Cai et al. [I7]. It has been used also as
a basic formulation in the study of Colares et al. in [34], and also by Chouman et al. in
[29] and [30] to show the impact of several objective functions on the optical network state.
Note that Velasco et al. in [172], Cai et al. [I7], and Bertero et al. in [I4], did not take into
account the transmission-reach constraint.

However, so far the exact algorithms proposed in the literature could not solve large-sized
instances. We believe that a cutting-plane-based approach could be powerful for the problem.
To the best of our knowledge, such an approach has not been yet considered except the works
done by Bianchetti et al. in [I5] for the RSA problem. For that, the main aim of this work
is to investigate thoroughly the theoretical properties of the C-RSA problem. To this end,
we aim to provide a deep polyhedral analysis of the C-RSA problem, and based on this, de-
vise exacts algorithms based on branch-and-cut and branch-and-cut-and-price algorithms for
solving the problem considering large-scale networks that are often used. Our contribution
is then to introduce a new ILP formulation called cut formulation for the C-RSA problem
which can be seen as an improved formulation for the one introduced by Hadhbi et al. in [69]
and [70]. We investigate the facial structure of the associated polytope. We further identify
several classes of valid inequalities to obtain tighter LP bounds. Some of these inequalities
are obtained by using conflict graphs related to the problem: clique inequalities, odd-hole,
and lifted odd-hole inequalities. We also use the Chvatal-Gomory procedure to generate
larger classes of inequalities. We then devise their separation procedures and give sufficient
conditions under which these inequalities are facet defining. On the other hand, we introduce
extended ILP formulation based on path variables, called path formulation. It can be seen
as a reformulation of the first cut formulation. This formulation has an exponential number
of variables. A column generation algorithm is then used to solve its linear relaxation. We
further adapt the valid inequalities proposed for the cut formulation to obtain also tighter
bounds for the path formulation. Using the polyhedral results and the separation procedures,
we develop a Branch-and-Cut (B&C) and Branch-and-Cut-and-Price (B&C&P) algorithms
to solve the problem. Moreover, we boost its effectiveness through some enhancements to
obtain tighter primal bounds based on a warm-start algorithm using some metaheuristics:
simulated annealing, tabu search, and genetic algorithms useful to push a feasible integral
solution (if possible) in the root of the B&C and B&C&P algorithms before the start of the
resolution of C-RSA, and also a primal-heuristic based on a hybrid method between a greedy
algorithm and a local search algorithm to construct a feasible integral solution from a given
fractional solution in each node of the B&C and B&C&P trees. We provide at the end a
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detailed comparative study between the B&C and B&C&P algorithms by using two types of
instances: random and realistic ones. They are composed of two types of graphs: real graphs,
and realistic ones from SND-LIB. The results show that the B&C&P algorithm is able to
provide optimal solutions for several instances, which is not the case for the B&C algorithm
within the CPU time limit (5 hours). Furthermore, we have studied the influence of the valid
inequalities. The results show that some of them, in particular, clique and cover inequalities
are efficient. However, some instances are still difficult to solve with both B&C and B&C&P
algorithms.

Several concepts are exploited throughout this dissertation. We start this dissertation by
presenting the basic notions of combinatorial optimization, complexity, graph theory, and
further give some notations that are useful through this manuscript.

In Chapter [2] we present the C-RSA problem studied in this work. We then introduce an
integer linear programming formulation namely cut formulation. We carry out an investi-
gation of the related polytope defined by the convex hull of all its solutions. Moreover, we
identify several classes of valid inequalities for the polytope and study their facial structure.
Moreover, we introduce symmetry-breaking inequalities that are used to remove the equiva-
lents sub-problems for the problem in question.

In Chapter [3] we propose a Branch-and-Cut algorithm for the cut formulation and describe
the separation procedure of the valid inequalities introduced in the Chapter A detailed
comparative study is proposed at the end of this chapter by showing the impact of the addi-
tional valid inequalities using several mixed-integer linear program solvers.

On the other hand, in Chapter 4] we propose an extended ILP formulation based on path
formulation for the C-RSA problem. We develop a column generation algorithm to solve
its linear relaxation. Using this, we devise Branch-and-Price (B&P) and Branch-and-Cut-
and-Price (B&C&P) algorithms to solve the problem, along with some computational results
are presented. In the end of this chapter, we provide an extensive comparative analysis of
performance between the B&C, B&P and B&C&P algorithms using two types of instances:
random and realistic ones with | K| up to 300 and [S| up to 320. They are composed of two
types of graphs (topologies): real graphs and realistic ones from SND-LIB with |V| up to 161
and |E| up to |166].

As a third part, in the chapter [5| we focus on the Spectrum Assignment (SA) sub-problem.
It is well known to be NP-hard problem [13]. First, we propose an integer linear program-
ming compact formulation. We investigate the facial structure of the associated polytope.
Fuerthremore, we describe several valid inequalities, some of them come from those that
are already proposed for the C-RSA. We also give sufficient conditions under which these
inequalities are facet defining. Based on these results, we develop a B&C algorithm to solve
the problem. On the other hand, we have noticed also that several symmetrical solutions
may appear given that there exist several feasible equivalent solutions that have the same
value, and they can be found by doing some permutations between the slots assigned to some
demands while satisfying the SA constraints. For that, we derive some symmetry-breaking
inequalities for the SA in order to well manage the equivalent sub-problems in the B&C tree.
Moreover, we provide some lower bounds obtained by using some properties of the conflict
graph. Based on all this, we present an extensive experimental study while showing the im-
pact of the valid inequalities and symmetry-breaking inequalities on the effectiveness of the
B&C algorithm.
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Chapter 1

Preliminary Notions and
State-of-the-Art

In this chapter, we present some preliminary notions related to combinatorial optimization,
optimization algorithms and polyhedra approaches. We give also an overview for some exacts
methods based on Branch-and-Cut and Branch-and-Cut-and-Price algorithms by explaining
the principles of each method. We further give some definitions related to graph theory that
are very useful throughout our study. We end this chapter by introducing some notions related
to flexible optical networks to introduce the application case and express our motivations.

1.1 Combinatorial Optimization

Operational research is a discipline related to computer science and applied mathematics.
In this dissertation, we are interested in one of its branches, called combinatorial optimiza-
tion. The optimization problems related to combinatorial optimization can be formulated
as follows. Let F = {e1,...,e,} be a finite set, namely basic set. We associated with each
element e; a weight c(e;) € R with i € {1,...,n}. Let F' denote a family of subsets of E.
The problem aims to identify one subset F from F' with the smaller or larger weight given
by the sum ), rc(e;). Such a problem is known under the name combinatorial optimiza-
tion problem where the set I’ represents the set of all feasible solutions of the problem in
question. In general, the set F' is discrete or can be reduced to a discrete one, hence com-
binatorial word is referred. On the other hand, the term optimization means that we are
looking for the identification of the best element F from the set of all feasible solutions F'.
In general, the set F' contains an exponential number of feasible solutions. As result, it’s
known to be very hard to solve such combinatorial optimization problem by enumerating all
its feasible solutions. To do so, various approaches have been developed and applied to solve
combinatorial optimization problems. They are based on graph theory, linear and non-linear
programming, integer programming, mixed integer programming, and polyhedral approach.
These approaches have been shown to be very efficient from a complexity point of view. For
this, we discuss in the next section some fundamental algorithmic and complexity theories
that are related to combinatorial optimization.

1.2 Algorithmic and Complexity Theory

Several researchers in computer science and mathematics are interested in working on the
classification of problems into easy or hard problems, and further on the algorithmic com-
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plexity study whose objective is to find the most efficient algorithm among a set of proposed
algorithms. This has been initiated by Cook [36], Edmonds [48] and Karp [123].

The theory of complexity [Garey and Johnson, 1979] [59] classifies problems into two essen-
tial classes: the P (polynomial time) class, and the NP (Non-deterministic polynomial time)
class. In addition, the problems of the NP class are shared into two subclasses: the class of
NP-Complete problems, and the class of NP-hard problems.

Before defining each class, we first give a general definition of a problem. In general, a problem
is a question having parameters given in input such that an answer is needed for it, called
solution. A problem is described by giving: a general description of all its parameters, and
a listing of the properties that the solution must satisfy, known under the name constraints.
An instance of a problem is obtained by specifying the value of each input parameter of
the problem. For this, one can propose an algorithm to solve the problem in question. An
algorithm for solving a given problem is a procedure that is decomposable into a sequence
of finite operations. It allows giving a solution for each instance of the problem. In general,
the complexity of an algorithm depends on the size of a problem that reflects the number
of parameters needed to describe an instance. It can be shown polynomial if the maximum
number of its operations necessary to solve an instance of size n is bounded by a polynomial
function f in n (i.e., f(n). This means that there exists a scalar ¢ such that the number of
its operations necessary is equal to c.f(n). As a result, the notation big O is appeared to
express the complexity of an algorithm.

There exists two type of problems in operation research: optimization problems and decision
problems. In the context of optimization problems, we want to minimize (or maximize) a
function while satisfying a set of constraints. On the other hand, in the context of decision
problems, the solution is binary like yes / no or 0/1.

An easy problem that can be solved by a polynomial algorithm with respect to its size, is
called a problem of class P. One can judge that a problem is part of NP class if we can verify
in polynomial time that a solution of each instance of the problem is feasible. On the other
hand, the N P-Complete class groups the decision problems for which there is no algorithm
allowing their resolution in a polynomial time. According to Garey and Johnson [59], a @
problem is a N P-Complete problem if it belongs to the NP class, and there exists a P prob-
lem also belongs to the NP class such that can be reduced to the ) problem in polynomial
time [59].

The Satisfiability Problem (SAT) is the first problem that has been demonstrated to be NP-
Complete. This was proved in 1971 by Stephen Cook [36] [60].

The NP-hard problem class includes most of the decision problems and optimization prob-
lems. NP-hard problems are indeed difficult as N P—Complete problems. If a decision prob-
lem associated with a P optimization problem is NP-Complete then P is an NP-hard. [60].
Furthermore, note that every problem of class P is a problem of class NP (P C N P) as shown
in Figure 1.2

However, the reciprocal represents a well-known mathematical problem which is part of the
7 problems of the millennium prize. The question P = N P? is one of the most important
questions that has not yet been solved. The answer to this question by "yes” is to prove that
all the problems of the NP class are in the P class. Cook has proved in [Cook, 1971] that all
the problems of the NP class are reducible to the SAT problem, which means that if someone
finds a polynomial algorithm for this problem, the question P = NP? is then solved ![60],
i.e. we will be able to solve all NP-Complete problems in polynomial time.
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NP-Complete

Complexity

Figure 1.1: Relation between P, NP, NP-Complete and NP-hard problems [107].

1.3 Polyhedral Approach and Branch-and-Cut Algorithm

1.3.1 Elements of the Polyhedral Theory

In this section, we will introduce some definitions and properties of polyhedron theory. Schri-
jver in 1986 [150], Nemhauser and Wolsey in 1988 [109], Wolsey in 1998 [I77] and Schrijver
in 2003 [I51] are the most useful references on polyhedron study [I88].

Let x be a vector in R", with n a positive integer. x is said a linear combination of vectors

T1,T9,..,Tr € R™ if there exist k scaler A1, As.., A\r such that

k
z = Naw; with A; € R for all i € {1,..., k}.
1=1

Furthermore, if Zle A; = 1. Then zx is said an affine combination of vectors 1, xo, .., Tj.

We say that x is convex combination of vectors x1, x2, ..,z € R™ if x is an affine combination
of vectors xy, xa, ..,z € R™ and each scaler \; for i € {1,...,k} is positive, i.e., A; € Ry and
Zle Ai = 1. A set of vectors is said to be linearly independent with a vector x if z cannot

be written as a linear combination of all the vectors in the set.
Given a set S = {x1,...,x} € R™™ the convex hull of a finite set of incidence vectors in S,
denoted by conv(S), is the set of all vectors that are a convex combination of vectors in S.

We have
conv(S) = {z € R" with z = Zle Xizi, VA > 0and ), A\ = 1},

This definition ensures that S C conv(S).

elements of §
conv(S)

Figure 1.2: conv(S) vs S [11][42]][168].
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A polyhedron P is the set of solutions of a given problem described by a linear system Ax < b.
It’s denoted as P = {z € R"|Ax < b}, where A is the matrix constraint characterized by
m-row and n-columns, and b € R™. Each point z of the polyhedron P represents a solution of
P. Furthermore, If P is bounded so it defines a bounded polyhedron which is called polytope.
The dimension of polyhedron P is one less than the maximum number of vectors of solution
in P that are affinely independent. We distinguish the following cases:

a) If all the vectors solutions in P are independents then we call P full-dimensional poly-
hedron,

b) If there exists a submatrix A= of A of inequalities that are all verified with equality
by all the solutions of P, and its associated equations system is of full rank, then
dim(P) = n — rank(A%),

c) dim(x) =0 for each = € P,
d) dim(o) = —1.

An inequality ax < « is valid for the polyhedron P if and only if for every solution z € P,
aZ < a. It is said to be violated by a solution Z if aZ > «. The set F' C P is called face if
there exists a valid inequality ax < « for the polyhedron P such that

F ={z € Pax = a}.

We say that the valid inequality ax < « supports the face F' if and only if F' # &.
If F# @ and F # P, we call F' a non trivial or proper face. If F'is a proper face and its
dimension is exactly one dimension smaller than P, i.e., dim(F) = dim(P) — 1, then F is
called a facet of polyhedron P.
A facet F' of polyhedron P is a non trivial face of the polyhedron P if there doesn’t exist
any proper face F’ of P containing the face F. Otherwise, we say that its associated valid
inequalities are redundants. To verify so, if P is full-dimensional polyhedron, then ax < «
is a facet of polyhedron P if and only if F' is a proper face and there exists a facet of P
induced by bx < 8 and a scalarp # 0 such that F' C {x € P|bx = f} and b = pa. Otherwise,
if P is not full dimensional polyhedron, then ax < « is a facet of polyhedron P if and only
if F'is a proper face and there exists a facet of P induced by bx < 3, a scalar p # 0 and
A € RM7a7E(A7) guch that F C {x € Plbx = 8} and b = pa + A\A=.
A solution x € P is an extreme point of P if z is a face of P of dimension 0. Furthermore, it
cannot be written as a convex combination of other points in P. Figure shows a geometric
interpretation for the polyhedron P, valid inequality, face, facet and extreme point.

A vector solution z is called integer or integral if each of its components are integers.
The integral hull of the polyhedron P is the convex hull of integer vectors solution in P. For
our case conv(P N {0,1}) is an integral hull of polyhedron P, and it contains all the integer
solutions for problem (P). Figure gives a geometric interpretation for an integral hull
Pr = conv(P N Zy) of the polyhedron P.

1.3.2 Cutting Plane Method

Let P be a combinatorial optimization problem and S the set of its feasible solutions. The
problem P can be written as min{cz|z € S}, where ¢ denotes the weight vector associated with
the variables = of the problem in question. Consider the convex hull conv(S) of the feasible
solutions of P. The problem P is then equivalent to the linear program min{cz|x € conv(S)}.
The polyhedral approach, introduced by Edmonds [48] consists in describing the polyhedron
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Figure 1.3: Geometric interpretation for the polyhedron P, valid inequality, face, facet and
extreme point [168].
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Figure 1.4: Geometric interpretation for an integral hull P; of the polyhedron P [I8§].

conv(8S) by a set of linear inequalities that are facet-defining inequalities. This reduces the
problem P to solving a linear program. As a result, one can solve the problem P using linear
programming algorithms [40][122][124] that can be performed in polynomial time [122][124].
However, a complete description of the polyhedron may contain an exponential number of
linear inequalities. The optimization problem on the polyhedron conv(S) can therefore not
be solved as a linear program having all its linear inequalities. However, one can reduce
the number of these inequalities without guaranteeing a complete characterization of the
polyhedron conv(S). This may be sufficient to solve the problem using the so-called cutting-
plane method. This method is based on the so-called separation problem defined as follows.
Let C be a class of valid inequalities for the polyhedron conv(S). The separation problem
associated with C' consists in deciding whether a given solution z satisfies all inequalities of
C, and to find an inequality of C violated by z if not. To do so, Grotschel, Losvasz, and
Schrijver [66] have shown that a combinatorial optimization problem for C' can be solved in
polynomial time if and only if the separation problem associated with C can be solved in
polynomial time. This allows solving a combinatorial optimization problem in polynomial
time if we know how to solve in polynomial time the separation problem for a set of valid
inequalities for the polyhedron conv(S) using a cutting-plane method by solving a sequence
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of linear programs. For this, we start by solving a linear program containing a subset of
constraints of conv(S). Let us denote by x the optimal solution obtained. By applying
the separation problems associated with the different classes of valid inequalities for the
polyhedron conv(S), we check if x satisfies all the constraints of conv(S). If it is the case,
then x is the solution to the problem. Otherwise, the constraints violated by z identified,
and should be added to the linear program. We repeat this process until the optimal solution
x* belongs to the polyhedron conv(S), i.e., x satisfies all the constraints of conv(S).

1.3.3 Branch-and-Cut Algorithm

Note that a cutting-plane method alone may provide only an optimal solution for the linear
relaxation of the problem in question. This solution may be not integer which means that
it is not feasible for the original problem. In this case, we pass to the branching step which
consists in dividing the problem into several Sub-problems that can be done by choosing a
fractional variable x; from the set of variables z, and considering several Sub-problems of the
current problem by setting z; to one of its allowed integer values (i.e., if z is binary, we create
2 Sub-problems respectively by setting x to 0 and 1 respectively). We then apply the method
of cutting-plane for each of the Sub-problem. We continue this process until an optimal
solution is obtained for the problem. This method is known under the name Branch-and-Cut
by combining a branching method with a cutting plane method at each node of the tree.

1.4 Column Generation and Branch-and-Cut-and-Price Algo-
rithms

On the other hand, there exists some mathematical formulations containning a huge number
of variables that can be exponential in the worst case. They are known under the name ”ex-
tended formulation”. Their associated lineaire relaxation cannot be solved by a linear solver
as simplex algorithm. To manage that, we use a column generation algorithm to solve its
linear relaxation. To do so, we begin the algorithm with a restricted linear program of the for-
mulation by considering a feasible subset of variables (columns). For that, we first generate a
subset of variables inducing a feasible basis for the restricted linear program. This means that
there exists at least one feasible solution for the restricted linear program. Based on this, we
derive the so-called ”Restricted Master Problem”. At each iteration, the column generation
algorithm checks if there exists a variable having a negative reduced cost using the solution
of the dual problem, and adds it to the current restricted linear program. This procedure is
based on solving the so-called ” Pricing Problem”. The pricing problem consists in identifying
a new variable having a negative reduced cost using the optimal solution of the dual problem.
We repeat this procedure in each iteration of our column generation until no new column is
found. As a result, the final solution is optimal for the linear relaxation. Furthermore, if it
is integral, then it is optimal for the C-RSA problem. Otherwise, we create two subproblems
called children by branching on some fractional variables (variable branching rule) or on some
constraints using the Ryan & Foster branching rule [I45] (constraint branching rule). This
is known under the name of Branch-and-Price by combining a branching method with a col-
umn generation algorithm at each node of the tree. One can strengthen such formulation by
introducing several class of valid inequalities for the associated polyhedron. It is based on the
so-called Branch-and-Cut-and-Price algorithm by combining a Branch-and-Price algorithm
with a cutting-plane based algorithm adding several valid inequalities that are very useful to
obtain tighter bounds at each node of the tree, and improve the effectivness of the algorithm.
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1.5 Graph Theory

In this section, we introduce some elementary definitions in graph theory that are very useful
throughout the proofs and algorithms description, especially in some separation problems
and complexity studies. Therefore, Diestel in [43] and Golumbic in 2004 [63] are the most
useful references on graph theory [I8§].

A graph is a pair G = (V, E), where V is a finite set of nodes (called also vertex or point)
linked by a set of edges (called also links) F which can be oriented or not oriented.

An edge (a,b) that connects the nodes a and b, it is said to be edge-incident with the node
a and b. Two vertices a and b are adjacent if there is an edge connecting a and b, i.e.,
Jde € E,e = (a,b). The number of edges incident with a node v is called the degree of v
denoted by §(v). The set of directional links going out from node v is denoted as 6% (v) , and
the set of directional links coming into node v is denoted as §~ (v).

A graph G’ = (V',E’) is a subgraph of G = (V,E) if V' € V and E' C E. G is said to be
induced by V if E=FE and V' C V.

A path p in the graph G = (V, E) from node a to node b, is a sequence of nodes that for each
pair of successive nodes v; v; 11, there exist an edge e equals to (v;,v;+1) € E. Finding a path
from a source to a destination with a positive weight edge can be solved using well-known
algorithms such as the Dijkstra algorithm and the Bellman-Ford algorithm.

A graph chain G is a sequence of nodes and edges in which each node is adjacent with the
two nodes immediately preceding and following it.

A connected graph is connected if and only if there is a path from any point to any other
point in the graph.

A loop is an edge that connects a node v to itself. Two distinct edges that have the same
end nodes are parallel. A graph is simple if it has no loops or parallel edges, and particularly
a loopless graph when there is no loop in the graph.

The adjacency matrix of an undirected graph G = (V, E) is the matrix of size |V ||V, where
the value in position (a,b) is the number of edges connecting a and b. So G is simple if and
only if its adjacency matrix is a (0, 1) —matrix.

A vertex coloring of G is an assignment of colors to the vertices of G so that two adjacent
vertices v and v’ cannot get the same color. Same rule for edges, an edge coloring of G is
an assignment of colors to the edges of G so that two adjacent edges e and €’ cannot get the
same color. We say that graph G is t-colorable if no more than t different colors assigned in
G.

G’ is called a weighted graph if each node in G’ is associated with weight.

An interval t-coloring of a weighted graph G’ = (V, E,w) is a function ¢ : V— > {1,2,...,t}
such that c¢(v) + w(v) — 1 < t. We assign an interval [¢(v), ..., c¢(v) + w(v) — 1] of consecutive
integers satisfying w(v) of each vertex v that the intervals of colors assigned to two adjacent
vertices do not overlap. If interval t-coloring is feasible for a graph G’ then G’ is said to be
interval t-colorable [I55]. The interval chromatic number of G’, denoted by x is the least
integer number ¢ such that G’ has a interval t-coloring [155].

Let us describe some graphs that may appear as sub-graph in different families of conflict
graphs

a) Hole graph is called also chordless cycle is defined as graph cycle of number of links at
least four in which two non-consecutive nodes are not linked.

b) Anti-hole graph is the graph complement of a hole graph.

c) Wheel graph of set of nodes {1, 2, ...,n} is a graph that contains a hole of {1,2,...,n—1}
nodes, and for which every node in the hole {1,2,...,n — 1} is connected to one other
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node {n} which represent the hub of the wheel.

d) Web graph W (p,q) is obtained from a hole graph with p number of nodes by linking
each node i of this hole with a node j € {i + ¢, ...,7 — q}.

e) Anti-Web graph is the graph complement of a web graph.

f) Anti-Web-Wheel graph of set of nodes {1,2,...,n} is a graph that contains an anti-web
of {1,2,...,n — 1} nodes, and for which every node in the anti-web {1,2,...,n — 1} is
connected to one other node {n} which represent the hub of the anti-web graph.

On the other hand, for any subset of nodes X C V with X # 0, let 6(X) denote the set
of edges having one extremity in X and the other one in X = V \ X which is called a cut.
When X is a singleton (i.e., X = {v}), we use 6(v) instead of §({v}) to denote the set of
edges incidents with a node v € V. The cardinality of a set K is denoted by |K]|.

1.6 Flexible Optical Networks

We introduce in this section some elementary notions related to the flexible optical network,
and further give an overview of the related works.

1.6.1 Optical Networks

Optical networks are the heart of long-distance telecommunication networks [153]. A network
can be defined as a graph G = (V, E)) which can be directed or undirected, where V' is a finite
set of nodes, and F is a finite set of edges that link a pair of nodes of V. Each node of V'
represents an entity that can be hardware or human. A set of demands is made between dif-
ferent entities in G to exchange information and data by provisioning hardware and software
resources. In this dissertation, we focus on optical networks in which data passes through a
fiber optic cable (which can be seen as an edge in the associated graph) which transmits over
longer distances a signal between its two extremities in the form of light or photons.

To identify which network we are working on, we have looked to operator network hierar-
chy that comprises three different parts, each of them having a specific design depending
on traffic requirements and dimensioning context. The access network is the first part of
a telecommunication network that gives the end-customer access to the telecommunications
service(s). On the other hand, the metropolitan network interconnects customers with some
services in a geographic area [4][73]. However, the core network offers numerous services
to the customer that are interconnected by the access network [4][73]. In our project, we
focused on the core network given the costs dedicated for this part of the network and the
combinatorial optimization problems issue from it that are very interesting from theoretical
and application cases point of view.

An optical network is composed of several pieces of equipment to manage differents exchanged
signals. To combine several input signals, multiplexers are placed in the network which are
hardware components that combine several input signals into an optical fiber. At the end of
the receiver, the multiplexers are called demultiplexers performing an inverse function of the
multiplexers such that the combined signals are separated into a separate signal.

The optical signal quality can deteriorate when it exceeds the maximum transmission dis-
tance, namely transmission reach. To reinforce the passive optical signal on fiber without
converting it to an electrical signal, Optical Amplifiers (OAs) are placed on fibers to do
that. Erbium-Doped Fiber Amplifiers EDFA are the most important fiber amplifiers that are
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Figure 1.5: Schematic of Telecom Network [11].
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Figure 1.6: Wavelength Division Multiplexing [54].

used between long spans (the spaced line amplifiers between two consecutive amplifiers). An
Amplifier produces the Spontaneous Emission Noise (ASE noise) to compensate the passive
signal through a span. However, for each modulation format, we are limited by the maxi-
mum total cumulative spontaneous emission noise, i.e., it is necessary to regenerate the signal
when we exceed a max number of amplifiers who are compensated the passive signal. The
amplification site consists of an optical amplifier and section of Dispersion Compensating
Fiber (DCF). As we said in the last paragraph, the amplification site compensates for the
fiber absorption losses. Another component is placed on nodes to do better than this but
they are more expensive called regenerators which can be represented as pair of transpon-
ders. A regenerator restores the optical signal quality. The signal regeneration is necessary
to re-amplify, re-shape, and re-time (3R) the passive optical signal when the transmission
reach of signals in an optical system is limited.

To manage the multiple signals passing through nodes in the network, an optical wwitch
or add/drop multiplexers are essentials to add and drop individual optical signals without
converting signals from optical to electrical in order to optimize the capacity and efficiency
of optical networks. They are components of reconfigurable optical add/drop multiplexers
(ROADM) which can take place on fibers and nodes.

In an optical network, we distinguish three layers, application layer, electronic switching, and
multiplexing layer, and an optical layer. Application layer including all types of services,
e.g., image, data, and videos... The electronic switching and multiplexing layer regroup data
coming from the application layer and deliver it to its destination. This traffic will be ag-
gregated into the optical layer, where they are carried by wavelengths [88]. In the optical
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layer, the nodes and fibers are placed and the optical paths are established. As a result, a
set of routers are placed and a virtual edge is established in the IP layer to link every two
nodes for which there exists an optical path that connect them. Routers deliver the intended
packets to their destination such that they have multiple input and output ports essential to
perform the physical layer functionality, and the output port stores packets received from the
switching fabric and transmit these packets on the outgoing link. They are equipped with a
number of transmitters. Furthermore, interfaces are placed in the optical network to connect

the routers to network nodes.
4t
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Figure 1.7: IP-Over-EON Network Architecture such that the virtual links in the IP layer
correspond to light paths assigned in the optical layer by the RSA algorithm [167].

Note that an optical transport network is generally categorized in three modes, namely,
opaque, transparent, and translucent which depend on the utilization of Optical-Electrical-
Optical conversion [73]:

a) Transparent Network: in this case the signal keeps in the optical domain and at
every node in the network we cannot regenerate the signal which means that the signal
quality can degrade when it exceeds a certain distance (transmission-reach), and we
fear can not find a modulation format compatible with the route of each traffic demand
[73].

b) Opaque Network: in this mode of operation, we have in each node who has a degree
plus than 2 (called an opaque node) an Optical-Electrical-Optical conversion of the
signals such that each opaque node looks like the endpoint of each transmission signal
where the signal terminated, regenerated and return from new to the next node over
the route. So we need more transponders in this case that for each wavelength a couple
of transponders (regenerator). This technique protects the signal against unexpected
physical impairments [73]. However, it costs expensive due to the Capex and Opex
costs dedicated for it.

c) Translucent Network: unlike opaque mode and transparent mode, the signal can be
regenerated in the network before it exceeds transmission reach, so the optical signal
keeps in the optical domain as far as possible before it exceeds transmission reach and
needs to be regenerated. In context, we have two cases: nodes regenerators already
exist or we have to place a regenerator in the network [73].

We focus in this work on a new variant of routing and resources allocation problems issue from
the optical transport network design problems encountered when planning and dimensioning
of a transparent optical transport network.
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1.6.2 The Rise of Flexible Optical Networks

The two last decades of the new millennium saw a profound change in telecommunication
networks with a continuous growth in demand. To face this trend of increase in bandwidth,
network operators have had to make their network architectures and management evolve. To
do so, two significant changes appeared recently in the optical network architecture. First
the bandwidth-greedy FizedGrid architecture for Optical Wavelength Division Multiplexing
(WDM) (called also wavelength routed network) [137] [I38] based on fixed spectrum grid is
being replaced by the FlexGrid architecture that is capable of supporting variable data rate
(in Gb/s) through flexible spectrum. In these Spectrally Flexible Optical Networks (SFONs)
(called also Elastic Optical Networks EONs) the optical spectrum is divided into slots having
the same frequency of 12.5 GHz (where FixedGrid networks use 50 GHz, the width of a
wavelength) as recommended by ITU-T [4]. See for example the figure |1.8] which shows that
in the fixed-grid case we use 4 wavelengths of 50 GHz to serve 4 demandes of two of 10 Gb/s,
one of 400 Gb/s, one of 1000 Gb/s. However, in the flex-grid we use just 9 slots of frequency
12.5 GHz to serve these demands.

SO0GHz S0GHz2 S50GHz SDGHZ
=0 O 0 A8
kel L..._...__.! 10Gh/s 40Gbys
Flex jomm B - | 3
1 i
=0 AL A s L

12.5GHz slot 100Gh/'s

Figure 1.8: FixedGrid Vs FlexGrid [76].

The concept of slot was proposed initially by Masahiko Jinno et al. in 2008 [83], and lately
explored by same authors in 2010 [I74]. In SFONs any optical path can elastically span as
many contiguous slots as needed. This technology provides a more efficient use of the spectral
domain than the traditional Fixed Grid WDM. Secondly a new generation of transponders is
becoming available namely, bandwidth-variable transponders (BV-Ts) and bandwidth vari-
able wavelength cross-connects (BV-WXCs) [174]. They can manage data rates up to 400
Gb/s which cannot be accommodated by a 50 GHz wavelength, and restores the signal which
is necessary to re-amplify, re-shape and re-time the passive optical signal (which is called (3R)
signal regeneration rule) when the transmission-reach of signals is limited which represents
the maximum length (in kms) for the routing of each traffic demand.

1.6.3 Flexible Optical Network Design Problems

The network operators have confronted several optimization problems in particular some
variants of routing and resource allocation problems that appear when designing or planning
optical networks. The historical Routing and Wavelength Assignment (RWA) problem is the
key issue for routing and resource allocation problems to design a FixedGrid WDM networks.
In this problem, we are given an optical network and a set of demands where each demand
has an origin and destination. The task is to find a path for each demand and a wavelength
such that a single 50 GHz wavelength is assigned to each demand. It was considered for the
first time by Bal et al. in 1991, and extended by Chlamtac et al. in 1992 [24]. It is known to
be a NP-hard problem [24] by showing the equivalence of the problem to the n-graph-coloring
problem where the number of colors n corresponds to the number of wavelengths such that
finding the minimal number of wavelengths to route all the traffic demands is equivalent to
finding the chromatic number of conflict graph (where demands are represented by nodes
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such that two nodes are linked iff the final paths of the associated demands share an edge)
when the paths are already established. It was considered also as a special case of the in-
teger multicommodity flow (MCF) problem that some technologique specific constraints [16]
are added and should be respected. Several mathematical models and algorithms have been
proposed to solve the RWA problem. They are based on some ILP formulations as done in
[16], [22], [38], [39], [78], [79], [85], [91], [90], [115], [I58], decomposition-based methods [§],
[158], [162], [183], and heuristics [9], [10], [58], [81], [99], [108], [157], [159], [161], [164],[1%4],
[185].

In SFONs, RWA cannot handle the changes from wavelength to contiguous slots. As a result,
the RWA has been replaced by the so-called Routing and Spectrum Assignment (RSA) prob-
lem. It can be stated as follows. Consider an optical network as an undirected, loopless, and
connected graph G = (V, E), which is specified by a set of nodes V', a multiset of links F, and
a set of contiguous frequency slots {1,...,5} with § € Z,. Each link e = ij € E is associated
with a length ¢, € Ry (in kms), a cost c. € R;. Let K be a set of demands such that each
demand k € K is specified by an origin node oy € V, a destination node di, € V' \ {ox}, and
a slot-width wy € Z;. The RSA consists of determining for each k € K, a (og,dy)-path pg
(subset of edges) in G, and a subset of contiguous frequency slots Sy C {1,..., 5} (contiguity
and continuity constraint) of width equal to wy such that Sy N Sy = 0 for each pair of de-
mands k, k' € K with pg Npp # 0 (non-overlapping constraint), while optimizing some linear
objective function(s). The RSA problem is very harder compared with the RWA problem
because of the continuity constraint that has not been taken into account when defining the
RWA problem.

Today, SFONs use the Optical Orthogonal Frequency Division Multiplexing (O-OFDM) mod-
ulation technology which allocates optical spectrums with variable data rate (of the order of
a few gigabits per second-Gb/s). In this context, a new modulation format constraint has
been added to the routing and spectrum assignment Sub-problems. Hence, a new problem is
appeared, called the Routing, Modulation and Spectrum Assignment (RMSA) problem.
There are 6 basic modulation formats, we mention z-Quadrature Amplitude Modulation z-
QAM where x belongs to {8, 16, 32,64} [25]. This modulation format is used for the shorter
distance lightpaths but with high transmission-reach and date rate. However, for longer dis-
tance lightpaths, we have Binary Phase-Shift Keying BPSK, Quadrature Phase-Shift Keying
QPSK more robust modulation formats but less efficient compared to xz-QAM modulation
format [25]. Each one of them has a date rate (Gb/s), spectrum efficiency SE or number
of bits per symbol measured in (b/s/Hz), capacity of one subcarrier or a signal speed for
one frequency slot (in GHz) (in multiple of 12.5 GHz) and transmission-reach (kms). These
modulation formats turn as a result a set of transponder configuration F.

The Constrained-Routing and Spectrum Assignment problem is an hybridization between
RSA and RMSA such that it looks like decomposition of RMSA into two Sub-problems Mod-
ulation Assignment Sub-problem (M) and then Routing and Spectrum Assignment problem
(i.e., C-RSA=M+RSA), in which each traffic demand k is in format of data rate by € R (in
Gb/s) such that we suppose that the network operator has selected a multiset F, of transpon-
ders configuration for each demand k such that each transponder configuration f € F is
characterized by a data-rate ry € R4 (in Gb/s), a number of slots wy € N4,

a transmission-reach £ 5 € Ry (in kms), a capex cost cap; € Ry, and an opex cost op; € R
Table below shows an example of a multiset of transponders configuration F
The multiset Fj of selected transponder configurations for each traffic demand & should
satisfy the data-rate constraint

Z Ty > bk

fEF
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F | data rate (Gb/s) | modulation format | spectrum-width (GHz) | number of slots | transmission-reach (kms) | capex cost | opex cost
1 | 100 DP-QPSK 37,5 3 3000 7 3

2 | 100 DP-QPSK 37,5 3 6000 17,5 6

3 ] 200 DP-8QAM 62,5 5 1500 11 4

4 1200 DP-8QAM 62,5 5 3000 27,5 9

5 | 200 DP-16QAM 37,5 3 1000 13 11

6 | 200 DP-16QAM 37,5 3 2000 32,5 15

Table 1.1: An example of a multiset of transponders configuration F.

After this modulation assignment procedure, each demand k between origin node o to a
destination node dj, is specified by a number of slots w; € Ny, where wy = Z wy, and a

fEFk

transmission-reach ¢, € R (in kms), with ¢ = }111]1_9 ly.
€Sk
As a result of all this, we define a new variant of RSA and RMSA problems that we call

Constrained-Routing and Spectrum Assignment such that respecting the transmission-reach
constraint is added to the satisfaction of the three constraints of spectrum: contiguity, con-
tinuity and non-overlapping. In this dissertation, we are interested on the resolution of the
C-RSA problem given that it satisfies all the real constraints required by a network operator
compared with the existed variants like RSA and RMSA. There exist several use cases of this
problem that are very meaningful for a network-operator today, we mention

a) Network planning and dimensioning Without or With survivability: as done in [3], [18],
210,31, (611, 651, 501, 18], [127), [129] , (130, [131), [132], [133],[134), [143], [156], [173),
[192], and [I80].

b) Regeneration placement problems: as done in [52], [64], [119], [89], and [8§].

¢) Dynamic networks: in this context, paths are already established and spectrums are
already allocated for each traffic demand in K. The network operator has to satisfy
new incoming demands one by one or all together which depends the network state,
i.e., the availability of resources in the network. Several works related to the dynamic
C-RSA problem are done in this context. We mention the works done by Castro et al.
n [20], Hadi et al. in [71], Lohani et al. in [95], Wang et al. [176], Xu et al. in [178],
Yin et al. [I82].

d) Network restructuring: based on some fragmentation technics [2],[72],[154], [169], [I81].

e) Network traffic prediction and security: face to uncertainty quantification of traffic [03],
[100], [L11].

f) Software-Defined Networking frameworks (SDN) to manage dynamic networks by inte-
grating SFONs in SDN [135], [23], [160].

g) Fifth-generation (5G) optical transport networks: in the context of spectrum assign-
ment management [152], [160].

h) Technological migration: for example, from FixedGrid optical network to Flexgrid op-
tical. This can be seen as the issue of the day. Recent works have been done for this
subject. We found the works done by Zhang et al. in [186].

This has caught our attention, and we then decided to focus on the Constrained-Routing and
Spectrum Assignment problem.
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Chapter 2

Cut Formulation and Polyhedra for
the C-RSA Problem

2.1 The Constrained-Routing and Spectrum Assignment Prob-
lem

The Constrained-Routing and Spectrum Assignment Problem can be stated as follows. We
consider a spectrally flexible optical networks as an undirected, loopless, and connected graph
G = (V, E), which is specified by a set of nodes V', and a multiset E] E of links (optical-fibers).
Each link e = ij € E is associated with a length /. € Ry (in kms), a cost ¢, € Ry s.t. each
fiber-link e € E' is divided into 5 € N slots. Let S = {1,...,5} be an optical spectrum of
available frequency slots with 5 < 320 given that the maximum spectrum bandwidth of each
fiber-link is 4000 GHz [82] (i.e., 320 = 4%%), and K be a multiset [}| of demands s.t. each
demand k € K is specified by an origin node o, € V, a destination node dj, € V'\ {0y}, a slot-
width wy, € Z,, and a transmission-reach £, € Ry (in kms). The C-RSA problem consists
of determining for each demand k € K, a (og,dy)-path p in G s.t. ZeeE(pk) lo < I, where
E(px) denotes the set of edges belong the path pg, and a subset of contiguous frequency slots
Sk C S of width equal to wy s.t. Sy N Sk = 0 for each pair of demands k, k" € K (k # k)
with E(pg) N E(pr) # 0 so the total cost of the paths used for routing the demands (i.e.,
D_keK DecE(py) Ce) is minimized.

Figure 2 shows the set of established paths and spectrums for the set of demands {k1, k2, k3, k4 }
(Fig. 2(c) and Table 2(d)) of Table 2(b) in a graph G of 7 nodes and 10 edges (Fig. 2(a)) s.t.
each edge e is characterized by a triplet [, c., §|, and optical spectrum S = {1,2,3,...,8,9}
with § =9.

2.2 Cut Formulation

Here we introduce our integer linear programming formulation based on cut formulation for
the C-RSA problem which can be seen as a reformulation of the one introduced by Hadhbi
et al. in [69). For k € K and e € E, let 2% be a variable which takes 1 if demand k goes
through the edge e and 0 if not, and for k € K and s € S, let z¥ be a variable which takes 1
if slot s is the last-slot allocated for the routing of demand &k and 0 if not. The contiguous

'We take into account the presence of parallel fibers s.t. two edges e, e’ which have the same extremities i
and j are independents.

2We take into account that we can have several demands between the same origin-node and destination-
node.
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Figure 2.1: Set of established paths and spectrums in graph G (Fig. 2(a)) for the set of

demands {ki, ko, k3, k4} defined in Table 2(b).

slots s’ € {s —wy + 1, ..., s} should be assigned to demand k whenever z¥ = 1.

The C-RSA problem can be formulated as follows.
min Z Z cex];,
kEK ecE

subject to

ST ab > 1k e K VX CV st |X N o, di}| =1,

e€d(X)
> leaf < Oy, VE € K,
eck
2 =0,Vke K,Vs e {1,...,w;, — 1},
s
Y >1VkeK,
S=wy
min(s+wg—1,3) min(s+w;s—1,5)

ok 42 4 Z 25+ Z 2 <3 V(e k, K, s) € Q,

s'=s s'=s

0<zF<1VkeKVeecE,
0<2F<1,Vke K,V¥seS,
z¥ € {0,1},Vk € K,Ye € E,
2k € {0,1},Vk € K,V¥s €S.

(2.10

(2.1)

(2.6)

2.
2.
2.

© oo
= o —

(
(
(
2

where ) denotes the set of all the quadruples (e, k,k’,s) for all e € E k € K, k' € K \ {k},

and s € S with (k, k") ¢ K¢.

Inequalities ([2.2]) ensure that there is an (o, di)-path between oy and dj, for each demand
k, and guarantee that all the demands should be routed. They are called cut inequalities.
By optimizing the objective function (2.1f), and given that the length of all edges are strictly
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positives, this ensures that there is exactly one (og,dy)-path between o and dj which will
be selected as optimal path for each demand k. We suppose that we have sufficient capacity
in the network so that all the demands can be routed. This means that we have at least one
feasible solution for the problem. Inequalities express the length limit on the routing
paths which is called ”the transmission-reach constraint”. Equations express the fact
that a demand k cannot use slot s < wy — 1 as the last-slot. The slots s € {1,...,w; — 1} are
called forbidden last-slots for demand k. Inequalities should normally be an equation
form ensuring that exactly one slot s € {wy, ..., 5} must be assigned to demand k as last-slot .
Here we relax this constraint. By a choice of the objective function, the equality is guaranteed
at the optimum (e.g. min ),z Zi:wk s.z¥ ormin}, Zi:wk s.wg.2%). Inequalities
express the contiguity and non-overlapping constraints. Inequalities — are the trivial
inequalities, and constraints - are the integrality constraints.

Note that the linear relaxation of the C-RSA can be solved in polynomial time given that
inequalities can be separated in polynomial time using network flows, see e.g. preflow
algorithm of Goldberg and Tarjan introduced in [62] which can be run in O(|V \ V¥[?) time
for each demand k € K.

Proposition 2.2.1. The formulation (2.2)-(2.10) is valid for the C-RSA problem.

Proof. Tt is trivial given the definition of each constraint of the formulation (2.2))-(2.10) s.t.
any feasible solution for this formulation is necessary a feasible solution for the C-RSA prob-
lem.

O

Proposition 2.2.2. Fvery feasible solution of our cut formulation (2.1)-(2.10) is also feasible
solution of multi-commodity flow problem.

Proof. Tt is trivial given that any feasible solution of C-RSA problem ensures that there
is a flow of wy slots routed along a path pi which links between the origin-node op and
destination-node dj for each demand k € K while satisfying the capacity of edges which
equals to s. ]

Proposition 2.2.3. Every feasible solution of multi-commodity flow problem is not necessary

feasible for our cut formulation (2.1))-(2.10]).

Proof. 1t is trivial given that the solution of the multi-commodity flow problem can easily
violate the contiguity and continuity constraints of our C-RSA problem. This means that
the wy slots assigned to the demand k can be not contiguous in a feasible solution of multi-
commodity flow problem, and also for example when the wy slots can be not the same along
the path p; for the demand k. O

2.3 Associated Polytope

An instance of the C-RSA is defined by a triplet (G, K,S). Let P(G, K,S) be the polytope,
convex hull of the solutions for the cut formulation (2.1))-(2.10). Throughout the proofs, we
take into account that z¥ < 1 for each demand k € K and edge e € E, and z¥ > 0 for each
demand k € K and slot s € S. Note that a slot s € S is assigned to a demand k € K iff
Zmin(§,s+wk—1) k1

s'=s s T
In this section, we discuss the facial structure of the polytope P(G, K, S). First, we describe
some structural properties. These will be used for determining the dimension of P(G, K, S).

For each demand & and each node v, one can compute a shortest path between each of the
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pair of nodes (o, v), (v,dg). If the lengths of the (o, di)—paths formed by the shortest paths
(o, v) and (v,dy) are both greater that I then node v cannot be in a path routing demand
k, and we then say that v is a forbidden node for demand k due to the transmission-reach
constraint. Let V{¥ denote the set of forbidden nodes for demand k € K. Note that using
Dijkstra’s algorithm, one can identify in polynomial time the forbidden nodes Vok for each
demand k € K. On the other hand and regarding the edges, for each demand k£ and each
edge e = ij, one can compute a shortest path between each of the pair of nodes (og,1),
(7,dk), (ok,7) and (i,dg). If the lengths of the (og, d))—paths formed by e together with the
shortest (oy,i) and (j,dy) (resp. (o, ) and (i,dy)) paths are both greater that I, then edge
ij cannot be in a path routing for demand k, and we then say that ij is a forbidden edge
for demand & due to the transmission-reach constraint. Let EF denote the set of forbidden
edges due to the transmission-reach constraint for demand k € K. Note that using Dijkstra’s
algorithm, one can identify in polynomial time the forbidden edges EF for each demand
k € K. This allows us to create in polynomial time a proper topology G}, for each demand k
by deleting the forbidden nodes VJ and forbidden edges Ef from the original graph G (i.e.,
Gr = G(V\VF E\ EF)). As a result, there may exist some forbidden-nodes due to the
elementary-path constraint which means that all the (o, di) —paths passed through a node v
are not elementary-paths. This can be done in polynomial time using Breadth First Search
(BFS) algorithm of complexity O(|E \ EF| + |V \ V{§|) for each demand k. Note that we did
not take into account this case in our study. Table 2.1 below shows the set of forbidden edges
EF and forbidden nodes V¥ for each demand k in K already given in Fig. 2(b).

k‘ok%dk‘wk ‘_k‘ Vok ‘ Etk

1] a—c 2 4 | {e,d,g} | {cg,dg,de,df cd,ef}
2| a—d |1,00| 4 {9} {cg,dg, df }

3| b—f 2 4 | {e,d,g} | {cg,dg,de,df cd,ef}
4| b—e |1,00] 4 {9} {cg,dg, df }

Table 2.1: Topology pre-processing for the set of demands K given in Fig. 2(b).

Let &g, (v) denote the set of edges incident with a node v for the demand k in Gy. Let 6% (W)
denote a cut for demand k € K in G s.t. o € W and d € V \ W where W is a subset
of nodes in V \ V of G. Let f be an edge in §(W) s.t. all the edges e € 6(W) \ {f} are
forbidden for demand k. As a consequence, edge f is an essential edge for demand k. As
the forbidden edges, the essential edges can be determined in polynomial time using network
flows as follows.

a) we create a proper topology Gy = G(V \ V¥ E\ EF) for the demand k

b) we fix a weight equals to 1 for all the edges e in E\ EF for the demand k in Gy,
c¢) we calculate o — dj, Cut which separates oy from dj.
)

d) if ég, (W) = {e} then the edge e is an essential edge for the demand k s.t. o € W and
dr, € V\ W. We increase the weight of the edge e by 1. Go to (3).

e) if |6g, (W)| > 1 then end of algorithm.

Let EF denote the set of essential edges of demand k, and K. denote a subset of demands in
K s.t. edge e is an essential edge for each demand k € K.. Therefore,

a¥ =1, forall k € K and e € E}. (2.11)
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In addition to the forbidden edges thus obtained due to the transmission-reach constraints,
there may exist edges that may be forbidden because of lack of resources for demand k. This
is the case when, for instance, the residual capacity of the edge in question does not allow
a demand to use this edge for its routing, i.e., wy > 5 — > e, wp. Let E¥ denote the
set of forbidden edges for demand k, £ € K, due to the resource constraints. Note that
the forbidden edges E¥ and forbidden nodes v in V with d(v) C EF, should also be deleted
from the proper graph Gy of demand k, which means that Gy contains |E \ |EF| edges and
IV \ {v € V,6(v) C EF}| nodes. Let E}¥ = EF U E¥ denote the set of all forbidden edges for
demand k that can be determined due to the transmission reach and resources constraints.
Hence,

a¥ =0, forall k € K and e € Ef. (2.12)

As a result of the pre-processing stage, some non-compatibility between demands may appear
due to a lack of resources as follows.

Definition 2.3.1. For an edge e, two demands k and k' with e ¢ E§ U E} U EOI UEY, are
said non-compatible demands because of lack of resources over the edge e iff the the residual
capacity of the edge e does not allow to route the two demands k, k' together through e, i.e.,
Wy + Wy > 5 — Y g, W Let KE denote the set of pair of demands (k,k') in K that are
non-compatibles for the edge e.

2.3.1 Dimension

We first describe some properties that are useful to determine the dimension of P(G, K, S).

Proposition 2.3.1. The follows equation system (2.13)) is of full rank

:):];:O,forallkEK andeeEé,
a¥ =1, for allk € K and e € E}, (2.13)
zf =0, for allk € K and s € {1,...,w; — 1}.

The rank of system ([2.13)) is given by

r=> (Ef|+|Ef| + (wi — 1)).
keK

Proof. Let @ denote a matrix associated with the system (2.13)) which contains r lines linear
independents. We distinguish 4 blocks of lines in @) as below

a) block Q! corresponds to the equations :c’g =0forall k€ K and all e € E(’)C ,
b) block @Q? corresponds to the equations z¥ =1 for all k € K and all e € E},
¢) block @3 corresponds to the equations z¥ = 0 for all k € K and all s € {1,...,w;, — 1}.

Note that the 3 blocks of the matrix () are independents.
O

A solution of the C-RSA problem is given by two sets Ej and S for each demand k € K
where Ej; is a set of edges used for the routing of demand k which contains a path py satisfying
the continuity of path py, for the demand k (i.e., E(px) C Ey)s.t. >° cp le <l and Ef C E,
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and Sy, is a set of slots which represent the set of last-slot of slot-disjoint ( i.e., the intervals do
not share some slots) selected for the demand k which forms a set of intervals of contiguous
slots s.t. each interval contains w; contiguous slots. To facilitate the understanding of proofs,
we call by Fj a feasible path, and by Si the last-slots assigned to the demand k.
Figure [2.2] shows the routing solutions for a demand k that are feasible for our problem
throughout the proofs.
Below some genral hypotheses which will be used along the deffirents proofs for differents

o k PK d k (2] P 13 d k ok P 4 d k
o0—0—0—0—0—0 o0—0—0—0—0—0 o—0—0—0—0—0
o0—0 L&J o0—0 o0—0

; I Py

o P d o P di; Ok dk
o—C o—0—10 o—C o0——=0 oG 00— 0

Figure 2.2: A set of edges Ej for a demand k containing an (o, di)-path Py together with:
isolated-edge, islated-cycle, two isolated-edges, linked-cycle, and linked edges.

propositions and theorems

a) We suppose that Gy, is o — dj, connected graph which ensure that there exists at least

one feasible path which connects the origin node o, with destination node dj of demand
k,

b) We suppose that § is sufficient to route all the demands which means that there is no
demand rejected because a lack of resources on the links. This does not mean that we
cannot have a forbidden edges because a lack of resources on the link i.e. there may
exist some cases where E¥ # () for some demands & in K,

¢) For each demand k € K and e € E\ (E} L{Ef), there exists at least a feasible route FJ
between o, and dj, s.t. Ze’EEk le + 1o <li, and for each €’ € Ej, the edges (e, ¢€’) are
not non-compatible edges for the demand k.

Let St = (E*,S%) denote the set of edges and last-slots assigned to route the demands K
in ith solution proposed for the C-RSA problem s.t. E! = (E!, Ej, ...,EfK|_1,E"'K‘) and
St = (81,55, ..., \ZK\A’S\ZK\)'

Proposition 2.3.2. Consider an equation px + oz = X of P(G,K,S). The C-RSA equation
system ([2.13)) defines a minimal equation system for P(G, K,S). As a consequence, we obtain
that for each demand k

a) a¥ =0 for all slots s € {wy, ..., 5},
b) uk =0 for all edges e € E\ (E§ U EY),
and pr + oz =X of P(G, K,S) is a linear combination of equation system (|2.13]).

Proof. To prove that ux+oz is a linear combination of equations system ([2.13)), it is sufficient
to prove that for each demand k € K, there exists 7{“ € R|E§|,7§ € R‘Eﬂ,’yg)f € R¥s—1 (given
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that the matrix @ has 3 blocks) s.t. (u,0) =~vQ.

Let 25 and 2° denote the incidence vector of a solution S of the C-RSA problem.

Let us show that ¢ = 0 for all ¥ € K and all s € {wy,...,5}. Consider a demand k and a
slot s in {wy, ..., 3}. To do so, we consider a solution S° = (E°, S%) in which

a) a feasible path EY is assigned to each demand k € K (routing constraint),

b) a set of last-slots S,g is assigned to each demand k € K along each edge e € E,g with
|S?| > 1 (contiguity and continuity constraints),

¢) {s' —wr+1,...,s}N{s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S and
s” € S,g, with E,g NEY, # 0, i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeE,g {s' € S2,s” € {s —wy, +1,...,s'}| <1 (non-overlapping constraint),

d) and {s —wy + 1,...,s} N{s —wp +1,...,8’} = 0 for each ¥’ € K and s’ € SY, with
Eg N E,g, # () (non-overlapping constraint taking into account the possibility of adding
the slot s in the set of last-slots S assigned to the demand k in the solution S?).

SY is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
(2-2)-(2-10). Hence, the corresponding incidence vector (25°,25°) belongs to P(G, K, S).
Based on this, we derive a solution S! = (E!, S!) from the solution S° by adding the slot
s as last-slot to the demand k without modifying the paths assigned to the demands K in
8Y (ie., El = EY for each k € K), and the last-slots assigned to the demands K \ {k} in
SY remain the same in the solution S! ie., S, = S}, for each demand k' € K \ {k}, and
Sl =89 U {s} for the demand k. The solution S is feasible given that

a) a feasible path E} is assigned to each demand k € K (routing constraint),

b) a set of last-slots S,i is assigned to each demand k € K along each edge e € E,i with
|SL| > 1 (contiguity and continuity constraints),

¢) {s—wp+1,..,stN{s’ —wp +1,...,8'} = 0 for each k,k’ € K and each s € S} and
s e S,}:, with Bl N E,i, # (), i.e., for each edge ¢ € E and each slot s” € S we have
ZkeK,eeE; [{s € S},s” € {s —wp +1,...;5}| <1 (non-overlapping constraint).

The corresponding incidence vector (xsl,zsl) belongs to P(G, K,S). We then obtain that

S

nx ’ + O'ZSO = /m‘s

1 1 0 0
+02° :ux‘s +02° —i—af.

It follows that 0¥ = 0 for demand k and a slot s € {wy,, ..., 5}. The slot s is chosen arbitrarily
for the demand k, we iterate the same procedure for all feasible slots in {wg, ..., §} of demand
k s.t. we find

ok =0, for demand k and all slots s € {wy, ..., 5}

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands
k' in K\ {k} such that

o =0, for all k' € K\ {k} and all slots s € {wy, ..., 5}
Consequently, we conclude that
o =0, for all k € K and all slots s € {wy, ..., 5}

Next, we will show that u¥ = 0 for all the demands k € K and all e € E \ (Ef U E}).
Consider a demand k € K and an edge e € E \ (E§ U E¥). For that, we consider a solution
S = (E",8) in which
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a) a feasible path E,’CO is assigned to each demand k € K (routing constraint),

b) a set of last-slots S,’CO is assigned to each demand k € K along each edge e € E,’C0 with
|S%] > 1 (contiguity and continuity constraints),

¢) { —wr+1,...,8}N{s" —wp +1,....,8"} = 0 for each k,k’ € K and each s’ € S} and
s” € S} with EX N EY # 0, i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeE,’f {s' € S0, 5" € {s' —wy +1,...,s'}| <1 (non-overlapping constraint),

d) {s—wr+1,....s}N{s—wp +1,...,5} =0 foreach k' € K and s € S)? and s’ € S with
(EQU{e}) N E} # 0 (non-overlapping constraint taking into account the possibility of
adding the edge e in the set of edges E,;O selected to route the demand k in the solution
8/0)’

e) and the edge e is not non-compatible edge with the selected edges e € E,’CO of demand
k in the solution S”, i.e., ZeleE;o le +le <. As aresult, B U {e} is a feasible path
for the demand k.

S’ is clearly feasible for the problem given that it satisfies all the constraints of cut formula-
tion —. Hence, the corresponding incidence vector (xs/o, 23/0) belongs to P(G, K, S).
Based on this, we derive a solution S? obtained from the solution S by adding an unused
edge e € E\ (E¥UEY) for the routing of demand k in K in the solution S"° which means that
E,% = E/I’C0 U{e}, and removing slot s selected for the demand k in S and replaced it by a new
slot s" € {wg, ...,S} (Le., SF = (SA\{sHU{s'} s.t. {s'—wi+1,...,sIN{s"—wp+1,....,87} =0
for each k' € K and s” € S0 with E? N E}) # (). The last-slots and paths assigned the set of
demands K \ {k} in 8" remain the same in the solution S, i.e., S = S and E}, = E for
each k' € K \ {k}. S? is clearly feasible given that

a) and a feasible path E? is assigned to each demand k € K (routing constraint),

b) a set of last-slots S,% is assigned to each demand k € K along each edge e € E,f with
|S2| > 1 (contiguity and continuity constraints),

¢) {s—wr+1,..,stN{s —wp +1,...,8'} = 0 for each k,k’ € K and each s € S? and
s’ € S2, with Ei N E,%, # (), i.e., for each edge ¢ € E and each slot s” € S we have
ZkeK’eeEi [{s € S,s” € {s —wp +1,...;5}| <1 (non-overlapping constraint).

The corresponding incidence vector (25, 25%) is belong to P(G, K, S). It follows that

Sl

0 70
nux +02° :u:cs

S’ k

2 2 0 /0
+02° = px +u§+025 —af—i—as,,

which implies that p* = 0 for demand k and an edge e given that o% = 0 for all k € K and
all s € {wg, ..., 5}.
As e is chosen arbitrarily for the demand k with e ¢ EX U E¥, we iterate the same procedure
for all ¢’ € E\ (E§ U E} U {e}). We conclude that for the demand k

pk =0, foralle e E\ (E5UEY).

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all
k'€ K\ {k} and all e € E\ (Ef U EF). We conclude at the end that

pk =0, forall k € K and all e € E\ (Ef U EY).
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Therefore all the equations of the polytope P(G, K, S) are given only in terms of the variables
Qi

z¥ with e € EFUEY and 2F with s € {1, ...,w;}. Let Q¥ = [ Q% | be the submatrix of matrix
Qi

Q associated to the equations (2.12)) and (2.11]) and involving variables x* for all e € E} U E¥

and variables 2¥ with s € {1, ...,w;} for demand k. Note that a forbidden edge can never be

an essential edge at the same time Otherwise, the problem is infeasible. We want to show

that pF = = Qk + 75 Qk and o = =3 Q3 For that, we first ensure that all the edges e € Eo

for each demand k are independants s.t. for each demand k € K we have

k, k,
D= W= Y (- w)=0.

e€E¥ e€EY e€E¥

The only solution of this system is u# = ’yf “ for each e € E} for the demand k. As k is
chosen arbitrarily in K, we iterate the same procedure for all ¥ € K\ {k}. We conclude that

pk =~ for all k € K and all e € Ef,

We re-do the same thing for the edges e € Ef for each demand k which are independants s.t.
for each demand k£ € K we have

k, k,
Doub=d %= Y (- =0

eEEf eEEf eGEf

The only solution of this system is u# = ’yg “ for each e € EY for the demand k. As k is
chosen arbitrarily in K, we iterate the same procedure for all ¥ € K\ {k}. We conclude that

b =~y°, for all k € K and all e € EY,

On the other hand, note that the slots s € {1, ..., wy — 1} for each demand k are independants
s.t. for each demand k € K, we have

wg—1 wg—1 wi—1

k _ —
E o, = T E 0 —73 )=0
s=1 s=1

The only solution of this system is 0% = 73 * for each s € {1,...,wy — 1} for the demand k.
As k is chosen arbitrarily in K, we iterate the same procedure for all ¥ € K \ {k}. We then
get that

K — ks forall ke K and all s € {1,...,w; — 1}. (2.14)
We conclude at the end that for each k € K and e € F

e if e € BY
k .
He = 75’6, ifec Ef

0, otherwise
yielding

uk —’lek—&—'y Q3 for each k € K.
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Moreover, for each kK € K and s € S

& 7§’5,ifse {1, .. w — 1}
g =
B 0, otherwise

ie., of = 'yész
As a result (p,0) =~vQ with v = (1,72, 7y3) which ends the proof. O

Theorem 2.3.1. The dimension of P(G, K,S) is given by
dim(P(G, K,S)) = [K| * (|E| + [S]) — 7.
Proof. Given the rank of the C-RSA equation system ([2.13)) and the proposition (2.3.2). [

2.3.2 Facial Investigation

In this section, we describe facets defining inequalities for the polytope P(G, K,S) from the
cut formulation (2.2))-(2.10f), and the ones from the valid inequalities. First, we characterize

when the basic inequalities (2.2))-(2.10|) define facets.

Theorem 2.3.2. Consider a demand k € K, and an edge e € E \ (E§, E¥). Then, the
inequality x¥ > 0 is facet defining for P(G, K,S).

Proof. Let’s us denote F the face induced by the inequality 2% > 0, which is given by
FF ={(z,2) € P(G,K,S) : zF = 0}.

In order to prove that the inequality 2% > 0 is facet defining for P(G, K,S), we start checking
that F* is a proper face which means that it is not empty, and F* # P(G, K,S). We construct
a solution 8% = (E3, 53) as below

a) a feasible path E} is assigned to each demand k € K (routing constraint),

b) a set of last-slots S,? is assigned to each demand k € K along each edge €' € E,:j with
|S2| > 1 (contiguity and continuity constraints),

¢) {s—wr+1,...,stN{s —wp +1,...,5'} = 0 for each k,k’ € K and each s € S} and
s’ € 83, with E} N E}, # ) (non-overlapping constraint),

d) and the edge e is not chosen to route the demand k in the solution S3, i.e., e ¢ Ei’

Obviously, 83 is feasible solution for the problem given that it satisfies all the constraints of
our cut formulation (2.2)-(2.10). Moreover, the corresponding incidence vector (1‘53, zsa) is
belong to P(G, K,S) and then to F¥ given that it is composed by z¥ = 0. As a result, F¥
is not empty (F¥ # (). Furthermore, given that e € E \ (E} U E}) for the demand k, this
means that there exists at least one feasible path Ej for the demand k passed through the
edge e which means that F* # P(G, K,S).

On the other hand, we know that all the solutions of F* are in P(G, K,S) which means that
they verify the equations system s.t. the new equations system associated with
FF is written as below

¥ =0, s.t. k and e are chosen arbitrarily,
=0, forall k € K and all e € Ef,
¥ =1, forall k € K and all e € EY,
2F =0, forall k€ K and all s € {1,...,w; — 1}.

v (2.15)
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Given that the e € F'\ (Ef U E}), the system shows that the equation z¥ = 0 is not a
result of equations of system which means that the equation ¥ = 0 is not redundant
in the system , and hence the system is of full rank. As a result, the dimension of the
face F¥ is equal to

dim(EFF) = |K|* (|[E|+|S]) —rank(Q') = | K|+ (|E|+|S|) — (147) = dim(P(G, K,S)) — 1,

where ) is the matrix associated with the equation system . As a result, the face F¥
is facet defining for P(G, K,S). Furthermore, we strengthened the proof as follows using a
technique called ”proof by maximality”. We denote the inequality ¥ > 0 by az + 3z < .
Let pux + oz < 7 be a valid inequality that is facet defining F' of P(G, K,S). Suppose
that F¥ ¢ F = {(z,2) € P(G,K,S) : px + 0z = 7}. We show that there exist p € R
and v with v = (71,72,73) ( with 7, € RZkex ‘Ef]fl,'yg € RZkGwal,yg € RXrex(Wr=1)y g ¢,
(n,0) = p(a, B) + vQ. We will show that

a) pk, =0 for the demand k and all ¢’ € E'\ (E§ U Ef U {e}),
b) and p¥, = 0 for all demands k' € K \ {k} and all ¢’ € E\ (E§ U EY),
c¢) and 0¥ = 0 for all demands k € K and all slots s € {wy, ..., 5}.

First, let’s show that o® = 0 for all k € K and all s € {wy, ..., 5}. Consider a demand k and
a slot s in {wy,...,5}. Based on this, we consider a solution 8" = (E"3,$") in which

a) a feasible path E,’f’ is assigned to each demand k € K (routing constraint),

b) a set of last-slots S,’f’ is assigned to each demand k € K along each edge ¢’ € El’f with
|S22] > 1 (contiguity and continuity constraints),

o) { —wr+1,..,8}N{s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S;3 and
s” € S with E> N EZ # 0, i.e., for each edge ¢’ € E and each slot s” € S we have
ZkeK,e’eE,’j [{s' € S3,s" € {s' —wy +1,...,s'}| <1 (non-overlapping constraint),

d) and {s —w + 1,...,s} N{s —wp + 1,...,8'} = 0 for each ¥’ € K and s’ € S}, with
EP N E}3 # 0 (non-overlapping constraint taking into account the possibility of adding
the slot s in the set of last-slots S;> assigned to the demand k in the solution &),

e) and the edge e is not chosen to route the demand k in the solution S, i.e., e & E2.

S” is clearly feasible for the problem given that it satisfies all the constraints of cut formu-
lation —. Hence, the corresponding incidence vector (:L*Slg, 23'3) is belong to F' and
then to Fek given that it is also composed by xlg = (0. Based on this, we derive a solution
St = (E*, S8%) from the solution 8" by adding the slot s as last-slot to the demand k without
modifying the paths assigned to the demands K in 8" (i.e., E} = E{ for each k € K), and
the last-slots assigned to the demands K \ {k} in S remain the same in the solution S* i.e.,
53 = S, for each demand k' € K \ {k}, and S} = Si2 U {s} for the demand k. The solution
S* is feasible given that

a) a feasible path Ef is assigned to each demand k € K (routing constraint),

b) a set of last-slots Sé is assigned to each demand k € K along each edge ¢’ € E;l with
|S#| > 1 (contiguity and continuity constraints),
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¢) {s—wp+1,...,stN{s —wp +1,...,8'} = 0 for each k, k' € K and each s € S} and
s’ € S}, with E} N El, # 0, i.e., for each edge ¢/ € E and each slot s” € S we have
ZkeK,e’eEg {s € S}, s" € {s —wy + 1,...,5}| <1 (non-overlapping constraint),

d) and the edge e is not chosen to route the demand k in the solution 8%, i.e., e ¢ E}.

The corresponding incidence vector (:CS4, 234) is belong to F and then to F* given that it is
also composed by z¥ = 0. We then obtain that

S/ /

3 /3
[1%y +02° :/ms

4 4 3 13
+02° = ,u,a:S +02° —i—af.

It follows that 0% = 0 for demand k and a slot s € {wy, ..., 5}.
The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible
slots in {wg, ..., 5} of demand k s.t. we find

ok =0, for demand k and all slots s € {wy, ..., 5}

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands
k' in K\ {k} such that

o =0, for all k' € K\ {k} and all slots s € {wy, ..., 5}
Consequently, we conclude that

o =0, for all k € K and all slots s € {wy, ..., 5}

Next, we will show that u¥, = 0 for all the demands k' € K \ {k} and all ¢’ € E\ (E} UEY),
and pF, = 0 for the demand k and all ¢ € E\ (Ef U E¥ U {e}). Consider the demand k € K
and an edge ¢’ € E\ (E§ U E¥ U {e}) chosen arbitrarily. For that, we consider a solution
8”3 = (E73,573) in which

a) a feasible path E”3 is assigned to each demand k € K (routing constraint),

b) a set of last-slots S”,?; is assigned to each demand k € K along each edge ¢’ € E”% with
|S73| > 1 (contiguity and continuity constraints),

¢) { —wp+1,...8N{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S”% and
s” € S”i, with E”i N E”%/ # (), i.e., for each edge ¢’ € E and each slot s” € S we have
ZkEK,e’EE”z [{s' € §73,s" € {s' —wy +1,...,5'}| <1 (non-overlapping constraint),

d) and {s —wr + 1,....,s} N {s' —wp + 1,...,8'} = 0 for each k' € K and s € S7% and
s € 873, with (B} U{€’}) N E”3, # () (non-overlapping constraint taking into account
the possibility of adding the edge €’ in the set of edges E”% selected to route the demand
k in the solution S”3),

e) and the edge e is not chosen to route the demand k in the solution S”3, i.e., e ¢ E”z.

8§73 is clearly feasible for the problem given that it satisfies all the constraints of cut formu-
lation —. Hence, the corresponding incidence vector (xS”S, 28”3) is belong to F' and
then to F* given that it is also composed by % = 0. Let S° be a solution obtained from the
solution 8”3 by adding an unused edge ¢’ € E\ (Ef U E¥) for the routing of demand k in K
in the solution 8”3 which means that E? = E”3 U {¢’}, and removing slot s selected for the
demand k in 8”3 and replaced it by a new slot s’ € {wy,...,S} (i.e., Sp = (573 \ {s}) U {s'}
st { —wp+1,..,8}N{s” —wp +1,..,s"} = 0 for each ¥ € K and s” € S”}, with
E}NE”3, #0). The last-slots and paths assigned the set of demands K \ {k} in 8”3 remain
the same in the solution S°, i.e., S}, = S”3, and E}, = E”3, for each k' € K \ {k}. S° is
clearly feasible given that

37



a) and a feasible path E} is assigned to each demand k € K (routing constraint),

b) a set of last-slots S;Z’ is assigned to each demand k& € K along each edge €' € E,‘Z’ with
|S?| > 1 (contiguity and continuity constraints),

¢) {s—wp+1,...,s}N{s —wp +1,...8} = 0 for each k, k' € K and each s € S} and
s’ € Sp, with E} N E}, # 0, i.e., for each edge ¢/ € E and each slot s” € S we have
ZkeK,eleEg {s € 8P, 5" € {s—wy+1,...,5}| <1 (non-overlapping constraint),

d) and the edge e is not chosen to route the demand k in the solution S°, i.e., e ¢ Eg

The corresponding incidence vector (1'85, 255) is belong to F and then to F* given that it is

also composed by z¥ = 0. It follows that

;m?‘S”S + azS”B = ux35 + 0285 = ,u:cS”3 + ,u];, + 028”3 — af + af,.
It follows that ,ule“, = 0 for demand k and an edge ¢’ given that ¢% = 0 for all k € K and all
s € {wg, ..., 5}.
As ¢’ is chosen arbitrarily for the demand k with ¢/ ¢ E} U EF¥ U {e}, we iterate the same
procedure for all ¢’ € E'\ (E§ U E¥ U {e}). We conclude that for the demand k

pk =0, forall ¢ € E\ (E¥UEF U {e}).

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all
kK€ K\ {k}and all ¢ € E\ (E} U EF). We conclude at the end that

pl =0, forall ¥ € K\ {k} and all ¢ € E\ (EF UE}),
pk =0, forall ¢ € E\ (EXUEY U {e}).

On the other hand, we use the same technique applied in the polyhedron dimension proof
to prove that

Ko k
:ue M
14 k;
lu’e =72

o =k for all ¥ € K and all §' € {1, ..., wp — 1}.

, for all k' € K and all ¢ EEO )
, for all ¥’ € K and all € EEl ,

We conclude that for each ¥’ € K and ¢’ € E
W if e e BY,
'yg/’el, if ¢ € Ef/,

pki =
‘ p, if ' =k and € = e,

0, otherwise,

and for each k € K and s € S

g

ko {73 Jif s € {1, ..., w — 1},

S .
0, otherwzse.

As a result (u,0) = pa¥ ++Q which ends the proof. O

Theorem 2.3.3. Consider a demand k € K, and a slot s € {wy,..,5}. Then, the inequality
28 >0 is facet defining for P(G, K,S).
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Proof. Let F Sk denote the face induced by inequality zf > 0, which is given by
FF = {(z,2) € P(G,K,S) : 2F = 0}

In order to prove that inequality z¥ > 0 is facet defining for P(G, K,S), we start checking
that F¥ is a proper face, and F¥ # P(G, K,S). We construct a solution S¢ = (ES, S%) as
below

a) a feasible path Eg is assigned to each demand k € K (routing constraint),

b) a set of last-slots S,? is assigned to each demand k € K along each edge ¢’ € Eg with
|S8] > 1 (contiguity and continuity constraints),

o) { —wp+1,..,8tN{s" —wp +1,...,5"} =0 for each k, k' € K and each s’ € SP and
s” € S%, with ES N ES, # () (non-overlapping constraint),

d) and the slot s is not chosen to route the demand k in the solution 8¢ i.e., s ¢ Sg.

Obviously, S is feasible solution for the problem given that it satisfies all the constraints
of our cut formulation —. Moreover, the corresponding incidence vector (a:sﬁ, 236)
is belong to F' and then to Fsk given that it is composed by zf = 0. As a result, Fsk is not
empty (F¥ # ()). Furthermore, given that s € {wg, ..., 3} for the demand k, this means that
there exists at least one feasible solution for the problem in which s € S}, for the demand k.
As a result, F¥ # P(G, K,S).

On the other hand, we know that all the solutions of F¥ are in P(G, K,S) which means that
they verify the equations system s.t. the new equations system associated with
FF is written as below

zf =0, s.t. k and s are chosen arbitrarily,
=0, forall k € K and all e € EF,
=1, forall k€ K and all e € EF,
8 =0, forall ke K and all s € {1,...,wj, — 1}.

e (2.16)

The equation zf = 0 is not result of equations of system ([2.13]) which means that the equation
2% = 0 is not redundant in the system (2.20). As a result, the system (2.20) is of full rank.

As a result, the dimension of the face F¥ is equal to
dim(F¢) = |K|+(|E|+(S|) —rank(Q") = |K|*(|E|+[S]) - (1+7) = dim(P(G, K,S)) -1,

where )7 denotes the matrix associated with the equation system (2.20). As a result, the
face F¥ is facet defining for P(G, K,S). Furthermore, we strengthen the proof as follows. We
denote the inequality z¥ > 0 by ax + 8z < A. Let ux + o0z < 7 be a valid inequality that is
facet defining F of P(G, K,S). Suppose that F¥ C F = {(z,2) € P(G,K,S) : pz + 0z = 7}.
We show that there exist p € R and v with v = (71,72,...,74) (71 € RZk€K|E§‘,72 €
REkex 1BE] 5 € RXkex(@x=D) st (u,0) = p(a, B) +7Q, and that

a) ok =0 for demand k and all slots s’ € {wg, ..., 5} \ {s},

b) and o¥ =0 for all demands k' € K \ {k} and all slots s’ € {wy, ..., 5},

c¢) and p¥ = 0 for all demands k € K and all edges e € E'\ (E} U EY).
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First, let’s us show that ¥ = 0 for all the demands k € K and all edges e € E'\ (E§ U E¥).
Consider a demand k € K and an edge e € E \ (E§ U E¥F). For that, we consider a solution
S8 = (E'%,8%) in which

a) a feasible path E}° is assigned to each demand k € K (routing constraint),

b) a set of last-slots Si° is assigned to each demand k € K along each edge e € E}S with
|58 > 1 (contiguity and continuity constraints),

¢) { —wp+1,...,8}N{s" —wp +1,....,8"} = 0 for each k,k’ € K and each s’ € S5 and
s” € Si% with ES N ES # 0, i.e., for each edge e € E and each slot s” € S we have
Zk;eK,eeE;f [{s' € 88,5 € {s' —wp + 1,...,8'}| <1 (non-overlapping constraint),

d) and {s' —wr +1,....8}N{s” —wp +1,...,58"} = 0 for each k¥’ € K and s’ € S} and
s” € 19 with (E8U{e}) N ES # 0 (non-overlapping constraint taking into account the
possibility of adding the edge e in the set of edges E;f selected to route the demand k&
in the solution &',

e) the edge e is not non-compatible edge with the selected edges e € E;f of demand k in
the solution S, i.e., Ze'eE,’f le +le < li. As aresult, E}S U {e} is a feasible path for
the demand k,

f) and the slot s is not chosen to route the demand k in the solution 8", i.e., s ¢ S7¢.

S0 is clearly feasible for the problem given that it satisfies all the constraints of cut formu-
lation —. Hence, the corresponding incidence vector (.%‘SIG, 23/6) is belong to F' and
then to Fsk given that it is composed by zf = 0. Based on this, we derive a solution S”
obtained from the solution §’® by adding an unused edge e € E'\ (EY U E¥) for the routing of
demand k in K in the solution S which means that E} = Ej9 U {e}. The last-slots assigned
to the demands K, and paths assigned the set of demands K \ {k} in &’® remain the same
in the solution S7, i.e., Sf = S}° for each k € K, and EJ, = E}S for each k' € K \ {k}. S” is
clearly feasible given that

a) and a feasible path E,Z is assigned to each demand k € K (routing constraint),

b) a set of last-slots S,Z is assigned to each demand k € K along each edge e € E,Z with
|ST| > 1 (contiguity and continuity constraints),

c) { —wp+1,...,8tN{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S} and
s” € 87, with EIZ N E,Z, # (), i.e., for each edge e € E and each slot s” € S we have
ZkGK,eGEZ {s' € S[,s” € {s' —wy +1,...,s'}| <1 (non-overlapping constraint),

d) and the slot s is not chosen to route the demand k in the solution S, i.e., s ¢ ST.

The corresponding incidence vector (:US7, 257) is belong to F' and then to F¥ given that it is

composed by z¥ = 0. It follows that

S/

6 /6
1%y +02° :u:L'S

Sl

’ + 0237 = ux ‘ —|—uf§ + stlﬁ.

As a result, x* = 0 for demand & and an edge e.
As e is chosen arbitrarily for the demand k with e ¢ E(’f U Ef, we iterate the same procedure
for all ¢’ € F\ (E} U E¥ U {e}). We conclude that for the demand k

pk =0, forallec E\ (ESUEY).
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Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all
k'€ K\ {k} and all e € E'\ (E} U E¥). We conclude at the end that

pk =0, forall k € K and all e € E\ (E§ U EY).

Next, we will show that, 0% = 0 for all ¥ € K \ {k} and all s’ € {wy, ..., 5}, and 0% = 0 for
all slots s € {wy,...,5} \ {s}. Consider the demand k and a slot s" in {wg,...,5} \ {s}. For
that, we consider a solution 8”6 = (E”¢,$7¢) in which

a) a feasible path E”g is assigned to each demand k € K (routing constraint),

b) a set of last-slots S”% is assigned to each demand k € K along each edge e € E”g with
|S79] > 1 (contiguity and continuity constraints),

¢) {s'—wrp+1,..,8tN{s” —wp +1,...,8"} = 0 for each k, k' € K and each s’ € $”¢ and
s” € 879, with E”$ N E”S, # 0, i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeEﬂg [{s' € §78,s" € {s' —wy +1,...,5'}| <1 (non-overlapping constraint),

d) and {s' —wp + 1,....,8} N {s" —wp +1,...,5"} = 0 for each ¥’ € K and s” € S”9,
with E”g N E”%, # 0 (non-overlapping constraint taking into account the possibility of

adding the slot s’ in the set of last-slots S”% assigned to the demand k in the solution
87,6),

e) and the slot s is not chosen to route the demand k in the solution 8”¢, i.e., s ¢ S”¢.

S76 is clearly feasible for the problem given that it satisfies all the constraints of cut for-
mulation (2.2)-(2.10). Hence, the corresponding incidence vector (:1:3”6, zS”G) is belong to F'
and then to F¥ given that it is composed by z¥ = 0. Based on this, we construct a solution
S8 derived from the solution S”% by adding the slot s’ as last-slot to the demand k with
modifying the paths assigned to a subset of demands K € K in 8”6 (i.e., E,f = E”g for each
k€ K\ K, and Ef # E” for each k € K) s.t.

a) a new feasible path E? is assigned to each demand k € K (routing constraint),

b) and {s' —wi +1,...,s'}N{s” —wp +1,....,5"} = 0 for each k € K and k¥ € K \ K and
each s € $”¢ and s” € S”g, with E§ N E”g, # (), i.e., for each edge e € E and each slot
s” € S we have Zkef(,eeEﬁ H{s' € 97¢,s" € {s' —wp+1,...,8'} + ZkeK\f{,eeE”g I{s' €
8§76 " € {s' —wp +1,...,5'} <1 (non-overlapping constraint),

¢) and {s' —wp 4+ 1,....8} N {s” —wp +1,...,5"} = 0 for each ¥ € K and s” € 579,
(non-overlapping constraint taking into account the possibility of adding the slot s’ in
the set of last-slots S”¢ assigned to the demand k in the solution S”%),

d) and the slot s is not chosen to route the demand k in the solution S%, i.e., s ¢ S,f.

The last-slots assigned to the demands K \ {k} in S”% remain the same in 8%, i.e., S7¢, = S%,
for each demand k' € K \ {k}, and S§ = 5”9 U {s} for the demand k. The solution S® is
clearly feasible given that

a) a feasible path E} is assigned to each demand k € K (routing constraint),

b) a set of last-slots S,? is assigned to each demand k € K along each edge e € E,f with
|S§| > 1 (contiguity and continuity constraints),
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¢) { —wp+1,...,8IN{s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S§ and
s" € Sk, with E8 N E,f, # 0, i.e., for each edge e € F and each slot s” € S we have
> kek, ceE? {s' € S8, 5" € {s/ —wg +1,...,s'} <1 (non-overlapping constraint),
d) and the slot s is not chosen to route the demand k in the solution S8, i.e., s ¢ Ss.
The corresponding incidence vector (:1:58, 258) is belong to F' and then to F¥ given that it is
composed by z¥ = 0. We have so

Mg;S”G +025° = umss +025° = ,uxS”G 1025 ¢ Z Z Ne + Z Z ﬂe

keK e€eE"$ keK €'€E}

It follows that % = 0 for demand k and a slot s’ € {wy, ..., 5} \ {s} given that ¥ = 0 for all
the demands k € K and all edges e € E\ (E} U E¥).

The slot s’ is chosen arbitrarily for the demand k, we iterate the same procedure for all
feasible slots in {wyg, ..., 5} \ {s} of demand k s.t. we find

ok =0, for demand k and all slots s’ € {w, ..., 5} \ {s}.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands
k' in K\ {k} such that

o¥ =0, for all k¥ € K\ {k} and all slots s’ € {wy, ..., 5}
Consequently, we conclude that
o =0, for all k¥ € K and all slots s € {wy, ...,5} with s # ¢ if k = k'.

On the other hand, we use the same technique applied in the polyhedron dimension proof
to prove that

l

ue —71 , for all ¥’ € K and all €’ GEO,
,ue —72 , for all k¥ € K and all ¢ EEl )
ak// = 73 , forall ¥’ € K and all s € {1,...,wy — 1}.

We conclude that for each kK € K and e € E

ke, 1fe€E0,

k
He = 72’ , if e EEl,
0, otherwise,

and for each ¥’ € K and s’ € S

VRS e {1, g — 1),

i 0,if ' € {wys, ..., 5} and k' # k,
*)oifs e {wpry ..., 83\ {s} and k' =k,
p,if ' = s and k' = k.

As a result (u,0) = pﬂ§ + 7@ which ends our strengthening of the proof.

42



Definition 2.3.2. For a demand k, two edges e =ij ¢ EX N E¥F ¢/ =1m ¢ EENE¥ are said
non-compatible edges iff the lengths of (og,dy)-paths formed by e = ij and €' = lm together
are greater that .

Note that we are able to determine the non-compatible edges for each demand k in
polynomial time using shortest-path algorithms by verifying if the length of the following
(o, di,)-paths

a) (og,dy)-path formed by e and €’ together with the shortest (ox,), (j,1) and (m,dy)
paths,

b) (ok,di)-path formed by e and €’ together with the shortest (og,7), (j,m) and (I,dy)
paths,

¢) (ok,dy)-path formed by e and e’ together with the shortest (og,7), (i,1) and (m,dy)
paths,

d) (og,dr)-path formed by e and e’ together with the shortest (og,j), (i,m) and (I,dy)
paths,

e) (og,dg)-path formed by e and €’ together with the shortest (og,l), (m,i) and (j,dx)
paths,

f) (ok,dr)-path formed by e and €’ together with the shortest (ox,1), (m,7) and (i,d)
paths,

g) (og,dy)-path formed by e and e’ together with the shortest (og,m), (I,4) and (j,dx)
paths,

h) (og,dr)-path formed by e and e’ together with the shortest (ox,m), (I,7) and (7,dy)
paths,

are greater that I

Proposition 2.3.3. Consider a demand k € K. Let (e, €') be a pair of non-compatible edges
for the demand k. Then, the inequality

ok 42k <1, (2.17)
is valid for P(G, K,S).

Proof. 1t is trivial due to the transmission-reach constraint and given the definition of non-
compatible edges for the demand k. O

Based on the definition of a non-compatible demands for an edge e, we introduce the
following inequality.

Proposition 2.3.4. Consider an edge e € E. Let (k, k') be a pair of non-compatible demands
for the edge e with e ¢ Eé: U E{‘: U Eé“l U Ef/. Then, the inequality

ot <1, (2.18)
is valid for P(G, K, S).
Proof. 1t is trivial given the definition of non-compatible demands for the edge e. O
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Theorem 2.3.4. Consider a demand k € K, and an edge e € E\ (E¥ U E¥). Then, the
inequality x¥ < 1 is facet defining for P(G, K,S) iff

a) there does not exist a demand k' € K \ {k} s.t. the two demands k and k' are non-
compatible demands for edge e,

b) there does not exist an edge ¢’ € E\ (E¥ U EY U {e}) s.t. the two edges e and €' are
non-comptible edges for the demand k.

Proof. Neccessity.
For demand k and an edge e € E\ (E§ U EY), if

a) there exists a demand k&' € K \ {k} s.t. the two demands k and k' are non-compatible
demands for edge e. Then, the inequality 2% < 1 is dominated by the inequality (2.18).

b) there exists an edge €’ € E\ (EF¥UEEU{e}) s.t. the two edges e and €’ are non-comptible
edges for the demand k. Then, the inequality ¥ < 1 is dominated by the inequality
(12.17).

As a result, the inequality 2% < 1 is not facet defining for P(G, K,S).
Sufficiency.
Let F’F denote the face induced by inequality z¥ < 1, which is given by

F'¥ = {(z,2) € P(G,K,S) : zF = 1}.

In order to prove that inequality ¥ < 1 is facet defining for P(G, K,S), we start checking
that F’F is a proper face, and F/* # P(G, K,S). We construct a solution S = (E°,S%) as
below

a) a feasible path Ej is assigned to each demand k € K (routing constraint),

b) a set of last-slots Sg is assigned to each demand k& € K along each edge €' € Eg with
|S2| > 1 (contiguity and continuity constraints),

¢) {s—wp+1,...,s}N{s —wp +1,...,8'} = 0 for each k, k' € K and each s € S} and
s’ € S, with E N E}, # 0 (non-overlapping constraint),

d) and the edge e is chosen to route the demand k in the solution &, i.e., e € Eg.

Obviously, §Y is feasible solution for the problem given that it satisfies all the constraints
of our cut formulation —. Moreover, the corresponding incidence vector (9389, ZSQ)
is belong to P(G, K,S) and then to F'* given that it is composed by ¥ = 1. As a result,
F'* is not empty (F!* # (). Furthermore, given that e € F\ (E} U E¥) for the demand k,
this means that there exists at least one feasible path Ej for the demand k& without passing
through the edge e which means that F/* # P(G, K,S).

On the other hand, we know that all the solutions of F/¥ are in P(G, K,S) which means that
they verify the equations system s.t. the new equations system associated with
F!* is written as below

¥ =1, s.t. k and e are chosen arbitrarily,
=0, forall k € K and all e € Ef,
¥ =1, forall k € K and all e € E},
2F =0, forall k€ K and all s € {1,...,w; — 1}.

v (2.19)
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Given that the e € F'\ (Ef U E}), the system shows that the equation z¥ = 1 is not a
result of equations of system which means that the equation ¥ = 1 is not redundant
in the system . As a result, the system is of full rank. As a result, the dimension of the
face F'* is equal to

dim(F®) = |K|* (|[E|+|S|) —rank(Q") = | K|+ (|E|+|S|) — (1+7) = dim(P(G, K,S)) -1,

where @' is the matrix associated with the equation system . As a result, the face
F'* is facet defining for P(G, K,S). Furthermore, we strengthened the proof as follows. We
denote the inequality ¥ < 1 by ax + Bz < A\. Let ux 4+ 0z < 7 be a valid inequality that is
facet defining F of P(G, K,S). Suppose that F/¥ € F = {(x,2) € P(G,K,S) : px +0z = 7}.
We show that there exist p € R and v with v = (7y1,72,73) ( with v € RZk€K|E§|,'y2 €
REkex |BL] ~s € REkex@e=D) st (1, 0) = p(a, B) + Q. We will show that

a) p =0 for the demand k and all ¢’ € E'\ (B U EF U {e}),
b) and p¥ = 0 for all demands &’ € K \ {k} and all ¢’ € E\ (Ef U EY),
c¢) and 0¥ = 0 for all demands k € K and all slots s € {wy, ..., 5}.

First, let’s show that ¥ = 0 for all k € K and all s € {wy, ..., 5}. Consider a demand k and
a slot s in {wy, ..., 5}. To do so, we consider a solution 8" = (E", S") in which

a) a feasible path E}? is assigned to each demand k € K (routing constraint),

b) a set of last-slots S,:/,g is assigned to each demand k € K along each edge ¢’ € E,;g with
|S?2] > 1 (contiguity and continuity constraints),

o) { —wr+1,....d}N{s" —wp +1,....,8"} = 0 for each k,k’ € K and each s’ € 5}) and
s” € S with E N EY # 0, i.e., for each edge ¢’ € E and each slot s” € S we have
D keK e/ {s' € S2,s" € {s/ —wp +1,...,s'}| <1 (non-overlapping constraint),

d) and {s —wy +1,...,s} N{s —wp +1,...,8’} = 0 for each ¥’ € K and s’ € S} with
EP N EY # 0 (non-overlapping constraint taking into account the possibility of adding
the slot s in the set of last-slots S}? assigned to the demand k in the solution &),

e) and the edge e is chosen to route the demand k in the solution 8, i.e., e € E,’CQ.

S” is clearly feasible for the problem given that it satisfies all the constraints of cut for-
mulation —. Hence, the corresponding incidence vector (335/9,,23,9) is belong to
P(G,K,S). Based on this, we derive a solution S1 = (E1°, §10) from the solution & by
adding the slot s as last-slot to the demand k& without modifying the paths assigned to the
demands K in §? (i.e., E}° = EP for each k € K), and the last-slots assigned to the de-
mands K \ {k} in 8" remain the same in the solution S i.e., S;2 = S}? for each demand
K € K\ {k}, and S}° = S;? U {s} for the demand k. The solution S'° is feasible given that

a) a feasible path E,io is assigned to each demand k € K (routing constraint),

b) a set of last-slots S,io is assigned to each demand k € K along each edge ¢’ € E,%O with
|S19] > 1 (contiguity and continuity constraints),

o) {s—wp+1,..,s}N{s’ —wp +1,...,5'} = 0 for each k, k' € K and each s € S}° and
s € SIY with E}° N E}) # 0, i.e., for each edge ¢’ € E and each slot s” € S we have
ZkeK,e/eE;O [{s € S}0,s” € {s —wy + 1,...,s}| <1 (non-overlapping constraint).
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The corresponding incidence vector (1‘510, zsm) is belong to F and then to F/* given that it
is also composed by z¥ = 1. We then obtain that

S’ St

9 9 /
nx + 028 = ux S

0 10 9 19
+02° = nx +02° —i—af.

It follows that 0¥ = 0 for demand k and a slot s € {wy, ..., 5}.
The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible
slots in {wg, ..., 5} of demand k s.t. we find

o =0, for demand k and all slots s € {wy, ..., 5}

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands
k' in K\ {k} such that

o =0, for all k' € K\ {k} and all slots s € {wy, ..., 5}
Consequently, we conclude that
o =0, for all k € K and all slots s € {wy, ..., 5}

Next, we will show that pf, = 0 for all the demands k' € K\ {k} and all ¢’ € E\ (Ef UEY),
and p¥, = 0 for the demand k and all ¢’ € E\ (Ef U E¥ U {e}). Consider the demand k € K
and an edge ¢’ € E\ (E¥ U E¥ U {e}) chosen arbitrarily. For that, we consider a solution
S = (E?,879) in which

a) a feasible path E” is assigned to each demand k € K (routing constraint),

b) a set of last-slots S”,% is assigned to each demand k € K along each edge ¢’ € E”g with
|S79| > 1 (contiguity and continuity constraints),

¢) { —wp+1,...8N{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € 57 and
s” € 877, with E”) N E”Y, # 0, i.e., for each edge ¢’ € E and each slot s” € S we have
ZkEK,e’EE”z [{s' € §7%,s" € {s' —wy +1,...,5'}| <1 (non-overlapping constraint),

d) the edge €’ is not non-compatible edge with the selected edges e” € E”% of demand k&
in the solution 8”9, i.e., ze”eE”z ler +1o <. Asaresult, E”) U{e’} is a feasible path
for the demand k,

e) and the edge e is chosen to route the demand & in the solution S”, i.e., e € E”Z.

S79 is clearly feasible for the problem given that it satisfies all the constraints of cut for-
mulation —. Hence, the corresponding incidence vector (m‘s”g,z‘s”g) is belong to
F and then to F'F given that it is also composed by zF = 1. Let S be a solution
obtained from the solution 8”9 by adding an unused edge ¢/ € E \ (E} U EY) for the
routing of demand k in K in the solution $”9 which means that E}! = E”) U {e} s.t.
{s—wr+1,.,8tN{s" —wp +1,...,8"} = 0 for each ¥’ € K\ {k} and s” € S”9, with
E,il N E”), # (). The last-slots assigned to the demands K, and paths assigned the set of
demands K \ {k} in 8”9 remain the same in the solution S, i.e., Si! = 579 for each k € K,
and E}} = B, for each k' € K \ {k}. S'! is clearly feasible given that

a) and a feasible path F}! is assigned to each demand k € K (routing constraint),

b) a set of last-slots S ,il is assigned to each demand k € K along each edge ¢’ € E,il with
|Sit > 1 (contiguity and continuity constraints),
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¢) {s—wp+1,..,s}N{s —wp +1,...,8'} = 0 for each k, k' € K and each s € Si! and
s' € Si} with E}' N E}! # 0, ie., for each edge ¢’ € E and each slot s” € S we have
ZkeKﬁ/eEél [{s € S}, s” € {s —wy +1,..., s}| <1 (non-overlapping constraint).

The corresponding incidence vector (xsn,z‘sn) is belong to F and then to F/* given that it
is also composed by z¥ = 1. Tt follows that

8”9 o Sl

99 1 11 99 9 9
% +oz = ux + 02 :,uxs —|—,u]§,—|—o'z$ .

o

Hence, ,u];’, = 0 for demand k and an edge €.
As ¢’ is chosen arbitrarily for the demand k with ¢/ ¢ E} U EF¥ U {e}, we iterate the same
procedure for all ¢/ € E'\ (E¥ U E¥ U {e}). We conclude that for the demand k

pk =0, forall ¢ € E\ (E5 U EY U {e}).
Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all
k'€ K\ {k} and all ¢ € E\ (E} U E¥F). We conclude at the end that
pl =0, forall ¥ € K\ {k} and all ¢ € E\ (EF UE}),
pk =0, for all ¢ € E\ (E¥ U EF U {e}).

On the other hand, we use the same technique applied in the polyhedron dimension proof

to prove that

/

,ul;, = ﬂyfl’e,, for all ¥ € K and all € € E(’f/,
k=K for all ' € K and all ¢ € EY
ok = 'yéfl’s/, for all ¥’ € K and all s € {1,...,wp — 1}.

We conclude that for each &' € K and ¢’ € E

'yf/’e/, if ¢ € Eécl,

s W%t e e Bf,
‘ p, if ' =k and € = e,
0, otherwise,

and for each k € K and s € S

Os

ko 7§’S,if se{l,...,wp — 1},
0, otherwise.

As a result (u,0) = pa® + yQ which ends the proof. O]

Theorem 2.3.5. Consider a demand k € K, and a slot s € {wy, ..,5}. Then, the inequality
2k < 1 is facet defining for P(G, K,S) if there does not exist a demand k' € K \ {k} with
EFNEF #£90.

Proof. Neccessity.

For a demand k € K and a slot s € {wg, .., 5}, if there exists a demand k' € K \ {k} with
E{“ N E{“/ # (. Then, the inequality z¥ < 1 is domined by the non-overlapping inequality
for each edge e € E¥ N Ef/. As a result, the inequality z¥ < 1 is not facet defining for
P(G,K,S).
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Sufficiency.
Let F’* denote the face induced by inequality z¥ < 1, which is given by

F* = {(x,2) € P(G,K,S) : 2F = 1}.

In order to prove that inequality z¥ < 1 is facet defining for P(G, K,S), we start checking
that F'* is a proper face, and F/¥ # P(G, K,S). We construct a solution S12 = (E12, §12) as
below

a) a feasible path E}? is assigned to each demand k € K (routing constraint),

b) a set of last-slots S,? is assigned to each demand k € K along each edge ¢’ € E,}:Q with
|S12] > 1 (contiguity and continuity constraints),

¢) { —wr+1,..,8tN{s” —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S}? and
s” € S}7 with E12 N El? # 0 (non-overlapping constraint),

d) and the slot s is chosen to route the demand k in the solution S12, i.e., s ¢ S}2.

Obviously, S'? is feasible solution for the problem given that it satisfies all the constraints of
our cut formulation - Moreover, the correspondmg incidence vector (xslz, zslz)
is belong to F' and then to F/F given that it is composed by z¥ = 1. As a result, F'* is not
empty (F!* # (). Furthermore, given that s € {wy, ..., 5} for the demand k, this means that
there exists at least one feasible solution for the problem in which s ¢ S for the demand k.
As a result, F/¥ #+ P(G, K,S).

On the other hand, we know that all the solutions of F’* are in P(G, K,S) which means that
they verify the equations system s.t. the new equations system associated with
F!* is written as below

28 =1, s.t. k and s are chosen arbitrarily,
=0, forall k € K and all e € Ef,

¥ =1, forall k € K and all e € EY,

2F =0, forall k€ K and all s € {1,...,w; — 1}.

(2.20)

The equation z¥ = 1 is not result of equations of system (2.13)) which means that the equation
% =1 is not redundant in the system (2.20). As a result, the system (2.20) is of full rank.
As a result, the dimension of the face F’* is equal to

dim(F'*) = |K|* (|[E|+|S|) —rank(Q) = | K|+ (|E|+S|) — (147) = dim(P(G, K,S)) —1,

where @ denotes the matrix associated with the equation system . As a result, the face
F'* is facet defining for P(G, K,S). Furthermore, we strengthen the proof as follows. We
denote the inequality z¥ < 1 by az + Bz < A. Let ux + oz < 7 be a valid inequality that is
facet defining F of P(G, K,S). Suppose that F/¥ ¢ I = {(x,2) € P(G,K,S) : px +0z = 7}.
We show that there exist p € R and v with v = (1,72, ...,74) (71 € RZkEKw{ﬂ,”yg €
REkex |1l s € REkex(we—1)) g ¢, (11,0) = pla, B) +7Q, and that

a) o% =0 for demand k and all slots s’ € {wy, ..., 5} \ {s},
b) and 0¥ = 0 for all demands k' € K \ {k} and all slots s’ € {wy, ..., 5},
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c¢) and p¥ = 0 for all demands k € K and all edges e € E\ (E} U E}).

First, let’s us show that ¥ = 0 for all the demands k € K and all edges e € E'\ (E§ U E¥).
Consider a demand k € K and an edge e € E \ (E§ U E¥). For that, we consider a solution
S"2% = (E"2,8"2) in which

a) a feasible path F}? is assigned to each demand k € K (routing constraint),

b) a set of last-slots S,’g12 is assigned to each demand k € K along each edge e € E/{@12 with
|S2| > 1 (contiguity and continuity constraints),

¢) { —wp+1,...,s}N{s” —wp +1,...,5"} = 0 for each k, k' € K and each s’ € Sj!? and
s” € Sp? with Ej2 N E}? # 0, ie., for each edge e € E and each slot s” € S we have
ZkeK,eeEQ? {s' € Si1% 5" € {s' —wj +1,...,5'} <1 (non-overlapping constraint),

d) and {s' —wp +1,...,8} N {s" —wp + 1,...,8”} = 0 for each k' € K and s’ € S}? and
s” € Sp? with (EP2 U {e}) N E}}? # 0 (non-overlapping constraint taking into account
the possibility of adding the edge e in the set of edges E,’g12 selected to route the demand
k in the solution S"1%),

e) the edge e is not non-compatible edge with the selected edges e € E,;12 of demand k in
the solution S"2, i.e., Ze/eE,’j? le +1e < lp. As aresult, E;'?U{e} is a feasible path for
the demand k,

f) and the slot s is chosen to route the demand k in the solution 8”12, i.e., s ¢ S”12.

S''2 is clearly feasible for the problem given that it satisfies all the constraints of cut for-
mulation —. Hence, the corresponding incidence vector (:E‘Sm, z‘slm) is belong to F
and then to F’* given that it is composed by z¥ = 1. Based on this, we derive a solution
S'3 obtained from the solution S"'2 by adding an unused edge e € E \ (E} U E}) for the
routing of demand k in K in the solution S'? which means that E* = E;!* U {e}. The
last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in &2
remain the same in the solution S'3, i.e., 5113 = 5’;912 for each k € K, and E,i,?’ = E,’ﬁ,l,2 for each
k' € K\ {k}. S is clearly feasible given that

a) and a feasible path E? is assigned to each demand k € K (routing constraint),

b) a set of last-slots Sli?’ is assigned to each demand k € K along each edge e € EE’ with
|SE3] > 1 (contiguity and continuity constraints),

¢) { —wr+1,..,8tN{s” —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S}3 and
s” € S} with E,i?’ N E,ﬁ? # 0, i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeEE s’ € 8}3,5" € {s' —wy +1,...,5'} <1 (non-overlapping constraint),

d) and the slot s is chosen to route the demand & in the solution S'3, i.e., s ¢ SE.

The corresponding incidence vector (z° BS 13) is belong to F and then to F'* given that it
is composed by z¥ = 1. It follows that

112 12 n
xS + S S

13 13 2 112
7 oz :/MS + 025 = ur +,u’§+az5 .

As a result, pF = 0 for demand & and an edge e.
As e is chosen arbitrarily for the demand k with e ¢ E§ U E¥, we iterate the same procedure
for all ¢’ € E'\ (E5 U E¥ U {e}). We conclude that for the demand k

pk =0, foralle e E\ (E5UEY).
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Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all
k'€ K\ {k} and all e € E'\ (E} U E¥). We conclude at the end that

pk =0, forall k € K and all e € E\ (E§ U EY).

Next, we will show that, 0% = 0 for all ¥ € K \ {k} and all s’ € {wy, ..., 5}, and 0% = 0 for
all slots s € {wy,...,5} \ {s}. Consider the demand k and a slot s" in {wg,...,5} \ {s}. For
that, we consider a solution §”'? = (E”12, $”712) in which

a) a feasible path E” ,162 is assigned to each demand k € K (routing constraint),

b) a set of last-slots S”}f is assigned to each demand k£ € K along each edge e € E” ,162
with |S7}?] > 1 (contiguity and continuity constraints),

¢) {s'—wr+1,....,8IN{s" —wp +1,....,8"} = 0 for each k, k' € K and each s’ € $”}? and
s” € §712 with E”}2N E”}? # 0, i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeEﬂ}cz {s' € 712" € {s' —wg +1,..., s’} <1 (non-overlapping constraint),

d) and {s' —wg +1,....,8} N {s” —wp +1,...,5"} = 0 for each k' € K and s” € S"}?
with E” }f N E”}C,Q # () (non-overlapping constraint taking into account the possibility of

adding the slot s’ in the set of last-slots S” ,162 assigned to the demand k£ in the solution
8”12),

e) and the slot s is chosen to route the demand k in the solution 8”'2, i.e., s ¢ S712.

8712 is clearly feasible for the problem given that it satisfies all the constraints of cut formu-
lation —. Hence, the corresponding incidence vector (x‘s”m, 257712) is belong to F'
and then to F’* given that it is composed by z* = 1. Based on this, we construct a solution
S derived from the solution S”'2 by adding the slot s’ as last-slot to the demand %k with
modifying the paths assigned to a subset of demands K C K in 712 (i.e., E,i‘l = E”,}/,Q for
each k € K\ K, and Elt £ E”12 for cach k € K) s.t.

a) a new feasible path E}* is assigned to each demand k € K (routing constraint),

b) and {s' —wg +1,...,8} N {s” —wp +1,...,8”} = 0 for each k € K and ¥ € K \ K and
each s’ € §7}? and s” € S’”,ﬁ? with E#ﬂE”}C? # (), i.e., for each edge e € F and each slot
s” € S we have Zkef(,eeE;‘* {s' € §7}2, 8" € { —wy+1, "‘78,}|+ZkeK\f<,eeE”}€2 {s" €
572,87 € {s' —wg + 1,..., '} < 1 (non-overlapping constraint),

¢) and {8’ —wy 4+ 1,...,8y N {s” —wp +1,....5"} = 0 for cach k' € K and s” € 7 }?
(non-overlapping constraint taking into account the possibility of adding the slot s’ in
the set of last-slots S”}? assigned to the demand k in the solution &”'?),

d) and the slot s is chosen to route the demand k in the solution S, i.e., s ¢ S,i‘l.

The last-slots assigned to the demands K\ {k} in $”'? remain the same in ', i.e., S717 = S}
for each demand k' € K \ {k}, and S}* = S”12 U {s} for the demand k. The solution S'* is
clearly feasible given that

a) a feasible path E} is assigned to each demand k € K (routing constraint),

b) a set of last-slots ,5%4 is assigned to each demand k € K along each edge e € E,i‘l with
|S14 > 1 (contiguity and continuity constraints),
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¢) { —wr+1,..,8tN{s” —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S}* and
s” € S,ifl with E,i‘l N E,ifl # (), i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeEi“ {s' € S}*,8” € {s' —wi + 1,...,8'}| <1 (non-overlapping constraint),

d) and the slot s is chosen to route the demand k in the solution S, i.e., s ¢ S}.

The corresponding incidence vector (xSM, z314) is belong to F and then to F'* given that it
is composed by z¥ = 1. We have so

»12 912 14 14 912 912 A L
;m:‘s + 028 :,ux‘s +02° :,ua:‘s +02° —i—af/—z Z M§+Z Z u’;.

keK ecE” )2 keK e'eEl*

It follows that % = 0 for demand k and a slot s’ € {wy, ..., 5} \ {s} given that ¥ = 0 for all
the demands k € K and all edges e € E\ (E} U E¥).

The slot s’ is chosen arbitrarily for the demand k, we iterate the same procedure for all
feasible slots in {wyg;, ..., 5} \ {s} of demand k s.t. we find

ok =0, for demand k and all slots s’ € {w, ..., 5} \ {s}.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands
k' in K\ {k} such that

o¥ =0, for all ¥ € K\ {k} and all slots s’ € {wy, ..., 5}
Consequently, we conclude that
o =0, for all ¥ € K and all slots s € {wy, ...,5} with s # s if k = k'.

On the other hand, we use the same technique applied in the polyhedron dimension proof
to prove that

l

ue —71 , for all ¥’ € K and all €’ GEO,
,ue —72 , for all k¥ € K and all ¢ EEl )
ak// = 73 , forall ¥ € K and all s € {1,...,wy — 1}.

We conclude that for each kK € K and e € FE

ke, 1fe€E0,

k
He = 72’ , if € EEl,
0, otherwise,

and for each ¥ € K and s’ € S

Vi e {1, g — 1),

i 0,if " € {wys, ..., 5} and k' # k,
*)oifs e {wpry ..., 8} \ {s} and k' =k,
p,if & =sand k' = k.

As a result (u,0) = pﬂ§ + 7@ which ends our strengthening of the proof.
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Theorem 2.3.6. Consider a demand k € K. Then, the inequality (2.5)), Zfzwk k>, s
facet defining for P(G, K,S).

Proof. Let FS’c denote the face induced by inequality Zizwk 2F > 1, which is given by

F¥ ={(z,2) € P(G,K,S) : Zz

S=wg

In order to prove that inequality Zizwk zf > 1 is facet defining for P(G, K,S), we start

checking that FS is a proper face which means that it is not empty, and FSk # P(G, K,S).
We construct a solution S = (E', §1%) as below

a) a feasible path E}’ is assigned to each demand k € K (routing constraint),

b) a set of last-slots S %5 is assigned to each demand k € K along each edge ¢’ € E,i5 with
|SE®] > 1 (contiguity and continuity constraints),

¢) { —wr+1,..,8tN{s” —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S}5 and
s” € S} with E}> N E? # 0 (non-overlapping constraint),

d) and one slot s from the set {wg, ..., 5} is chosen to route the demand k in the solution
SBie., |SPP] = 1.

Obviously, S' is feasible solution for the problem given that it satisfies all the constraints of
our cut formulation (2.2 - Moreover, the corresponding 1n01dence vector (x 515 25 15) is
belong to F' and then to FS’“ given that it is composed by > 5 _ —wy, 2F = 1. As a result, F is not
empty (FY # 0). Furthermore, given that s € {wy, ..., 5} for the demand k, this means that
there exists at least one feasible solution for the problem in which |Sg| > 2 for the demand
k. As aresult, Ff # P(G, K,S).

On the other hand, we know that all the solutions of Fsk are in P(G, K,S) which means that
they verify the equations system s.t. the following equations system associated

with FSk is written as below

5
Z zf =1, s.t. k is chosen arbitrarily,
S=wp

x¥ =0, forall k € K and all e € E},
a¥ =0, forall k € K and all e € EF,

¥ =1, for all k € K and all e € E¥,
(2F =0, forall k € K and all s € {1,...,w; — 1}.

(2.21)

The system (2.21)) shows that the equation Z 2k = 1 is not result of equations of system

ka

which means that the equation ZS —uy 2P =1 is not redundant in the system (2
As a result, the system (2 is in full rank which implies that the dimension of the face FS
is equal to

dim(F¥) = |K|*(|E|+S|) —rank(M”) = |K|*(|E|+|S|) - (147) = dim(P(G, K, S)) —
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where M” denotes the matrix associated with the equation system (2.21). As a result, the
face F¥ is facet defining for P(G, K, S).

5

We strengthen the proof as follows. We denote the inequality Z zf >1by ar+ Bz < A
S=wg

Let ux + oz < 7 be a valid inequality that defines a facet F' of P(G, K,S). Suppose that

FF C F = {(v,2) € P(G,K,S) : yz + 0z = 7}. We show that there exist p € R and v

with v = (1,72,%) (11 € REwex 156l 5, € RErex 1]y € REwex (=) ) st (u,0) =

p(c, B) +7Q, and that

a) o¥ =0 for all demands k' € K \ {k} and all slots s € {wy, ..., 5},
b) and pf = 0 for all demands k € K and all edges e € E'\ (E} U EY),
c) and all o are equivalents for demand k and slots s € {wy, ..., 5} for the demand k.

First, let’s us show that ¥ = 0 for all the demands k € K and all edges e € E'\ (E§ U E¥).
Consider a demand k € K and an edge e € E \ (E§ U EF). For that, we consider a solution
S"% = (E"5,8%) in which

a) a feasible path E}° is assigned to each demand k € K (routing constraint),

b) a set of last-slots S,’€15 is assigned to each demand k € K along each edge e € E,’€15 with
|S715| > 1 (contiguity and continuity constraints),

¢) { —wp+1,...,s}N{s” —wp +1,...,5"} = 0 for each k, k' € K and each s’ € S;! and
s” € Sp° with Ejl> N E}® # 0, ie., for each edge e € E and each slot s” € S we have
Zk;eK,eeE;ﬁ [{s' € 15, s” € {s' —wy, + 1,..., s’} <1 (non-overlapping constraint),

d) the edge e is not non-compatible edge with the selected edges e € E,;15 of demand k in
the solution S'1%, i.e., Ze’eE,’ﬁ le +1e < li. As aresult, Ej}5 U {e} is a feasible path for
the demand k,

e) {s—wr+1,...,s}N{s'—wp+1,...,s'} =D for each k¥’ € K and s € S}}° and s’ € Sp}° with
(B> U{e}) N E})° # 0 (non-overlapping constraint taking into account the possibility
of adding the edge e in the set of edges E,’€15 selected to route the demand k in the
solution S'19),

f) and one slot s from the set {wg, ..., 5} is chosen to route the demand k in the solution
S5 e, [P = 1.

S is clearly feasible for the problem given that it satisfies all the constraints of cut for-
mulation —. Hence, the corresponding incidence vector (mslw,zs/w) is belong to
F' and then to Fsk given that it is composed by Zi:wk zf = 1. Based on this, we derive a
solution S'% obtained from the solution S"*° by adding an unused edge e € E \ (E U E¥) for
the routing of demand k in K in the solution S'5 which means that Ej° = E}15 U {e}. The
last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in S"'°
remain the same in the solution S6, i.e., S,i6 = 51215 for each k € K, and E,i,G = E,’fl,5 for each

k' € K\ {k}. S is clearly feasible given that
a) and a feasible path E.° is assigned to each demand k € K (routing constraint),

b) a set of last-slots S,i6 is assigned to each demand k € K along each edge e € E,iﬁ with
|S16] > 1 (contiguity and continuity constraints),
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c) {s’—w;ﬁ—l s}ﬂ{s —wk/ +1,...,8"} = 0 for each k, k' € K and each s’ € S}6 and
s7 € 819 with E 7é (), i.e., for each edge e € F and each slot s” € S we have
> kek, cCE}S {s" € Sk ,s” e{s —wr+1,..,5} <1 (non-overlapping constraint).

The corresponding incidence vector (25", 25™)
is composed by Zi:wk z% = 1. Tt follows that

is belong to F' and then to FéC given that it

stllS + O_ZSIIS _ /j,,fCSlﬁ + 0_2316 _ ng/ls + Iu’ec + 028/15
As a result, x* = 0 for demand & and an edge e.

As e is chosen arbitrarily for the demand k with e ¢ E(’f U E{“, we iterate the same procedure
for all ¢’ € E\ (E} U E¥ U {e}). We conclude that for the demand k

pk =0, foralle e E\ (E5UEY).

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all
k' € K\ {k} and all e € E'\ (E} U E¥). We conclude at the end that

pk =0, forall k € K and all e € E\ (ES U EY).

Next, we will show that, o = 0 for all ¥’ € K \ {k} and all s’ € {wy,...,5}. Consider the
demand k' in K \ {k} and a slot s’ in {wg,...,5} \ {s}. For that, we consider a solution
§715 = (B715, §715) in which

a) a feasible path E” 1% is assigned to each demand k € K (routing constraint),

b) a set of last-slots S”}° is assigned to each demand k € K along each edge e € E”}°
with |S”4%] > 1 (contiguity and continuity constraints),

c) {¢ —wk—l—l ’}ﬂ{s”—wk/+1 ., 8"} =0 for each k, k' € K and each s’ € S”}5 and
s” € S” Wlth E™ 151 E” # (), i.e., for each edge e € FE and each slot s” € S we have
D okeK, ccB 15 {s' € S”k ,s” € {s' —wg+1,...,8} <1 (non-overlapping constraint),

d) and {s' — wy —|— L.,stn{s" —wg+1,...,8"} = 0 for each k € K and s” € S"}°
with E”15 N E” 75 Q) (non-overlapping constramt taking into account the possibility of
adding the Slot s’ in the set of last-slots S” assigned to the demand %’ in the solution

87715)
e) and |S715| =1 for the demand k.

S5 s clearly feasible for the problem given that it satisfies all the constraints of cut for-
. . . . 87715 87715 .

mulation - Hence, the corresponding 1n<:1dence vector (x ) is belong to

F and then to FS given that it is composed by 3% s—wy, 2% = 1. Based on this, we derive a

solution S'7 from the solution S”'® by adding the slot s’ as last-slot to the demand &’ with

modifying the paths assigned to a subset of demands K C K in & (i.e., E17 E”15 for

each k € K\ K, and E}7 # E”}? for each k € K) s.t.
a) a new feasible path Ely is assigned to each demand k € K (routing constraint),

b) and{s—wk+1 ’}ﬂ{s”—wk/—kl s”} 0 for each k € K and k' € K \ K and
each s’ € §71 and s” € 5’” with E”ﬂE” # (), i.e., for each edge e € F and each slot
s7 €S we have ZkeK,eeEﬂ {s' € S”15,S” E {s —wk+1 ) S }|+Zk€K\K’e€E,,}C5 {s' €
575,87 € {s' —wg + 1, ..., '} < 1 (non-overlapping constraint),
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c¢) and |SL7| for the demand k.

The last-slots assigned to the demands K \ {k'} in 8”!° remain the same in 17, i.e., S715 =
ST for each demand k € K \ {k'}, and S./ = S”}? U {s'} for the demand k’. The solution
S'7 is clearly feasible given that

a) a feasible path E}7 is assigned to each demand k € K (routing constraint),

b) a set of last-slots S,y is assigned to each demand k € K along each edge e € E,y with
|SL7] > 1 (contiguity and continuity constraints),

¢) { —wr+1,..,8tN{s” —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S}” and
s” e S,}j with E,y N E;i7 #+ 0, i.e., for each edge e € E and each slot s” € S we have
Zk;eK,eeE{ {s' € Si7,s” € {s' —wy +1,...,s'}| <1 (non-overlapping constraint),

d) and |S.7| for the demand k.

The corresponding incidence vector (a:‘s”, 25 17) is belong to F' and then to FSk given that it
is composed by >° 2F = 1. We have so

S=wE TS

9 15 » 15 17 17 » 15 515 / 1. 7.
,uxs +0257 = ux‘s +025 " = u:c‘s +025 + Uff - g g uf + g g ng/-
keK ecE”}? keK e'€E}"

It follows that af,/ = 0 for demand k' and a slot s’ € {wy, ..., 5} given that u¥ = 0 for all the
demands k € K and all edges e € E'\ (E} U EY).

The slot s’ is chosen arbitrarily for the demand k', we iterate the same procedure for all
feasible slots in {wy, ..., §} of demand &’ s.t. we find

05// =0, for the demand £’ and all slots s’ € {wy, ..., 5}.

Given that the demand &’ is chosen arbitrarily. We iterate the same thing for all the demands
k” in K \ {k,k'} such that

ok =0, for all k” € K\ {k,k'} and all slots s € {wy>, ..., 5}.
Consequently, we conclude that
o¥ =0, for all ¥ € K\ {k} and all slots s’ € {wy, ..., 5}.

Let’s prove now that ¥ for demand & and slots s in {wg, ..., 5} are equivalent. Consider a
slot 8" € {wy, ..., 5} s.t. s ¢ SI5. For that, we consider a solution §'° = (E'®, S'5) in which

a) a feasible path E,S’ is assigned to each demand k € K (routing constraint),

b) a set of last-slots 5’,%5 is assigned to each demand k € K along each edge e € E’if’ with
|S15] > 1 (contiguity and continuity constraints),

¢) {8 —wr+1,..,8}N{s" —wp +1,...,5"} = 0 for each k, k" € K and each s’ € S} and
s" € S} with E,i5~ﬂ El> £ 0, ie., for each edge e € E and each slot s” € S we have
ZkeK,eeE;f’ {s" € S°,8” € {s' —wi + 1,...,8'}| < 1 (non-overlapping constraint),

d) and {s' —wy +1,..., s} N {s” —wp +1,...,5"} = 0 for each k¥’ € K and s” € S? with

E%E’ N E,ﬁ? # () (non-overlapping constraint taking into account the possibility of adding
the slot s in the set of last-slots S} assigned to the demand k in the solution S'°).,
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e) and |S}°| = 1 for the demand k.

S5 is clearly feasible for the problem given that it satisfies all the constraints of cut for-
mulation (2.2)-(2.10). Hence, the corresponding incidence vector (xS 15, 2315) is belong to F
and then to Fg given that it is composed by Z‘;:wk 2% = 1. Based on this, we construct a

solution S'® derived from the solution S by adding the slot s’ as last-slot to the demand
k' in S}® and removing the last slot s assigned to k in S}° (i.e., Sp® = (S}°\ {s}) U {s'} for
the demand k) with modifying the paths assigned to a subset of demands K C K in 8§
(i.e., E}® = EJ® for each k € K\ K, and E}® # E}® for each k € K), and also the last-slots
assigned to the demands K \ {k} in S'° remain the same in S'®. The solution S'® is clearly
feasible given that

a) a feasible path E® is assigned to each demand k € K (routing constraint),

b) a set of last-slots S,is is assigned to each demand k € K along each edge e € E,is with
|S{8] > 1 (contiguity and continuity constraints),

o) {8 —wr+1,..,8tN{s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S8 and
s” € S8 with Ef® N E # 0, i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeE;S [{s' € S}, s” € {s' —wp +1,...,8'}| <1 (non-overlapping constraint),

d) and |S{8] = 1.

The corresponding incidence vector (xslg, 28 18) is belong to F' and then to Fg given that it

is composed by 25 2F = 1. We have so

S=wE TS

315 315 18 18 315 315 315 18
uazs +025 = ,uxs +025 = ,uxs +025 + Uf, - Jf + cri? - Z Z ,uxs + Z Z u:z:s .
keK ecEL® kEK ecE;®

It follows that o = o* for the demand k and a slots s,s’ € {wy, ..., 5} given that u¥ = 0 for
allk € K and all e € E\ (E§ U EY).

The slot s is chosen arbitrarily for the demand & in {wy, ..., 5}, we iterate the same procedure
for all feasible slots in {wy, ..., 8} of demand k s.t. we find

ok = oF, for all slots s, s’ € {w, ..., 5}.

Consequently, we obtain that o¥ = p for demand & and slots s in {wg, ..., 5}.
On the other hand, we use the same technique applied in the polyhedron dimension proof

to prove that
pk =K for all ' € K and all ¢ € EY
=~k for all ' € K and all ¢ € EY
aff = 'ygl’s/, for all ¥’ € K and all ' € {1,...,wp — 1}.
We conclude that for each &’ € K and e € E
'yf/’e, ife € BY

! . /
He = ’yg’e, if e € EY

0, otherwise,
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a)
b)

c)

and for each ¥ € K and s € S

S i s € {1, wp — 1,
ot = p,if ¥ = k and s € {wy, ..., 5},
0, otherwise.
5
As a result (p,0) = Z pB* + 4Q for the demand k which ends our strengthening of the

EE T

proof. ]

Theorem 2.3.7. Consider a demand k and a subset of node X C V, with | X N{og,di}| =1
and S(X)NEX =0 s.t. XNV = 0. Then, the inequality [2.2), Zeed(X) k> 1, is facet
defining for P(G, K,S).

Proof. Let F' )k( denote the face induced by inequality Z xlg > 1, which is given by
e€(8(X)\EF)

Fy ={(z,2) € P(G,K,S): >  aF=1}.
e€(3(X)\E)

e =
e€(6(X)\EF)

P(G, K,S), we start checking that F' )]‘é is a proper face which means that it is not empty, and

F)k( # P(G,K,S).

We construct a solution S = (E'9,S') as below

Let X = {or}. In order to prove that inequality Z zF > 1 is facet defining for

a feasible path E,%g is assigned to each demand k € K (routing constraint),

a set of last-slots S,};Q is assigned to each demand k € K along each edge ¢ € E,%g with
|S19] > 1 (contiguity and continuity constraints),
{s—wrp+1,..,s}N{s' —wp +1,...,8'} = 0 for each k,k’ € K and each s € S{? and s’ € 57
with E[% N E}? # 0 (non-overlapping constraint),

and one edge e from (6(X) \ EF) is chosen to route the demand k in the solution S, i.e.,
(B(X)\ E§) N B =1.

Obviously, S' is feasible solution for the problem given that it satisfies all the constraints of
our cut formulation -. Moreover, the corresponding incidence vector (:E‘Slg, 2519)
is belong to P(G, K,S) and then to F¥ given that it is composed by 266(5(X)\E§) zk = 1.
As a result, F¥ is not empty (F% # 00). Furthermore, given that e € E \ (Ef U E}) for the
demand k, this means that there exists at least one feasible path E}, for the demand k passed
through the edge e which means that F)k( # P(G, K.,S).

Let denote the inequality Zee(a(X)\Eg;)xf >1lbyar+ 8z <A Let uyx +0z < 7 bea
valid inequality that is facet defining F' of P(G, K,S). Suppose that F& C F = {(z,2) €
P(G,K,S) : pr + oz = 7}. We show that there exist p € R and v with v = (71,72,73) (
with v, € RXkek |E§|,V2 € RXkex |Eﬂ,'yg € RZkeK(wrl)) s.t. (u,0) = pla, B) +~vQ. We will
show that

(¥, = 0 for the demand k and all ¢’ € E'\ (E} U E} U§(X)),
and p¥, = 0 for all demands &’ € K \ {k} and all ¢’ € E\ (E} U EF),
and o = 0 for all demands k € K and all slots s € {w, ..., 5},
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d)

and that u* are equivalent for all e € (5(X) \ Ef).

First, let’s show that 0¥ = 0 for all k € K and all s € {wy, ..., 5}. Consider a demand k and
a slot s in {wy, ..., 5}. For that, we consider a solution S = (E"1?, §"%) in which

a feasible path E/,’c19 is assigned to each demand k € K (routing constraint),

a set of last-slots S,/glg is assigned to each demand k € K along each edge ¢ € El’jg with
|S9] > 1 (contiguity and continuity constraints),

{8 —wp +1,..,8} N {s” —wp +1,...,8”} = 0 for each k, k' € K and each s’ € S}!” and
s” € S with B} N EJ® # 0, ie., for each edge ¢’ € E and each slot s” € S we have
ZkEK,e’EE,’Cw {s' € S}19,s” € {s' —wp +1,...,5'}| <1 (non-overlapping constraint),

and {s—wy+1, ..., s}N{s'—wp+1,...,s'} = B foreach k' € K and s’ € S}° with EFONE® # 0
(non-overlapping constraint taking into account the possibility of adding the slot s in the set
of last-slots S}1? assigned to the demand k in the solution S''9),

and one edge e from (6(X) \ E}) is chosen to route the demand k in the solution S, i.e.,
|(6(X) \ Ef) N Ej°| = 1.

S is clearly feasible for the problem given that it satisfies all the constraints of cut for-
mulation —. Hence, the corresponding incidence vector (xsllg,zsllg) is belong to
P(G, K,S). Based on this, we derive a solution S? = (E?°, §20) from the solution S’ by
adding the slot s as last-slot to the demand k without modifying the paths assigned to the
demands K in 89 (ie., B = E{Y for each k € K), and the last-slots assigned to the
demands K \ {k} in 8" remain the same in the solution S i.e., Sj/° = S22 for each demand
K € K\ {k}, and S2 = $;19 U {s} for the demand k. The solution S?° is feasible given that

a feasible path E?° is assigned to each demand k € K (routing constraint),

a set of last-slots S20 is assigned to each demand k € K along each edge ¢/ € EZ with
S2°) > 1 (contiguity and continuity constraints),

{s—wp+ 1,8t N{s —wp +1,...,8} = 0 for each k, k' € K and each s € S° and
s’ € S with E2° N EZX # 0, ie., for each edge ¢ € E and each slot s € S we have
Ykekeerx |{s € 52057 € {s —wy + 1,...,s}| <1 (non-overlapping constraint).

The corresponding incidence vector (ZL‘520, z520) is belong to F' and then to F' )]‘é given that it
is also composed by Zee(a(X)\Eg) x¥ = 1. We then obtain that

/19 719 2
ms —i—azs = S

0 20 /19 119
= pxs + 0% = ,ums +02°

k

o + o,

It follows that 0¥ = 0 for demand k and a slot s € {wy, ..., 5}.
The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible
slots in {wg, ..., 5} of demand k s.t. we find

0% =0, for demand k and all slots s € {wy, ..., 5}.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands
k' in K\ {k} such that

o =0, for all ¥ € K\ {k} and all slots s € {wyy, ..., 5}.
Consequently, we conclude that

ok =0, for all k € K and all slots s € {wy, ..., 5}.
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Next, we will show that u¥, = 0 for all the demands k' € K \ {k} and all ¢’ € E\ (E} UEY),
and 4% = 0 for the demand k and all ¢ € E\ (E§ UEYUGS(X)). Consider the demand k € K
and an edge ¢’ € E\ (E¥ U E} U (X)) chosen arbitrarily. For that, we consider a solution
§719 = (E"19,,§719) in which

a feasible path E”}? is assigned to each demand k € K (routing constraint),

a set of last-slots S”i,g is assigned to each demand k € K along each edge €' € E”,1€9 with
5719] > 1 (contiguity and continuity constraints),

{ —wr+1,..,8}N{s" —wp +1,...,5"} = 0 for each k, k' € K and each ' € S71% and
s” € §7}) with E”9 N E”}) # 0, i.e., for each edge ¢’ € E and each slot s” € S we have
Y ohek B [{s' € 719" € {s/ —wp +1,...,s'}| <1 (non-overlapping constraint),

the edge €’ is not non-compatible edge with the selected edges e” € E” ,1€9 of demand £ in the
solution S”19, i.e., Ze”eE”}j’ le» + lo < lg. As aresult, E”}? U {€'} is a feasible path for the
demand k,

{s—wr+1,.,s}N{s —wp +1,...,5'} =0 for cach k¥’ € K and s € S”} and s’ € 57} with
("2 U{e'}) NE”L) # 0 (non-overlapping constraint taking into account the possibility of
adding the edge €’ in the set of edges E” ,1€9 selected to route the demand k in the solution
S” 19)7

and one edge e from (6(X) \ E}) is chosen to route the demand k in the solution S”% i.e.,
6\ Ef) N B = 1.

S719 is clearly feasible for the problem given that it satisfies all the constraints of cut formu-
lation ([2.2)-(2.10). Hence, the corresponding incidence vector (:ESMQ, 25”19) is belong to F
and then to F% given that it is also composed by Zee(a(X)\Eg) xF = 1. Let S be a solution

obtained from the solution 7Y by adding an unused edge ¢’ € E\ (E§ U E}) for the routing
of demand k in K in the solution 8! which means that EZ! = E”}9 U {¢}, and removing
slot s selected for the demand k in 8”1? and replaced it by a new slot s’ € {wy, ...,S} (i.e.,
S = ("IN {sHu{s'}st. {' —wrp+1,..,8tN{s" —wp +1,...,5"} =0 for each k' € K
and s” € S”}C? with E,%l NnE” }C? # (). The last-slots and paths assigned the set of demands
K\ {k} in 8”" remain the same in the solution §?!, i.e., Sz} = $”1? and EZ! = E”}} for
each k' € K \ {k}. S?! is clearly feasible given that

and a feasible path E,%l is assigned to each demand k € K (routing constraint),

a set of last-slots S,%l is assigned to each demand k& € K along each edge e’ € E,?l with
|S21| > 1 (contiguity and continuity constraints),

{s—wp + 1,8t N{s —wp +1,...,8} = 0 for each k, k' € K and each s € S! and
s e S,%,l with E,fl N E,%,l # (), i.e., for each edge ¢ € F and each slot s € S we have
ZkeK’eleEl? [{s € S1,s” € {s —wy +1,..., s}| <1 (non-overlapping constraint).

The corresponding incidence vector (x521,z521) is belong to F' and then to F' )]‘é given that it
is also composed by 266(5(X)\E§) z¥ = 1. Tt follows that

» 19 » 19 919
5 4028 S

21 21 » 19
7] :uxs +02° = uxr —i—u@—kozs —af—ka@.

It follows that ,u];, = 0 for demand k and an edge ¢’ given that ¢¥ = 0 for all k € K and all
s € {wg, ..., 5}.

As €' is chosen arbitrarily for the demand k with ¢’ ¢ EX U Ef U §(X), we iterate the same
procedure for all ¢/ € E\ (Ef U E¥ U§(X)). We conclude that for the demand k

pk =0, for all € € E\ (EF U EY U§(X)).
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Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all
k'€ K\ {k}and all ¢ € E\ (E}¥ U EF). We conclude at the end that

pl =0, forall ¥ € K\ {k} and all ¢ € E\ (Ef UEV),
pk, =0, for all € € E\ (EF U EY U§(X)).

Let’s us prove that the p* for a demand k and edges e € (§(X)\ EY) are equivalent. Consider
an edge ¢’ € (6(X)\ Ef) s.t. ¢ ¢ EL°. For that, we consider a solution S* = (E',S19) in
which

a feasible path E,ig is assigned to each demand k € K (routing constraint),

a set of last-slots 5’19 is assigned to each demand k£ € K along each edge e € E‘ég with
1S9 > 1 (contlgulty and continuity constraints),

{ —wp+1,..,8tN{s" —wp +1,....87} = 0 for each k,k’ € K and each s’ € 5’,19 and
s" € S,%? with Eé? N E,i,g #+ (), i.e., for each edge e € E and each slot s” € S we have
ZkEK,eGEig [{s' € 519, 8" € {s' —wi + 1,...,s'}| <1 (non-overlapping constraint),

and there is one edge e from (6(X) \ E¥) selected for the routing of demand & in the solution
SY e, [(6(X)\ ES) N EY| = 1.

S is clearly feasible for the problem given that it satisfies all the constralnts of cut formu-
lation (2.2 - Hence, the corresponding incidence Vector (z ‘919, z ) is belong to F' and
then to F )k( given that it is composed by ) . X)\EE) Te = = 1. Based on this, we construct a

solution 8?2 derived from the solution S by

modifying the path assigned to the demand k in S from E~,}:9 to a path E,fz passed through
the edge ¢’ with |(0(X)\ E§) N E®2| =1,

modifying the last-slots assigned to some demands K C K from 5%9 to S]%Q for each k € K

while satisfying non-overlapping constraint.

The paths assigned to the demands K \ {k} in S'° remain the same in S?? (i.e., EZ? = E}{
for each k7 € K \ {k}), and also without modifying the last-slots assigned to the demands
K\ K in 8, ie., S}° = 572 for each demand k € K \ K. The solution S?? is clearly feasible
given that

a feasible path E?? is assigned to each demand k € K (routing constraint),

a set of last-slots 5’%2 is assigned to each demand k£ € K along each edge e € E,%Q with
|S22| > 1 (contiguity and continuity constraints),

{ —wr+1,..,8tN{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S and
s" € S,%,Q with EZ2 N Ei? # (), i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeE,§2 {s' € 522,s” € {s' —wy +1,...,5'} <1 (non-overlapping constraint),

|(6(X) \ E§) N EZ?| = 1.
The corresponding incidence vector (z S 22) is belong to F and then to F% given that it
is composed by E X\EE) Le = = 1. We have so

/wglg +025" = M33822 +025" = Mﬂfslg +0257 + e — pk + Z Z Uf’ - Z U§

keK s'€S2? s€S19
k k
LD DEVEE D D
e”EE%Q\{e’} e”EEéQ\{e}
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It follows that u¥ = p¥ for demand k and a edge €’ € (§(X) \ Ef) given that p¥, = 0 for all
k€ K and all " € E\ (E} U EF) with ¢” ¢ (§(X)\ E}), and % = 0 for all k € K and all
s € {wg, ..., §}.

Given that the pair of edges (e, e’) are chosen arbitrary in (§(X) \ Ef), we iterate the same
procedure for all pairs (e,e') € (6(X) \ EX) s.t. we find

pk = pk for all pairs e, e’ € (6(X) \ EY).

Consequently, we obtain that u* = p for all e € (6(X) \ E}).
On the other hand, we use the same technique applied in the polyhedron dimension proof
to prove that

ph =~ for all ' € K and all € € EY

pk =~k for all ' € K and all ¢ € EY

o =48 forall ¥ € K and all s’ € {1,...,wp — 1}.

We conclude that for each ¥’ € K and e € E
'yf/’e, ife € EBY,
'ygl’e, ifee Ef,,

p, if k=K and e € (6(X)\ E}),

0, otherwise,

K _
He =

and for each k € K and s € S

) {fyéf’s,if se{l,..,w,—1},
g =

S .
0, otherwise.

We conclude that (pu,0) = p Z of +4Q. O
e€(6(X)\EF)

Proposition 2.3.5. Consider an edge e € E, and an interval of contiguous slots I = [s;,s;] C
S. Let k, k' € K be pair of demands with e ¢ (ESUEE), 2wy, > |I], 2w > ||, wp +wp > |1,
and k, k" are not non-compatible demands for the edge e. Then, the following inequality is

valid for P(G, K,S)

S5 Sj
ei+al + > A+ ) s (2.22)
s=s;+wr—1 s=s;+w; —1

Proof. For each edge e € E and interval of contiguous slots I C S, the inequality ([2.22))
ensures that if the two demands k, k" pass through edge e, they cannot share the interval
I = [s;, s5] over edge e. O

Theorem 2.3.8. Consider an edge e € E, and a slot s € S. Let k, k' be two demands in K
with k, k" are not non-compatible demands for the edge e. Then, the inequality (2.6|) is facet
defining for P(G, K,S) iff K.\ {k,k'} =0, and there does not exist an interval of contiguous
slots I = [s;, sj] s.t.

a) [{si+wg —1,...;8;} > wy,

b) and |{s; + wg —1,...,s;}| > wy,
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)
Q)
¢
f)

and s € {s; + max(wg, wy) — 1,..., s; — max(wy, wy) + 1},
and wi +wi > |I| +1,

and 2wy, > |I| + 1,

and 2wy > |I| 4+ 1.

Proof. Let K = {k,k'}.

Neccessity.

If K e\f( # (), then the inequality is dominated by the inequality without changing
its right hand side. Moreover, if there exists an interval of contiguous slots I = [s;, s;] s.t.

{si +wr —1,...,5;}| > wy for each demand k € K,

and s € {s; + maxwy — 1,...,s; — maxwy + 1},
keK kekK

and wy, + wy > |I| + 1 for each k, k' € K,
and 2wy, > |I| 4+ 1 for each k € K.

Then the inequality is dominated by the inequality . Hence, the inequality
is not facet defining for P(G, K, S).

Sufficiency.

Let Flgs denote the face induced by the inequality (2.6, which is given by

min(s+wg—1,3)
Fo'={(x,2) € P(G,K,S): Y wb+ Y 2h=|K|+1}
keK s'=s
In order to prove that inequality ), xk 4 Z?i:nis—i_wk_l’g) 2k < |K|+1 is facet defining for
P(G, K,S), we start checking that FE’S is a proper face, and F;(’S # P(G,K,S).
We construct a solution S3' = (E31, $31) as below

a feasible path E,z’l is assigned to each demand k € K (routing constraint),

a set of last-slots S,:jl is assigned to each demand k& € K along each edge ¢’ € E,Z’l with
|S31| > 1 (contiguity and continuity constraints),

{s—wr+1,..,s}N{s' —wp +1,...,8'} = 0 for each k, k' € K and each s’ € S3! and s’ € S}
with E3' N E}' # 0 (non-overlapping constraint),

and there is one demand k from the set of demands K (i.e., k € K s.t. the demand k selects
aslot s as last-slot in the solution S3t with " € {s, ..., s+wp—1},ie., 5" € Sl for a demand
k € K, and for each s’ € S3! for all k' € K \ {k} we have s’ & {s,..., s + wp — 1},

and all the demands in K pass through the edge e in the solution S3!, i.e., e € Egl for each
ke K.
Obviously, 83! is a feasible solution for the problem given that it satisfies all the con-

straints of our cut formulation (2.2)-(2.10). Moreover, the corresponding incidence vec-
tor (1‘531,2‘531) is belong to P(G, K,S) and then to F;i(’s given that it is composed by

> kei TE+ ymin(stwe—1,3) zk = 1. As a result, F2° is not empty (e, FZ° # 0). Fur-

s'=s
thermore, given that s € S, this means that there exists at least one feasible slot assignment

Sy for each demands k in K with S N {s,...,s + w; — 1} = 0. Hence, F;{’S # P(G, K,S).
We denote the inequality >,z o + Zg}:‘gﬁwrl’g) 26 < |K|+1by ar+ Bz < A Let

pux + oz < 7 be a valid inequality that is facet defining F' of P(G, K,S). Suppose that F;i(’s C
F ={(z,2) € P(G,K,S) : uyx+o0z = 7}. We show that there exists p € R and v = (71, 72,73)
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(st. m € RZkeﬂEg','yg € RZkEKwﬂ,vg S RzkeK(wk_l)) sit. (u,0) = ple, B) +~vQ, and
that

ok = 0 for all demands k € K and all slots s’ € {wy, ..., 5} with s’ ¢ {s,...,s +w; — 1} if
ke K,

and af, are equivalents for all k € K and all ¢’ € {8, ., s +wp — 1},
and ,u,]e“, = 0 for all demands k € K and all edges e € E\ (Ef U E¥) with e # ¢’ if k € K,
and all ,ulg are equivalents for the set of demands in K,

and 0%, and p¥ are equivalents for all k € K and all s’ € {s, ...,s +wy — 1}.

We first show that ¥, = 0 for each edge ¢’ € E\ (E} U EY) for each demand k € K with
e # ¢ if k € K. Consider a demand k € K and an edge ¢’ € E'\ (EY U EF) with e # € if
k € K. For that, we consider a solution S"3! = (E’3!, 53) in which

a feasible path E,’f’l is assigned to each demand k € K (routing constraint),

and a set of last-slots S,’fl is assigned to each demand k € K along each edge ¢’ € E,’fl with
1S3 > 1 (contiguity and continuity constraints),

and {s' —wg + 1,...,8'} N {s" —wp +1,...,s"} = 0 for each k, k' € K and each s’ € S
and s” € St with EP2' N Ej3t # 0, i.e., for each edge ¢’ € E and each slot s” € S we have
ZkeK,e’eE;j'l [{s' € S, s” € {s' —wi, + 1,...,8'}| <1 (non-overlapping constraint),

and there is one demand k from the set of demands K (i.e., k € K s.t. the demand k selects a
slot s as last-slot in the solution St with 5" € {s,...,s +w, — 1}, ie, s € S for a demand
k € K, and for each s’ € St for all k' € K \ {k} we have s’ ¢ {s,...,s + wy — 1},

and the edge ¢’ is not non-compatible edge with the selected edges e’ € E/3! of demand k in
the solution S i.e., Ze”eE,’fl le» +1e < li. As aresult, E' U{e} is a feasible path for the
demand k,

and all the demands in K pass through the edge e in the solution S, i.e., e € E,’f’l for each
ke K.

Sl is clearly feasible for the problem given that it satisfies all the constraints of cut for-
mulation ([2.2)-(2.10). Hence, the corresponding incidence vector (z57',25™") is belong to

F and then to F2° given that it is composed by 3, & zk, + Z§:§S+wk_l’$) 2k = 1. Based
on this, we derive a solution S3? obtained from the solution S"! by adding an unused edge
¢ € E\ (E} U EY) for the routing of demand k in K in the solution S*! which means that
E¥ = EP1 U {e'}. The last-slots assigned to the demands K, and paths assigned the set of
demands K \ {k} in 8! remain the same in the solution 32, i.e., S3? = S3! for each k € K,

and Ej? = B3 for each k' € K \ {k}. $% is clearly feasible given that
and a feasible path E}? is assigned to each demand k € K (routing constraint),

and a set of last-slots S,%Q is assigned to each demand k € K along each edge ¢’ € E,%Q with
|S32| > 1 (contiguity and continuity constraints),

and {s' —wg +1,....5}N{s” —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S}
and s” € S3? with E32 N E3? £ 0, i.e., for each edge ¢’ € E and each slot s” € S we have
ZkeK’eleEgz |{s' € S32,5” € {s' —wg +1,...,5'}| <1 (non-overlapping constraint).
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The corresponding incidence vector (x 332, z532) is belong to F' and then to F' ES given that it

is composed by >, aF + me (stw—1,8) 2k = 1. It follows that

s'=s

Mx8/31 + O_Zsl31 _ Mx$32 + 0.2,832 _ Nxs/?)l + M’;/ + 0_28/31‘
As a result, ,u];, = 0 for demand k and an edge €'. )
As ¢’ is chosen arbitrarily for the demand k with e ¢ Ef U EY and e # e if k € K, we iterate
the same procedure for all e” € E\ (E¥ U EY¥ U {e'}) with e # ¢” if k € K. We conclude that
for the demand k

pk =0, forall ¢ € E\ (E5 UEY) with e # ¢ if k € K.

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all
kK € K\ {k}and all ¢ € E\ (E} U EF). We conclude at the end that

pk =0, forall k € K and all ¢ € E\ (E§ UEY) with e #£ ¢ if k € K.

Let’s us show that o¥ = 0 for all k € K and all ' € {w, ..., 5} with &' ¢ {s,...,s + wy — 1}
if k € K. Consider the demand k and a slot s" in {wy, ..., 5} with s & {s,...,s +wy — 1} if
k € K. For that, we consider a solution §”3! = (E”3! §731) in which

a feasible path E”3! is assigned to each demand k € K (routing constraint),

a set of last-slots S”il is assigned to each demand k € K along each edge €' € E”zl with
5731 > 1 (contiguity and continuity constraints),

s’ — wk —|— 1,..,8YN{s” —wp +1,...,5"} = 0 for each k,k’ € K and each s’ € 73! and
k

s” € §73 with E"3 N E”31 £ (), i.e., for each edge ¢ € E and each slot s” € S we have

D keKe rep s € 8731 5" € {s' —wp + 1,...,8'} <1 (non-overlapping constraint),

and {s' —wy + 1,..,s}N{s" —wp +1,..,8"} = 0 for each k' € K and s” € S”3} with
E”3L N E731 £ () (non-overlapping constraint taking into account the possibility of adding
the slot s’ in the set of last-slots S”zl assigned to the demand k in the solution §”31),

and there is one demand k from the set of demands K (i.e., k € K s.t. the demand k selects
a slot s’ as last-slot in the solution S731 with & € {s,..,s +wp — 1}, ie, s’ € 873 for a
demand k € K, and for each s’ € S73} for all ¥’ € K \ {k} we have s’ ¢ {s,...,s + wp — 1},

and all the demands in K pass through the edge e in the solution S”3!, i.e., € € E”%I for
each k € K.

8§73l is clearly feasible for the problem given that it satisfies all the constraints of cut for-

mulation (2.2)-([@.10). Hence, the corresponding incidence vector (5", 25" is belong to
F and then to F;(’s given that it is composed by -, aF + Z?}fﬁﬁwrm) 2k = 1. Based
on this, we construct a solution 33 derived from the solution S”3! by adding the slot s’ as
last-slot to the demand k£ with modifying the paths assigned to a subset of demands K C K

in 8”3 (ie., B} = E"J! for each k € K\ K, and E}® # E"3! for each k € K) s.t.
a new feasible path E3? is assigned to each demand k € K (routing constraint),

and {s' —wr +1,...;8 } N{s” —wp +1,...,5"} = for each k € K and k¥’ € K \ K and each
s e S”31 and §” € S” w with E;:’?’ N E”i,l # (0, i.e., for each edge €’ € E and each slot s” € S
we have dokeR .ol B HS €93 5" e {s' —wp+1,...,5}| +Zk€K\I~(7e/€E,,%1 [{s' € §73L, 5" €
{s' —wr+1,...,8'} <1 (non-overlapping constraint),
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c)

and {s' —wy +1,....,8'} N {s” —wp +1,....5"} = 0 for each k' € K and s” € S”}} (non-
overlapping constraint taking into account the possibility of adding the slot s’ in the set of
last-slots S”3! assigned to the demand k in the solution S”31).

The last-slots assigned to the demands K\ {k} in §”3! remain the same in $*3, i.e., $”3} = S
for each demand &’ € K \ {k}, and S3® = S”3! U {s} for the demand k. The solutlon S33 is
clearly feasible given that

a feasible path E33 is assigned to each demand k € K (routing constraint),

a set of last-slots 5’;33 is assigned to each demand k € K along each edge ¢ € E,Z’d with
S33| > 1 (contiguity and continuity constraints),

{s’ —wp+1,..,8N{s" —wp +1,..,5"} = 0 for each k, k' € K and each s’ € S33 and
€ S with EB N E + 0, ie., for each edge ¢ € E and each slot s” € S we have

ZkeKe rem [{s' € S, 5" € {s' —wy +1,...,5'} <1 (non-overlapping constraint).
833 833)

The corresponding incidence vector (z°, z is belong to F' and then to F;i(’s given that it

is composed by >, 5 b + me (stwn=15) .k — 1. We have so

s'=s Zgl =

131 »31 33 33 »31 »31 I I
/wcs + 02 :uws +02° :uﬂcs +02° —i—aﬁ’}—z Z p/g,%—z Z MS

ek e'e B3 heK e €E3

It follows that o = 0 for demand k and a slot s’ € {wy, ..., 5} with s’ ¢ {s,...,s + wg — 1}
if k € K given that p* = 0 for all the demand k € K and all edges ¢’ € E '\ (E} U EF) with
et ifkeK.

The slot s’ is chosen arbitrarily for the demand k, we iterate the same procedure for all
feasible slots in {wy, ..., 5} of demand k with s' ¢ {s,...,s + wy — 1} if k € K s.t. we find

ok =0, for demand k and all slots s’ € {wy, ..., 5} with s’ ¢ {s,...,s + wp — 1} if k € K.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands
k' in K\ {k} such that

o¥ =0, for all k¥ € K\ {k} and all slots s’ € {wy,...,5} with s’ ¢ {s,...,s +wy — 1} if K € K.

Consequently, we conclude that
ok =0, for all k € K and all slots s’ € {wy, ..., 5} with s’ & {s,...,s +wy — 1} if k € K.

Let prove that Jf, for all k € K and all & € {8y, 8+ wy — 1} are equivalents. Consider a
demand k' and a slot s’ € {s,...,s + wpr — 1} with ¥ € K. For that, we consider a solution
S3 = (E°1,5%1) in which

a feasible path Egl is assigned to each demand k € K (routing constraint),

a set of last-slots 5’;31 is assigned to each demand k& € K along each edge e’ € E,Z’l with
|S31| > 1 (contiguity and continuity constraints),

{ —wip+1,..,8tN{s" —wp +1,....87} = 0 for each k,k’ € K and each s’ € 5’,3’1 and
5" € S,i’,l with E31 N E,":’,l # (), i.e., for each edge ¢/ € FE and each slot s” € S we have
DokeK.e! B {s' € S3',s” € {s/ —wr +1,...,s'}| < 1 (non-overlapping constraint),

and {s—wy+1,...,s}N{s'—wp +1,...,8'} = O for each k € K and s € S73! with E,i’lﬂE,%} £ 0
(non-overlapping constraint taking into account the possibility of adding the slot s’ in the set
of last-slots 5”3} assigned to the demand &” in the solution S”31),
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2)

and there is one demand k from the set of demands K (ie., k € K s.t. the demand k£ selects
aslot s as last-slot in the solution S3t with " € {s, ..., s +wp—1},1e., 5" € S for a demand
k € K, and for each s’ € S3! for all k' € K \ {k} we have s’ & {s,..., s + wp — 1},

and all the demands in K pass through the edge e in the solution S3!, ie., ¢ € Ei’l for each
ke K.

S31 s clearly feas1ble for the problem given that it satisfies all the conbtralnts of cut formu-
lation ([2.2) . Hence, the corresponding 1nc1dence vector (x 531, z ) is belong to F' and
then to Fe '* given that it is composed by >, o + me(sw’“ 1.5) 2k = 1. Based on this,

s'=s

we construct a solution 8&3* derived from the solution S3! by adding the slot s’ as last-slot
to the demand k&’ with modifying the paths assigned to a subset of demands K C K in &3
(i.e., E3* = E} for each k € K\ K, and E}* # E}! for each k € K), and also the last-slots
as&gned to the demands K \ {k, k’} in §3! remain the same in S*, i.e., S = S} for each
demand k” € K\ {k,k'}, and S3! = S} U{s'} for the demand &/, and modifying the last-slots
assigned to the demand k by adding a new last-slot 5 and removing the last slot s’ & 5’;:’1
with 8’ € {s; +wy +1,...,5;} and 5 & {s; +wg + 1,...,s;} for the demand k with k € K s.t.
S = (SP\{sHU{s}st. {§—wp+1,..,8}N{s —wp +1,....s'} = 0 for each k¥’ € K and
s’ € St with E3* N EJ} # 0. The solution 83! is clearly feasible given that

a feasible path E3! is assigned to each demand k € K (routing constraint),

a set of last-slots 5’24 is assigned to each demand k € K along each edge ¢ € E,Z’4 with
534 > 1 (contiguity and continuity constraints),

{ —wr +1,..,8tN{s" —wp +1,...8"} = 0 for each k,k’ € K and each s’ € S3* and
57 € S;z’fl with E34 N E/,‘Z’f1 # (), i.e., for each edge ¢/ € F and each slot s” € S we have
Dkekeepn {5 € S s” e {s' —wyp +1,...,s'} <1 (non-overlapping constraint).

The corresponding incidence vector (z 334, 2534) is belong to F' and then to F' I%s given that it

is composed by ZkeK  + me (stwi=1,9) k = 1. We have so

s'=s

331 G31 34 34 331 G31 k' k k
,uxs +025 = ,u:vs +02° = ,LLJ:S +02° + Oy — 0y + 03

B ID IS S ST

keK e'e EHN keK e’€E3

It follows that 0% = of for demand k' and a slot s’ € {wy,...,5} with &’ € K and s’ €
{s,...,5 +wp — 1} given that o =0 for § ¢ {s, .. o8 tw, — 1} with k € K, and ¥, =0 for
allkeKandalle € FE\ (E} U EY) with ¢ #elfkeK

Given that the pair (k, k") are chosen arbitrary in the set of demands K, we iterate the same
procedure for all pairs (k, k') s.t. we find

ol = ok for all pairs (k, k') € K

s

with s € {s,...,;s + w — 1} and s’ € {s,...,s + wp — 1}. We re-do the same procedure for
each two slots s,s" € {s,...,s + wy — 1} for each demand k € K with k € K s.t.

k

ok = ok forall k € K and 5,5 € {s,...,5s +wy, — 1}.

Let us prove now that p* for all k € K with k € K are equivalents. For that, we consider a
solution 8% = (E3°, 53%) defined as below

a feasible path E3 is assigned to each demand k € K (routing constraint),
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d)

a set of last-slots 5’25 is assigned to each demand k& € K along each edge €' € E%E] with
|S2°| > 1 (contiguity and continuity constraints),

{s—wr+1,..,s}N{s' —wp +1,...,8'} =0 for each k, k' € K and each s’ € S3° and s’ € S3?
with El‘z‘f’ N E,‘?? # () (non-overlapping constraint),

and there is one demand k from the set of demands K (i.e., k € K s.t. the demand k pass

through the edge e in the solution S¥ e, ec E,f5 for a demand k € K, and e ¢ E,‘z? for all

kK e K\ {k},

and all the demands in K share the slot s over the edge e in the solution S e, {8 +wy +
5 8j NS # () for each k € K.

Obviously, S3° is a feasible solution for the problem given that it satisfies all the con-
straints of our cut formulation - Moreover, the corresponding incidence vec-
tor (257 2335) is belong to P(G K S) and then to F;(’S given that it is composed by

Consider now a demand ¥’ in K s.t. e ¢ E}7. For that, we consider a solution §* = (E%°, §%)
in which

a feasible path Eg‘r’ is assigned to each demand k € K (routing constraint),

a set of last-slots 5’25 is assigned to each demand k£ € K along each edge e € E,?E’ with
|S3°| > 1 (contiguity and continuity constraints),

{ —wp+1,..,8tN{s" —wp +1,....87} = 0 for each k,k’ € K and each s’ € 5’,35 and
s" € S;:’? with E,i’“i’ N Eg’? # (), i.e., for each edge e € E and each slot s” € S we have
Y okek cc 35 [{s' € Sp°,s” € {s' —wy, +1,...,s'}| <1 (non-overlapping constraint),

and {s—wy+1,...,s}N{s'—wp+1,..,s'} = 0 for each k € K and s’ € S¥° with E,§5DE;:’,5 + 0,
and there is one demand k from the set of demands K (ie, k € K s.t. the demand k pass
through the edge e in the solution S35 e, ec€ Ei’5 for a demand k € K, and e ¢ E,i’,s for all
ke K\ {k},

and all the demands in K share the slot s over the edge e in the solution S35 e, {8y, s+
wg — 1} N S35 #£ ( for each k € K.

S35 is Clearly feas&ble for the problem given that it satisfies all the constralnts of cut formu-
lation (2.2 . Hence, the corresponding incidence vector (z 335, z ) is belong to F' and

then to Fe '* given that it is composed by -, _p aF + me (stwy—1,%) 2k = 1. Based on this,

s'=s

we derlve a solution 8”36 = (E736 5736 from the solution S by

the paths assigned to the demands K\ {k, '} in §3° remain the same in "% (i.e., E”3¢ = E?
for each k7 € K \ {k,k'}),

without modifying the last-slots assigned to the demands K in 8%, i.e., 535 Sy 36 for each
demand k € K,

modifying the path assigned to the demand &’ in S3 from Eg’,‘:’ to a path E” passed through
the edge e (i.e., eGE”,)Wlthk’eKst {s—wp+1,.. s}ﬂ{s—wk/+1 L8’} =10 for
each k € K and each s’ € S,z’, and each s’ € 525 with E,§5 N E”%? # 0,

modifying the path assigned to the demand k in S3° with e € EN',%5 and k € K from EN',§’5 to
a path E”}0 without passing through the edge e (ie., e ¢ E”) and {s —wp +1,...,s} N
{s' —wp +1,...,8'} = 0 for each k” € K \ {k,k'} and each s’ € S° and each s’ € S with
E® QE”%G #0,and {s —wr+1,...,s} N{s —wp + 1,....,s'} = 0 for each s’ € SP° and each
s’ € 53 with E”3¢ N E7$6 £ 0.
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The solution S”3 is feasible given that
a feasible path E” %6 is assigned to each demand k € K (routing constraint),

a set of last-slots S”%ﬁ is assigned to each demand k € K along each edge e € E”zﬁ with
5736 > 1 (contiguity and continuity constraints),

{ —wr+1,..,8}N{s" —wp +1,...,5"} = 0 for each k, k' € K and each s € S73¢ and
s" € S”%? with E”iﬁ N E”,%? # (), i.e., for each edge e € E and each slot s” € S we have
ZkeK@eE,,%s {s' € §730,s” € {s' —wj, +1,...,s'}| < 1 (non-overlapping constraint).

. . . 1 36 36
The corresponding incidence vector (2, 25 )

it is composed by >, & k43

is belong to F' and then to FES given that
zf, = 1. We then obtain that

min(s+wg—1,3)
s'=s

G35 335 36 36 G35 35 /
,u:rS + 025" = ,u:rS +025" = ,u:):S + 02 —i—,ulg —ulg

S DR T T W 1

e”EE”i?\{e} e”EE;:’/S e”EE”zG e”€E~;35\{e}

It follows that ¥ = u¥ for demand &’ and a edge ¢/ € E \ (E§ U Ef') with vp » € K given
that 4%, = 0 for all k € K and all ¢” € E\ (Ef U E}) with k € K.

Given that the pair (k, k") are chosen arbitrary in the set of demands K, we iterate the same
procedure for all pairs (k, k') s.t. we find

pF = ¥ for all pairs (k, k') € K.

Furthermore, let prove that all Uf, and p¥ are equivalents for all ke K and s € {8y, s+
wy, — 1}. For that, we consider for each demand k' with k' € K, a solution S37 = (E37, §37)
derived from the solution S° as below

the paths assigned to the demands K \ {k'} in §3° remain the same in S¥7 (i.e., E}} = E?
for each k7 € K \ {k'}),

without modifying the last-slots assigned to the demands K \ {k} in §%, i.e., S = S for
each demand k” € K \ {k},

modifying the set of last-slots assigned to the demand &' in §3° from g,‘?;? to 5’2,7 s.t. 83T N
{8, ., s +wp — 1} = 0.

Hence, there are |K| — 1 demands from K that share the slot s over the edge e (i.e., all the
demands in K \ {k'}), and two demands {k, £’} from K that use the edge e in the solution
S37. The solution 8?7 is then feasible given that

a feasible path Eg7 is assigned to each demand k € K (routing constraint),

a set of last-slots 527 is assigned to each demand k € K along each edge e € E,‘z7 with
|S37| > 1 (contiguity and continuity constraints),

{8 —wr +1,.,8tN{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S;" and
s” € S¥ with E,iﬁ N EY # 0, ie., for each edge e € E and each slot s € S we have
Y ohek e BT [{s' € S{7,s” € {s' —wj, +1,...,s'}| <1 (non-overlapping constraint),

and >, & |EFT N {e}| + 157 N {s,....s +wp — 1} = |K| + 1.
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The corresponding incidence vector (1'837, z537) is belong to F' and then to F' ES given that it
is composed by >, xF + Zg}i:rls(s+w’“_l’§) 2k = 1. We then obtain that

335 335 37 37 335 335 / / / /
,ua:S —i—azs :,ua:S —|—O’Z’S :,ums —i—az‘s —|—,u]§ —afl + Z /,L’;;w — Z Mo -

e’ €EYT\{e} e eEY

It follows that uf = o for demand k' and slot s’ € {s, w8 4wy — 1} given that pf =0
for all k € K and all e” € E'\ (Ef U EY) with e # ¢” if k € K. Moreover, by doing the same
thing over all slots s" € {s, ..., s + wp — 1}, we found that

pk = ol forall s’ € {s,...;s +wy — 1}.

Given that k' is chosen arbitrarily in K, we iterate the same procedure for all k € K to show
that

pk = ok for all k € K and all &' € {s,...,s + wy — 1}.

Based on this, and given that all ¥ are equivalents for all k € K, and that Uf, are equivalents
for all k € K and s’ € {s, ..., s + wp — 1}, we obtain that

pk = ai?,/, for all k, k' € K and all s’ € {s,...,s + wy — 1}.

Consequently, we conclude that

,u’; = Uf/l =p, forall k,k' € K and all s’ € {s,...,s + wy — 1}.

On the other hand, we use the same technique applied in the polyhedron dimension proof

to prove that

pf =~ for all K € K and all ¢ € EY
,ulg,l = fygl’e,, for all k' € K and all ¢’ € EV
af,/ = 'y:])f/’sl, for all ¥’ € K and all ' € {1,...,wp — 1}.
We conclude that for each ¥’ € K and ¢’ € F
fyfl’e/, if e/ € Eé“,
vgl’el, if ¢ € Ef,
0, if ¥ € Kand e =e,

0, otherwise,

kl
Her =

and for each k € K and s’ € S

Ve i s e {1, wg — 1)
ok = p,if k € K and 8" € {s,...,s +wg — 1},

0, otherwise.

min(s+wy—1,3)

As a result (u,0) = Z pak + Z pBY +1Q. O
keK s'=s

In what follows, we present several valid inequalities for P(G, K, S).
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2.4 Valid Inequalities and Facets

We start this section by introducing some classes of valid inequalities that can be defined
using Chvatal-Gomory procedures.

2.4.1 Edge-Slot-Assignment Inequalities

Proposition 2.4.1. Consider an edge e € E with K. # (). Let s be a slot in' S. Then, the
nequality

min(stwg» —1,5)

> > <, (2.23)

k’eKe s’=s
is valid for P(G, K, S).

Proof. Inequality ([2.23)) ensures that the set of demands K, cannot share the slot s over the
edge e, which means that the slot s is assigned to at most one demand k from K. over edge
e. O

Inspiring from the inequality ([2.23)), we define the following inequality based on the non-
overlapping inequality (2.6)) and using the Chvatal-Gomory procedure.

Proposition 2.4.2. Consider an edge e € E. Let s be a slot in S. Consider a triplet of
demands k, k', k" € K with e ¢ E§ ﬂEO/ NEE, (k, k') ¢ K¢, (k, k") ¢ K¢, and (K, k") ¢ KE.
Then, the inequality

min(s+wg—1,5) min(s+w;s—1,5) min(s4wg» —1,5)
/ el / v
af 4 ab 2R g 25+ g 25+ E 2K <4, (2.24)
s'=s s'=s s’=s

is valid for P(G, K, S).

Proof. Consider an edge e € E. Let s be a slot in S. Inequality ensures that if the
three demands k, k', k” pass through edge e, they cannot share the slot s.

Let’s us show that the inequality can be seen as Chvatal-Gomory cuts using Chvatal-
Gomory procedure. We know from that

min(s+wg—1,5) min(s+w;—1,5)
k+ k' + k + K <3
Tg + T, Zg zg <3,
s'=s s'=s
min(s+wg—1,3) min(s+wg» —1,5)
k + k77 + k + k?? < 3
.’L'e .Z'e ZSI ZS” -~ 3
s'=s s"=s
min(s+w;s—1,5) min(s+wg» —1,5)
k./ kn k/ kn < 3
T, +x, + Zg + Zy < 3.
s'=s s"=s

By adding the three previous inequalities, we get the following inequality

min(s+wg—1,5) min(s+w;s—1,5) min(s+wg» —1,5)
2 k 2 k/ 2 k7’ 2 k, 2 k/ 2 k7’ <
xe—l- fL'e + l’e + ZS/+ ZS/ + st _9
s'=s s'=s s"=s
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By dividing the two sides of the previous inequality by 2, we obtain that

min(s+wg—1,5) min(s+w;s—1,5) min(s+wg» —1,5) 9
k K k” k K k”
ded e Y e Y e Y zs,,gM
§'=s §'=s §'=s
As a result,
min(s+wg—1,5) min(s+ws—1,5) min(s+wg» —1,5)
A A S Y S SN Yoo o<
s'=s s'=s s’=s

We conclude at the end that the inequality (2.24) is valid for P(G, K, S). O

The inequality (2.24) can then be generalized for any subset of demand K C K under
certain conditions.

Proposition 2.4.3. Consider an edge e € E, and a slot s in'S. Let K be a subset of demands
of K with e & E¥ for each demand k € K, (k, k') ¢ K¢ for each pair of demands (k,k') in
K, and ) cpwp <5 — Zk”eKE\f( wy. Then, the inequality

min(s+w;s—1,5)

Sk oo <K+, (2.25)

keK KeK s'=s
is valid for P(G, K, S).
Let (Z) denote the total number of possibilities to choose a k element in a set of n elements.

Proof. Inequality ensures that if the demands k € K pass through edge e, they cannot
share the slot s. For this, we use the Chvatal-Gomory and recurrence procedures to prove
that ( is valid for P(G,K,S). For any subset of demands K C K with e ¢ Ef for
each demand k e K by recurrence procedures we get that for all demands K’ C K w1th
[K'| = |K| -1

min(s+wg—1,3)

ALY Y <Rl

keK’ keK’ s'=s
By adding the previous inequalities for all subset of demands K’ C K with |K'| = |K| —1

min(s+wg—1,5)

Yo Ya+ X Y X A< SO+ D).

K'CK keK’ K'CK keK’ s'=s K'CK
|K'|=|K|-1 |K'|=|K|-1 |K'|=|K|-1
Note that for each k € K, the variable 2* and the sum me (stwi—1,5) k, appear ((II‘;I(—‘l) —1)

times in the previous sum. This implies that

S 5 E L) v = (ot

keK keK s'=s

71



Given that |K’| = |K| — 1, this is equivalent to say that

min(s+wg—1,3)

Z(<,f(’f_‘1> — DaF + Z > (<u~("f(_’1> - 1)k < <yf(|\f(_‘1>’f(|

kEK s'=s

Moreover, and taking into account that ((l Il(lli‘l) —1) = |K| — 1, we found that

min(s+wg—1,5)

YUK =Dxg+ Y Y (K[-1D= <|KP

keK keK s'=s

By dividing the two sides of the previous sum by |K | — 1, we have

min(s+wg—1,3) |k|2 min(s+wg —1,5) |K|
D S S e DL A P SR [
keK keK s'=s K] keK keK s'=s K|~

min(st+wg—1,5) ~
K| —1+1
D T
kekK keK s'=s
min(s+wy—1,3) ~ ~
k k - K[ -1 K|
= T, + Z ot S K|— =
Z ‘ Z Z_: ’ b ‘IK\—I K| -1
keK ke K s'=s

After some simplifications, we found that

min(s+wg—1,5) B |K| min(s+wg—1,5) B
Yok Y A< |K|+qu 1J dab+d S Y <K+
keK keK s'=s keK keK s'=s
given that { ~|K‘ J =
K| -1
We conclude at the end that the inequality is valid for P(G, K, S). O

The inequality (2.25)) can be strengthened as follows. For that, and using the inequalities
(2.23]) and ([2.6)), we first show that the inequality (2.6|) can be strengthened without modifying
its right-hand side as follows.

Proposition 2.4.4. Consider an edge e € E. Let s be a slot in S. Consider a pair of
demands k, k' € K with e ¢ ES N EF and (k, k') ¢ K¢. Then, the inequality

min(s+wg—1,5) min(s+wys—1,5) min(s+wg» —1,5)
k K k K k”
T + x5 + zZg + zg + zg <3, (2.26)
s'=s s'=s k”eK\{k,k'} s'=s

is valid for P(G, K,S).

Proof. Consider an edge e € E, and a pair of demands k,k’ € K. Let s be a slot in S.
Inequality ensures that if the two demands k, %’ pass through edge e, they cannot
share the slot s with the set of demands in K, \ {k, k'}. This can be seen as a partcular case
for the inequality induced by subset of demands K = {k, &'} U K.
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We start the proof by assuming that the inequality (2.26]) is not valid for P(G, K, S). It follows
that there exists a C-RSA solution S in which s ¢ Sy~ for each demand k” € K, \ {k,k'} s.t.

min(s+wg—1,5) min(s+w,s—1,5) min(s+wg» —1,5)
S+l )+ > A+ > e+ Y Yoo S>3
s'=s s'=s ke Ke\{k,k'} s’=s

Since s ¢ Sy~ for each demand k” € K.\{k, &'} this means that 3y e \ (1 1) somin (shwir =1.5) k7 (S) =

s =s S
0, and taking into account that z¥(S) < 1, 2¥(S) < 1, Zg}:s(s+wk L3) 2k (S) < 1, and
min(s+wys—1,5)

Z 2 () < 1, it follows that

min(s+wg—1,3) min(s+w;s—1,5)
S+l S+ D e+ > (8 <3,

which contradicts the inequality (2.26)) for K = {k, &'}, and also what we supposed before,

min(s+wg—1,5) min(s+w;s—1,5)
ie, af(S)+ab(S)+ Y. A+ D ZE(9) >3
Hence |Ex N {e}| + |Exw N{e}| + |Sk N {s} + |Sw N {s}]| + Z |Sk> N {s}] < 3.

k”eKe
U

Let’s us generalize the inequality ([2.26) - ) for each edge e and all slot s € S and any subset
of demand K C K under certain conditions.

Proposition 2.4.5. Consider an edge e € E, and a slot s in'S. Let K be a subset of demands
of K with e ¢ E¥ for each demand k € K, (k, k') ¢ K¢ for each pair of demands (k,k') in
K, and ) cpwp <5 — Zk”eKE\f( wy». Then, the inequality

min(s+wg—1,3) min(s+w;s—1,5)
DIEED DD DR A S <R+ (22)
keK k:EK s'=s kleKe\f( s'—s

is valid for P(G, K, S).
This can be seen as a strengthened version of the inequality (2.26]).

Proof. Inequality (2.27]) ensures that if the demands k € K pass through edge e, they cannot

share the slot S Wlth the set of demands in K, \ K. This can be seen be a particular case the

inequality ([2.25)) induced by K UK., for the slot s over the edge e.

We use the Chvatal Gomory and recurrence procedures to prove that ( is valid for
P(G,K,S). For any subset of demands K C K with e ¢ E¥ for each demand ke K, by

recurrence procedures we get that for all demands K’ C K with |K'| = |K| — 1

min(s+wg—1,3) min(s+wg» —1,5)
!
Zm + g Z PR g g 2K <K'+ 1.
keK'’ keK' s'=s k»eK\K' s'=s
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By adding the previous inequalities for all K/ C K with |K'| = |K| —1

min(st+wg—1,5) min(s+wg» —1,3)
k + k + k?
Te gl Zgn
K'CK keK’ K'CK keK’ s'=s K'CK k”EKe\f( s"=s
K |=|K |1 K’ |=[K]|-1 K |=|K |1
< (1K +1).
K'CK
|K'|=IR] -1

Note that for each demand k € K, the variable zF and sum me (st+we=13) zk, appear

((‘ }gf_'l) — 1) times in the previous sum. It follows that

-~ min(s+wg—1,3) -
K| L K| K
(g ,) -k () <
2 (71— > X (goy
min(stwg» —1,5)

TR e

kneKe\f( s’=s

Given that |K’| +1 = |K| and ((l K Rl <] ) —1) = |K| — 1, this means that

min(s+wg—1,5) min(stwg» —1,5)
DKl =Dt +> > (K -Dzb+ > > |K|2E < |K)2.
keK keK s'=s K eK\K s'=s

By dividing the two sides of the previous sum by |I~( | — 1, we found that

min(s+wg—1,5) . min(stwg» —1,5) ‘R’ - ‘RP
Zx +Z Z Zg + Z Z |f(|—1 Zo S |f(|—1 :

kekK keK s'=s K eK\K §7=s

After some simplifications, we found that

min(s+wg—1,5) |R’ min(s+wg—1,3)
IR SR S e R LD YD S L
keK EEKU(K\K) s'=s keK EEKU(K\K) s'=s
K
given that | I~(|' | | 1J = 1. We conclude at the end that the inequality (2.27)) is valid for
P(G,K,S). O

Theorem 2.4.1. Consider an edge e € E, and a slot s € S. Let K be a subset of demands
in K with |C| > 3, and Y, .z w < 5 — Zk’eKe\f( wygr. Then, the inequality (2.25) is facet

defining for P(G, K, S) iff Ke\f( =0, and there does not exist an interval of contiguous slots
I = [s;,s5] s.t.

a) {si +wg —1,...,s;}| > wy for each demand k € K,
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b)

¢)
d)

and s € {s; + maxwy — 1,...,s; — maxwy, + 1},
k'eK keK

and wy + wy > |I| + 1 for each k. k' € K,
and 2wy, > |I| + 1 for each k € K.

Proof. Neccessity.

If K.\ K # 0, then the inequality (2.25) is dominated by the inequality (2.27) without
changing its right-hand side. Moreover, if there exists an interval of contiguous slots I =
[Si, Sj] S.t.

[{si +wy, — 1,...,5;}| > wy, for each demand k € K,

and s € {s; + maxwy — 1,...,s; — maxwy, + 1},
keK kekK

and wy + wg > |I] + 1 for each kK €K,
and 2wy, > |I| + 1 for each k € K.

Then the inequality ([2.25]) is dominated by the inequality (2.32). Hence, the inequality ([2.25|)
is not facet defining for P(G, K, S).

Sufficiency.
Let F;(’s denote the face induced by the inequality ([2.25)), which is given by

min(s+wg—1,3)
F2* ={(z,2) € P(G,K,S) : Zx§+ Z 25 = |K|+1}.
keK s'=s
In order to prove that inequality Y, 7 z¥ + Z?i:nierwk 1) 2k < |K|+1 is facet defining for
P(G, K,S), we start checking that F;{’S is a proper face, and F;(’S # P(G, K,S).
We construct a solution S3® = (E38, 538) as below

a feasible path E,‘?g is assigned to each demand k € K (routing constraint),

a set of last-slots S3® is assigned to each demand k € K along each edge ¢/ € E3® with
S38] > 1 (contiguity and continuity constraints),

{s—wr+1,..,s}N{s' —wp +1,...,8'} = 0 for each k, k' € K and each s’ € S8 and s’ € 53¢
with E3®8 N E # () (non-overlapping constraint),

and there is one demand k from the set of demands K (i.e., k € K s.t. the demand k selects
aslot s’ as last-slot in the solution S38 with s € {s,...,s+w,—1},1e, 5" € S38 for a demand
k € K, and for each ' € S for all k' € K \ {k} we have s’ & {s,...,s + wp — 1},

and all the demands in K pass through the edge e in the solution S, i.e., e € E28 for each
ke K.
Obviously, S3® is a feasible solution for the problem given that it satisfies all the con-

straints of our cut formulation ([2.2)-(2.10). Moreover, the corresponding incidence vec-
tor (:U338,z‘538) is belong to P(G, K,S) and then to FES given that it is composed by

>kei TE+ Z?S§s+wk_1’§) zk = 1. As a result, F2° is not empty (ie., F2° # 0). Fur-
thermore, given that s € S, this means that there exists at least one feasible slot assignment

Sy for each demands k in K with S, N {s,...,s +wy, — 1} = 0. Hence, F;i(’s # P(G, K,S).
We denote the inequality >,z ¥ + Zg}:‘g%wk*l’g) 28 < |K|+1by az+ Bz < A Let

pux + oz < 7 be a valid inequality that is facet defining F' of P(G, K,S). Suppose that F;(’s C
F ={(z,2) € P(G,K,S) : uyx+o0z = 7}. We show that there exists p € R and v = (71, 72,73)

75



(st. m € RZkeﬂEg','yg € RZkEKwﬂ,vg S RzkeK(wk_l)) sit. (u,0) = ple, B) +~vQ, and
that

af, = 0 for all demands k € K and all slots s € {wg,...,5} with ' ¢ {s,...;s + wp — 1} if
ke K,

and af, are equivalents for all k£ € K and all §' € {8y, s +wg — 1},

and p¥, = 0 for all demands k € K and all edges e € E \ (Ef U Ef) with e # ¢ if k € K,
and all ¥ are equivalents for the set of demands in K,

and 0% and pf are equivalents for all k € K and all §' € {s,...,s + w; — 1}.

We first show that ¥, = 0 for each edge ¢’ € E\ (Ef U E}) for each demand k € K with
e # ¢ if k € K. Consider a demand k € K and an edge ¢’ € E'\ (Ek U EY) with e # ¢ if
k € K. For that, we consider a solution &% = (E’38,5"38) in which

a feasible path E}?® is assigned to each demand k € K (routing constraint),

and a set of last-slots Sk38 is assigned to each demand k € K along each edge €’ € E,’f’s with
S/38] > 1 (contiguity and continuity constraints),

and {s' —wg + 1,...,8} N{s" —wp +1,...,8"} = 0 for each k,k' € K and each s’ € S8
and s” € 3 with E® N E3® # 0, ie., for each edge ¢/ € F and each slot s” € S we have
ZkeK’eleE}?s {s' e S,’f’s, s” € {s —wg +1,...,8} <1 (non-overlapping constraint),

and there is one demand k from the set of demands K (ie., k€ K s.t. the demand k selects a
slot s’ as last-slot in the solution S/38 with 5" € {s,...,s +wy —1},1e., s € 5738 for a demand
k € K, and for each s’ € Si38 for all k' € K \ {k} we have ' ¢ {s,...,s + wp — 1},

and the edge €’ is not non-compatible edge with the selected edges ¢” € E,’E’S of demand k in
the solution S8, i.e., 26776E11€38 le» + 1o <lg. As aresult, E}3® U{€'} is a feasible path for the
demand k,

{s—wr+ 1,8} N{s —wp +1,...,8} =0 for each ¥’ € K and s € S;3® and s’ € 38
with (B3 U {e’}) N E}3® # 0 (non-overlapping constraint taking into account the possibility
of adding the edge €’ in the set of edges E,’C38 selected to route the demand k in the solution
8/38>,

and all the demands in K pass through the edge e in the solution 8”8, i.e., e € E,’f’g for each
ke K.

S8 is clearly feasible for the problem given that it satisfies all the constraints of cut for-
mulation ([2.2)-(2.10). Hence, the corresponding incidence vector ( S 25 is belong to
F and then to FI‘?S given that it is composed by -,z 2% + Somin (s =19 2k = 1. Based

s'=s
on this, we derive a solution S obtained from the solution S8 by adding an unused edge
e € E\ (Ef U E}) for the routing of demand k in K in the solution S3® which means that
E39 E}; 38 U {e/}. The last-slots assigned to the demands K, and paths assigned the set of
demands K\ {k} in 8 remain the same in the solution §%, i.e., S39 = 53 for each k € K,
and E3Y = E38 for each k' € K \ {k}. 8% is clearly feasible given that

and a feasible path Eg’g is assigned to each demand k € K (routing constraint),

and a set of last-slots S;:’g is assigned to each demand k € K along each edge ¢’ € E’zg with
S39] > 1 (contiguity and continuity constraints),

and {s’ —w + 1,8} N {s" —wp +1,...,s"} = 0 for each k, k' € K and each s’ € S
and s” € S with E3 N E £ 0, ie., for each edge ¢’ € E and each slot s” € S we have
D okeKel rem [{s' € 8%, s" € {s' —wy +1,...,5'} <1 (non-overlapping constraint).
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The corresponding incidence vector (x 339, 2539) is belong to F' and then to F' ES given that it

is composed by >, aF + me (stw—1,8) 2k = 1. It follows that

s'=s

stms n 023/38 _ ,ux$39 i 0_2539 _ M$S/38 I ME/ n 023/38

As a result, ,u];, = 0 for demand k and an edge €'. )

As ¢’ is chosen arbitrarily for the demand k with e ¢ Ef U EY and e # e if k € K, we iterate
the same procedure for all e” € E\ (E¥ U EY¥ U {e'}) with e # ¢” if k € K. We conclude that
for the demand k

pk =0, forall ¢ € E\ (E5 UEY) with e # ¢ if k € K.

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all
kK € K\ {k}and all ¢ € E\ (E} U EF). We conclude at the end that

pk =0, forall k € K and all ¢ € E\ (E§ UEY) with e #£ ¢ if k € K.

Let’s us show that o¥ = 0 for all k € K and all ' € {w, ..., 5} with &' ¢ {s,...,s + wy — 1}
if k € K. Consider the demand k and a slot s" in {wy, ..., 5} with s & {s,...,s +wy — 1} if
k € K. For that, we consider a solution 8”3 = (E”3% 573%) in which

a feasible path E”3® is assigned to each demand k € K (routing constraint),

a set of last-slots S”is is assigned to each demand k € K along each edge €' € E”%S with
5738 > 1 (contiguity and continuity constraints),

s’ — wk —|— 1,..,8YN{s” —wp +1,...,58"} = 0 for each k,k € K and each s’ € 5738 and
k

s” € 573 with E"38 N E"3 £ (), i.e., for each edge ¢ € E and each slot s” € S we have

D keKe repr3s s € 8738, 5" € {s' —wp +1,...,5'} <1 (non-overlapping constraint),

and {s' —wy + 1,..,s}N{s" —wp +1,..,8"} = 0 for each k' € K and s” € S”39 with
E”38 N E”% +£ () (non-overlapping constraint taking into account the possibility of adding
the slot s’ in the set of last-slots S”iS assigned to the demand k in the solution &§”3%),

and there is one demand k from the set of demands K (i.e., k € K s.t. the demand k selects
a slot s’ as last-slot in the solution S738 with & € {s,..,s +wp — 1}, ie, s’ € 8738 for a
demand k € K, and for each s’ € S7% for all ¥’ € K \ {k} we have s’ ¢ {s,...,s + wp — 1},

and all the demands in K pass through the edge e in the solution S”2%, i.e., e € E”%s for
each k € K.

S738 is clearly feasible for the problem given that it satisfies all the constraints of cut for-

mulation (2.2)-([@.10). Hence, the corresponding incidence vector (5™, 25"™) is belong to
F and then to F;(’s given that it is composed by -, aF + Z?}fﬁﬁwrm) 2k = 1. Based
on this, we construct a solution S*° derived from the solution S”38 by adding the slot s’ as
last-slot to the demand k£ with modifying the paths assigned to a subset of demands K C K

in 8”38 (i.e., B9 = E"3 for each k € K\ K, and E}° # E"3 for each k € K) s.t.
a new feasible path E} is assigned to each demand k € K (routing constraint),

and{s —wg +1,. s}ﬂ{s”—wkl—l—l L8} = (Dforeachkéf(andk’EK\f(andeach
s e S”38 and §” € S” with E40 N E”38 7é (), i.e., for each edge ¢’ € F and each slot s” € S
we have DoheR.e ‘eBw HS € S”38,S” € {s —w + 1 , 8" T2 ke K\Re! repn3s [{s' € §738, 5" €
{s —wp+1,...,8'} <1 (non-overlapping constraint),
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c)

and {s' —wy +1,...,8'} N {s” —wp +1,...,5"} = 0 for each &’ € K and s” € S} (non-
overlapping constraint taking into account the possibility of adding the slot s’ in the set of
last-slots S”3% assigned to the demand k in the solution S”3%).

The last-slots assigned to the demands K\ {k} in 8”3 remain the same in S, i.e., §73% = S}0
for each demand k' € K \ {k}, and S}° = S”38 U {s} for the demand k. The solutlon S0 s
clearly feasible given that

a feasible path E}¥ is assigned to each demand k € K (routing constraint),

a set of last-slots S’ﬁo is assigned to each demand k € K along each edge ¢ € E/,‘cLO with
1S%] > 1 (contiguity and continuity constraints),

{s’ —wg+1,..,8N{s" —wp +1,..,5"} = 0 for each k, k' € K and each s’ € S{¥ and
€ S with E}° N EY £ 0, ie., for each edge ¢ € E and each slot s” € S we have

ZkeKe e B0 [{s" € S0, s” € {s' —wi +1,...,5'} <1 (non-overlapping constraint).
840 840)

The corresponding incidence vector (z° ', z is belong to F' and then to F;i(’s given that it

is composed by >, 5 b + me (stwn=15) .k — 1. We have so

s'=s Zgl =

38 » 38 40 40 » 38 » 38 I I
/wcs + 02 :uws +02° :uﬂcs +02° —i—aﬁ’}—z Z p/g,%—z Z MS

ek e B8 ek ¢ €EL0

It follows that 0% = 0 for demand k and a slot s’ € {w, ..., 5} with s’ & {s,...,s + wj, — 1} if
k € K given that u* = 0 for all the demands k € K and all edges ¢/ € E\ (Ef U E}) with
et ifkeK.

The slot s’ is chosen arbitrarily for the demand k, we iterate the same procedure for all
feasible slots in {wy, ..., 5} of demand k with s’ ¢ {s,...,s + wy — 1} if k € K s.t. we find

ok =0, for demand k and all slots s’ € {wy, ..., 5} with s’ ¢ {s,...,s + wp — 1} if k € K.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands
k' in K\ {k} such that

o =0, for all k¥ € K\ {k} and all slots s’ € {wy,...,5} with s’ ¢ {s,...,s +wy — 1} if ¥ € K.

Consequently, we conclude that
ok =0, for all k € K and all slots s’ € {wy, ..., 5} with s’ & {s,...,s +wyp — 1} if k € K.

Let prove that Jf, for all k € K and all & € {8y, 8+ wy — 1} are equivalents. Consider a
demand k" and a slot s’ € {s,...,s + wpr — 1} with ¥’ € K. For that, we consider a solution
S3 = (E°8,5%8) in which

a feasible path Egg is assigned to each demand k € K (routing constraint),

a set of last-slots 5’;38 is assigned to each demand k& € K along each edge e’ € E,z’g with
|S38] > 1 (contiguity and continuity constraints),

{ —wip+1,..,8tN{s" —wp +1,....87} = 0 for each k,k’ € K and each s’ € 5’,3’8 and
5" € S,i’,g with E¥ N E}:’,S # (), i.e., for each edge ¢/ € FE and each slot s” € S we have
DokeK.e! e {s' € 938, s" € {s/ —wr +1,...,s'}| < 1 (non-overlapping constraint),

and {s—wy+1,...,s}N{s'—wp +1,...,s'} = O for each k € K and s € S7% with E,?SOE,E,E; £ 0
(non-overlapping constraint taking into account the possibility of adding the slot s’ in the set
of last-slots S”3% assigned to the demand &’ in the solution S”3%),

78



e)

2)

and there is one demand k from the set of demands K (ie., k € K s.t. the demand k selects
aslot s as last-slot in the solution S38 with " € {s, ..., s +wp—1},1e., 5" € S8 for a demand
k € K, and for each s’ € S for all k' € K \ {k} we have s’ & {s,..., s + wp — 1}),

and all the demands in K pass through the edge e in the solution S3%, i.e., ¢ € Ei’s for each
ke K.

S38 ig clearly feas1ble for the problem given that it satisfies all the conbtralnts of cut formu-
lation ([2.2) . Hence, the corresponding 1nc1dence vector (x 538, z ) is belong to F' and

then to Fe ' given that it is composed by Y,z xF + me (stw=L5) zk = 1. Let S be a

'=s

solution derlved from the solution S8 by adding the slot s’ as last-slot to the demand &’ with
modifying the paths assigned to a subset of demands K C K in &8 (i.e., Eél = E~28 for each
k€ K\ K,and E{! # E} for each k € K), and also the last-slots assigned to the demands
K\ {k, k'} 1n S5 remain the same in S*, i.e., Sp% = S} for each demand k” € K \ {k, &'},
and Spt = S35 U {s'} for the demand £, and modlfymg the last-slots assigned to the demand
k by adding a new last-slot § and removing the last slot s’ € 5’;:’8 with s' € {s;+wg+1,...,s;}
and § ¢ {s; +wy + 1,...,5;} for the demand k with k € K s.t. Si' = (538 \ {s}) U {3} s.t.
{§—wp+1,...5}N{s —wp +1,...'} =0 for each k¥’ € K and s’ € S}! with EM nE} 0.
The solution S*! is clearly feasible given that

a feasible path E}! is assigned to each demand k € K (routing constraint),

a set of last-slots S’ﬁl is assigned to each demand k € K along each edge ¢ € E/,‘CLl with
S > 1 (contiguity and continuity constraints),

{ —wr+1,..,8tN{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S} and
57 € S,‘i,l with E41 N Eg,l # (), i.e., for each edge ¢/ € F and each slot s” € S we have
Dkekecpn {8 € St s” e {s' —wi +1,...,s'} <1 (non-overlapping constraint).

The corresponding incidence vector (z st , 2541) is belong to F' and then to F' I%s given that it
is composed by ZkeK , + me (stwe=1,9) k = 1. We have so

s'=s

338 338 41 41 338 338 k' k k
,uxs +025 = ,u:vs +02° = ,LLJ:S +02° + Oy — 0y + 03

B IDINTED S ST

keK e'cE3® keK e'cEH

It follows that 0% = of for demand k' and a slot s’ € {wy,...,5} with &’ € K and s’ €
{s,...,5 +wp — 1} given that o =0 for § ¢ {s, .. 58 tw, — 1} with k € K, and pk, =0 for
allkeKandalle € FE\ (Ef U EY) with ¢ #elfkeK

Given that the pair (k, k") are chosen arbitrary in the set of demands K, we iterate the same
procedure for all pairs (k, k') s.t. we find

ol = ok for all pairs (k, k') € K

S

with s € {s,...,;s + w — 1} and s’ € {s,...,s + wp — 1}. We re-do the same procedure for
each two slots s,s" € {s,...,s + w, — 1} for each demand k € K with k € K s.t.

k

ok = ok forall k € K and 5,5 € {s,...,5s + wy — 1}.

Let us prove now that p* for all k € K with k € K are equivalents. For that, we consider a
solution 2 = (E42, 942) defined as below

a feasible path E}? is assigned to each demand k € K (routing constraint),
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b)

)

d)

a set of last-slots S;CQ is assigned to each demand k& € K along each edge €' € Eﬁg with
|S{2| > 1 (contiguity and continuity constraints),

{s—wr+1,...,s}N{s' —wp +1,...,8'} =0 for each k, k' € K and each s’ € S}? and s’ € S}}?
with El%? N E,%? # () (non—overlappmg constraint),

and there is one demand k from the set of demands K (i.e., k € K s.t. the demand k pass

through the edge e in the solution S¥2 ie,ec E,‘f for a demand k € K, and e ¢ E,%? for all

kK e K\ {k},

and all the demands in K share the slot s over the edge e in the solution S22 ie., {si +wi +
L 8j NS # (0 for each k € K.

Obviously, S*? is a feasible solution for the problem given that it satisfies all the con-
straints of our cut formulation - Moreover, the corresponding incidence vec-
tor (25" 2342) is belong to P(G K S) and then to F;(’S given that it is composed by

Consider now a demand k" in K s.t. e ¢ E{?. For that, we consider a solution $1? = (E*2, 542)
in which

a feasible path EéQ is assigned to each demand k € K (routing constraint),

a set of last-slots 5’,%2 is assigned to each demand k£ € K along each edge e € E’%z with
|S#2| > 1 (contiguity and continuity constraints),

{ —wp+1,..,8tN{s" —wp +1,....87} = 0 for each k,k’ € K and each s’ € 5’,32 and
s" € S,f? with E,‘g N E,ﬁ? # (), i.e., for each edge e € E and each slot s” € S we have
Y okek cc B2 [{s' € Sp% 8" € {s' —wy, +1,...,s'}| <1 (non-overlapping constraint),

and there is one demand k from the set of demands K (ie, k€ K s.t. the demand k pass
through the edge e in the solution S42 je., ec E,‘f:Q for a demand k € K, and e ¢ Eﬁ? for all
kK e K\ {k},

and all the demands in K share the slot s over the edge e in the solution S42 e, {8y, s+
wg — 1} N S # 0 for each k € K.

S g clearly feasible for the problem given that it satisfies all the constralnts of cut formu-
lation (2.2)-(2.10). Hence, the corresponding incidence vector (z S .8 ") is belong to F and

then to F6 ¥ given that it is composed by dokei Te zF + me (s+wp—15) S, = 1. Based on this,

s'=s

we derlve a solution 8”743 = (E743, 5743 from the solution S*2 by

the paths assigned to the demands K\ {k, '} in §*2 remain the same in $”*3 (i.e., "} = B2
for each k7 € K \ {k,k'}),

without modifying the last-slots assigned to the demands K in S, i.e., 542 Sy 43 for each
demand k € K,

modifying the path assigned to the demand &’ in $*2 from Eﬁ? to a path E” passed through
the edge e (i.e., eEE”,)Wlthk’eKst {s—wp+1,... s}ﬁ{s—wk/+1 L8t =0 for
each k € K and each s’ € Sﬁ, and each s’ € S,iu with EéQ N E”ﬁ’ =+ (),

modifying the path assigned to the demand k in S*2 with e € E,%Q and k € K from EN’,%Z to
a path E”$® without passing through the edge e (i.e., e ¢ E”f’)~ and {s —wg +1,...,8} N
{s' —wp +1,...,8'} = 0 for each k7 € K \ {k,k'} and each s’ € S;* and each s’ € 57 with
E}2 QE”f’ #0,and {s —wr +1,...,s} N{s' —wp + 1,...,8'} = 0 for each s’ € S}? and each
s’ € S with E”# N E"3 # 0.

The solution S”*3 is feasible given that
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2)
b)

c)

a feasible path E” i3 is assigned to each demand k € K (routing constraint),

a set of last-slots S”i‘% is assigned to each demand k € K along each edge e € E”ﬁg with
> 1 (contiguity and continuity constraints),
S8 >1 tiguity and continuit traint
s—wk—i— ey S s —wp +1,...,8; = or each k,Kk" € and each s € an
1 Tn{s 1 7 0 f h k, k' € K and each ¢ S”f’ d
e 9743 W with E”f’ N E”ﬁ?’ # (), i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeE”f’ {s' € 5713, 8" € {s' —wp +1,...,s'}| <1 (non-overlapping constraint).

. . . 43 43
The corresponding incidence vector (z5 ", 25 )

it is composed by Y, & #F + me (swi— 1 %) 2k = 1. We then obtain that

'=s

is belong to F' and then to F;(’S given that

G42 S42 43 43 G42 342 /
,ums +025" = ,um‘s +025" = ,uw‘s +02° —i—,u]; —u’é

D DR ST ST R et

CeB e} ek e s e B\ (e}

It follows that ¥ =y for demand & and a edge ¢’ € E\ (EY U EF) with vy » € K given

that pf =0 for all k € K and all ¢” € E\ (Ef UE}) with k€ K.
Given that the pair (k, k") are chosen arbitrary in the set of demands K, we iterate the same
procedure for all pairs (k, k') s.t. we find

pF = ¥ for all pairs (k, k') € K.

Furthermore, let prove that all o¥ o and ue are equivalents for all k£ € K and ¢ € {8,...,8+
wg, — 1}. For that, we consider for each demand k' with k' € K, a solution S** = (E44 544)
derived from the solution §*2 as below

the paths assigned to the demands K \ {k'} in S*? remain the same in S* (i.e., B} = E}?
for each k7 € K \ {k'}),

without modifying the last-slots assigned to the demands K \ {k} in S*2, i.e. Sk,, = S} for
each demand k” € K \ {k},

modifying the set of last-slots assigned to the demand &’ in §*2 from 5’,3,2 to S,‘if1 s.t. SN
{8, .., s+ wp — 1} = 0.

Hence, there are ]f( | — 1 demands from K that share the slot s over the edge e (i.e., all the

demands in K \ {k'}), and two demands {k, '} from K that use the edge e in the solution
S*. The solution S** is then feasible given that

a feasible path E}* is assigned to each demand k € K (routing constraint),

a set of last-slots S,%‘L is assigned to each demand k£ € K along each edge e € E;M with
S| > 1 (contiguity and continuity constraints),

|k guity y

{s' — wk + 1,...,3’} ﬂ {s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S}* and
s" € S with E 44 # (), i.e., for each edge e € E and each slot s” € S we have
> okek, ccEi {s' € Sk ,8” € {s' —wg+1,...,8} <1 (non-overlapping constraint),

and Zkef( \Ek N{e} + |S,§4 N{s,..,s+wg — 1} = \K’] +1.

The corresponding incidence vector (z5',25™) is belong to F and then to F;f(’s given that it

is composed by >, xF + Zmin(s+w’“_l’§) 2% = 1. We then obtain that

s'=s
G42 342 44 44 G42 S42 / / / /
,u:ns —i—azs = ,u:rs —i—azs = ,u:):S + o2° —|—,u]e€ — Jff, + Z u’; — Z /ﬂ;
e B \{e} e ek
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It follows that ;¥ = 0¥ for demand &’ and slot s’ € {s,...,s + wp — 1} given that ¥ =0
for all k£ € K and all e” € B\ (EYUEF) withe #e” ifk € K Moreover, by doing the same
thing over all slots s’ € {s, ..., s + wp — 1}, we found that

pF = ol for all 8" € {s,...,s +wp — 1},

Given that k' is chosen arbitrarily in K , we iterate the same procedure for all k € K to show
that

pk = afl,for all k€ K and all s’ € {s,...,5 4+ wp — 1}.

Based on this, and given that all u* are equivalents for all k € K, and that Uf, are equivalents
for all k € K and s’ € {s,...,s + wp — 1}, we obtain that

pk =%, forall k,k' € K and all &' € {s,...,s + wy — 1}.
Consequently, we conclude that
,ulg = Uf// =p, forall k, k' € K and all s’ € {8y, s +wpr — 1}.

On the other hand, we use the same technique applied in the polyhedron dimension proof
to prove that

ue —’Y1 , for all ¥’ € K and all ¢’ EEO,

u’é =45 forall ' € K and all ¢’ € EV,
o =k for all ¥ € K and all §' € {1, ..., wp — 1}.

We conclude that for each ¥’ € K and ¢’ € E

’yf,’e/, ife € E(])“/,

'yg ’8/, if ¢ € Ef/,

0, if ¥ € K and ' = e,

0, otherwise,

k' _
Her =

and for each k € K and s’ € S

,Yg"vs/,if S/ c {17 ey Wee — 1}
ok = p,if k € K and s’ € {s,...,s +wg — 1},
0, otherwise.

min(s+wy—1,3)

As a result ( Z pak + Z pﬁfl + Q. O

keK s'=s

Theorem 2.4.2. Consider an edge e € E, and a slot s € S. Let K be a subset of demands

in K with |K| >3, and ),z wp < 85— Ek’eKe\f( wy. Then, the inequality (2.27)) is facet

defining for P(G, K,S) iff there does not exist an interval of contiguous slots I = [s;, s;] s.t.
a) [{si +wp —1,...,8;}| > wy, for each demand k € K,

b) and s € {s; + maxwy — 1,...,s; — maxwy, + 1},
KeK keK
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¢) and wy +wy > |I| 4+ 1 for each k, K € K,

d) and wy + wy > [I| + 1 for each k € K and eachk'EKe\f(,
e) and 2wy > |I| + 1 for each k € K,

f) and 2wy > |I| +1 for each k' € K.\ K.

Proof. Neccessity.
If there exists an interval of contiguous slots I = [s;, 5] s.t.

{si +wr —1,...,5;}| > wy for each demand k € K,

and s € {s; + maxwy —1,...,5; — maxwy + 1},
keK kekK

and wy, + wy > |I| + 1 for each k, k' € K,

and wy, + wy > |I| + 1 for each k € K and each ¥ € K, \ K,
and 2wy, > |I| + 1 for each k € K,

and 2wy > |I| + 1 for each k' € K.\ K.

Then the 1nequahty is dominated by the inequality ([2.33] - for for a chque C =K and
clique C, = K, \K in the conflict graph Ge As result, the inequality (2.27) is not facet
defining for P(G, K, S).

Sufficiency.

Let’s us denote F}?S the face induced by the inequality , which is given by

min(s+wg—1,5) min(s+w;s—1,5)

Fe* ={(,2) e P(G,K,S): Y ak+ > > zh+ ) S =K+

k€K keK s'=s K\K s'=s

We denote the inequality ZkEK xy +ZkeK Zmln (s+wr—1,3) K +ZK i me (s+wyr—1,3) k:/’ <

/_S /_S S =
]K| + 1 by ar + Bz < A. Let pux 4+ 0z < 7 be a valid inequality that is facet defining F' of
P(G,K,S). Suppose that F’fs C F = {(z,2) € P(G,K,S) : pz + 0z = 7}. We show

that there exists p € R and v = (vy1,72,73) (s.t. 7 € RZkeK|E§|,’yg € RZkeK‘Efl,’yg €
RZkGK(wk’_l)) S.t. (M,o‘) = p(a,ﬁ) —{—’yQ, and that

ok = 0 for all demands k£ € K and all slots s € {wy;,...,5} with 8" ¢ {s,...,s +wp — 1} if
ke KUK,

and o, are equivalents for all k € KUK, and all & € {s,...,s +wj, — 1},
and ¥, = 0 for all demands k € K and all edges e € E\ (E§ U E}) with e # ¢’ if k € K,
and all ,ulg are equivalents for the set of demands in K,

and 0¥ and ¥ are equivalents for all k € K and all ¥’ € KUK, and all s’ € {s, ..., s+wy —1}.

We re-do the same technique of proof already detailed to prove that the inequality (2.25) is
facet defining for P(G, K, S) s.t. the solutions $3® — S* still feasible for Fe '>% given that their

1 Fwy —1
incidence vector are composed by >,z 25+3", & me (swi—1,5) ,+ZK \& me stwp=1s)

s'=s s'=s

|K| + 1. We conclude at the end that for each & € K and ¢/ € E
vf/’e/, if ¢/ € Egl,
Ve e el € BY

p, if k' € K and ¢ = e,

0, otherwise,

k'
Her =
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and for each k € K and s’ € S
VoS i s e {1, wp — 1)
ok = pif ke KUK, and s’ € {s,...,s +w;, — 1},
0, otherwise.

min(s+wg—1,3 min(s+w;s—1,5)

5)
As a result ( Z ,oa + Z Z pB + Z Z pﬁff + Q. O

keK keK s'=s kEKN\K s'=s

2.4.2 Edge-Interval-Capacity-Cover Inequalities

Let’s now introduce some valid inequalities which can be seen as cover inequalities using some
notions of cover related to our problem.

Definition 2.4.1. An interval I = [s;, sj] represents a set of contiguous slots situated between
the two slots s; and s; with j > i+ 1 and s; < 5.

Definition 2.4.2. For an interval of contiguous slots I = [s;, sj], a subset of demands K’g
K is said a cover for the interval I = [s;, s;] iff > g wr > |I| and wy, < |I| for each k € K.

Definition 2.4.3. For an interval of contiguous slots I = [si, s;|, a cover K is said a min-
imal cover if K \ {k} is not a cover for interval I = [s;,s;] for each demand k € K, i.e.,
Zk’ef{\{k} wyr < |I| for each demand k € K.

Based on these definitions, we introduce the following inequalities.

Proposition 2.4.6. Consider an edge e € E. Let I = [s;,s;] be an interval of contiguous
slots in [1,8) with j > i+ 1. Let K' C K. be a minimal cover for interval I = [s;, s;] over
edge e. Then, the inequality

> i: 2k <K' -1, (2.28)

k€K’ s=s;+wg—1
is valid for P(G, K,S).

Proof. The interval I = [s;, s;] can cover at most |K’| —1 demands given that K’ is a minimal
cover for interval I = [s;, s;] over edge e. We start the proof by assuming that the inequality
is not valid for P(G, K,S). It follows that there exists a C-RSA solution S in which
{si+wr—1,..,8} NSk =0 for a demand k € K’ s.t.

oY ) > K| -1

keK’ s=s;+wi—1

Since {s;+wg—1, ..., 5;}N S = 0 for a demand k € K’ this means that > .7 w1 25(8) =0,
and taking into account that K’ is minimal cover for the interval I = [s;, sj] over edge e, and
S 2F(8) < 1 for each demand k € K’, it follows that

s=8;+wg— 1%s
T Y He <K -1,

k' eK'\{k} s=sitwys—1

S

which contradicts what we supposed before, i.e., > pcpr Dol 1w, 1 28(8) > |K'| — 1.
Hence D, cper [Sk N {si +wp — 1, ..., 85} < [K'| — 1.
We conclude at the end that the inequality (2.28) is valid for P(G, K, S). O
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The inequality (2.28) can be strengthened using an extention of each minimal cover K’ C
K, for an interval I over edge e as follows.

Proposition 2.4.7. Consider an edge e € E. Let I = [s;,s;] be an interval of contiguous
slots in [1,5]. Let K’ C K. be a minimal cover for interval I = [s;, s;] over edge e, and Z(K")
be a subset of demands in K.\ K' s.t. 2(K') = {k € K.\ K' s.t. w, > wp VK € K'}.
Then, the inequality

Sj S
) Z SR DY Z & <K' -1, (2.29)

keK' s=s;+wg—1 k'€E(K') s'=s;+wyr—1
is valid for P(G, K,S).

Proof. The interval I = [s;,s;] can cover at most |K'| — 1 demands from the demands in
K' UE(K') given that K’ is a minimal cover for interval I = [s;, s;] over edge e and the
definition of the set Z(K’) s.t. for each pair (k, k') with k € K’ and k¥ € Z(K'), the set
(K'\ {k})U{k'} stills defining minimal cover for the interval I over the edge e. Furthermore,
for each quadruplet (k, k', k, k') with k, k' € K’ and k, k' € E(K’), the set (K'\{k, k'})U{k, k'}
stills defining minimal cover for the interval I over the edge e given that wy, +wp < wj +wy,.
We strengthen the proof as follows. Let’s first suppose that the inequality is not valid
for P(G, K, S). It follows that there exists a C-RSA solution S in which {s; +wy —1,...,s;}N
Sy = 0 for each demand k' € Z(K’) s.t.

oY ) > K| -1

keK' s=s;+wp—1

Since {s;+wy—1, ..., s; NSk = 0 for each demand k' € Z(K’) this means that sz:s#wk/_l 2K(8) =

0, and taking into account the inequality (2.28]), and that K’ is minimal cover for the interval
I = [s;, s;] over edge e, it follows that

keK' s=s;+wp—1

which contradicts what we supposed before, i.e., >, x Ei’;sﬁwk_l 2F(S) > |K'| — 1.

Hence >y c e[Sk N {si +wi — 1, ., 85 H + D pegren 19 N {si +wir —1,., 85} < |K'[ = 1.
We conclude at the end that the inequality (2.29) is valid for P(G, K, S). O

Moreover, the inequality (2.28|) can be more strengthened using lifting procedures pro-
posed by Nemhauser and Wolsey in [109] without modifying its right-hand side.
Inspiring from the inequality (2.28)), we define a new valid inequality as follows.

Proposition 2.4.8. Consider an edge e € E. Let I = [s;,s;] be an interval of contiguous
slots in [1, 8] with j > i+ 1. Let K be a minimal cover for the interval I s.t.

a) Zwkﬁg— Z Wi,

keK K eKAK
b) e ¢ EY for each demand k € K,
¢) K>3,

d) (k, k') ¢ K¢ for each pair of demands (k,k') in K.
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Then, the inequality

..
dab+ > Zj 2P <o|K| -1, (2.30)

keK keK s=sitwg—1
is valid for P(G, K,S).

Proof. The interval I = [s;, s;] can cover at most |K|— 1 demands given that K is a minimal
cover for interval I = [s;, 5] over edge. It follows that if the demands K pass together
through the edge e (i.e. ZkeK k — |K|), there is at most |K| — 1 demands that can share
the interval I over edge e.

We start the proof by assuming that the inequality is not valid for P(G, K,S). It
follows that there exists a C-RSA solution S in which {s; + w — 1,...,5;} NS, = 0 for a
demand k € K’ s.t.

ke + > () > 2K

keK' ke K'\{k} s=sitwys—1

Since {s;+wg—1, ..., 5;}NS) = 0 for a demand k € K’ this means that > .7 w1 Zs 28(8) =0,
and taking into account that K’ is minimal cover for the interval I = [s;, sj] over edge e, it
follows that

PIEACIEIEDY Z K(8) < 2K’ -1,

keK' k' eK'\{k} s=sitwy—1

which contradicts what we supposed before, i.e., >, jr 2¥(S )+ kern (k) S sitwy—1 2K(8) >
2|K’|.

One can imagine another case also when K'N K, = (), it follows that there exists a C-RSA so-
lution S’ in which E;xN{e} = () for each demand k € K’, which means that Y,z 2¥(5") = 0
s.t.

SO ) =K

keK' s=s;+wi—1

Given that K’ is a minimal cover for the interval I over edge I, it follows that

Y Y M) <R -1,

k' eK'\{k} s=sitwps—1

S

which contradicts our hypothesis, i.e., > o rr D g v, 1 %5 2F(8") > 2|K|.

Hence Z |Ex N {e}| + Z 1Sk N {si +w —1,..., 8} < 2|K'| — 1.
keK’ kEK'
We conclude at the end that the inequality (2.30) is valid for P(G, K, S). O

The inequality (2.30) can be strengthened by introducing its extended format of the
minimal cover K’ for the interval I over edge e as follows.

Proposition 2.4.9. Consider an edge e € E. Let I = [si,s;] be an interval of contiguous
slots in [1, 5] with j >i+1. Let K be a minimal cover for the interval I, and K. be a subset
of demands in K.\ K s.t.
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a) Zwk§§— Z W,

keK K eKAK
b) e ¢ EE for each demand k € K,
¢) K>3,

d) (k,K') ¢ K¢ for each pair of demands (k,k') in K,
e) wy > wy, for each k € K and each k' € K,.

Then, the inequality

d a4 > ZJ: Y zj: 2 <9K| -1, (2.31)

keK keK s=sitwp—1 KeK, s'=sitwy—1
is valid for P(G, K,S).

Proof. The inequality (2.31])) can be seen as a particular case for the inequality (2.30)) induced
by a set of demands K’ = K U K, which stills defining a cover for the interval I over edge
e. O

More general, a strengthened inequality based on the inequality (2.30]) can be done using
lifting procedures proposed by Nemhauser and Wolsey in [109] without modifying its right-
hand side.

Remark 2.4.1. Consider an edge e € E. Let I = [s;,s;] be an interval of contiguous slots
with s; +1 < 55, 87 be a slot in S, and K be a subset of demands in K satisfying the
conditions of the two inequalities (2.27) and (2.30). We ensure that the inequality can
never dominate the inequality .

Let us denote by the symbol a < b iff b dominates a.

Proof. Assume that the inequality (2.27)) dominates the inequality (2.30]), this means that
there exists a slot s” € S s.t.

min(s”+wg—1,5)

S a4 > z]: DYDY Yoo A <IK[+ 1L

keK keK s=sitwg—1 k€K kek s'=s"
By removing the sum Zke 1% :clg from the two sides of the previous comparison, we get

min(s”+wg—1,5)

SED D S S

kek s=sitwg—1 keK s'=s”

Given that the demands in K are independants, we found that

55 min(s”+wg—1,5)
g 2k < E 2K for each k € K.
s=s;twi—1 s'=s"

It follows that {s; +wy —1,...,8;} = [si + wr — 1,s5] C [s",min(s” + wy, — 1,5)] for each
demand k£ € K. Taking into account that [{s”,...,min(s” +w, —1,3)}| < wy for each k € K,
this means that

{si+wp — 1,85} =85 — (si +wp — 1) +1<wp = s;—s;+1<2%wy — 1 for each k € K
— [I| <2%wyp —1foreach k€ K = |I| < 2+minwy — 1

keK
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As a result, wy, +wy > |I] for each pair of demand (k, k') in K since that wy, > min wy» for
K eK

each k € K. This contradicts that the set of demand K should satisfy that 3 keR\(ky Wk < ||

for each k' € K. We conclude that the inequality (2.27) can never dominate the inequality
(2.30) and satisfying the conditions of validity of the inequality (2.30) at the same time. [

Theorem 2.4.3. Consider an edge e € E. Let I = [si,55] be an interval of contiguous slots
in [1,5] with j > i+ 1. Let K be a subset of demands of K s.t.

a) Y wp > I +1,

keK
b) Z wy, < |I| for each K € K,
keR\{k'}
c) Zwkgg— Z Wy,
keK KeKA\K
d) e ¢ EY for each demand k € K,
e) K >3,

f) (k, k') ¢ K¢ for each pair of demands (k,k') in K.
Then, the inequality (2.30)) is facet defining for the polytope P(G, K,S, K, I, e) iff there does

not exist an interval of contzguous slots I' in [1,8] with I C I’ s.t. K defines a minimal cover
for the interval I', where

P(G,K,S,K,I,e)={(z,2) € P(G,K,S): > _ Z 2K = o}.

keKe \Ks =sitwy —1

Proof. Necessity

If there exists an interval of contiguous slots I’ in [1 5] with I € I s.t. K defines a minimal
cover for the interval I’. This means that {s; +wy —1,...,s;} C I'. As a result, the inequality
2.30) induced by the minimal cover K for the mterval I it is dominated by another inequality
2.30) induced by the same minimal cover K for the interval I’. Hence, the inequality ([2.30) -
cannot be facet defining for the polytope P(G, K, S, K, I ,€).

Sufficiency.

Let F g? denote the face induced by the inequality ([2.30]), which is given by

S5

Ge¢ 5 2
Fol={(z,2) € P(G.KS K. Ie): Y ab+ N 2k =2K|-1}.
keK s=s;+wr—1

In order to prove that inequality ),z zk + S si4wp—1%s kF<2IK | — 1 is facet defining for

P(G,K,S,K,I,e), we start checking that Fz G is a proper face, and F2 o + P(G,K,S,K,I,e).
We construct a solution $%° = (E%5, 5%%) as below
a) a feasible path E}!® is assigned to each demand k € K (routing constraint),

b) a set of last-slots S,%‘r’ is assigned to each demand k € K along each edge e’ € E,‘i5 with
|52 > 1 (contiguity and continuity constraints),

o) {s—wi+1,...s}N{s’ —wp +1,...s'} =0 for each k, k' € K and each s € S}° and s’ € S}
with E,%5 N E,%? # () (non-overlapping constraint),
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d)

and there is |K| — 1 demands from the minimal cover K denoted by Kgz which are covered
by the interval I (i.e., if k € Kgg, this means that the demand k selects a slot s as last-slot
in the solution S* with s € {si+wp—1,...,85}, 1e, s € S,%5 for each k € Kgs, and for each
s’ € St for all kK’ € K \ Kg3 we have s' ¢ {s; + wp — 1,...,8;},

and all the demands in K pass through the edge e in the solution S%, i.e., e € E,‘f’ for each
ke K.

Obviously, % is a feasible solution for the problem given that it satisfies all the constraints
of our cut formulation (2.2)-(2.10). Moreover, the corresponding incidence vector (25", 25")

is belong to P(G,K,S,K,I,e) and then to Fg? given that it is composed by », zk

S w1 2k = 2|K|—1. As a result, F]g? is not empty (i.e., FEf # (). Furthermore, given

8=58;
that s € {s; +wg —1,...,s;} for each k € K, this means that there exists at least one feasible
slot assignment Sy, for the demands k in K with s ¢ {s; +wy — 1, ..., s;} for each s € S and
each k € K. This means that F[? # P(G,K,S, K, I, e).
We denote the inequality ),z x4 Zzisiwk—l 2k < 2|K| — 1 by az + Bz < A Let
px + oz < 7 be a valid inequality that is facet defining F' of P(G, K, S, K,I,e). Suppose
that FE? C F={(z,2) € P(G,K,S,K,I,e) : nx + oz = 7}. We show that there exists
p € Rand v = (y1,72,73) (s.t. 11 € RE%K'E(IJC‘,WQ € RzkEK‘Efl,’yg € RZkeK(wk_l)) s.t.
(1,0) = p(a, B) +~Q, and that
ok = 0 for all demands k € K and all slots s € {wg, ..., 8} with s & {s; + wg —1,...;s;} if
ke K,

and 0’§ are equivalents for all k£ € K and all s € {si +wp—1,..., 55},

and p¥, = 0 for all demands k € K and all edges e € E \ (Ef U Ef) with e # ¢ if k € K,
and all ,ulg are equivalents for the set of demands in K,

and 0¥ and p¥ are equivalents for all k € K and all s € {s; +wy, — 1, ..., s;}.

We first show that ¥, = 0 for each edge ¢’ € E\ (E} U EY) for each demand k € K with
e # ¢ if k € K. Consider a demand k € K and an edge ¢’ € E \ (Ef U Ef) with e # ¢ if
k € K. For that, we consider a solution S = (E5,54%) in which

a feasible path E,’€45 is assigned to each demand k € K (routing constraint),

and a set of last-slots S,’€45 is assigned to each demand k € K along each edge ¢’ € E,’c45 with
|S/45] > 1 (contiguity and continuity constraints),

and {s' —wg + 1,...,s'} N{s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S5
and s” € S50 with EP N Ej3° # 0, i.e., for each edge ¢’ € E and each slot s” € S we have
ZkeK,e’eEl’c“ {s' € 5}, 8" € {s' —wy +1,...,s'}| <1 (non-overlapping constraint),

the edge €’ is not non-compatible edge with the selected edges €” € E/l’f5 of demand k in the
solution 8, i.e., e e Bl le» + lo < lp. As aresult, E{*® U {¢'} is a feasible path for the
demand k,

{s—wr+1,.,s}N{s —wp +1,.,8} =0 for each ¥’ € K and s € S} and ' € S}
with (E;15 U {e'}) N E}3° # 0 (non-overlapping constraint taking into account the possibility
of adding the edge €’ in the set of edges E,’§45 selected to route the demand k in the solution
8/45),
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f)

and there is |K| — 1 demands from the minimal cover K denoted by K}, which are covered
by the interval I (i.e., if k € Kgz, this means that the demand k selects a slot s as last-slot
in the solution 85 with s € {s; +wy, —1,...,5;}, i.e., s € S for each k € K}, and for each
s’ € 80 for all k' € K\ Kj; we have s’ ¢ {s; + wp — 1,..., s, },

and all the demands in K pass through the edge e in the solution S’*°, i.e., e € E,’€45 for each
ke K.

S5 is clearly feasible for the problem given that it satisfies all the constraints of cut for-
mulation (2.2)-(2.10] —- Hence, the corresponding incidence vector (25, 25/45) is belong to F

and then to FKI given that it is composed by ZkeK kS sitwp—1 2k = 9|K| — 1. Based

on this, we derive a solution S* obtained from the solution S™° by adding an unused edge
e € E\ (Ef U E}) for the routing of demand k in K in the solution S* which means that
E = B35 U {e'}. The last-slots assigned to the demands K, and paths assigned the set of
demands K\ {k} in 8" remain the same in the solution 8%, i.e., S{¢ = S}% for each k € K,
and Ef = E%° for each k' € K \ {k}. 8% is clearly feasible given that

and a feasible path E,§6 is assigned to each demand k € K (routing constraint),

and a set of last-slots S,%G is assigned to each demand k € K along each edge ¢’ € E,%G with
56| > 1 (contiguity and continuity constraints),

and {s’ —wg+1,...,8}N{s” —wp +1,..,8"} = 0 for each k, k' € K and each s’ € S
and s” ng} with E46 N Eé,ﬁ # (), i.e., for each edge ¢/ € E and each slot s” € S we have
D keK.e o [{s' € $% 5" € {s' —wy, +1,...,s'}| <1 (non-overlapping constraint).

The corresponding incidence vector (33346, z546) is belong to F' and then to F;? given that it
is composed by ZkeKm +30 sitwp—1 2k = 2| K| — 1. It follows that

145 145 46 46 145 145
,u:US +025" = /wcS + 025" = /wcs + uif, + 0257,

As a result, ,u’;, = 0 for demand k and an edge €'.

As ¢’ is chosen arbitrarily for the demand k with e ¢ E5 UEF and e # € if k € K, we iterate
the same procedure for all ¢” € E\ (EFU EF U {e'}) with e # ¢” if k € K. We conclude that
for the demand k

pk, =0, forall ¢ € E\ (ESUEY) with e # ¢’ if k € K.

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all
k' € K\ {k} and all ¢ € E\ (E} U E¥). We conclude at the end that

pk, =0, forallk € K and all ¢ € E\ (Ef UEY) with e # ¢’ if k € K.

Let’s us show that ok =0 for all k € K and all s € {wg, ...,5} with s ¢ {s; +wg — 1,...,s;}
if k € K. Consider the demand & and a slot s’ in {wy, ..., 5} with 5" & {s; +wy, — 1,...,5;} if
k € K. For that, we consider a solution "4 = (E”4%, §745) in which

a feasible path E”$% is assigned to each demand k € K (routing constraint),

a set of last-slots S”ﬁ5 is assigned to each demand k € K along each edge €' € E”%‘r’ with

5745 > 1 (contiguity and continuity constraints),

{s’ —wp 4+ 1,...,8} N {s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S7$> and
€ S”1 with E”P N E”}) # 0, ie., for each edge ¢’ € E and each slot s” € S we have

ZkEKe rep {s' € S”k ,s” € {s —wr+1,...,5} <1 (non-overlapping constraint),
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d)

and {8’ —wy + 1,.., 8} N{s" —wp +1,..,8"} = 0 for each k' € K and s” € S”} with
E”f N E”i‘,r’ # () (non-overlapping constraint taking into account the possibility of adding
the slot ' in the set of last-slots S”f assigned to the demand k in the solution §74%),

and there is |K| — 1 demands from the minimal cover K denoted by K”g3 which are covered
by the interval I (i.e., if k € K”g3, this means that the demand k selects a slot s as last-slot
in the solut1on S745 Wlth s € {sl + wg —1,. 5]} ie., s € S”f’ for each k € K”g3, and for
each ' € S71 for all K’ € K \ K”g3 we have s & {s; —|— wp —1,..., 85},

and all the demands in K pass through the edge e in the solution S”%°, i.e., ¢/ € E”f’ for
each k € K.

S74 g clearly feasible for the problem given that it satisfies all the constraints of cut formu-
. . . . 87745 8”45 .

lation - Hence, the corresponding incidence vector (z° ,2° ) is belong to F

and then to F. T given that it is composed by S ek T Y w1 2 = = 2|K| — 1. Based

on this, we construct a solution &7 derived from the solutlon S§7% by adding the slot s’ as
last-slot to the demand k with modifying the paths assigned to a subset of demands K ¢ K
in "% (i.e., BT = E"#5 for each k € K \ K, and E}*7 # E”}® for each k € K) s.t.

a new feasible path E;:” is assigned to each demand k € K (routing constraint),

and {s' —w, +1,. ’} N{s” —wp +1,...,5"} =0 for each k € K and ¥’ € K \ K and each
s'€ 8" and s € S” with EYT N E” # 0, i.e., for each edge ¢’ € E and each slot s” € S
we have ZkGK,e GE’/€47 |{$ € 57745 s’ € {S/—wk+1, ...,8/}| +Zkg}(\f{7e/eE”i5 |{S/ c 577%5’877 c
{s —wr +1,...,5} <1 (non-overlapping constraint),

and {s' —wy +1,...8'} N {s” —wp +1,....5"} = 0 for each &’ € K and s” € S (non-
overlapping constraint taking into account the possibility of adding the slot s’ in the set of
last-slots S” 5 assigned to the demand k in the solution S”49).

The last-slots assigned to the demands K \ {k} in $”%5 remain the same in S"7, i.e., $”4?
ST for each demand k' € K \ {k}, and Sj*" = S”#5 U {s} for the demand k. The solut1on
S is clearly feasible given that

a feasible path EJ" is assigned to each demand k € K (routing constraint),

a set of last-slots S’47 is assigned to each demand k € K along each edge ¢ € E,’;” with

ST > 1 (contlgulty and continuity constraints),

{ —wr+1,.,8tN{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S}}7 and
e ST with EA" N EIT # 0, ie., for each edge ¢’ € E and each slot s” € S we have

ZkeK,e’eElg47 [{s' € SAT,s” € {s' —wi + 1,...,8'}| <1 (non-overlapping constraint).

147 147
S S )

The corresponding incidence vector (z is belong to F' and then to ng‘ given that

it is composed by >, ok + >0 tw_1 2 = = 2|K| — 1. We have so
» 45 145 147 147 945 » 45 L 1.
,uxs +025" = ,u:cs +02° = uxs +02° +0’§/ - Z Z M’; + Z Z ,ule“
%6R€/€E77i5 E}ER 6”€EI/€47

It follows that o% = 0 for demand k and a slot s’ € {wg, ..., 3} with s’ ¢ {s; + w — 1,...,s;}
if k € K given that ¥, = 0 for all the demands k € K and all edges ¢’ € E\ (E§ U E¥) with
eteifkekK.

The slot s’ is chosen arbitrarily for the demand k, we iterate the same procedure for all
feasible slots in {wy, ..., 5} of demand k with s' ¢ {s; +wy, — 1,...,s;} if k € K s.t. we find

ok =0, for demand k and all slots s" € {wy, ..., 5} with ' ¢ {s; +w —1,...,s;} if k ¢ K.
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a)

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands
K in K\ {k} such that

o =0, for all k¥’ € K \ {k} and all slots s € {wy, ..., 5} with s ¢ {s; + wp — 1,...,s;} if &’ ¢ K.

Consequently, we conclude that
0% =0, for all k € K and all slots s € {wy, ...,5} with s ¢ {s; +wy, — 1,...,s;} if k ¢ K.

Let prove that 0§ for all k € K and all s € {si + w, — L., s;} are equivalents. Consider a
demand &’ and a slot " € {s; +wy — 1, ..., s;} with k¥’ € K. For that, we consider a solution
S = (E*, 8%) in which

a feasible path E§5 is assigned to each demand k € K (routing constraint),

a set of last-slots 5’45 is assigned to each demand k € K along each edge ¢ € E,%E’ with

]S 1B >1 (contlgulty and continuity constraints),

{5 —wp+ 1,0, 8N {s” —wp +1,...,5"} = 0 for each k, k' € K and each s' € S}° and
8,3,5 with E45 E,‘g’ # (), i.e., for each edge ¢/ € F and each slot s” € S we have

ZkeKe e 5 {s' € S}5,s” € {s' —wy, +1,...,8'}| <1 (non-overlapping constraint),

and {s—wy+1,...,s}N{s' —wp +1,...,s'} = 0 for each k € K and s € S}° with EPNEL # (
(non-overlapping constraint taking into account the possibility of adding the slot s’ in the set
of last-slots Sg, assigned to the demand &’ in the solution S*?),

and there is |K| — 1 demands from the minimal cover K denoted by Kgg which are covered
by the interval I (i.e., if k € Kgg/, this means that the demand k selects a slot s as last-slot
in the solution S with s € {si+wr—1,...,s5} ie,s€ 8,35 for each k € Kgg, and for each
s’ € S for all k' € K \ Kggr we have s’ ¢ {s; + wp — 1,..., 8},

and all the demands in K pass through the edge e in the solution S%, i.e., ¢ € El‘f’ for each
ke K.

S¥ g clearly fea51ble for the problem given that it satisfies all the constralnts of cut formu-
lation (2.2 . Hence, the corresponding incidence vector (z 545, z ) is belong to F' and
then to F o given that it is composed by >, & a¥ + > = 2|K| — 1. Based on

this, we construct a solution S™® derived from the solution S* by

s=s;+wi— 17 8

with modifying the paths assigned to a subset of demands K C K in &% (i.e., E,’f‘g = E~,‘§5
for each k € K \ K, and E® # E® for each k € K),

and the last-slots assigned to the demands K \ {k, %'} in % remain the same in §’*, i.e.,
Si? = 5148 for each demand k” € K \ {k, k'},

and adding the slot s’ as last-slot to the demand ¥/, i.e., Sji® = S,ﬁ? U{s'} for the demand £/,

and selecting a demand Zﬂ from Rgg which allocates a last slot s € 5',35 with s € {s; + wy +
1,...,8j} in the solution S (non- overlapping constraint taking into account the possibility of
addmg the slot " in the set of last-slots Sk, assigned to the demand &’ in the solution S*?),

and modifying the last-slots assigned to the demand k£ by adding a new last-slot § and
removing the last slot s € Sp° with s € {s; +w+1,...,s;} and § ¢ {s; +wy +1,...,s;} for the
demand k with k € K s.t. 5’48 (SP\{s})U{5} s.t. {s wip+1, .., SEN{s —wp+1, ..., =10
for each k' € K and s’ € S,’ﬁg with Ef8 N E38 £ 0.

The solution S’ is clearly feasible given that

a feasible path E}!® is assigned to each demand k € K (routing constraint),
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b)

)

a)

a set of last-slots S,’fs is assigned to each demand k& € K along each edge ¢’ € El’j‘g with
|S/48] > 1 (contiguity and continuity constraints),

{ —wp+1,.,8tN{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S;*® and
s” € S with B8 N ER® # 0, ie., for each edge ¢’ € E and each slot s” € S we have
Dkekeems {5 € St € {s' —wp+1,....;s'} <1 (non-overlapping constraint).

. o . ’ ’ . Ge .
The corresponding incidence vector (xs 48, 28 48) is belong to F' and then to FRI given that
8j

it is composed by >, & zk + D sitwg—1 2k = 2| K| — 1. We have so

8 G45 45 K k k
:uazs +02° +og —0g +0;

B IDINTES S S

keK e'eEH keK e'eE28

G45 S45 148 14
,LLJ:S +02° :u:ps +02°

It follows that % = o for demand &’ and a slot s’ € {wy,...,5} with ¥ € K and ' €
{si +wp +1,...,5;} given that o¥ = 0 for § ¢ {s; +wy — 1,...,s;} with k € K, and p¥, =0
for all k € K and all ¢ € E\ (Ef U EF) with ¢ # ¢ if k € K.

Given that the pair (k, k") are chosen arbitrary in the minimal cover K, we iterate the same
procedure for all pairs (k, k') s.t. we find

or af,/,for all pairs (k, k') € K

s pu—
with s € {s; +wy —1,...,s;} and 5" € {s; +wp — 1,...,5;}. We re-do the same procedure for
each two slots s, s’ € {s; +wy — 1,...,s;} for each demand k € K with k € K s.t.

Jf = aﬁ’},for all k€ K and s,5' € {si +wp—1,...,5;}.

Let us prove now that p* for all k € K with k € K are equivalents. For that, we consider a
solution S = (E49,.549) defined as below
a feasible path E}Y is assigned to each demand k € K (routing constraint),

a set of last-slots S,%g is assigned to each demand k& € K along each edge e’ € E,‘ig with
|S29] > 1 (contiguity and continuity constraints),

{s—wp+1,..,s}N{s —wp +1,..,5'} = 0 for each k, k" € K and each s € S{? and s’ € S}
with B9 N E} # 0 (non-overlapping constraint),

and there is one demand k from the minimal cover K (i.e., k € K s.t. the demand k pass
through the edge e in the solution S¥ ie, ec E,‘C19 for a node k € K, and e ¢ E,%;9 for all
K e K\ {k},

and all the demands in K are coyered by the interval I in the solution 8%, i.e., {s; + wy +
1., 8,1 NS #0 for each k € K.

Obviously, 84 is a feasible solution for the problem given that it satisfies all the constraints
of our cut formulation (2.2)-(2.10). Moreover, the corresponding incidence vector (x349, zS4g)

is belong to P(G, K,S,f(,[,e) and then to Fg? given that it is composed by >, & xk

S5 k _ o
ZSJ:SZ'ﬁ»’LUk*l Rg = 2|K’ - L _ _ B R
Consider now a node ¥’ in K s.t. e ¢ E{Y. For that, we consider a solution §* = (£19, §19)
in which

a feasible path E,%g is assigned to each demand k € K (routing constraint),
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c)

a set of last-slots 5’,%9 is assigned to each demand k£ € K along each edge e € EN',‘C19 with
S > 1 (contiguity and continuity constraints),

k guity y
{8 —wp +1,..,8yN{s" —wp +1,...,5"} = for each k, k' € K and each s € S and
s" € S with E,‘fj N E,‘jg # (), i.e., for each edge ¢ € F and each slot s” € S we have
Y okek cc B9 {s' € 8%, 5" € {s' —wy, +1,...,s'}| <1 (non-overlapping constraint),

and there is~|l~( | — 1 demands from the minimal cover K that use the edge e denoted by .f~(87
(ie if k € Kgr, this means that the demand & pass through the edge e in the solution 549
ie., e € B9 for each k € Kgr, and e ¢ E}Y for all k' € K Kgz,

and all the demands in K are covered by the interval I in the solution 5’49, e, {s; +wg +
L8NS # 0 for each k € K.

34 is clearly feasible for the problem given that it satisfies all the Constralnts of cut formu-
lation (2.2 - Hence, the corresponding incidence vector (z° ,z ) is belong to F' and
then to F o given that it is composed by >, g ¥ + S w1 zF = 2|K| — 1. Based on
this, we derlve a solution §”%0 = (E750, §7%0) from the solution S* by

the paths assigned to the demands K\ {k, &'} in S*° remain the same in S"%° (i.e., B3 = E}
for each k7 € K \ {k,k'}),

without modifying the last-slots assigned to the demands K in S%, i.e., 549 Sy 20 for each
demand k € K,

modifying the path assigned to the demand k' in §% from E to a path E” passed through
the edge e (i.e., e € E”Y)) yvith ke Kst {s—wp+1,. s}ﬁ{s —wk/+1 8} =10 for
each k € K and each s’ € S,f and each s € 5’49 with E49 N E” #0),

selecting a demand k in Kg7 which use the edge e in the solution §%9,

modifying the path assigned to the selected demand k in SY with e € Eﬁg and k € K from
E to a path E”3° without passing through the edge e (i.e., e ¢ E’izo) and {s— wk+1 L SHN
{s' —wp» +1,...,5'} = 0 for each k” € K \ {k,k'} and each s € 53 and each s’ € Sk,, with
ER QE”E’O #0,and {s —wg +1,..., s} N {s' —wp +1,...,5'} = 0 for each s € S} and each
s’ € S with E"0 N E"30 £ 0.

The solution S”°° is feasible given that

a feasible path E”90 is assigned to each demand k € K (routing constraint),

a set of last-slots S”zo is assigned to each demand k € K along each edge e € E”zo with
5720 > 1 (contiguity and continuity constraints),

{s' — wy, —|— 1.,stn{s" — wk/ +1,...,8"} = 0 for each k, k' € K and each s’ € §”}° and
s" € 8§ Iy Wlth E”50 N E” # (), i.e., for each edge ¢ € E and each slot s” € S we have
ZkeK’eeszo {s' e S”5O, s” E { —wr+1,...,5'} <1 (non-overlapping constraint).

» 50 » 50
S S )

The corresponding incidence vector (z is belong to F' and then to F e given that

it is composed by ZkeKa: + ZS sitwp—1 zF = 2|K| — 1. We then obtain that

G49 G49 50 50 G49 G49 /
,u:vs 4025 = ,u:US + 025" = ,ua:S +025 + ulg — uf
K K’ k k
+ Z Uer — Z Mo + Z Mer — Z U
e €E" 0\ {e} e eE) "B e’ B0\ {e}

It follows that ¥ = p% for demand k' and a edge ¢’ € E\ (E§ U EF) with vy o € K given

that pk, =0 for all k € K and all " € E\ (E§ U E¥) with k ¢ K.
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Civen that the pair (k, k') are chosen arbitrary in the minimal cover K, we iterate the same
procedure for all pairs (k, k') s.t. we find

pF = p¥ for all pairs (k, k) € K.

Furthermore, let prove that all ¢ and u? are equivalents for all k € K and s € {si +wy —
1,...,s;}. For that, we consider for each demand &’ with k' € K, a solution S = (B°, 85
derived from the solution S* as below

the paths assigned to the demands K \ {k'} in $*° remain the same in S°! (i.e., E}} = B
for each k7 € K \ {k'}),

without modifying the last-slots assigned to the demands K \ {k} in %, i.e., S = SP* for
each demand k" € K\ {k},

modifying the set of last-slots assigned to the demand k&’ in 8% from S’ﬁ? to S,i’,l s.t. PN
{si+wwy —1,...,s;} = 0.

Hence, there are |K| — 1 demands from K that are covered by the interval I (i.e., all the
demands in C \ {k'}), and all the demands in K use the edge e in the solution S®'. The
solution S! is then feasible given that

a feasible path EP! is assigned to each demand k € K (routing constraint),

a set of last-slots 5’21 is assigned to each demand k£ € K along each edge e € E,?l with
|S21| > 1 (contiguity and continuity constraints),

{ —wp+1,..,8tN{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € Sp! and
s" € S,?,l with E,?l N E;;’,l # (), i.e., for each edge ¢ € FE and each slot s” € S we have
ZkeK’eeE’? {s' € Spt,s” € {s' —wy, +1,...,8'}| < 1 (non-overlapping constraint),

and Ekef( ‘Egl N {6}’ + |Sgl N {Si + Wg — 1, ...,Sj}‘ = Q‘R’ — 1.

The corresponding incidence vector (:1:551, 2551) is belong to F' and then to F }? given that it
is composed by Y-, g 2k + Z?:S#wk_l 2k = 2| K| — 1. We then obtain that

R T AR SRV S S

CEEY\e}  oehl

S~49 549 S5 349 34

1 851
pxs +oz5 =prs +o0z" =purs 4oz

It follows that ulgl = afl for demand £’ and slot s € {s; + wp — 1,...,s;} given that u’;, =0
for all k € K and all " € E \ (E} U E¥) with e # ¢” if k € K. Moreover, by doing the same
thing over all slots s € {s; +wy — 1, ..., s;}, we found that

kl

. = afl,for all s € {s; +wpr — 1,..., 55}

Given that £’ is chosen arbitrarily in K, we iterate the same procedure for all k € K to show
that

,u'e“ = af,for all k € K and all s € {si +wp—1,...,55}.

Based on this, and given that all ;¥ are equivalents for all k € K, and that o¥ are equivalents
for all k € K and s € {s; + wy — 1,...,s;}, we obtain that

ulg = ofl, for all k, k' € K and all s € {si +wp —1,..., 85}
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Consequently, we conclude that
Me = O' = p, forall k,k' € K and all s € {si+wp —1,...,5;}.

On the other hand, we use the same technique applied in the polyhedron dimension proof
to prove that

pl = fyf,’e, for all k' € K and all ¢’ € EF
u’;,’ =~ forall K’ € K and all ¢ € EV
ok = 73 , forall ¥’ € K and all ' € {1,...,wy — 1}.
We conclude that for each ¥’ € K and ¢’ € E
vf/’e/, if ¢/ € E(])“/,
o “if e € E¥.
p, if k' € K and ¢ = ¢,

0, otherwise,

k'
Her =

and for each k € K and s € S
73 “ifse{1,...,w — 1}
Uf ={pifke K and s € {si +wp—1,...,s;},
0, otherwise.

Sj

As a result ( Z pak + Z pBE +4Q.
keK s=s;twi—1
O

Theorem 2.4.4. Consider an edge e € E. Let I = [s;,s;] be an interval of contiguous slots
in [1,8] with j > i+ 1. Let K be a subset of demands of K, and K. be a subset of demands
in K.\ K s.t.

a) > wp>I+1,

keK
b) Z wy, < |I| for each k' € K,
keR\ (K}
c) Zwk§§— Z W,
keK k' eKA\K
d) e ¢ EY for each demand k € K,
e) K>3,

f) (k, k') & K¢ for each pair of demands (k, k') in K,

g) wi > wy for each k € K and each k' € K,.
Then, the inequality (2.31) is facet defining for the polytope P(G, K,S,f(,l}'e,f, e) iff there
does not exist an interval of contiguous slots I' in [1,3] with I C I' s.t. K defines a minimal
cover for the interval I', where

Sj
P(G,K.S.K K. I.e)={(z,2) € P(G.K.8): ) S =0
K eK\(KUK,) s'=sitw —1
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Proof. Necessity

If there exists an interval of contiguous slots I’ in [1,3] with I C I’ s.t. K defines a minimal
cover for the interval I’. This means that {s; +wi —1,...,s;} C I'. As a result, the inequality
2.31]) induced by the minimal cover K for the interval I, it is dominated by another inequality
2.31)) induced by the same minimal cover K for the interval I’. Hence, the inequality
cannot be facet defining for the polytope P(G, K, S, K. K., 1, e).

Sufficiency.

Let F g?f( denote the face induced by the inequality ([2.30)), which is given by

e

S35

keK s=s;+w,—1 keK, s'=sitwy —1

% k< 2|K| — 1 is facet defining

s=sitwp—1 Zs
for P(G, K,S,K,K,,1I, e), we start checking that Fg’f(

P(G,K,S,K,K,,1,e).
We construct a solution S°2 = (E52, 5°2) as below

In order to prove that inequality >, ok + 3

. Ge
is a proper face, and F_.1. #
KK,

e

a feasible path E? is assigned to each demand k € K (routing constraint),

a set of last-slots 5’22 is assigned to each demand k& € K along each edge ¢’ € E,‘;’Q with
|S22| > 1 (contiguity and continuity constraints),

{s—wrp+1,..,s}N{s' —wp +1,...8} = 0 for each k, k' € K and each s € S?* and s’ € S}?
with E;Z’Q N E,‘Z’,Q # () (non-overlapping constraint),

and there is |K| — 1 demands from the minimal cover K denoted by Kgy which are covered
by the interval I (i.e., if k& € Kgg, this means that the demand k selects a slot s as last-slot
in the solution S°2 with s € {si+wp—1,..,s;} le,s€ 5’;22 for each k € Kgyg, and for each
s’ € Sp? for all k' € K \ Koo we have s' ¢ {s; + wp — 1,..., 8},

and all the demands in K pass through the edge e in the solution S°?, i.e., e € E,‘Z’2 for each
ke K.

Obviously, §°2 is a feasible solution for the problem given that it satisfies all the constraints
of our cut formulation (2.2)-(2.10). Moreover, the corresponding incidence vector (a;$52, 2852)

is belong to P(G, K, S, K. K, 1, e) and then to Fg?[( given that it is composed by Zkef( x4

szzsﬁwk_l 2k = 2|K| — 1. As a result, Fg’f( is not empty (i.e., Fg’f( # ()). Furthermore,

given that s € {s; + wy — 1, ..., 5;} for each k € f(,:chis means that there exists at least one
feasible slot assignment Sy for the demands k& in K with s ¢ {s; + w, — 1,...,s;} for each
s € S), and each k € K. This means that ng”{ + P(G,K,S,K, K., 1Ie).

We denote the inequality Y,z z* + Zz’;sﬁwk_l 2k < 2IK| -1 by ar + Bz < A. Let
px + 0oz < 7 be a valid inequality that is facet defining F' of P(G, K, S, K, K¢, I, e). Suppose
that Fg?f( C F ={(z,2) € P(G,K,S,K,K.,I,e) : yr + 0z = 7}. We use the same
proof of theorem by showing that there exists p € R and v = (y1,72,73) (s.t. 71 €
RZkGK |E(I)€|’r)/2 c RZkEK |Ef|7,73 c RZkGK(wk_l)) S.t. (M,o-) = p(a’ ﬁ) + ny, and that

ot = 0 for all demands k € K and all slots s € {wg, ...,5} with s ¢ {s; +wg —1,...,5;} if
k € KUK, as shown in the proof of theorem |2.4.3

and o¥ are equivalents for all k € K and all s € {si +wr —1,...,5;} as shown in the proof of
theorem [2.4.3
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c)

and o¥ are equivalents for all k € K. and all s € {si +wy, —1,...,s;} as shown in the proof
of theorem [2.4.3

and p¥, = 0 for all demands k € K and all edges e € E\ (E} U E¥) with e # ¢/ if k € K as
shown in the proof of theorem [2.4.3

and all u* are equivalents for the set of demands in K as shown in the proof of theorem m,

and of for all k € KUK, s € {s; +wy — 1,...,5;} are equivalents with p¥ for all k € K as
shown in the proof of theorem [2.4.3

At the end, we concluded that for each ¥’ € K and ¢’ € E
Wf/’e/, if ¢ € BV,
’yg,’e/, if ¢ € BV,

0, if k' € K and ' = e,

0, otherwise,

k'
Her =

and for each k € K and s € S
'yg)f’s,if se{l, ..., wp—1}
ok p,ikaf(andsG{Si+wk71,...,sj},
p,if k€ K. and s € {s; +w, — 1,..., 55},

0, otherwise.

s s
Asaresult (p,o)=> pof+ Y pp+ > > ppl +10Q.

LeK s=s;+wp—1 keK, 8'=sitwy—1

2.4.3 Edge-Interval-Clique Inequalities

In what follows, we need to introduce some notions of graph theory related to conflict graphs
to provide some valid inequalities for P(G, K, S).

Definition 2.4.4. Consider an edge e € E. Let I = [s;, sj] be an interval of contiguous slots
in [1,5] with s; < sj —1. Consider the conflict graph @? defined as follows. For each demand
k€ K with w, < |I| and e ¢ E(]f, consider a node vy in G’? Two nodes vy, and v are linked
by an edge in G if wy, +wy > |I| and (k, k') ¢ K. This is equivalent to say that two linked
nodes vy, and vy means that the two demands k, k' define a minimal cover for the interval I
over edge e.

For an edge e € E, the conflict graph C:’? is a threshold graph with threshold value equals
to t = |I| s.t. for each node vy with e ¢ E} U E¥, we associate a positive weight 1, = wy
s.t. all two nodes v, and vy are linked by an edge if and only if w,, + Wy, >t which is
equivalent to the conflict graph C;’?

Proposition 2.4.10. Consider an edge e € E. Let I = [s;,s;] be an interval of con-
tiguous slots. Let C' be a clique in the conflict graph G¢ with |C| > 3, and 3, cowy <
5— Zkz’eKe\C’ wyr. Then, the inequality

Sj

e+ Y Ao+, (2.32)

v, eC s=s;+wp—1

is valid for P(G, K, S).
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Proof. For each edge e € E and interval of contiguous slots I C S, the inequality
ensures that if the set of demands in the clique C pass through edge e, they cannot share
the interval I = [s;, sj] over edge e. This means that there is at most one demand from
the demands in C that can be totally covered by the interval I over the edge e (i.e., all the
slots assigned to the demand are in I). We start the proof by assuming that the inequality
(2.32) is not valid for P(G, K,S). It follows that there exists a C-RSA solution S in which
{si +wp —1,...,5;} N Sg = 0 for each demand vy, € C s.t.

PEACESY Z 2K(8) > ||+ 1.

v eC v €C s=s;+wi—1

Since {s;+wg—1, ..., s;}NS), = 0 for each demand vy, € C this means that > ;2. ., _; 25(S) =
0, and taking into account that z¥(S) < 1 for each vy € C, it follows that

> w8 <0 +1,

v eC
which contradicts our hypothesis, i.e., Y, co25(S) + 3, co Yoels puy—1 25 (S) > |C| + 1.
On the other hand, one can imagine another case also when {k € K s.t. vy € C}NK, =10, it
follows that there exists a C-RSA solution S’ in which Fy N{e} = () for each demand v € C,
which means that > o 2k (S8") =0 s.t.

> Z K8 > |01+ 1.

v €C s=s;+wi—1

Given that 2wy > |I| for each v € C. As a result, Zz‘;sﬂrwkfl 2#(8") < 1 for each demand
v € C. It follows that

Sy FE)<iol,

k' eC\{k} s=sitw, —1

which contradicts what we supposed before, i.e., >, ¢ Zz;si+wk_1 RS > O] + 1.
Hence >, o |ExN{e}l + >, cc Sk N {si +wr —1,...;8;} < |C] + 1.

Furthermore, the inequality can be shown as Chvatal-Gomory cuts using Chvatal-
Gomory and recurrence procedures. For any subset of demands C' C K with wy + wgr > |I]
for each pair of demands k,k’ € C, and e ¢ EF, w;, < |I| for each demand v, € C, and
kaec w < 8§ — ka/eKe\C wy, by recurrence procedure we get that for all K/ C C with

K| =1C] -1

S5
leg—i—z ZJ K <K+ 1.

veC’ v €C! s=5;+wi—1

By adding the previous inequalities for all K C C with |K'| = |C| — 1, we get

S YA Y Y Y 4 <Y o

K'CC el K'CC wpeC’ s=s;i+wp—1 K'CC
|K'|=|C|]-1 [K'|=|C|-1 |K'|=|C|-1
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Note that for each demand k with v € C, the variable 2% and the sum %7 k¥ appear

s=s;+wr—1 Zs
((l CL|CY_‘1) — 1) times in the previous sum. It follows that

S n F () e ()e

v eC v €C s=s;+wi—1

Given that ((|CL|C_‘1) — 1) =|C| — 1, we found that

CP2.

D (e B 0 S SR SR (¢ B VE

v eC v €C s=s;+wi—1

IN

By dividing the two sides of the previous sum by |C| — 1, we have

Sy z;fguf'flpzxyz 3 zfs{rcuc'f_'lJ

v €C v €C s=s;+wi—1 v eC v €C s=s;+wr—1

Sy AT > sl

v eC v €C s=s;+wi—1

By doing the following simplification

> ol = C > c
ek > Zﬁﬁ{‘c’:c;_iﬂc'\—’lﬁZ*”f’?*z > ZESUCH|C||—|1J'

v eC v €C s=s;+wr—1 v eC v €C s=s;+wi—1
As a result,
S5 |C’ S5
k k k k
RS VD IR CE T EDIEED DD DS G
v eC v €C s=s;+wi—1 v, €C v €C s=s;+wi—1
C
given that LC“ _’ 1J =1
We conclude at the end that the inequality (2.32) is valid for P(G, K, S). O

Remark 2.4.2. Consider an edge e and an interval of contiguous slots I = [s;, s;|. Let K be
a subset of demands in K satisfying the conditions of validity of the inequalities and
(2.32). Then, the inequality is dominated by the inequality associated with slot
s’ =s8; + ﬁi};wk + 1 iff |{si + wg, ., 55} < wy, for each demand k € K.

Proof. We know from inequalities (2.27]) and ([2.32)) that
min(s”+wg—1,3)

.
ALY Y A< R p1ad YA Y Y <R 4

keK keK §'=s" keK keK s=sitwp—1

Sufficiency.
First, assume that the inequality (2.27)) dominates the inequality (2.32]). This means that
there exists a slot s” € S s.t.

min(s”+wg—1,5)

g
doab 4> i: DYDY Yoo A <IK[+ 1L

keK keK s=sitwi—1 keK keK §'=s"
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By removing the sum } , x¥ from the two sides of the previous comparison

min(s”+wg—1,3)

SED D S S

keK s=sitwy—1 keK s'=s"

Given that the demands K are independants, we found that

55 min(s” +wg—1,3)
E 2k < Z 2K for each k € K.
s=s;+wp—1 s'=s"

It follows that {s; + wg — 1,...,5;} = [s; + wp — 1,85] C [s",min(s” + wy, — 1,5)] for each
demand k € K. Taking into account that |{s”,...,min(s” +wi —1,5)}| < wy, for each k € K,
this means that

’{Si—i-wk—l,...,Sj}’:Sj—(Si—ka—l)"i‘lka for eacthK’,

that which was to be demonstrated.

Neccessity.

Assume that |{s; + wg — 1,...,5;}| < wy for each demand k € K. Given that {s; + wy —
1,85} = [si +wp — 1,85] and s; +wy, — 1 > s; + min wy, — 1 for each demand k € K, this

k'eK
means that [s; + wy — 1, s;] C [s; + min wy — 1, s5] for each demand k € K.
k'eK
Let k be a demand in argmin{k € K,w, = minwy}. We know that [I[;| < wy, ie.,
k'eK

[{si + min wy — 1,5;}| = s; — (s8; + min wp — 1) + 1 < wy, for each demand k € K. This
KeK kekK

implies that (s; + min wy — 1) + wp — 1 > s; for each demand k € K. Tt follows that
k'eK
[si + min wy — 1, s;] C [s; + min wyy — 1, 5; + min wy + wy, — 2] for each demand k € K. As
k'eK k'eK kK'eK
a result, we obtain that for each demand k € K

{Si +w —1,..., Sj} = [32' + wg — 1,Sj] - [Si + min wy — 1,Sj]

k'eK
and [s; + min wy — 1, 55] C [s; + min wy — 1, s; + min wy + wy, — 2]
k'eK k'eK k'eK
- {SZ‘ +wg — 1, ...,Sj} = [Si + wg — 1,Sj] - [Si + min wy — 1, s; + min wy + wg — 2]
k'eK k'eK

By giving s” = s; + min wy — 1, it is equivalent to say that
k'eK

{si+wp —1,...,8;} = [si +wp, — 1,8;] C [s",8" 4wy, — 1] for each k € K

We know from ([2.27)) that

min(s”+wg—1,3)

doab+ > Yoo <K+

keK keK §'=s"

Taking into account that [s”, s” +w,—1] = [s”, s;+w,—2]U[s;+wp —1, s;]U[s;+1, s” +wi, — 1]

101



for each k € K, it follows that

min(s”+wg—1,3) sit+wp—2 N min(s”+wg—1,5)
va’ngZ Z zf,:legnLZ[ Z 25+ Z 25+ Z 2E] < |K|
keK keK s'=s” keK k€K §'=¢ s'=s;+wg—1 s'=s;j+1
min(s” +wg—1,5) Sit+wy—2 min(s”+wy—1,5)
— D w+), ), m= e+, > oA+ ) a+ ) @<k
keK keK s'=s" keK keK s'=s s'€{sitwr—1,...s;} s'=sj+1
min(s” +wg—1,3) si+wp—2 min(s”+wg—1,5)
:>Za:’§+z Z zflzzu”c’g—i-z Z 25+ Z 25+ Z b < K|
keK keK s'=s" keEK keK s'€{si+wr—1,...,5;} s'=s" s'=s;j+1

which shows that the inequality (2.27)) dominates the inequality ([2.32))

min(s”+wg—1,5)

Zw?%—z Z zsz:):’e“—i—z Z 2k <K+ 1.

kef( k;ef{ SG{S¢+wkfl,...,Sj} kef{ k-ef{ s'=s"
]

Remark 2.4.3. Consider an edge e and an interval of contiguous slots I = [s;,s;]. Let K
be a subset of demands in K satisfying the conditions of validity of the inequalities (2.27)

and (2.32). Then, the inequality (2.32) dominates the inequality (2.27) associated with each

slot s” € I iff |{si + wy — 1,...,sj}| > wy for each demand k € K and s” € {s; + max wy, —
k'eK
1,...,8; — maxwy + 1}.
keK

Proof. We know from inequalities (2.27) and (2.32) that
min(s+wg—1,3)

Z:}:’;—i-z Z 28 <|K|+1 and Zx’g—i—z Z <K+ 1

keK keK s'=s kekK keK se{sitwp—1,....8}
Neccessity.
First, assume that [{s; +wr —1,...;5;}| > wy and s” € {s; —1—}31&;1% —1,..,8;— an;g{cwk +1}
€ €

for each demand k € K, this means that

s”Zsi—i—wk—lands”Ssj—wk+1foreachkef(

= s”25i+wk—1and5”+wk—1§sjforeacthf(

— [",s +wp — 1] C [s; +wy — 1,s;] for each k € K

— [8",s +wp — 1] C {s; +wy, — 1,...,8;} with |{s; +wg — 1, ..., 5;}| > wy for each k € K.

This means that {s; +w, —1,...,s;} can be written as unions of sub-intervals, i.e., {s; +wy, —
1.8t =[sitw,—1,8" —1UI[s",s" +wp —1U[s" +wi —1,s;]. As a result,

s”—1 s"+wg—1 S5
E z§ = E zf, + E zf, + E zf, for each k € K.
se{sitwr—1,...,55} s=si+wp—1 §'=s” §'=s"twy,

By doing a sum over all the demands in K, it follows that

s”—1 s" 4w —1 Sj
Zs = ZS/+ ZS/+ ZS/.
keK s€{sitwgr—1,...;55} keK s=sitwi—1 s'=s" §'=s8" 4wy,
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As a result,

s”—1 s”+wg—1 55
k k k k k k 5
LTS DI DI DTS DD DIIE T RSN DRI RS
keK keK s€{sitwr—1,...,5;} keK keK s=sitwi—1 s'=s" §'=s8"+wy
s +wp—1
— YT Y AeY Y Y d<Re
k€K keK §'=s" k€K keK s€{sitwr—1,..,s;}
As a result, the inequality (2.32)) dominates the inequality (2.27]).
Sufficiency.
We assume that the inequality (2.32) dominates the inequality ([2.27))
s t+wp—1
k k k k
IS IEDIEEEDIEAD DENED DI
keK k€K s'=s keK keK s€{sitwp—1,...s;}

By removing the sum }, x¥ from two sides of the previous comparison, we found

s t+wp—1
DIED DR DI DR
keK s'=s" keK s€{sitwi—1,..,s;}

Taking into account that the demands in K are indepedants, it follows that

s +wg—1
E 2k < E 2F for each demand k € K.
s'=s" s€{sitwr—1,...,8;}

Hence, [s”,8” +wy, — 1] C [s; + wy, — 1, ;] for each k € K. This means that

Hsi+wr —1,...,s;} > wi and s” > s; +wy, — 1 and s” +wy, — 1 < s; for each k € K

= §" > s; +maxw, — 1 and 5”7 < s; —maxwy, + 1
keK keK

= s” € {s; + maxwy — 1, ..., 5; — maxwy, + 1}
kEK keK

As a result, |{s; +wy — 1,...,5;}| > wy, for each demand k € K, and s” € {s; + maxwy —

keK
1,...,s; —maxwy + 1} that which was to be demonstrated, and which ends the proof. ]
keK
Moreover, the inequality (2.32)) can be strengthened as follows.
Proposition 2.4.11. Consider an edge e € E. Let I = [s;,s] be an interval of con-

tiguous slots. Let C be a clique in the conflict graph CNJ? with |C| > 3, and _, ccwr <
E—Ek/eKe\C wyr. Let Co € K.\ C be a clique in the conflict graph G’? s.t. wi+wp > |I)1+1
for each vy, € C and vy € Ce. Then, the inequality

doab+ ) ZJ: Y i: <o) +1, (2.33)

vaC ’UkGC s=s;+wg—1 ”Uk/ECe 5/:Si+wk/*1

is valid for P(G, K, S).
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Proof. For each edge e € E and interval of contiguous slots I C S, the inequality ([2.33))
ensures that if the set of demands in the clique C' pass through edge e, they cannot share the
interval I = [s;, s;] over edge e with a subset of demands in C.. We first suppose that the

inequality (2.33)) is not valid for P(G, K,S). It follows that there exists a C-RSA solution S
in which Sp N {s; + wy — 1, ..., s;} = 0 for each demand k' € C; s.t.

EACESY Z 2R(8) > |C)+ 1.

v eC v €C s=s;+wi—1

/

Since Sy ¢ I for each demand k' € C, this means that ka/ece S K'(S) = 0,

s'=s;t+w —1 Zgl
and taking into account inequality (2.32) and that z¥(S) < 1 for each demand v, € C and
ZZLSiWFl 2#(9) < 1 for each demand vy, € C, it follows that

Do we(S)+ Y Z 2H(S) < |C|+1,

v eC v €C s=s;+wi—1

which contradicts what we supposed before.
On the other hand and when C'N K, = 0, it follows that there exists a C-RSA solution S’ in
which B N{e} =0 and S N {s; + wpr — 1,...,5;} = 0 for each demand k" € C s.t.

3 Z K(8) > O] + 1.

v €C s=s;+wi—1

Given that 37 2#(8") < 1 for each demand k € C, it follows that

s=s;+wr—1~s
Sj
D DR ACORSI (R

v €C s=s;+wi—1

which contradicts what we supposed before, i.e., >, ¢ Zi;usVl 288" > |C) + 1.
As a result,

S TIBen{e} + D ISk N {sitwp = 1,55 + D 1Sk O {si +wp — 1,y 8531 < [C] + 1.

vx€C vpeC k'eCe
O

Theorem 2.4.5. Consider an edge e € E. Let I = [si,5;] be an interval of contiguous slots.
Let C be a clique in the conflict graph G§ with |C| = 3, and 3 jccwr < 8= e\ Wh'-
Then, the inequality (2.32)) is facet defining for P(G, K,S) iff
a) there does not exist a demand k' € K.\ C with wy, + wyr > |I| and wyy < |I| and 2wy > |I],
b) and |{s; + wi —1,...,s;}| > wy, for each demand k with vy, € C,
c¢) and there does not exist an interval I’Nof contiguous slots with I C I' s.t. C defines also a
clique in the associated conflict graph G,.
Proof. Neccessity.

It is trivial given that

a) if
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a) there does not exist a demand k¥’ € K, \ C with wy + wg > |I| and wyr < |I| and
2wy > ’I’,

b) and |{s; +wi — 1, ...,s;}| > wy, for each demand k with v;, € C.

Then, the inequality can never be dominated by another inequality without changing
its right-hand side. Otherwise, if there exists a demand k' € K. \ C' with wy + wy > |I| and
wy < |I| and 2wk/ > |I|, this implies that the inequality is dominated by (2.33). Moreover,
if [{s; + wr — 1,...,8;}| < wy for each demand k with v; € C, then the inequality ([2.32) is
then dommated by the inequality - ) for a set of demands K {k € K s.t. v € C'} and
slot s = s; + I}gélél wy + 1 over edge e. Hence, the inequality (2.32]) is not facet defining for

P(G,K,S).

if there exists an interval I~’ of contiguous slots with I C I’ s.t. C defines also a clique in the
associated conflict graph G%. This implies that the inequality (2.32)) induced by the clique
C' for the interval I is dominated by the inequality (2.32)) induced by the same clique C' for
the interval I’ given that {s; +wy —1,...,s;} C I’ for each k € C. As a result, the inequality
(2.32)) is not facet defining for P(G, K, S).
Sufficiency.
Let FCG " denote the face induced by the inequality (2.32)), which is given by

N sj

Ge

Fo'={(z,2) e P(G.K,S): > ab+ Y F=|C|+1}

v, eC s=s;+wg—1

In order to prove that inequality kaecx +3 sitwp—1% k <|C| +1 is facet defining for

P(G, K,S), we start checking that FC’ is a proper face, and Fg? # P(G,K,S).
We construct a solution S = (E53,553) as below

a feasible path E,‘23 is assigned to each demand k € K (routing constraint),

a set of last-slots 523 is assigned to each demand k € K along each edge ¢ € E,??’ with
S23] > 1 (contiguity and continuity constraints),

{s—wp+1,..,s}N{s' —wp +1,...8} = 0 for each k, k' € K and each s € S?* and s’ € S}?
with EP3 N E2? # () (non-overlapping constraint),

and there is one demand k from the clique C' (i.e., vx € C s.t. the demand k selects a slot s
as last-slot in the solution 8% with s € {s; + wy — 1, ..., 8}, i.e., s € S;:’?’ for a node v, € C,
and for each s’ € Sp? for all vy € C'\ {vy} we have s’ ¢ {s; + wyr — 1,..., 5},

and all the demands in C pass through the edge e in the solution S%3, i.e., e € E,‘23 for each
kedC.

Obviously, &% is a feasible solution for the problem given that it satisfies all the con-
straints of our cut formulation - Moreover, the corresponding incidence vec-

tor (257,25 is belong to P(G K,S) and then to FC given that it is composed by

kaecx +370 sitw,—1 %8 = 1. As aresult, Fg, ST is not empty (i.e., F 7& (). Furthermore,
given that s € {s; + w, — 1, ..., s;} for each v, € C, this means that there exists at least one
feasible slot assignment Sy for the demands k in C with s ¢ {s; + w — 1,...,s;} for each

s € Sy, and each vy € C. This means that FGg # P(G,K, S).
We denote the inequality Y-, oo zh+>7 k<|Cl+1by ax+Bz < \. Let pz+oz <7

s=8;+wi— 17

be a valid inequality that is facet defining F' of P(G, K, S). Suppose that Fg? CF={(x,2) ¢
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P(G,K,S) : px + 0z = 7}. We show that there exists p € R and v = (71,72,73) (s.t.
Y1 c RZkeK |E§\’,72 c RZkeK ‘Eﬂ’ry:,) c RZkeK(wk_l)) s.t. (/.L, O') = p(aHB) + ny’ and that

ok =0 for all demands k € K and all slots s € {wg,...,5} with s ¢ {s; + wg — 1,...,5;} if
v, € C,

and crf are equivalents for all v, € C and all s € {s; +wy —1,..., 5},
and pF, = 0 for all demands k € K and all edges e € E\ (Ef U E}) with e # ¢’ if vy, € C,
and all ¥ are equivalents for the set of demands in C,

and o and p¥ are equivalents for all vy € C and all s € {s; +wy — 1,...,5;}.

We first show that u¥, = 0 for each edge ¢’ € E \ (E§ U E}) for each demand k € K with
e # ¢ if k € C. Consider a demand k € K and an edge ¢’ € E\ (E§ U EY) with e # ¢ if
k € C. For that, we consider a solution &3 = (E’53,5/53) in which

a feasible path E,’f’?’ is assigned to each demand k € K (routing constraint),

and a set of last-slots S}7® is assigned to each demand k € K along each edge ¢’ € E}>® with
5/33] > 1 (contiguity and continuity constraints),

and {s' —wg + 1,...,8'} N{s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S>3
and s” € S8 with EP® N E5? # 0, i.e., for each edge ¢’ € E and each slot s” € S we have
ZkeK,e’eE,’ji‘ {s" € 5253, s e {s —wp+1,...,5'}| <1 (non-overlapping constraint),

the edge €’ is not non-compatible edge with the selected edges €” € El’f’?’ of demand k in the
solution 83, i.e., Ze”GE’53l » + 1o < lp. As aresult, EP3 U {e} is a feasible path for the
demand £k,

{s—wr+ 1,8} N{s —wp +1,...,8} =0 for each ¥’ € K and s € S5} and s’ € S3°
with (B3 U {e'}) N E,’§3 # () (non-overlapping constraint taking into account the possibility
of adding the edge €’ in the set of edges E’53 selected to route the demand k in the solution
8/55)

and there is one demand k from the clique C' (i.e., vx € C s.t. the demand k selects a slot s
as last-slot in the solution 83 with s € {s; + wy — 1, ..., s}, i.e., s € S} for a node vy € C,
and for each s’ € S;5% for all v € C'\ {vy,} we have s’ ¢ {s; + wp — 1,..., s},

and all the demands in C' pass through the edge e in the solution 83, i.e., e € E,’f3 for each
keC.

83 is clearly feasible for the problem given that it satisfies all the constraints of cut for-
. . . . S’53 8753y .
mulation . - Hence, the corresponding incidence vector (x ,z ) is belong to F

s=s;+wr—1 s ’C| + 1. Based
on this, we derive a solution S°* obtained from the solutlon S’ by adding an unused edge
e € E\ (E} U EY) for the routing of demand k in K in the solution S which means that
E54 E;; 53 U {e/}. The last-slots assigned to the demands K, and paths assigned the set of
demands K\ {k} in 83 remain the same in the solution §°4, i.e., Sp4 = 5> for each k € K,
and EJt = B33 for each k' € K \ {k}. 8 is clearly feasible given that

and then to FCI given that it is composed by 3, 33 + 3%

and a feasible path E;Z’4 is assigned to each demand k € K (routing constraint),

and a set of last-slots 524 is assigned to each demand k € K along each edge ¢’ € E;24 with
574 > 1 (contiguity and continuity constraints),

and {s’ —wg+1,...,8}N{s” —wp +1,..,8"} = 0 for each k, k' € K and each s’ € SP*
and s” € Spt with E* N EY! £ 0, ie., for each edge ¢’ € E and each slot s” € S we have
D keKel remp [{s" € Spt,s” € {s' —wg +1,...,5'}| <1 (non-overlapping constraint).
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The corresponding incidence vector (56354, 2554) is belong to F' and then to Fg i given that it
is composed by >, ¢ zk + szzsﬁwk_l 2% = |C| + 1. It follows that

S

153 153 54 54 153 153
$S S S S :L‘S S ]

o +oz =pr~ +oz" =pu +u’§/+az

As a result, ,u,’e“, = 0 for demand k and an edge €’.

As ¢’ is chosen arbitrarily for the demand k with e ¢ E¥ U E¥ and e # €’ if k € C, we iterate
the same procedure for all e” € E\ (E¥ U E¥ U {e'}) with e # ¢” if k € C. We conclude that
for the demand &

pk, =0, for all ¢ € E\ (ES U EY) with e # ¢’ if k € C.

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all
kK € K\ {k}and all ¢ € E\ (E} U EF). We conclude at the end that

pk =0, forall k € K and all € € E\ (Ef U EY) with e # ¢ if k € C.

Let’s us show that 0% = 0 for all k € K and all s € {wy, ..., 5} with s & {s; + w — 1,...,5;}
if v, ¢ C. Consider the demand k and a slot s" in {wg, ...,5} with &' ¢ {s; + wy — 1, ..., s;} if
v, ¢ C. For that, we consider a solution 8”53 = (E”°3,5753) in which

a feasible path E” 23 is assigned to each demand k € K (routing constraint),

a set of last-slots S79? is assigned to each demand k € K along each edge ¢’ € E”9® with
5793 > 1 (contiguity and continuity constraints),

{ —wr+1,..,8}N{s" —wp +1,...,5"} = 0 for each k, k' € K and each ' € S77 and
s" € S”Z?’ with E793 N E”z?’ # (), i.e., for each edge ¢’ € F and each slot s” € S we have
Y okek o [{s' € §723,s" € {s/ —wp +1,...,s'}| <1 (non-overlapping constraint),

and {s' —wy + 1,.., 8} N{s" —wp +1,..,8"} = 0 for each k' € K and s” € S”3} with
E”Z‘?’ nE” 2:,3 # () (non-overlapping constraint taking into account the possibility of adding
the slot &' in the set of last-slots S”?3 assigned to the demand k in the solution 8”53),

and there is one demand k from the clique C (i.e., vy € C s.t. the demand k selects a slot s
as last-slot in the solution 8”%% with s € {s; +wy —1, ..., s;j}, le., s € S”23 for a node v, € C,
and for each s’ € 5733 for all vy € C'\ {vg} we have s’ & {s; + wp — 1,..., s;},

and all the demands in C pass through the edge e in the solution S”%3, i.e., ¢ € E” 23 for
each k € C.

S753 is clearly feasible for the problem given that it satisfies all the constraints of cut formu-
lation (2.2))-(2.10). Hence, the corresponding incidence vector (257, 25" is belong to F

and then to Fg? given that it is composed by >_, zk —i—sz:Si_ka_l 2% = 1. Based on this,
we construct a solution S derived from the solution S”%3 by adding the slot s’ as last-slot
to the demand %k with modifying the paths assigned to a subset of demands K C K in S”%3

(i.e., E}° = E"2% for each k € K \ K, and E}° # E”}3 for each k € K) s.t.
a new feasible path E}° is assigned to each demand k € K (routing constraint),

and {s' —wp+1,...,8YN{s” —wp +1,...,5"} =0 for each k € K and k¥ € K \ K and each
s’ € 8723 and 7 € S77% with ER° N E”3? # 0, i.e., for each edge ¢’ € E and each slot s” € S
we have ZREK,6’6E25 HS’ c 5'77237877 c {Sl — w41, ..., S/H JrzkeK\f(,e/eE”ZS |{8/ c 5”53,5” c
{s —wi +1,...,s'}| <1 (non-overlapping constraint),
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c)

and {s' —wy +1,...,8'} N {s” —wp +1,....5"} = 0 for each &’ € K and s” € S (non-
overlapping constraint taking into account the possibility of adding the slot s’ in the set of
last-slots S”23 assigned to the demand k in the solution S”%3).

The last-slots assigned to the demands K\ {k} in §”°3 remain the same in $°°, i.e., $”77 = Sp7
for each demand k' € K \ {k}, and S;° = S”9% U {s} for the demand k. The solution S is
clearly feasible given that

a feasible path E° is assigned to each demand k € K (routing constraint),
a set of last-slots 5’25 is assigned to each demand k& € K along each edge ¢’ € E;Z’E’ with
|S2°| > 1 (contiguity and continuity constraints),

{/ —wp+1,..,8}N{s” —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S?° and
s” € Spp with EpS N E # 0, ie., for each edge ¢ € E and each slot s” € S we have
ZkeK’eleEzs |{s' € 83°,s” € {s' —wg +1,...,8'}| <1 (non-overlapping constraint).

The corresponding incidence vector (;1:555, 2555) is belong to F' and then to Fg i given that it
is composed by >, ¢ zk + szzsﬁwk_l 2% =|C| + 1. We have so

153 »53 55 55 »53 »53 7. L
ums +02577 = ,uxS + 025 = ,uxS +0257 + O'f/ - Z Z u];, + Z Z u’g
EJEKG/EE”Z?’ IZJERE”EEEE)

It follows that o% = 0 for demand k and a slot s’ € {wg, ..., 3} with s’ & {s; +w — 1,...,s;}
if v, ¢ C given that u¥, = 0 for all the demands k € K and all edges ¢’ € E\ (Ef U E}) with
eteifkeC.

The slot s’ is chosen arbitrarily for the demand k, we iterate the same procedure for all
feasible slots in {wy, ..., §} of demand k with s’ ¢ {s; +w, — 1, ...,s;} if vy ¢ C s.t. we find

ok =0, for demand k and all slots s’ € {wy, ..., 5} with s ¢ {s; +wy, — 1,...,s;} if v & C.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands
K in K\ {k} such that

o =0, for all k' € K \ {k} and all slots s € {wy, ..., 5} with s ¢ {s; + wp — 1, ..., s;} if vp & C.

Consequently, we conclude that
o¥ =0, for all k € K and all slots s € {wy, ..., 5} with s & {s; + wy, — 1,...,s;} if v, & C.

Let prove that o¥ for all vy € C and all s € {s; + wy — 1,...,5;} are equivalents. Consider a
dNemande" algd aslot s’ € {s; +wp — 1, ..., sj} with vy € C. For that, we consider a solution
S5 = (E%3,8%) in which

a feasible path E;;’?’ is assigned to each demand k € K (routing constraint),

a set of last-slots 5’23 is assigned to each demand k € K along each edge ¢ € EZ?’ with
S33| > 1 (contiguity and continuity constraints),

{ —wp+1,..,8tN{s" —wp +1,....8} = 0 for each k,k’ € K and each s’ € 5’23 and
57 € S,‘Z? with EZBNH E,‘Z’? # (), i.e., for each edge ¢/ € F and each slot s” € S we have
ZkeK,e’eE23 [{s' € p%,s” € {s' —wy, +1,...,s'}| <1 (non-overlapping constraint),

and {s—wg+1,...,s}N{s’'—wp +1,...,s'} =D foreach k € K and s € 5’23 with E~23HE2,3 #0
(non—overlapping constraint taking into account the possibility of adding the slot s" in the set
of last-slots 577 assigned to the demand &’ in the solution S%),
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e)

2)

and there is one demand k from the clique C' (i.e., v € C s.t. the demand k selects a slot s
as last-slot in the solution 8% with s € {s; +wy — 1, ..., s}, le, s € 523 for a node v, € C,
and for each s' € 5P for all v € C'\ {vr} we have s’ ¢ {s; + wp — 1,...,5;},

and all the demands in C' pass through the edge e in the solution S°3, i.e., € € E23 for each
kecC.

S5 ig clearly feas1ble for the problem given that it satisfies all the conbtralnts of cut formu-
lation ([2.2) . Hence, the corresponding incidence vector (z 553, z ) is belong to F' and

=|C|+1. Let 8% be a

solution derived from the solution S5 by adding the slot s as last-slot to the demand &’ with
modifying the paths assigned to a subset of demands K C K in §%3 (ie., B30 = E‘l§3 for each
ke K\K,and E E53 for each k € K), and also the last-slots assigned to the demands
K\ {k, k:’} 1n S remain the same in 8%, i.e., 523 = S99 for each demand k" € K \ {k, &'},
and SP% = S23 U {s'} for the demand k', and modlfymg the last-slots assigned to the demand
k by adding a new last-slot § and removing the last slot s € 553 with s € {s; +wi +1,..., 55}
and § ¢ {s; + w + 1,...,s;} for the demand k with vy € C s.t. S70 = (553 \ {s}H U {s} s.t.
{(—wr+1,...8}N{s' —wp +1,....,8'} =0 for each k¥’ € K and s’ € Sp9 with E6 N EPS + 0.
The solution S is clearly feasible given that

then to FCI given that it is composed by kaec x +3°%

ss—l—wkls

a feasible path EY is assigned to each demand k € K (routing constraint),

a set of last-slots 5’26 is assigned to each demand k& € K along each edge ¢’ € E,‘Z’G with
525] > 1 (contiguity and continuity constraints),

{ —wp+1,..,8tN{s" —wp +1,...8"} = 0 for each k,k’ € K and each s’ € S} and
s” € Sp9 with ES N ERS # 0, ie., for each edge ¢ € E and each slot s” € S we have
D keK /B {s' € 876,57 € {s' —wy +1,...,8'}| <1 (non-overlapping constraint).

The corresponding incidence vector (x 5% , 25 ) is belong to F' and then to FC’ given that it
is composed by kaecx + 3L, w1 2% =|C| + 1. We have so

G53 353 56 56 G53 353 /
/mcs +025" = /mc‘s +025" = /mc‘s +0257 4 Jfl - Uf + a§

IV ED DI

keK '€ P keK e'€E}S

It follows that 0% = o% for demand k' and a slot s’ € {wy,...,5} with vy € C and §' €
{si +wp +1,...,8;} given that o =0 for 5§ ¢ {s; + wy — 1,...,s;} with v, € C, and p¥ =
forall k € K and all ¢’ € E\ (Ef U EF) with e # e if k € C.

Given that the pair (vg, vy ) are chosen arbitrary in the clique C, we iterate the same procedure
for all pairs (vg, vgr) s.t. we find

o¥ = &% for all pairs (vj,v) € C

with s € {s; +w —1,...,s;} and s’ € {s; + wy — 1, ..., 5;}. We re-do the same procedure for
cach two slots s, s’ € {s; +wy — 1,...,s;} for each demand k € K with v, € C s.t.

0']; = af,,for all vy € C and s,s" € {s; +wy, — 1, St

Let us prove now that p* for all k € K with vy € C are equivalents. For that, we consider a
solution S°7 = (E°7, 5%7) defined as below

a feasible path E?7 is assigned to each demand k € K (routing constraint),
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b)

)

d)

)

a)

a set of last-slots 5’27 is assigned to each demand k& € K along each edge €' € E/%? with
|S97] > 1 (contiguity and continuity constraints),
{s—wrp+1,..,s}N{s’ —wp +1,...} =0 for each k, k' € K and each s € S}" and s’ € S}/
with El‘37 N EZ,7 # () (non-overlapping constraint),
and there is one demand k from the clique C (i.e., vx € C' s.t. the demand k pass through the
edge e in the solution 87, i.e., e € E}7 for a node vy, € C, and e ¢ E}] for all vy € C'\ {vy},

and all the demands in C are covered by the interval I in the solution S°7, i.e., {s; + wy, +
1,...,8;} N ST £ for each k € C.

Obviously, S°7 is a feasible solution for the problem given that it satisfies all the con-

straints of our cut formulation (2.2)-(2.10). Moreover, the corresponding incidence vec-

tor (x557,2557) is belong to P(G,K,S) and then to FgI given that it is composed by
k 5 k

kaGC .Te + Zsjzsi-i-wk—l ZS = |C’ + ]' 5 B B

Consider now a node vy in C's.t. e ¢ Ef. For that, we consider a solution 8" = (E57, S°7)

in which

a feasible path E’,j;ﬂ is assigned to each demand k € K (routing constraint),

a set of last-slots 5’27 is assigned to each demand k£ € K along each edge e € E27 with
|S7| > 1 (contiguity and continuity constraints),

{8 —wp +1,..,8FN{s" —wp +1,...,8"} = for each k,k € K and each s’ € 5'7;‘7 and
s” € S with E;z’7 N E;;’? # (), i.e., for each edge ¢ € FE and each slot s” € S we have
Y okek ccB5T [{s' € S}7,s" € {s' —wy +1,...,5'}| <1 (non-overlapping constraint),

and there is one demand k from the clique C (i.e., vk € C s.t. the demand k pass through the
edge e in the solution S°7, i.e., e € E?" for a node vy, € C, and e ¢ E}] for all vy € C'\ {vy},

and all the ~demamds in C' are covered by the interval I in the solution 557 e, {si + w +
1,...,8;} N ST £ for each k € C.

S57 is clearly feasible for the problem given that it satisfies all the constraints of cut formu-
lation (2.2)-(2.10). Hence, the corresponding incidence vector (25", 257") is belong to F and

then to ng given that it is composed by >, o zk + Z‘;j:s#wk_l 28 = |C| + 1. Based on

this, we derive a solution S”%8 = (E”58, §758) from the solution S°7 by

the paths assigned to the demands K\ {k, &’} in S°7 remain the same in S”%® (i.e., E” 8 = E,?Z
for each k7 € K\ {k,k'}),

without modifying the last-slots assigned to the demands K in S°7, i.e., 5'27 = §728 for each
demand k € K,

modifying the path assigned to the demand & in S57 from E27 to a path E”Z? passed through
the edge e (i.e., e € E”i?) with vy € C s.t. ;{s —wg + 1, wo st {s —wp +1,...,8} =0 for
each k € K and each s’ € Sp/ and each s € SP” with E}" N E”9% £ (),

modifying the path assigned to the demand % in S5 with e € E~,‘2’7 and v € C from EN/;?7 to
a path E”3® without passing through the edge e (i.e., e ¢ E”isz and {s —wy +1,...,8} N
{s' —wp +1,...,8'} = 0 for each k” € K\ {k,k'} and each s € ST and each s’ € ST with
B QE”ZS #0,and {s —wy +1,...,s} N {s —wp +1,...,8'} = 0 for each s € S}7 and each
s’ € ST with E”98 N E”98 £ 0.

The solution S”58 is feasible given that

a feasible path E”9® is assigned to each demand k € K (routing constraint),
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b)

)

a set of last-slots S”is is assigned to each demand k € K along each edge e € E”is with
5728 > 1 (contiguity and continuity constraints),

{ —wr+1,..,8}N{s" —wp +1,...,5"} = 0 for each k,k' € K and each §' € 7 and
s" € S”i? with E”ZS N E”i? # (), i.e., for each edge e € E and each slot s” € S we have
D ke K ee B3 {s' € 57P,8” € {s' —wyp +1,...;s'}| < 1 (non-overlapping constraint).

The corresponding incidence vector (xs”ss, 28”58) is belong to F' and then to FCG T given that
it is composed by Y, coak + 370, L, 1 2 = |C| + 1. We then obtain that

/1,33357 n 02’357 _ qusss n 52S™ Iuwgrﬂ tos 7 n M];,/ B Mlg
K k' k k
+ Z l,l,en — Z l,Lew + Z Hew — Z l,l,en .

e T\ (e} e BT e er e BT\ (e}

S5

It follows that u¥ = uF for demand &' and a edge ¢ € E\ (E§ U E}') with vy € C given
that pk, =0 for all k € K and all €” € E \ (E§ U E¥) with vy, ¢ C.

Given that the pair (v, vy ) are chosen arbitrary in the clique C, we iterate the same procedure
for all pairs (vg,vg) s.t. we find

pk = u¥ for all pairs (vy, vy) € C.

Furthermore, let prove that all 0¥ and u* are equivalents for all k € C and s € {s; + wy —
1,...,s;}. For that, we consider for each demand k' with vz € C, a solution S% = (B9, 8%9)
derived from the solution S°7 as below

the paths assigned to the demands K \ {k'} in §°7 remain the same in S (i.e., E}Y = E}Y
for each k7 € K \ {k'}),

without modifying the last-slots assigned to the demands K \ {k} in S°7, i.e., Sp¥ = S} for
each demand k” € K \ {k},

modifying the set of last-slots assigned to the demand &’ in S®7 from 3;:’,7 to S;:’,g s.t. 8PN
{Si +wp — 1, ..., Sj} = (.

Hence, there are |C| — 1 demands from C that are covered by the interval I (i.e., all the
demands in C'\ {£k'}), and two demands {k, £’} from C that use the edge e in the solution
S%. The solution S* is then feasible given that

a feasible path E;Z’Q is assigned to each demand k € K (routing constraint),

a set of last-slots S’,‘Z’g is assigned to each demand k£ € K along each edge e € E;Z’g with
152%] > 1 (contiguity and continuity constraints),

{ —wr+1,.,8tN{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S} and
s" € S,f/,’? with E,‘Z’g N E,‘;’,g #+ (), i.e., for each edge e € E and each slot s” € S we have
Y okek cc 9 {s' € 2%, 5" € {s' —wj, +1,...,s'}| <1 (non-overlapping constraint),

and kaec |E,§9 N{e} + |S,§9 N{si+wr—1,...,s;} =|C| + 1.

The corresponding incidence vector (:c359, 2559) is belong to F' and then to Fg i given that it
is composed by >, ¢ zk + Z?:S#wk_l 2F = |C| 4 1. We then obtain that

357 357 59 59 357 357 / / / /
ST 425 = ,u:cS + 025" = ,u:cs + 025" + ,u’; — ai? + Z ME” - Z Mo -
e’ EEE?\{@} e’ €E2/7

754
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It follows that ulgl = afl for demand k" and slot s € {s; + wy — 1,..., 5;} given that ,u’e’“,, =0
for all k € K and all e” € E\ (E§ U EF) with e # €” if v;, € C. Moreover, by doing the same
thing over all slots s € {s; +wy — 1, ..., s;}, we found that

M’g/ = afl,for all s € {s; +wp —1,...,55}.

Given that %’ is chosen arbitrarily in C, we iterate the same procedure for all k € C' to show
that

,u’ec = af,for all vy € C'and all s € {s; +wi —1,...,55}.

Based on this, and given that all u’g are equivalents for all v, € C, and that Jf are equivalents
for all vy € C and s € {s; + wp — 1,..., 5}, we obtain that

pk = ofl, for all k, k" € C and all s € {s; + wi — 1,...,5;}.

Consequently, we conclude that
pk = 0’5/ =p, forall k,k' € C and all s € {s; + wpr — 1,...., s }.

On the other hand, we use the same technique applied in the polyhedron dimension proof
to prove that
p =K for all ' € K and all ¢ € EY
,u];// = ’ygl’el, for all ¥ € K and all €' € Ef/,
aff = fyéf/’s/, for all ¥’ € K and all s € {1,...,wp — 1}.
We conclude that for each ¥’ € K and ¢’ € F
yf/’e/, if ¢ € BY,

k= v, it e € BY,
p, if k' € C and ' = e,

0, otherwise,
and for each k € K and s € S

'yg’s,if se{l,..,w; — 1}
ofj =< pifop € Cand s € {s; +wy —1,...,s;},

0, otherwise.

5
As a result (pu,0) = Z pak + Z pBE + Q.
v, €C s=s;+w—1

O]

Theorem 2.4.6. Consider an edge e € E. Let I = [s;, s;] be an interval of contiguous slots.
Let C be a clique in the conflict graph G$ with |C| > 3, and D opec Wk < 8= ek, \c Wr'-
Let C. C K.\ C be a clique in the conflict graph é? s.t. wg +wp > |I| 4+ 1 for each vy, € C
and vy € C.. Then, the inequality is facet defining for P(G, K,S) if and only if

there does not exist a demand k” € K, \ C. with wy + wg> > |I| + 1 for each vy, € C, and
wg +wir > |I| + 1 for each vy € Ce.
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b) and |{s; +wr —1,...,s;}| > wy, for each demand k with v, € C U C,

¢) and there does not exist an interval I' of contiguous slots with I C I' s.t. CUC, defines also

a

C

d

)

)
)
)
)

a clique in the associated conflict graph G¢,.

Proof. Neccessity.

If there exists a demand k” € K.\ C. with wy + wg» > |I| + 1 for each vy € C, and
wi + wgr > |I| + 1 for each vy € C.. Then, the inequality is dominated by its lifted
with C, = C. U {k”}. Moreover, if {si + wr — 1,...,5;}| < wy for each demand k with
v, € CUC, then the inequality ([2.33) is then dominated by the inequality - 2.27)) for a set of

demands K = {k € K st. v, € C} and slot s = s; + nélnc wg + 1 over edge e. As a result,
keCUC,

the inequality (2 is not facet defining for P(G, K, S).

if there exists an interval I’ of contiguous slots with I C I’ s.t. C' U C, defines also a clique
in the associated conflict graph G¢,. This implies that the inequality induced by the
clique C' U C, for the interval I is dominated by the inequality induced by the same
clique C'U C. for the interval I’ given that {s; + wy —1,...,s;} C I' for each k € CUC.. As
a result, the inequality is not facet defining for P(G, K, S).

Sufficiency.
Let FéG? denote the face induced by the inequality (2.33)), which is given by

. 5j 5;
G¢ '
Fil={(x,2) e P(G,K,S): Y o+ > A+ > Y N=jo)+1}
v €C s=sitwi—1 V1 €ECe 8'=s;+wyr—1
We denote the inequality Zv ecx + ZS sitwp—1 %s k4 zvk/ece szfsz—i-wk/ ) f <|C|+1

by az + Bz < A. Let ux + 0z < 7 be a valid inequality that is facet defining F* of P(G, K, S).
Suppose that F’CG? C F={(x,2) € P(G,K,S) : px + oz = 7}. We use the same proof of
the facial structure done for the inequality - in the proof of theorem [2 - to prove that
inequality >°, o Fyst sitwp—1%s —I—kalec S w1 % | < |C|+1 is facet defining for

P(G, K,S). We first prove that FC is a proper face based on the solution S defined in the
proof of theorem which stills feasible s.t. its corresponding incidence vector (acsdg, z853)

is belong to F' and then to FC given that it is composed by Evkec zk 4 ZS sitwp—1 e
D e, Z?_SZ twy—1 2k = |C| + 1. Furthermore, and based on the solutions S°3 to S
853 853) to ( S59 85 )

With corresponding incidence vector (z are belong to F' and then to

FC given that it is composed by kaecaz + ZS sitw—1 s kg ka/ece sz_sﬁwk/ 1 f,’ =
IC| + 1, we showed that there exists p € R and v = (71,72,73) (s.t. 11 € REkex 5] 4, €
RXker |1l yg € REkex(We=D) st (4, 0) = p(a, B) + 4Q, and that

ok =0 for all demands k¥ € K and all slots s € {wg,...,5} with s ¢ {s; + wg — 1,...,5;} if
v € CUC,,

b) and o are equivalents for all v, € CUC, and all s € {s; +wy, — 1, ..., s},

an , = 0 for all demands k£ € K and all edges e € U with e £ ¢ if v €
d,u’e€ for all d ds k € K and all edg E\(E(’f E{“) he#¢ if C,

and all ¥ are equivalents for the set of demands in C,

e) and afjl and u’e“ are equivalents for all v, € C and all vy € CUC, and all s € {s;+w—1, ..., s;}.
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At the end, we found that for each ¥’ € K and ¢’ € E

’yf,’e/, ife e E(Ifl,
Mk/ _ ’ygl’e/, if ¢/ € Efl,
‘ p, if k' € C and ' =e,
0, otherwise,
and for each k € K and s € S
vg’s,if se{l,...,wp —1}
af = p,if vy € CUC. and s € {s; +w — 1,..., 55},

0, otherwise.

As aresult (u,0) = > paf+ Y i pBE+ D ZJ: pBY +7Q.

v eC v €C s=s;+wr—1 v €Ce 8'=s;+wyr—1

2.4.4 Interval-Clique Inequalities

We have looked at the definition of the inequality (2.32)), we detected that there may exist
some cases that we can face which are not covered by the inequality (2.32). For this, we
provide the following inequality and its generalization.

Proposition 2.4.12. Consider an interval of contiguous slots I = [s;, ;] in'S with s; < sj—1.
Let k, k' be a pair of demands in K with E¥ 0 E¥ # 0, and wy, < |I|, and wy < |I|, and
wg + wy > |I|. Then, the inequality

55 55
DR S § (2.34)
s=s;t+wr—1 s'=s;+w; —1
is valid for P(G, K,S).
Proof. 1t is trivial given that the interval I = [s;, s;] cannot cover the two demands k, k'

shared an essential edge with total sum of number of slots exceeds |I|. Furthermore, the
inequality (2.34]) is a particular case of the inequality (2.32)) for K = {k,k’'} over each edge
ec Ef ﬂEf . However, it will be used for a generalized inequality using the following conflict
graph . O

Definition 2.4.5. Let I = [s;, s;] be an interval of contiguous slots in [1,5] with s; < s; — 1.
Consider the conflict graph C;”IE defined as follows. For each demand k € K with wy < |I|,
consider a node v in G]IE Two nodes vy and vy are linked by an edge in G}E if w +wyr > |1
and E¥ N EF #£0.

Proposition 2.4.13. Let I = [si, s;] be an interval of contiguous slots in [1, 3] with s; < s;—1,
and C be a clique in the conflict graph Gj]E with |C| > 3. Then, the inequality

DD DA (2.35)

v €C s=s;+wi—1

is valid for P(G, K, S).
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b)

a)

Proof. It is trivial given the definition of clique set in the conflict graph GIE s.t. for all two
linked node v and vy in G}E , we know from the inequality ([2.34))

55 55
’
E zf + g zfl <1
s=s;jt+wi—1 S’:Si—i-wk/—l

By adding the previous inequalities for all two linked node v; and vy in the clique set C', we
get

Sj

Sie-n Y dsie-1 =Y Y A=l % S e

Vg s=s;+wr—1 v s=sitwi—1 v €C s=s;+wi—1
We conclude at the end that the inequality (2.35) is valid for P(G, K, S). O

Theorem 2.4.7. Let I = [s;, sj] be an interval of contiguous slots in [1,5] with s; < s; — 1,
and C be a clique in the conflict graph G¥ with |C| > 3. Then, the inequality (2.35) is facet
defining for P(G, K,S) if and only if

C' is a mazimal clique in the conflict graph GE,

and there does not exist an interval of contiguous slots I' in [1,5] s.t. I C I' with
a) wi +wyg > |I'| for each k, k' € C,
b) wr < |I'| and 2wy, > |I'| + 1 for each k € C.

Proof. Neccessity.
We distinguish two cases

if there exists a clique C’ that contains all the demands k € C. Then, the inequality (2.35)
induced by the clique C' is dominated by another inequality (2.35]) induced by the clique C".
Hence, the inequality (2.35)) cannot be facet defining for P(G, K, S).

if there exists an interval of contiguous slots I’ in [1, 5] s.t. I C I’ with
a) wg + wy > |I'| for each k, k' € C,
b) wi < |I'| and 2wy, > |I'| + 1 for each k € C.

This means that the inequality (2.35)) induced by the clique C for the interval I is dominated
by the inequality ([2.35|) induced by the clique C for the interval I’. Hence, the inequality
(2.35) cannot be facet defining for P(G, K, S).
Sufﬁc1ency
Let F, or denote the face induced by the inequality -, which is given by
GF k
Fot ={(x,2) € P(G,K,S): ) Z 2k =1}

v €C s=s;+wi—1

In order to prove that 1nequa11ty Zv cC Z 2F < 1 is facet defining for P(G, K,S),

ss—l—wkl s

we start checking that FC is a proper face, and F I # P(G, K,S). We construct a solution
S0 = (E50) §50) as below

a feasible path ESO is assigned to each demand k € K (routing constraint),
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b)

)

d)

a set of last-slots 5’20 is assigned to each demand k& € K along each edge €' € ESO with
589 > 1 (contiguity and continuity constraints),
{s—wrp+1,...,s}N{s’ —wp +1,...} = 0 for each k, k' € K and each s € S?° and s’ € S9
with Ego N Eg,o # () (non-overlapping constraint),
and there is one demand k from the clique C (i.e., v € C s.t. the demand k selects a slot s

as last-slot in the solution 8% with s € {s; + wy — 1, ..., s}, i.e., s € S,ffo for a node v, € C,
and for each s’ € 9 for all vy € C'\ {vy} we have s’ & {s; + wp — 1, ..., 5;}.

Obviously, S% is a feasible solution for the problem given that it satisfies all the constraints of
our cut formulation ({2.2] - Moreover the corresponding incidence vector (x 360 560) i

is
belong to P(G K, S) and then to FC’ glven that it is composed by >, o S sitwp—1 2k =1

As aresult, FC’ is not empty (i.e., FC’ # ()). Furthermore, given that s € {s;+w,—1,...,s;}
for each vy € C, this means that there exists at least one feasible slot assignment Sk for the
demands kin C with s ¢ {s; + wy — 1,...,s;} for each s € S, and each v, € C. This means

that FST # P(G, K,S).

We denote the inequality Zv cC Z F<1byaz+pBz<A Let um +o0z<T1bea

s=8;+wg— 1%s

valid inequality that is facet defining F' of P(G, K,S). Suppose that FCI CF={(z2) €
P(G,K,S) : uyx + oz = 7}. We show that there exist p € R and v = (y1,72,73) (s.t.
1 € REkex |E§‘,72 € RXkek ‘Eﬂ,vg e RurexWe=DY gt (u,0) = p(a, B) +7Q, and that

ok = 0 for all demands k € K and all slots s € {wg,...,5} with s ¢ {s; + wg — 1,...,5;} if
v, € C,
and p¥ = 0 for all demands k € K and all edges e € E \ (E§ U E}),

and cré~C are equivalents for all v, € C and all s € {s; +wy —1,...,55}.

We first show that u¥ = 0 for each edge e € E \ (E} U EY) for each demand k € K.
Consider a demand k € K and an edge e € E\ (E} U E¥). For that, we consider a solution
8’00 = (E'%0 §"60) in which

a feasible path E/% is assigned to each demand k € K (routing constraint),

a set of last-slots S,’CGO is assigned to each demand k € K along each edge e € E,’fo with
5169 > 1 (contiguity and continuity constraints),
k
' —wp+1,.,8}N{s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S and
{ K
€ S8 with ES° N ESY £ 0, ie., for each edge e € E and each slot s € S we have
D ke K ce B0 [{s' € S}, s” € {s' —w +1,...,8'}| <1 (non-overlapping constraint),

and {s' —wr +1,...,8}N{s" —wp +1,...,87} = 0 for each ¥’ € K and s” € 5’13} with
E'13;, N E'"13) # () (non-overlapping constraint taking into account the possibility of adding
the slot s” in the set of last-slots 5’13, assigned to the demand & in the solution S"®°),

the edge e is not non-compatible edge with the selected edges e € E,’fo of demand k in the
solution S0, i.e., ZGIGEI/C@O le +le < . As a result, ES° U {e} is a feasible path for the
demand k,

and there is one demand k from the clique C (i.e., vy € C s.t. the demand k selects a slot s

as last-slot in the solution 8" with s € {s; + wy — 1, ..., s}, i.e., s € S} for a node vy € C,
and for each s’ € S8 for all vy € C'\ {vy} we have s’ ¢ {s; + wp — 1,...,8;}.
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5760 ig Clearly feasible for the problem given that it satisfies all the constraints of cut formula-
tion - Hence, the corresponding incidence vector ( 5% 23/60) is belong to F' and

then to FC given that it is composed by kaec Zs sidwp—17 k — 1. Based on this, we derive
a solution S8! obtained from the solution S’%° by adding an unused edge e € E \ (Ef U EY)
for the routing of demand k in K in the solution S® which means that Et = E50 U {e}.
The last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in
S0 remain the same in the solution S%, i.e., 521 = S,’fo for each k € K, and Eg,l = Ellgo for
each k' € K \ {k}. S% is clearly feasible given that

and a feasible path EP! is assigned to each demand k € K (routing constraint),

a set of last-slots Sgl is assigned to each demand k£ € K along each edge e € E,?l with
|SP > 1 (contiguity and continuity constraints),

s —wp+1,...,8N{s" —wp +1,...,8"} = 0 for each k,k' € K and each s’ € S8 and
{ ) ) ) ) ) k;
s” € S8 with E,?l N Eg,l # (), i.e., for each edge ¢ € FE and each slot s” € S we have
ZkeK,eeEgl {s' € S0 57 € {s' —wy +1,...,8'}| < 1 (non-overlapping constraint).

N 3 ~E
The corresponding incidence vector (xSM,szl) is belong to F' and then to Fg T given that
it is composed by Y, o > L, 1, 1 28 = 1. Tt follows that
MxS,GO + O'ZSIGO _ stfil + 02861 _ st/GO + Mé: + 025/60
As a result, u* = 0 for demand k and an edge e.
il g

As e is chosen arbitrarily for the demand k with e ¢ E§ U E¥, we iterate the same procedure
for all ¢’ € E'\ (E§ U E¥ U {e}). We conclude that for the demand k

’;:0, for alleeE\(E(’fUEf)-

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all
k' € K\ {k} and all e € E'\ (E} U E¥). We conclude at the end that

F—0, forallk € K and all e € E\ (E} U E}).

Let’s us show that 0% = 0 for all k € K and all s € {wy, ..., 5} with s & {s; + w — 1,...,5;}
if v, € C. Consider the demand k and a slot s" in {wg, ...,5} with s’ ¢ {s; + wy — 1, ..., s;} if
vy, € C. For that, we consider a solution §”%0 = (E”60 §760) in which

a feasible path E” 20 is assigned to each demand k € K (routing constraint),

a set of last-slots S”% is assigned to each demand k € K along each edge e € E”% with
5799] > 1 (contiguity and continuity constraints),

{s' — wy, + 1.,s}n{s" — wk/ +1,...,8"} = 0 for each k, k' € K and each s’ € S7¢ and
s" € 5790 9 w1th E"% N E” # (), i.e., for each edge e € E and each slot s” € S we have
ZkeK’eeE,,go {s" € S”GO s” E {s' —wi, +1,...,s'}| <1 (non-overlapping constraint),

and {s' —wy + 1,..,8}N{s" —wp +1,..,8"} = 0 for each k' € K and s” € $”% with
E”go nE” 29 # () (non-overlapping constraint taking into account the possibility of addlng
the slot s’ in the set of last-slots S assigned to the demand k in the solution §”%),

and there is one demand k from the clique C' (i.e., v € C s.t. the demand k selects a slot s
as last-slot in the solution 8”9 with s € {s; +wy —1, ..., sj}, le., s € S”go for a node v € C,
and for each s’ € S7% for all vy € C'\ {vg} we have s’ & {s; + wp —1,..., s;}.
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5760 ig clearly feasible for the problem given that it satisfies all the constraints of cut for-
mulation . - Hence, the corresponding incidence vector (z° 5700 8”60) is belong to
F and then to FC given that it is composed by ZUkeC ZS sidwp—17 k — 1. Based on this,
we construct a solution S%? derived from the solution S”%° by adding the slot s’ as last-slot

to the demand k with modifying the paths assigned to a subset of demands K C K in 8%
(ie., B2 = E"% for each k € K \ K, and E? £ E”% for each k € K) s.t.

a new feasible path E,?Q is assigned to each demand k € K (routing constraint),

and {s' —wp+1,...,8YN{s” —wp +1,...,5"} =0 for each k € K and k¥’ € K \ K and each
s’ € 579 and s” € S”6 with E92 N E” # 0, i.e., for each edge ¢ € E and each slot " € S
we have ZkeK,eeEQQ ‘{s € S”60,8” c {8 —wy + 1, ...,S/}| + ZkeK\f(,eeE”gO |{S/ c 5”60,8” c
{s —wi +1,...,s'} <1 (non-overlapping constraint),

and {s' —wg +1,...,8} N {s" —wp +1,...,8"} = 0 for each ¥ € K and s” € S”% (non-
overlapping constraint taking into account the possibility of adding the slot s’ in the set of
last-slots S”9% assigned to the demand k in the solution S”%).

The last-slots assigned to the demands K\ {k} in §”% remain the same in %2 i.e., $”%9 = 62
for each demand k' € K \ {k}, and S92 = §”%0 U {s} for the demand k. The Solutlon 562
clearly feasible given that

a feasible path E$? is assigned to each demand k € K (routing constraint),

a set of last-slots 522 is assigned to each demand k£ € K along each edge e € Egz with
S82| > 1 (contiguity and continuity constraints),

{ —wr+1,..,8tN{s" —wp +1,..,8"} = 0 for each k,k’ € K and each s’ € S$? and
s" € S with E,?Q N Eg? # (), i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeEg2 {s' € §%2 5" € {s' —wy +1,...,5'} <1 (non-overlapping constraint).

The corresponding incidence vector (x 862, 2862) is belong to F' and then to FCG 7 given that
it is composed by > o S sitwp—1 2% = 1. We have so

» 60 960 62 62 960 60 1. L
;wss +025 = ,u:US + 025" = ,u:cs +0257 + Uf/ — Z Z ,u]; + E Z ,uf/.
keK ecE” 80 keK e'cE?

It follows that o% = 0 for demand k and a slot s’ € {wg, ..., 3} with s’ & {s; + w — 1,...,s;}
if v, € C given that u¥ = 0 for all the demands k € K and all edges e € E \ (E§ U EY).

The slot s’ is chosen arbitrarily for the demand k, we iterate the same procedure for all
feasible slots in {wyg, ..., 5} of demand k with s’ ¢ {s; +w, — 1, ..., s;} if v € C s.t. we find

af, =0, for demand k and all slots s € {wy,...,5} with &' ¢ {s; + w — 1,...,s;} if v, € C.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands
k' in K\ {k} such that

o =0, for all ¥ € K\ {k} and all slots s € {wy, ..., 5} with s & {s; + wy — 1, 8} if v € C.

Consequently, we conclude that
o¥ =0, for all k € K and all slots s € {wy, ..., 5} with s & {s; + wy, — 1, ..., 5;} if v, € C.

Let prove that af for all vy € C' and all s € {s; +w, — 1,...,s;} are equivalents. Consider a
demand k" and a slot s’ € {s; + wp — 1,...,5;} with vy € C, and a solution S = (£, 560)
in which
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a) a feasible path Ego is assigned to each demand k € K (routing constraint),

b) a set of last-slots 5’20 is assigned to each demand k£ € K along each edge e € E‘go with
589 > 1 (contiguity and continuity constraints),

) {s —wp +1,..8tN{s” —wp +1,...,8"} = 0 for each k, k' € K and each s’ € 5,?0 and
s” € SS9 with Eg’(j N Eg,o # (), i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeEgo [{s" € S0, 8" € {s' —wy, +1,...,s'}| <1 (non-overlapping constraint),

d) and {s—wg+1,...,s}N{s'—wp +1,...,s'} = 0 for each k € K and s € S with E'NE # ¢
(non—overlapping constraint taking into account the possibility of adding the slot s’ in the set
of last-slots S assigned to the demand k' in the solution S%°),

e) and there is one demand & from the clique C' (i.e., vy € C s.t. the demand k selects a slot s
as last-slot in the solution S with s € {s; + w, — 1,..., 8}, i.e.,, s € S}go for a node v, € C,
and for each s’ € S9 for all vy € C'\ {vy} we have s’ & {s; + wp — 1,..., 5}

S0 ig clearly feasible for the problem given that it satisfies all the constramts of cut for-
mulation - Hence, the corresponding incidence vector (z 360, z ) is belong to F

= 1. Based on this,

we construct a solution 8% derived from the solution S% by adding the slot s as last-slot
to the demand k&’ with modifying the paths assigned to a subset of demands K ¢ K in S%
(i.e., ES® = E9 for each k € K \ K, and E? # E% for each k € K), and also the last-slots
ass1gned to the demands K \ {k: k’} 1n 860 remain the same in S%, i.e., S% = S8 for each
demand k” € K\ {k,k'}, and S9} = S U{s'} for the demand k', and modlfylng the last-slots
assigned to the demand k by addmg a new last-slot 5 and removing the last slot s & ggo
with s € {s; +w, +1,...,s;} and 5 ¢ {s; + w, + 1, ..., s;} for the demand k with v, € C s.t.
893 = (SOO\ {sHU{s} st {§—wp+1,...,8}N{s —wp +1,...,s'} = for each k¥’ € K and
s e 52,3 with E,?S N Eg? # (). The solution 8% is clearly feasible given that

and then to F ¢t given that it is composed by kaec S

S=8;+wi— 17 s

a) a feasible path E,?B is assigned to each demand k € K (routing constraint),

b) a set of last-slots 523 is assigned to each demand k£ € K along each edge e € Eg?’ with
S83| > 1 (contiguity and continuity constraints),
c) { —wp +1,...,8}N{s” —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S8 and
€ S% with EP N ES # 0, ie., for each edge e € E and each slot s” € S we have
ZkeK,eeEg3 [{s' € S83,s” € {s' —wi + 1,...,8'}| <1 (non-overlapping constraint).

~E
The corresponding incidence vector (xSGS, zsﬁg) is belong to F' and then to Fg I given that
it is composed by >_, Z?:S#wk_l 2% = 1. We have so

360 360 63 63 360 S60 1% k k 360 63
st +025" = /,Ll‘s +025" = ,LL:US +025" + Oy — 04 +0; — Z Z st + Z Z ,uxs
kEK ec SO keK ecES

It follows that % = 0¥ for demand &' and a slot s’ € {wy,...,5} with vy € C and &' €
{s; + wpr +1,...,5;} given that 0¥ =0 for § ¢ {s; +wy — 1,...,s;} with v, € C, and p¥ =0
forall k € K and alle € E\ (E§ U E}).

Given that the pair (v, vy ) are chosen arbitrary in the clique C, we iterate the same procedure
for all pairs (vg, vpr) s.t. we find

Uf = Uf,/, for all pairs (vg, v ) € C,
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b)

b)

with s € {s; +w —1,...,s;} and s’ € {s; + wy — 1, ..., 5;}. We re-do the same procedure for
each two slots s, s’ € {s; +wy — 1,...,s;} for each demand k € K with v, € C s.t.

a? = U§/,f01‘ all vy € C and s,s" € {s; + wr — 1,...,s;}.

Consequently, we obtain that o% = p for all v, € C and all s € {s; +wy, — 1,...,5;}.
On the other hand, we use the same technique applied in the polyhedron dimension proof

2:3.1] to prove that

,ue —'71 , for all ¥’ € K and all ¢’ EEO,

M’;, =45 forall ¥’ € K and all ¢’ € EV
ak,/ = 73 , forall ¥’ € K and all ' € {1,...,wp — 1}.

We conclude that for each kK € K and e € FE

ke, if e € EF,

k
e = 72’ , 1fe€E1,
0, otherwise,

and for each k € K and s €S

')/3 “lifse{1,...,w, — 1}
Uf =4 p,if vy € C and s € {s; + wy, — 1,...,$j},

0, otherwise.

As a result ( Z Z pﬁf + Q.

v €C s=s;+wi—1

Let N(v) denote the set of neighbors of node v in a given graph.

Theorem 2.4.8. Consider an interval of contiguous slots I = [s;, s;], and a pair of demands
k, k' € K with (vg,vp) in GF. Then, the inequality [2.34) is facet defining for P(G, K,S) iff

N(vg) N N(vp) =0 in the conflict graph G¥,

and there does not exist an interval of contiguous slots I' in [1,35] s.t. I C I' with
a) wy + wy > |I'|,right-hand
b) wi < |I'| and 2wy > |I'| + 1,
c) wy < |I'| and 2wy > |I'| + 1.

Proof. Neccessity.
We distinguish two cases:

if N(vg) NN (vgs) # 0 in the conflict graph G¥, this means that there exists a clique C' in the
conflict graph GE of cardinality equals to \C | > 3 with k, k" € C. As a result, the inequality
2.34)) is dommated by the inequality (2.35]) induced by the clique C'. Hence, the inequality
2.34) is not facet defining for P(G, K, S).

if there exists an interval of contiguous slots I’ in [1, 8] s.t. I C I’ with
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a) wg +wp > |I'],
b) wy < |I'| and 2wy, > |I'| + 1,
c) wy < |I,| and 2wy > |I/| + 1.

This means that the inequality (2.34) induced by the two demands k, k' for the interval I is
dominated by the inequality (2.34) induced by the same demands for the interval I'.

Sufficiency.
We use the same proof of the theorem for a clique C' = {vg,vp} in the conflict graph
Gr, O

2.4.5 Interval-Odd-Hole Inequalities

Proposition 2.4.14. Let I = [s;, s;] be an interval of contiguous slots in [1, 5] with s; < s;—1,
and H be an odd-hole H in the conflict graph G”IE with |H| > 5. Then, the inequality

> ZJ: z§g|H|2_1, (2.36)

v €EH s=s;+wi—1
is valid for P(G, K, S).

Proof. 1t is trivial given the definition of odd-hole set in the conflict graph CNJJIE . We strengthen
the proof as belows. For each pair of nodes (vg,vi/) linked in H by an edge, we know that
> g1 2+ Z?:sﬁwk,—l 2¥ < 1. Given that H is an odd-hole which means that we
have |H| — 1 pair of nodes (vg,vy) linked in H, and by doing a sum for all pairs of nodes
(vg, vg) linked in H, it follows that

Sj Sj
k K
2. 2 mt ), =<l
(’l}k,’vk/)EE(H) s=s;+wp—1 S/ZSi‘i’wk/*l

where F(H) denotes the set of edges in the sub-graph of the conflict graph GIE induced by

H. Taking into account that each node vy in H has two neighbors in H, this implies that

Z?: si4wp—1 zf appears twice in the previous inequality. As a result,

Sj Sj Sj Sj
k 14 k k
g g zZg + g Zy = E 2 E Zg, E 2 g zg < |H|—1.
(vg,v )EE(H) s=sitwr—1 s'=s;+w; —1 ve€H s=s;+wr—1 vy€H s=s;twi—1

By dividing the two sides of the previous sum by 2, it follows that

85
H| -1 H| -1
Z Z PARS V ’2 J _ | |2 since |H| is an odd number.

v €EH s=s;+wi—1
We conclude at the end that the inequality (2.36) is valid for P(G, K, S). O

The inequality (2.36) can be strengthened without modifying its right-hand side by com-
bining the inequality (2.35)) and (2.36)) as follows.

Proposition 2.4.15. Consider an interval of contiguous slots I = [s;, s;] C S with s; < s;—1.
Let H be an odd-hole H in the conflict graph G‘IE, and C be a clique in the conflict graph G”ILJ
with
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a) [H| =5,

b) and |C| > 3,

¢) and HNC =,

d) and the nodes (v, vy) are linked in G}E for all v, € H and vy € C.

Then, the inequality

> SZJ 25+ |H| Z Z P _|H|2_1 (2.37)

v €EH s=s;+wp—1 v €C s'=s;+wyr—1

is valid for P(G, K.,S).

Proof. It is trivial given the definition of odd-hole set and clique set in the conflict graph GE

s.t. if 0% S—sitwy—1 2K =1 for vy € O, it forces the quantity D el S s — 1 2% to be
equal to 0. Otherwise, we know from the inequality ([2.36]) that the sum D el S sitwp—1 7 P

is always smaller than % We strengthen the proof by assuming that the inequality (2.37] -

is not valid for P(G, K,S). It follows that there exists a C-RSA solution S in which each
s e{si+wp —1,...,s;} ¢ Sy for each demand k' with node vy in the clique C s.t.

>y z§(5)+|H|_1Z Z z§,’(5)>’H|2_1.

v €EH s=s;+wi—1 v €C 8'=s;+wyr—1
Since {si+wy —1,...,5;} ¢ Sy for each node vy in the clique C, this means that 3, <« S = sitwy—1 2F(S) =
0, and taking into account the inequality -, and that 3% sesitwp—1 %s (S) <1 for each vy, €

H and (S <1 for each v € C, it follows that 2k(8) <
Ve EH

’—s +wyr— 17 s sitwi—1 Zs

H / H -1
Hi ! which contradicts that Z Z 28(8)+ | | Z Z P (S)>| |2 .

v €EH s=s;+wi—1 v €C s'=s;4+wr—1
Similar for a solution S’ in which s € {s; + wy — 1, ..., sj} ¢ S, for each demand k with node
v in the odd-hole H s.t.

SOy sy S e ML

v, €H s=s;+wi—1 v €C 8'=s;+wyr —1

Since {s; + wy — 1,...,s;} ¢ S,fc for each node vy in the odd-hole H, this means that

kae i Zi’: sitwp—17 2F(S") = 0, and taking into account the inequality (2.35), and that
sz_sl+wk, L 28(8") < 1for each vy € C' It follows that iHl ! > v eC Z o —sitwy—1 %8 k(8" <

H-1 : k(g K [H| -1
5—, which contradicts that Z Z 22 (9 Z Z 25 (8" > —

v €H s=s;+wp—1 v €C s'=s;4+wyr—1
Hl—
Hence 32, cpr ISk N {si+we — 1,85 + 22, co |9 N {si +ww —1,.... 55} < i |2 1

O

Theorem 2.4.9. Let H be an odd-hole in the conflict graph é? with |H| > 5. Then, the
inequality (2.306)) is facet defining for P(G, K,S) if and only if

a) for each node vy ¢ H in é?, there exists a node v, € H s.t. the induced graph éf((H\
{vg}) U{vp}) does not contain an odd-hole H' = (H \ {vg}) U {vp },
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b)
)

and there does not ezist a node vy ¢ H in CNT”IE s.t. v s linked with all nodes vi, € H,
and there does nmot exist an interval I' of contiquous slots with I C I' s.t. H defines also an

odd-hole in the associated conflict graph GJIE,.

Proof. Neccessity.
We distinguish the following cases:

if for a node vy ¢ H in G¥, there exists a node v, € H s.t. the induced graph G¥ ((H\{v;,})U
{vi}) contains an odd-hole H = (H \ {vx}) U {vgs}. This implies that the inequality (2.36))
can be dominated by doing some lifting procedures using the following valid inequalities

S35
H| —
ooy At

v €H s'=s;+wp—1

v €H' s'=s;+w —1

as follows
55 55 55
! 99
E 28+ g PR, g E K <|H|-1.
s'=s;+wr—1 s'=s;+w, —1 v €EH\{k,k'} 8" =s;+wp» —1
. Sj k/ . . . .
By adding the sum 7 _ sitwy—1 2’ to the previous inequality, we obtain
55 sj sj sj
/! 9 !/
E Z‘f/ +2 E Zéc/ +2 E E an S |H| — 1+ E Zéc/.
s'=s;+wr—1 s'=s;4+w, —1 v EH\{k,k'} 8" =s;+wp» —1 s'=s;4+w, —1
Sj k/ .
We know that Zs,:Sierk,_l 2% <1, it follows that
85 55 55
! 9
Y o+2 D 2D > 2K < |H]|.
s'=s;+wr—1 s'=s;+w, —1 v EH\{k,k'} 8" =s;+wp» —1

By dividing the last inequality by 2, we obtain that

S5 Sj Sj

)RR T SRR S kSWJ

s'=s;+wp—1 s'=s;+wy —1 v €EH\{k,k'} 8" =s;+wp» —1
Given that H' = (H \ {k}) U{k'} s.t. |H'| = |H|, and |H| is an odd number which implies
H _
that VJJ — HI=1  Ag 5 result

2
S S
Zj L % Z ZJ wo_ [H| -1
525/ =+ an S T
s'=s;+wp—1 v €H' 8" =s;+w;r—1

That which was to be demonstrated.

if there exists a node v € H in G]IE s.t. vy is linked with all nodes vy, € H. As a result, the
inequality ([2.36]) is dominated by the following inequality

i H| -1 i . |H| =1
DI R =L S P

v, €H s'=s;+wp—1 s'=s;+w, —1
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c)

if there exists an interval I’ of contiguous slots with I C [ "s.t. H defines also an odd-hole
in the associated conflict graph G?,. This implies that the inequality (2.36]) induced by the
odd-hole H for the interval I is dominated by the inequality (2.36)) induced by the same
odd-hole H for the interval I’ given that {s; +wr—1,...,s;} C I for each k € H. As aresult,
the inequality (2.36)) is not facet defining for P(G, K S)

If no one of these two cases, the inequality (2.36) can never be dominated by another in-
equality without changing its right-hand side.
Suﬂ"i(:lency

Let Fyy ¢t denote the face induced by the inequality (2.36] -, which is given by

F§T = {(2,2) € PG K,S): S Z A=)

v €EH s=s;+wp—1

In order to prove that 1nequa11ty ka cH Z k< | Lis facet defining for P(G, K, S),

S=8;+wp— 1
we start checking that F; ¢r is a proper face, and F; cr #+ P(G, K,S). We construct a solution
S8 = (E64,854) as below

a feasible path E£4 is assigned to each demand k € K (routing constraint),

a set of last-slots 5’24 is assigned to each demand k € K along each edge ¢ € E,§4 with
S84 > 1 (contiguity and continuity constraints),

{s—wrp+1,.,s}N{s’ —wp +1,...} = 0 for each k, k' € K and each s € S%* and s’ € S9!
with ES4 N ES! # () (non-overlapping constraint),

and there is |H|271 demands H from the odd-hole H (i.e., v € H C H s.t. the demand k
selects a slot s as last-slot in the solution S0 with s € {gl +wi —1,...,55}, ie., s € 5’24 for
each node vy, € H, and for each s’ € S9! for all vy € H\ H we have s’ & {s; +wp — 1, ..., s;}.

Obviously, S% is a feasible solution for the problem given that it satisfies all the constraints of
64 64\ .
our cut formulation ([2.2)-(2.10). Moreover the corresponding incidence vector ( S5 s

belong to P(G, K, S) and then to FH’ given that it is composed by >_, S 2k =

s$=8;+wg— 1%s
|H‘2 L As a result, F  is not empty (i.e., F'y cr # (). Furthermore, given that s € {s; + wy —
1,. s]} for each v, € H, this means that there exists at least one feasible slot assignment
S for the demands k: in H with s ¢ {s; + wy —1,...,s;} for each s € S and each v, € H.
This means that F; ¢r # P(G, K,S).

We denote the inequality ka cH S k<

s=s;+wi—1 s =

IHI 1

by az + 8z < A. Let Mx+oz<7'

be a valid inequality that is facet defining F' of P(G, K,S). Suppose that F HI c F =
{(z,2) € P(G,K,S) : px+ o0z = 7}. We show that there exist p € R and v = (71, 72,73) (s.t.
1 € REkex |E§‘,72 € R kex ‘Eﬂ,fyg € RZkEK(wkfl)) s.t. (u,0) = p(a, B) + 7@, and that

ok = 0 for all demands k € K and all slots s € {wg,...,5} with s ¢ {s; +wg — 1,...,5;} if
v € H,

and p¥ = 0 for all demands k € K and all edges e € E \ (E} U EY),
and oF are equivalents for all vy € H and all s € {s; +wg — 1,...,5;}.

We first show that p¥ = 0 for each edge e € E \ (Ef U E¥) for each demand k € K.
Consider a demand k € K and an edge e € E \ (E§ U E¥). For that, we consider a solution
8’64 = (E'64,8'64) in which
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a) a feasible path El’f4 is assigned to each demand k € K (routing constraint),

b) a set of last-slots 51’464 is assigned to each demand k£ € K along each edge e € E,’€64 with
5754 > 1 (contiguity and continuity constraints),

c) {5’ —wg+1,., 8N {s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S and
€ 5% with ESt n ESY # 0, ie., for each edge e € E and each slot s” € S we have
ZkeK’eeEgM [{s' € S8, s” € {s' —wy, + 1,...,s'}| <1 (non-overlapping constraint),

d) the edge e is not non-compatible edge ‘with the selected edges e e E,;64 of demand k£ in the
solution S84, i.e., Ze’eE,’f‘* le + 1o < . As a result, ES* U {e} is a feasible path for the
demand k,

e) {s —wp+1,..,s}N{s —wp +1,...,5’} = 0 for each ¥’ € K and s € S{*? and ' € S22
with (Ej*? U { }) N E3? # 0 (non-overlapping constraint taking into account the possibility

of adding the edge e in the set of edges E/{C42 selected to route the demand % in the solution
5/42)7

f) and there is |H|271 demands H from the odd-hole H (i.e., v, € H C H s.t. the demand k
selects a slot s as last-slot in the solution 8 with s € {s; + wg — 1,..., 5}, i.e., s 6 5784 for
each node v, € H, and for each s’ € Si5* for all vy € H\ H we have s’ ¢ {si +wk/ —1,...,8}

8’6 is clearly feasible for the problem given that it satisfies all the constraints of cut for-
8/64 8164 .
mulation . - Hence, the corresponding incidence vector (x ) is belong to

F and then to FHI given that it is composed by >y S sitwp—1 P ‘Hl =1 Based
on this, we derive a solution S% obtained from the solution S’%* by adding an unused edge
e € E\ (E} U EY) for the routing of demand k in K in the solution S which means that
E% = E54 U {e}. The last-slots assigned to the demands K, and paths assigned the set of
demands K \ {k} in 8’ remain the same in the solution %, i.e., S9° = 554 for each k € K,

and ES = ES* for each k' € K \ {k}. 8% is clearly feasible given that
a) and a feasible path E{® is assigned to each demand k € K (routing constraint),

b) a set of last-slots 525 is assigned to each demand k£ € K along each edge e € Eg5 with
585 > 1 (contiguity and continuity constraints),

c) {s — wk +1,..,8tN{s" —wp +1,..,8"} = 0 for each k, k' € K and each s’ € SP° and
s" € S% with E65 N E65 # (), i.e., for each edge e € E and each slot s” € S we have
> okek, e B {s" € Sk ,s” e{s —wr+1,..,5} <1 (non-overlapping constraint).

“E
The corresponding incidence vector (z° 5% ) is belong to F' and then to F g’ given that
it is composed by >, S sitw—1 zf = | | . It follows that
st/(izl + UZ8/64 _ Mx565 + 0,2365 _ Mx5/64 + Iué. + 025/64

As a result, ;¥ = 0 for demand & and an edge e.
As e is chosen arbitrarily for the demand k with e ¢ E§ U E¥, we iterate the same procedure
for all ¢’ € E'\ (E§ U E¥ U {e}). We conclude that for the demand k

pk =0, foralle e E\ (E§UEY).

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all
k' € K\ {k}and all e € E'\ (E} U E¥). We conclude at the end that

F=0, forallk € K and all e € E\ (E§ U EY).
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Let’s us show that 0% = 0 for all k € K and all s € {wg, ...,5} with s ¢ {s; + w — 1,...,s;}
if v, € H. Consider the demand k and a slot s" in {wy, ..., 5} with s’ ¢ {s; +wi, — 1, ..., s;} if
v, € H. For that, we consider a solution 8”64 = (E”64 S’”64) in which

a feasible path E” 24 is assigned to each demand k € K (routing constraint),

a set of last-slots S”24 is assigned to each demand k € K along each edge e € E”24 with

5794 > 1 (contiguity and continuity constraints),

{s — wy —|— Lo, N{s" —wp +1,...,5"} = 0 for each k, k' € K and each s’ € S7%* and
€ $70 with E”"% N E”01 £ 0, i.e., for each edge e € E and each slot s” € S we have

ZkeK’eeE”% {s' € 5794 s” € {' —wp +1,...,s'}| < 1 (non-overlapping constraint),

and {s' —wy + 1,.., 8} N{s" —wp +1,..,8"} = 0 for each k' € K and s” € S”¢} with
E”24 nE” 2?1 # () (non-overlapping constraint taking into account the possibility of adding
the slot s’ in the set of last-slots S”¢! assigned to the demand k in the solution 8”%%),

and there is |H|271 demands H from the odd-hole H (i.e., v € H C H s.t. the demand k
selects a slot s as last-slot in the solution S7% with s € {83' +wp—1,...,s5} 1e,s€85” 24 for
each node vy, € H, and for each s’ € 7%} for all vy € H\ H we have s’ ¢ {s;+wp —1,..., s;}.

S764 is clearly feasible for the problem given that it satisfies all the constraints of cut formu-
lation - Hence, the corresponding incidence vector (z 5”64 ‘5”64) is belong to F

H|-1 .
s=s;+wy—1 %s —l ‘ . Based on this,

we construct a solution S% derived from the solution S”%* by adding the slot s’ as last-slot
to the demand & with modifying the paths assigned to a subset of demands K C K in §” 64
(ie., BS = E7% for each k € K \ K, and E{® # E”% for each k € K) s.t.

and then to FHI given that it is composed by 3, S

a new feasible path EP° is assigned to each demand k € K (routing constraint),

and {s' —w, +1,. s}ﬁ{s” —wp +1,...,5"} =0 for each k € K and k¥’ € K \ K and each
s e S”64 and s” € S” with E66 N E” # (), i.e., for each edge e € F and each slot s” € S
we have ZkEK,GEEgb ‘{S S S77647S77 c {S — wi, + 17 ...,S/}’ 4 ZkeK\k7eeE”g4 ‘{S/ c 577647377 c
{s' —wp+1,...,8'} <1 (non-overlapping constraint),

and {s' —wy +1,....8'} N {s” —wp +1,....5"} = 0 for each k' € K and s” € 5% (non-
overlapping constraint taking into account the possibility of adding the slot s’ in the set of
last-slots 5”94 assigned to the demand k in the solution S”%4).

The last-slots assigned to the demands K\ {k} in §”%* remain the same in %, i.e., $”%} = S
for each demand &’ € K \ {k}, and S%¢ = §”% U {s} for the demand k. The solutlon 866
clearly feasible given that

a feasible path E is assigned to each demand k € K (routing constraint),

a set of last-slots SSG is assigned to each demand k£ € K along each edge e € E,?G with
586 > 1 (contiguity and continuity constraints),

{ —wr+1,..,8tN{s" —wp +1,....,8"} = 0 for each k,k’ € K and each s’ € S and
s” € S with B N Eg,G # (), i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeEgﬁ [{s' € S% 5" € {s' —wy +1,...,5'} <1 (non-overlapping constraint).

S . Gr .
The corresponding incidence vector (x 566, 2366) is belong to F' and then to F;' given that
it is composed by >_, .y S b1 7 k= |H| L We have so
» 64 » 64 66 66 » 64 7 64 L k
u:z:s +025 = ,u:US +025" = ,uxs +025 + af, — Z Z ulg + Z Z HE'-

keK ecE"§4 kek e'eES
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It follows that o = 0 for demand k and a slot s’ € {wg, ..., 5} with s’ ¢ {s; + wy — 1,...,s;}
if v, € H given that p¥ = 0 for all the demands k € K and all edges e € E \ (Ef U E¥).
The slot s’ is chosen arbitrarily for the demand k, we iterate the same procedure for all
feasible slots in {wy, ..., §} of demand k with s’ ¢ {s; +wy — 1,...,s;} if v, € H s.t. we find

O’§/ =0, for demand k and all slots s’ € {wy,...,5} with s’ ¢ {s; + w, — 1,...,s;} if v, € H.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands
k' in K\ {k} such that

o =0, for all k' € K \ {k} and all slots s € {wy, ..., 5} with s ¢ {s; + wp — 1, ..., s;} if v € H.

Consequently, we conclude that
0% =0, for all k € K and all slots s € {wy, ..., 5} with s ¢ {s; +wy, — 1,...,s;} if vp € H.

Let prove that af,, for all vy € H and all s" € {s; +wy —1, ..., s;} are equivalents. Consider a
demand £’ with vy € H and a slot s’ € {s; +w —1, ..., s;}. For that, we consider a solution
S66 = (E56, §66) in which

a feasible path E26 is assigned to each demand k € K (routing constraint),

a set of last-slots S0 is assigned to each demand k € K along each edge e € E with
S86| > 1 (contiguity and continuity constraints),

{ —wp+1,..,8tN{s" —wp +1,...8"} = 0 for each k,k’ € K and each s’ € S and
s" € 52,6 with E,?G N Eg,6 # (), i.e., for each edge ¢ € FE and each slot s” € S we have
ZkeKﬁeEgG {s' € 890 57 € {s' —wy +1,...,8'}| < 1 (non-overlapping constraint),

and {s' —wp + 1,..,8} N {s” —wg + 1,...,8"} = 0 for each k € K and s” € S with
E66 Eg,ﬁ # () (non-overlapping constraint taking into account the possibility of adding the
510‘5 s’ in the set of last-slots Sg, assigned to the demand k' in the solution S%),

and there is # demands H from the odd-hole H (i.e., v, € H C H s.t. the demand k
selects a slot s as last-slot in the solution S% with s € {§z +w, —1,..., 55}, e, s € 5’26 for
each node vy € H, and for each s’ € S99 for all vjy € H\ H we have s’ & {s; +w — 1, ..., 5;}.

S96 s Clearly fea51ble for the problem given that it satisfies all the constraints of cut formu-

lation (2.2 . Hence, the corresponding incidence vector (z° ,zSGG) is belong to F' and
_ " | 1

then to FHI given that it is composed by >_, S PN . Based on this, we

s=s;+wr—1%s
construct a feasible solution S%7 derived from the solution S as belows

without changing the established paths for the demands K \ K in the solution 8%, i.e.,
EST = ES for each demand k € K \ K,

and with changing the established paths for the demands K in the solution S% to a new
paths EJ7 for each k € K s.t. {8” —wpr — 1,...,8"} N {s —wp +1,...,s} = 0 for each k" € K
and s” € S and s € S0 with EP7 N Eﬁi7 # Q)

remove the last-slot § totally covered by the interval I and which has been selected by a
demand k; € {vy,, ..., v, } in the solution 8% (i.e., 5 € S,?? and §' € {s; +wy, +1,...,5;}) s.t.
each pair of nodes (vy, vkj) are not linked in the odd-hole H with j # 1,

and select a new last-slot §' ¢ {s;+wy,+1, ..., s;} for the demand %; i.e. 867 (566\{3})U{§’}
st {&—wg, —1,..., 8N {s—wi+1,...,s} =0 foreach k € K and s € 566 ‘with E67ﬂE67 #0,

and add the slot s’ to the set of last-slots Sg, assigned to the demand &’ in the solution S%,
ie., SO S U {5},
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f)

and without changing the set of last-slots assigned to the demands K \ {k', k;}, i.e., S87 = S%6
for each demand K \ {K', k;}.

The solution S%7 is clearly feasible given that

a feasible path E27 is assigned to each demand k € K (routing constraint),

a set of last-slots 5’27 is assigned to each demand k£ € K along each edge e € E,EW with
|S87| > 1 (contiguity and continuity constraints),

{8 —wr +1,.,8tN{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S’ and
s" € 512,7 with E,EW N Eg,7 #+ (), i.e., for each edge e € E and each slot s” € S we have
Y ohek e EOT [{s' € S§7,s” € {s' —wj, +1,...,s'}| <1 (non-overlapping constraint).

~E
The corresponding incidence vector (m367, 2367) is belong to F' and then to Fg’ given that

it is composed by >_, -y szzsﬁwk_l 2k = |H|T_1 It follows that

66 66 67 67 66 66 ’ k. k. i i
/mcS +02° = /wrs 02 = u:vs +02° +U§/ —1—05}—051—2 Z ulé—l-z Z u];/.
kek e€E(p;) kek €'€E(p})

This implies that O’Lfi = af,l for vy, v € H given that oF = 0 for all demands k € K and all
slots s € {wy, ..., 5} with s ¢ {s; + wy + 1,...,s;} if vp € H, and p¥ = 0 for all the demands
k € K and all edges e € E\ (E§ U EY).

Given that the pair (vg,vr) are chosen arbitrary in the odd-hole H, we iterate the same
procedure for all pairs (v, vg) s.t. we find

k

oy = af,/, for all pairs (vg, v ) € H.

Consequently, we obtain that 0'§ =pforall vy, € H and all s € {s; +wy, —1,...,55}.
On the other hand, we use the same technique applied in the polyhedron dimension proof

to prove that
pf =~ for all ' € K and all ¢ € EY
,ul;,l = ﬂygl’e,, for all ¥ € K and all € € Ef/,
o =4 forall ¥ € K and all s’ € {1,...,wp — 1}.
We conclude that for each k € K and e € E
'yf’e, if e € EF,
,UI; = ’yg’e, ifee Ef,
0, otherwise,

and for each k € K and s € S

s if s € {1, ., wy, — 1},
0’§ =< pifvp € H and s € {s; + wy — 1,..., 55},

0, otherwise.

sj
As a result (p,0) = Z Z pBE +4Q. O

v €EH s=s;+wi—1

Theorem 2.4.10. Let H be an odd-hole, and C be a clique in the conflict graph G}E with
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a)
)
)
a)

|H| > 5,

and |C| > 3,

and HNC =0,

and the nodes (v, vp) are linked in G¥ for all vy, € H and vy € C.

Then, the inequality (2.37)) is facet defining for P(G, K,S) if and only if

a) for each node vy in G¥ with vi» ¢ HUC and C' U {vp} is a clique in G¥, there exists a

b)

subset of nodes H C H of size lH‘Q_l s.t. HU{v} is stable in GIE,

and there does not exist an interval I' of contiguous slots with I C I’ s.t. H and C define
also an odd-hole and its connected clique in the associated conflict graph GJIE,.

Proof. Neccessity.

Note that if there exists a node vy» ¢ H UC in G}E s.t. vp» is linked with all nodes v, € H
and all nodes vy € C. This implies that the inequality (2.37)) is dominated by the following
inequality

s H , Hl — Sj ) Hl —
SIS R SR SR LI S ST R

v €EH s=s;+wi—1 v €C 8'=s;+w;r—1 s'=s;+wp»—1

if there exists an interval I’ of contiguous slots with I C I’ s.t. H and C define also an
odd-hole and its connected clique in the associated conflict graph C;”IE, This implies that the
inequality induced by the odd-hole H and clique C for the interval I is dominated by
the inequality induced by the same odd-hole H and clique C for the interval I’ given
that {s; + wy —1,...,s;} C I’ for each k € H.

If these cases are not verified, we ensure that the inequality can never be dominated
by another inequality without modifying its right-hand side. Otherwise, the inequality
is not facet defining for P(G, K, S).

Suﬂimency

Let FH - denote the face induced by the inequality ([2.37] -, which is given by

FSE = {(@,2) € PG KS): ¥ Z zf+‘H‘2_1Z Zj z;i’:‘H‘Q_l}.

v, €H s=s;+wr—1 v €C s'=s;+wyr—1

H|-1 '
In order to prove that inequality EvkEH ZS sitwp—1 z + | ‘2 ka/ec Zs,fsﬁ_wk/ 1 f <
% is facet defining for P(G, K,S), we start checking that FHO is a proper face, and
~E
Fg’c # P(G,K,S). We construct a solution S% = (E%, %) as below

a feasible path E® is assigned to each demand k € K (routing constraint),

a set of last-slots 5’28 is assigned to each demand k € K along each edge ¢ € Egg with
588 > 1 (contiguity and continuity constraints),
{s—wrp+1,..,s}N{s’ —wp +1,...8} = 0 for each k, k' € K and each s € Sf® and s’ € S
with ES8 N ES? # () (non-overlapping constraint),
and there is |H|T_1 demands H from the odd-hole H (i.e., v, € H C H s.t. the demand k

selects a slot s as last-slot in the solution SO with s € {fz +w, —1,...,5;}, ie, s € 5’28 for
each node v € H, and for each s’ € S for all viy € H\ H we have s’ & {s; +wp —1,...,5;},
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e)

and no demand from the clique C selects a last-slot s in the interval I in the solution S,
i.e., for each k € C and each s € SP® we have s & {s; +wy + 1,...,5;}.

Obviously, S is a feasible solution for the problem given that it satisfies all the constraints of
our cut formulation (2.2 - Moreover the corresponding incidence vector ( 368 368) i

is
belong to P(G, K, S) and then to FH - given that it is composed by > peen > 2k +

s= sﬁ-wk 1

H|-1 H|-1

| ‘2 ka/ecz sy — 2 = 1H|=1 ‘ . As a result, FHC is not empty (i.e., HC # 0).
Furthermore, given that s € {s; +wk 1,...,s;} for each vy € H, this means that there exists
at least one feasible slot assignment Sy, for the demands kin H with s ¢ {s; +wp —1,...,5;}

for each s € S and each vy € H. This means that F ne # P(G,K,S).
We denote the inequality kaeHZ 2k < |H| Lby az+ B2 < A Let yx+0z <7

s=8;+wg— 1%s
~E

be a valid inequality that is facet defining F' of P(G, K,S). Suppose that FS’C Cc F =

{(z,2) € P(G,K,S) : px+ oz = 7}. We show that there exist p € R and v = (71, 72,73) (s.t.

1 € REker [B0] 1y € REwer 151 53 € REkex (@D st (31, 0) = p(a, B) +7Q, and that

ok =0 for all demands k € K and all slots s € {wg,...,5} with s ¢ {s; + wg — 1,...,5;} if
v € HUC as we did in the proof of theorem [2.4.14

and p¥ = 0 for all demands k € K and all edges e € E \ (E} U E¥) as we did in the proof of
theorem

and o¥ are equivalents for all v € H and all s € {s; +wp — 1,..., s;j} as we did in the proof

of theorem

s.t. the solutions S —&% stlll feasible for F ¢ given that it is composed by >, S
|H|-1
2
v € C and all s € {s; + wy — 1,...,33}. For that, we consider a node v € C and a slot

s € {si+wg —1,...,5;}. For that, we consider a solution S = (E™, §7) in which

S=8i+twg—

ka/ec S I sidwy—1%s = ‘H| L We should prove now that ¥ are equivalents for all

a feasible path E,ZO is assigned to each demand k € K (routing constraint),

a set of last-slots S,ZO is assigned to each demand k£ € K along each edge e € E,ZO with
|S7%] > 1 (contiguity and continuity constraints),

{ —wr+1,..,8tN{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S]° and
s" € S,Z,O with E,ZO N E,Z,O # (), i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeE,ZO {s' € S10,s” € {s' —wy +1,...,5'} <1 (non-overlapping constraint),

and {s' —wp + 1,..,8} N {s” —wg + 1,...,8"} = 0 for each k € K and s” € S/° with
E,ZO N E,ZP # () (non-overlapping constraint taking into account the possibility of adding the
slot s in the set of last-slots S/ assigned to the demand k in the solution S™),

and there is |H|T_1 demands H from the odd-hole H (i.c., v, € H C H s.t. the demand k
selects a slot s as last-slot in the solution S0 with s € {.gl +w, —1,..., 55}, ie, s € S’ZO for
each node vy € H, and for each s’ € S} for all vjy € H\ H we have s’ & {s; +w — 1, ..., 5;}.

S0 is clearly feasible for the problem given that it satisfies all the constraints of cut formu-
lation ([2.2) - Hence, the corresponding incidence vector (z° ,2370) is belong to F' and

1

k/

254—

H|-1
then to FH ', given that it is composed by kaeH ZS sitwy—1 Zs 2y | ka/ec ZS —sitwy—1 %5 =

HI=1 "Based on this, we construct a solution S™* derived from the solutlon S as belows

without changing the established paths for the demands K in the solution S7°, i.e., E,Zl = E,ZO
for each demand k € K,
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remove all the last-slots 5; totally covered by the interval I and which has been selected by
each demand k; € {vg,, ..., v, } in the solution S™ (i.e., 5 € S,Z? and § € {s; +wg, +1,...,5;})
for each k; € {vg,, ..., vk, },

and select a new last-slot &, ¢ {s; + wy, + 1,...,s;} for each k; € {vp,,..., vy, } i.e., SIZ} =
(SION{3:}) U{5} st {8]—wp, —1,..., 5} {s—w+1,...,s} = 0 for each k € K and s € S/°
with E/' N EIZ} # () for each k; € {vg,, ..., vk, },

and add the slot s’ to the set of last-slots S,zlo assigned to the demand &’ in the solution S,
e., STH= S0 U {s'},

without changing the set of last-slots assigned to the demands K \ {k’, k;}, i.e., SJ' = ST0

for each demand K \ {£’, k;}.

The solution S™ is clearly feasible given that

a feasible path E,Zl is assigned to each demand k € K (routing constraint),

a set of last-slots S,Zl is assigned to each demand k£ € K along each edge e € E,Zl with

|STH > 1 (contiguity and continuity constraints),

{8 —wr+1,..,8tN{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € SJ! and
€ S7} with E,Zl N E,Z,I # (), i.e., for each edge e € E and each slot s” € S we have

ZkeK,eeE,Zl {s' € 871, s € {s' —wy +1,...,5'}| <1 (non-overlapping constraint).

.. 71 71, . GE .
The corresponding incidence vector (z°",25") is belong to F and then to F' IC given that
o S5 k |H|—-1 \H| 1
it is composed by 32, ey > ils fup—1%s T 3 2ov,cC Zs,:sﬁwk/ (2K = . We have
SO
570 S?O 571 S71 S?O S70 k! " ki " ki
pxr=  +oz" = purs +oz" =puxt +oz +O-S/+ZO-§;_ZO-§7Z'

This implies that Y, 0~ = o o ' for vy € H given that o% = 0 for all demands k € K and
all slots s € {wy, ..., 5} Wlth s ¢ {81 +wp +1,...,s;if vy e HUC.

Given that the vy and ¢’ € {s; + wp + 1, ..., sj} are chosen arbitrary in the clique C, we
iterate the same procedure for all pairs vy € C and all ' € {s; + wy +1,...,s;} s.t. we find

/ H| -1
Jf/ = p|‘2,for all vy € C and ' € {s; +wy + 1, ey 85}

As a result,

ok = crfll,for all (vg,vp) € C and s € {s; +wr +1,...,s;} and 8" € {s; + wpr + 1, ..., 5;}.

Consequently, we obtain that 0 = pl =1 for all v € C and all ' € {s; +wp —1,...,5;}.
On the other hand, we use the same technlque applied in the polyhedron dimension proof

[2.3] to prove that
p =K for all ' € K and all ¢ € EY
=~k for all ' € K and all ¢ € BV
okl = ’yi],f/’sl, for all ¥’ € K and all ' € {1,...,wp — 1}.

S
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We conclude that for each kK € K and e € FE

e it e e B,
k
e = 72 , 1fe€E1,

0, otherwise,

and for each k € K and s € S

i s € {1, — 1),
p,ikaeHandse{si—l—wk— ,...,sj},

k
o Hl —
° p| | Jifvp € Cand s € {s; +wp — 1,..., 55},

0, otherwise.

As a result ( Z Z pﬂf ‘H’ -1 Z Z p/)f/ +7Q. O

v €EH s=s;+wp—1 v €C s'=s;+w; —1

2.4.6 Slot-Assignment-Clique Inequalities

On the other hand, we detected that there may exist some cases that are not covered by
the inequality (2.27]) previously introduced. For this, we provide the following definition of a
conflict graph and its associated inequality.

Definition 2.4.6. Let GE be a conflict graph deﬁned as follows. For all slot s € {wy, ...,5}
and demand k € K, conszder a node vy, s in Gs Two nodes vy s and vy o are linked by an
edgemGEiﬁEkﬂEk#(Z)and{s—wk—l—l s}ﬁ{s—wk/—i—l ’}7&@

The conflict graph G? does not define an interval graph given that some nodes vy, s and
.o are not linked even if {s—wy,+1, ..., s}N{s' —wp +1,..., 8} # 0 (i.e., when EFNEF # 0).

Proposition 2.4.16. Let C be a clique in the conflict graph G’g with |C| > 3. Then, the
mequality

> o<, (2.38)

’l}k7s€c
is valid for P(G, K,S).

Proof. 1t is trivial given the definition of a clique set in the conflict graph ég s.t. for each
two linked nodes v s and vy ¢ in ng , we know that the inequality

k K
zZg +zg <1,

is valid for P(G, K,S). By adding the previous inequalities for all two linked nodes vy s and
Vo ID Gg, we get

Sel -t <ol -1 = 3 S_:g}_l _ Z b,

Vk,s Vk,s

which ends the proof. O
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Remark 2.4.4. The inequality (2.38) associated with a clique C, it is dominated by the

inequality (2.35) associated with an interval I = [s;,s;] and a subset of demands K iff

[ minc(s—wk+1), maxcs] C I and wp+wi > |I|+1 for each (vg,vpr) € C, and 2wy, > |I|+1
Vk,s€

Vk,s

and wy, < |I| for each vy, € C.

Proof. Consider an interval of contiguous slots I = [s;,s;] € [1,5]. Let C be a clique in the
conflict graph G&, and K = {k € K s.t. vy, € C} be a subset of demands in K with K is a
clique in the conflict graph GJIE for the interval I = [s;, s ].

Neccessity.

First, assume that

se{s—wr+1,...,s}N{s’ —wp + 1,5} for each pair of nodes (vy s, vy &) in C,

and [ min (s —wy + 1), max s] C I.
UkysEC ’Uhséc

Given that s —w; +1 > min (s’ —wp + 1) and s < max s for each v € C, and
Uk/’slec ’L)k/7S/€C ’

that [{s —wy + 1,...,s}| = wy, for each vy s € C, it follows that s € {s; + wp —1,...;8;} =
[si +wy — 1, s5] for each v s € C of demand k € K. As a result, we get that

k k k
> > A=+ > 25, (2.39)
keK S'E{Si-‘r’wk—l,..-,sj} keK keK 5/6{5i+wk_17~~-7sj}\{8}
Taking into account that K = {k € K s.t. vg,s € C}, this means that
k k
D=2 A
k’e[( Uk,sec
It follows that
k k k
Y OY o 4-yay %Y
keK s'€{sitwr—1,...,s;} v, s €C keK s'€{sitwr—1,...,5; }\{s}

Given that all the variable 2% is positive for each k € K and s € S, this implies that

)DIED SRNED SR

Uk’sec LeK S/E{Si+’wk71,...,8j}
Hence, the inequality (2.38]) is dominated by the inequality ([2.35)).

Sufficiency.
Assume that the inequality (2.38) is dominated by the inequality (2.35)). It follows that

TS SR SRR SR ED SHID DR

v, s€C keK s'€{si+wi—1,...;s;} keK keK s'e{si+wr—1,...,55}
Given that the demands in K are independants, this allows us to take that

2k < Z 2% for each k € K.
s'e{si+wr—1,...,5;}

Given that the variable 2 is positive for each k € K and s € S, this means that

se{si+wy—1,..,s;} for each k € K,
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which is equivalent to say that
se{si+w,—1,...,s;} for each node vy, € C = s {s;+w, —1,...,5;}
It follows that
s —wy, + 1 € I for each node vy, ;s € C.

As a result,

min (s —wy + 1) € I and max s € I for each node v, € C

Vk, SEC Vi, SGC

= [min (s —wg + 1), max s] C I.

vk,sEC Uk’SEC -

Furthermore, and given that wy +wy > |I| for each pair of demands k, k' € K, it follows that
{s—wp+1,....s}N{s' —wp +1,...,s} #0 for each s € {s; +wp—1,...,s;} and s’ € {s;+wy —

., 85} of each pair of demands k, k' € K. Hence, {s—wr+1,.,s}n{s—wp+1,....8} #0
for each pair (vj s, v ¢) € C since s € {s; +wp —1,...,s;} and s’ € {s; +wp — 1,...,5;}. We
conclude at the end that

se{s—wip+1,...,s}N{s —wp + 1,5} for each pair of nodes (vy s, vy &) in C,

d i — 1 clI
an [vﬂlgc(s wy, + ),vrlilsaé}(c s| 1,

which ends the proof. O

Theorem 2.4.11. Consider a clique C' in the conflict graph GE. Then, the mequalzty -
is facet defining for P(G, K,S) iff C is a mazximal clique in the conflict graph GS, and there
does not exist an interval of contiguous slots I = [s;, s;] C [1, 5] with

i - 1 cl
iz (s =+ 1), mag o <
and wi +wy > |I| + 1 for each (v, vyr) € C,
and 2wy, > |I| + 1 and wy, < |I| for each vy, € C.

Proof. Neccessity.

If C' is a not maximal clique in the conflict graph G’g , this means that the inequality can
be dominated by another inequality associated with a clique C’ s.t. C' C C’ without changing
its right-hand side. Moreover, if there exists an interval of contiguous slots I = [s;, s;] C [1, 3]
with

[vfiienc(s —wy + 1), Jas, s C 1,

and wy, + wg > |I| + 1 for each (vg,vp) € C,
and 2wy, > |I| + 1 and wy < || for each vy € C.
Then, the inequality ([2.38]) is dominated by the inequality (2.35). As a result, the inequality

cannot be facet defining for P(G, K, S).
Sufﬁc1ency

Let F, s denote the face induced by the inequality -, which is given by

FSF = {(,2) e P(G,K,8): 3 2E=1}.

Vk, GEC
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In order to prove that inequality >, wECE k' < 1 is facet defining for P(G, K,S), we start

S

checking that Fg is a proper face, and F 75 P(G, K,S). We construct a solution S™ =
(E™,87) as below

a feasible path E7? is assigned to each demand k € K (routing constraint),

a set of last-slots S,ZQ is assigned to each demand k& € K along each edge ¢’ € E,ZQ with
|S72| > 1 (contiguity and continuity constraints),
{s—wrp+1,..,s}N{s' —wp +1,...s'} = 0 for each k,k’ € K and each s € SJ* and s’ € S/?
with Ef2 N E7? # () (non-overlapping constraint),
and there is one pair of demand £ and slot s from the clique C' (i.e., vg s € C s.t. the demand

k selects the slot s as last-slot in the solution S72, i.e., s € S,? for a node v, € C, and
s’ ¢ S7? for all vy ¢ € C'\ {vg.s}-

Obviously, 8™ is a feasible solution for the problem given that it satisfies all the constraints
of our cut formulation (2.2} - Moreover the corresponding incidence vector ( 57 572)

is belong to P(G K, S) and then to FC given that it is composed by ka o =1. As

a result, FCS is not empty (i.e., FCS # (). Furthermore, given that s € {wg, ..., 5} for each
vg,s € C, this means that there exists at least one feasible slot assignment S, for the demands
~E
k in C with s ¢ S, for each vy, € C. This means that Fi® # P(G, K,S).
Let denote the inequality kasec 28 < 1byar+ Bz <\ Let uz+ 0z < 7 be a valid
~E

inequality that is facet defining F' of P(G, K,S). Suppose that ng C F = {(z,2) €
P(G,K,S) : ux + oz = 7}. We show that there exist p € R and v = (71,72,73) (s.t.
1 € REkex |E§‘,72 € Rkek ‘Eﬂ,fyg € RZkeK(“’k_l)) s.t. (u,0) = p(a, B) +~vQ, and that

0% =0 for all demands k € K and all slots s € {wy, ..., 5} with vps € O,

and p¥ = 0 for all demands k € K and all edges e € E \ (E} U EY),

and afj are equivalents for all vy , € C.

We first show that u¥ = 0 for each edge e € E \ (E} U E¥) for each demand k € K.

Consider a demand k € K and an edge e € E\ (E} U EF). For that, we consider a solution
S’ = (E'™,8'™) in which

a feasible path ;72 is assigned to each demand k € K (routing constraint),

a set of last-slots S,’g72 is assigned to each demand k € K along each edge e € E,’jQ with
1S/7| > 1 (contiguity and continuity constraints),

{8 —wr + 1,8t N {s" —wp +1,...,5"} = () for each k, k' € K and each s’ € 51/672 and
€ S7? with E? N B2 # 0, i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeE;j? {s' € 8%, 8" € {s’ —wg +1,...,8'}| <1 (non-overlapping constraint),

{—wrp+1,...,s}N{s” —wp +1,...,s"} = 0 for each ¥’ € K and each s’ € S;'* and s” € S/
with (B} U {e}) NET 40 (non—overlapping constraint taking into account the possibility
of adding the edge e in the set of edges E,’:Q selected to route the demand k in the solution
8/72),

the edge e is not non-compatible edge with the selected edges e € El’jz of demand k in the
solution 8’72, i.e., Ze’eE,’j? le +le < lp. As aresult, E;% U {e} is a feasible path for the
demand k,
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f)

and there is one pair of demand £ and slot s from the clique C' (i.e., vi s € C s.t. the demand
k selects the slot s as last-slot in the solution S'2, ie., s € 5,272 for a node v; s € C, and
s’ ¢ Si? for all vy ¢ € C'\ {vg.s}-

CUERT clearly feasible for the problem given that it satisfies all the constraints of cut for-
8172 8/72 .
mulation (2.2 - Hence, the corresponding incidence vector (x ) is belong to F

and then to F, 5 given that it is composed by > = 1. Based on this, we derive a

Vk,s eCc? S
solution 8™ obtained from the solution S'"? by adding an unused edge e € E \ (E U E¥) for
the routing of demand k in K in the solution S™ which means that E® = E}"? U {e}. The
last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in &'
remain the same in the solution S™, i.e., S, 73— =5} ™ for each k € K, and E E,’J,Q for each
k' € K\ {k}. 8™ is clearly feasible given that

and a feasible path E/? is assigned to each demand k € K (routing constraint),

a set of last-slots 5’23 is assigned to each demand k£ € K along each edge e € E,Z?’ with
|S73| > 1 (contiguity and continuity constraints),

{ —wr+1,..,8tN{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S] and
s" € ST3 with E,Z‘g N E,Z,?’ # (), i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeE,? [{s" € S{%,s” € {s' —wy, +1,...,s'}| <1 (non-overlapping constraint).

~E
The corresponding incidence vector (z 873, z 73) is belong to F' and then to FCG 9 given that
it is composed by ka co 2% = 1. It follows that
M$8172 + O'ZSI72 _ Iu/x573 + 0_2873 _ Mx5/72 + Iué. + 0_25/72

As a result, ;¥ = 0 for demand k and an edge e.
As e is chosen arbitrarily for the demand k with e ¢ E[])C U E{“, we iterate the same procedure
for all ¢’ € E'\ (E§ U E¥ U {e}). We conclude that for the demand k

’;:0, for alleEE\(E(’fUEf)-

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all
k'€ K\ {k} and all e € E'\ (E} U E¥). We conclude at the end that

F=0, forallk € K and all e € E\ (E§ U EY).

Let’s us show that 0% = 0 for all k € K and all s € {w,...,5} with vy, ¢ C. Consider
the demand k and a slot s’ in {wy,...,5} with vy ¢ ¢ C. For that, we consider a solution
§"™ = (E™2,9°™) in which

a feasible path E”7? is assigned to each demand k € K (routing constraint),

a set of last-slots S” ZZ is assigned to each demand k € K along each edge e € E”ZZ with
S772| > 1 (contiguity and continuity constraints),
s — wy + 1,...,8YN{s" —wp +1,...,8"} = 0 for each k,k € K and each s’ € S”7% and
k
c 872 o with E”ZQ N E”Z,Z # (), i.e., for each edge e € E and each slot s” € S we have
ZkEK,eGE”ZQ {s' € 712, 8" € { —wyp +1,...,s'}| <1 (non-overlapping constraint),

and {s' —wy + 1,...,8'} N {s" —wp +1,...,8"} = () for each ¥ € K and s” € S/? with
E”? NE” 2,2 # () (non-overlapping constraint taking into account the possibility of adding
the slot s’ in the set of last-slots S”7? assigned to the demand k in the solution 8”7%),
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e)

and there is one pair of demand £ and slot s from the clique C' (i.e., vi s € C s.t. the demand
k selects the slot s as last-slot in the solution S”72, i.e., s € S” 22 for a node v, s € C, and
s’ ¢ S"72 for all vp ¢ € C\ {vgs}.

S is clearly feasible for the problem given that it satisfies all the constraints of cut formu-
lation - Hence, the corresponding incidence vector (568”72 3”72) is belong to F

and then to F, s given that it is composed by > = 1. Based on this, we construct a

Vk,s EC S
solution 8™ derived from the solution S”7? by adding the slot s’ as last-slot to the demand &
with modifying the paths assigned to a subset of demands K C K in 8”7 (i.e., E,Z4 =F ,?

for each k € K \ K, and Ef* # E"]? for each k € K) s.t.

a new feasible path E,Z4 is assigned to each demand k € K (routing constraint),

and {s' —wy +1,. ’}ﬂ{s” —wp +1,...,5"} =0 for each k € K and k¥’ € K \ K and each
s e S”72 and s” € S” with E74 N E” # (), i.e., for each edge e € E and each slot 7 € S
we have ZkEK,eEEl? ‘{S S S’772 PEl= {S — wy, + 17 ...,S/}| 4 ZkeK\K@eE”ZQ |{S, c 5”72,8” c
{s' —wr+1,...,s'}| <1 (non-overlapping constraint),

and {s' —wy +1,...,8'} N {s” —wp +1,....5"} = 0 for each &’ € K and s” € S”7? (non-
overlapping constraint taking into account the possibility of adding the slot s’ in the set of
last-slots S” 72 assigned to the demand k in the solution S”72).

The last-slots assigned to the demands K\ {k} in §”"® remain the same in 8™, i.e., §772 = ST}
for each demand k' € K \ {k}, and S/ = S”72 U {s} for the demand k. The solution ™ is
clearly feasible given that

a feasible path E,Z4 is assigned to each demand k£ € K (routing constraint),

a set of last-slots S,Z4 is assigned to each demand k£ € K along each edge e € E,ZA‘ with
S74| > 1 (contiguity and continuity constraints),

k guity y
{ —wr+1,..,8tN{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S]* and
s" € ST with E,Z4 N E,Zfl # (), i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeEg‘l [{s" € S{*,s” € {s' —wy, +1,...,s'}| <1 (non-overlapping constraint).

S . GE .
The corresponding 1n01dence vector (z s 2374) is belong to F' and then to F,* given that
it is composed by ka cc? k = 1. We have so
» T2 9 T2 74 74 9 T2 99 T2 2 L
/m?‘s +025" = ,uw‘s +025" = ,uacs +025" + afl — Z Z ,ulz + Z Z u’;.

keK eeE"[? keK e'eE[*

It follows that 0% = 0 for demand k and a slot s’ € {wy,...,5} with vy ¢ ¢ C given that
pk =0 for all the demands k € K and all edges e € E'\ (Ef U EY).
The slot s’ is chosen arbitrarily for the demand k, we iterate the same procedure for all
feasible slots in {wy, ..., 5} of demand k with v;, ¢ ¢ C s.t. we find

o% =0, for demand k and all slots s’ € {w, ..., 5} with vk,s ¢ C.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands
K in K\ {k} such that

o =0, for all ¥ € K \ {k} and all slots s € {wy, ..., 5} with v s & C..
Consequently, we conclude that

0% =0, for all k € K and all slots s € {wy, ..., 5} with vy, & C.
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Let’s prove that O‘k for all vy, € C' are equivalents. Consider a node vy ¢ in C' s.t. s ¢ S7?
For that, we consider a solution S™ = (E7,57) in which

a feasible path E,ZQ is assigned to each demand k € K (routing constraint),

a set of last-slots 5’,32 is assigned to each demand k£ € K along each edge e € E‘,? with
|S72| > 1 (contiguity and continuity constraints),

{8/ —wp +1,..,8}N{s" —wp +1,....,8"} = () for each k,k € K and each s’ € 5’22 and
s" € ST? with E,Z% N E,Z,z # (), i.e., for each edge e € E and each slot s” € S we have
Y kek ceiT? s € S/2,s" € {s' —wy +1,...,8'}| <1 (non-overlapping constraint),

and {s—wg+1,....,s}N{s’"—wp+1,...,s'} =0 foreach k € K and s € 5’;2 with ENI?HEZ? # )
(non—overlapping constraint taking into account the possibility of adding the slot s’ in the set
of last-slots 572 assigned to the demand k' in the solution S™),

and there is one pair of demand & and slot s from the clique C (i.e., v s € C s.t. the demand
k selects the slot s as last-slot in the solution S72, i.e., s € S”? for a node v, € C, and
s” & S”T2 for all v o € C\ {vg.s}-

S™ is clearly fea81ble for the problem given that it satisfies all the constraints of cut formu-
lation (2.2 . Hence, the corresponding incidence vector (z° ? S S ) is belong to F' and

then to FC § given that it is composed by = 1. Based on this, we construct a solu-

Vk,s eCc S
tion 87 derived from the solution S72 by adding the slot s as last-slot to the demand &’ with
modifying the paths assigned to a subset of demands K C K in 8™ (i.e., E,ZE‘ = E,ZQ for each
k€ K\ K,and EJ° # E]? for each k € K), and also the last-slots assigned to the demands
K\ {k k'} 1n S™ remain the same in S™, i.e., Sj? = S? for each demand k” € K \ {k,k'},
and S7P 2U{s'} for the demand &', and modlfymg the last-slots assigned to the demand
k by adding a new last-slot s and removing the last slot s € 5’72 with v s € C and vi 5 ¢ C
s.t. S7° = (S]2\ {s}) U{5} for the demand k s.t. {5 —wg+1,...,5} N{s' —wp +1,...,8} =0
for each k' € K and s’ € 5’ with E75 E,Z,E’ # (). The solutlon S™ is clearly feasible given
that

a feasible path E,ZE’ is assigned to each demand k € K (routing constraint),

a set of last-slots 5’,35 is assigned to each demand k£ € K along each edge e € E,ZE’ with
S5 > 1 (contiguity and continuity constraints),

k guity y
{ —wr+1,..,8tN{s" —wp +1,...8"} = 0 for each k,k’ € K and each s’ € S]° and
s" € ST with E,ZE’ N E,Z,5 # (), i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeng’ {s' € S[°, 8" € {s' —wy +1,...,5'} <1 (non-overlapping constraint).

S . GE .
The corresponding 1n01dence vector (z 575, 2875) is belong to F' and then to F,* given that
it is composed by ka cc? k = 1. We have so
Mx572 + 02872 _ Mx875 + 02575 _ Mx872 + 02572 + 0’5,, . 0'5 + 0’§

DID WS WD W

keK ecE7? keK ecE[®

It follows that ¢¥ = 0¥ for demand k' and a slot s’ € {wy, ..., 5} with vy o € C given that
ok =0forvg; ¢ C,and ¥ =0 forall k € K and all e € E \ (Ef U EY).
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Given that the pair (vi s, vy o) are chosen arbitrary in the clique C, we iterate the same
procedure for all pairs (v s, Vg o) s.t. we find

/ .
af = af, ,for all pairs (vys,vp o) € C.

Consequently, we obtain that 0'§ = p for all pairs vy, € C.
On the other hand, we use the same technique applied in the polyhedron dimension proof

to prove that

p = for all ' € K and all ¢ € EY

ph =8 for all ' € K and all ¢ € EV

af,/ = ’yi])f/’sl, for all ¥’ € K and all s € {1,...,wp — 1}.
We conclude that for each k € K and e € E
e it e € BY
pe = Ake ife c BE
0, otherwise
and for each k € K and s € S
s if s € {1, .., wy, — 1}

Os = Palf Vk,s € C,
0,if vy s & C.

As a result (pu,0) = Z pBY +7Q. O

vk,seC

2.4.7 Slot-Assignment-Odd-Hole Inequalities

We have observed that the conflict graph ég cannot define a interval graph graph given that
it contains some nodes vy s and vy ¢ that are linked even if the {s —wp +1,...,s} N {s' —
wg + 1,...,8'} =0, i.e., when k = k/. As a result, one can strengthen the inequality
by introducing the following inequalities based on the so-called odd-hole inequalities.

Proposition 2.4.17. Let H be an odd-hole in the conflict graph C:'g with |H| > 5. Then,
the inequality

H|l-1
S ot (2.40)

2
’l}k7S€H
is valid for P(G, K, S).

Proof. 1t is trivial given the definition of the odd-hole in the conflict graph G’E s.t. for each
pair of nodes (vy s, vk &) linked in H by an edge, we know that 2k + zf,/ < 1. Given that H
is an odd-hole which means that we have |H| — 1 pair of nodes (v s, Vi &) linked in H, and

by doing a sum over all pairs of nodes (vj s, vy &) linked in H, it follows that

Z P < |H| -1
(Vk,s,0p7 5 )EE(H)
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Taking into account that each node v; in H has two neighbors in H, this implies that zf
appears twice in the previous inequality. As a result,

Z zf—f—zf,/: Z 28 — Z 2:F <|H| -1

(’Uk’s,’l}klys/)EE(H) Uk,seH ’l)kysGH

Hl -1 H|l-1
= ZE:H 2k < V |2 J = | ‘2 since |H| is an odd number.
Vk,s

We conclude at the end that the inequality (2.40) is valid for P(G, K,S). O

Remark 2.4.5. The inequality (2.40) is dominated by the inequality (2.36)) iff there exists
an interval of contiguous slots I = [s;, s;] C [1, 5] with

[vigiGHH(s — wy + 1)’11?’13%};1] clI,

and wi, +wy > |I| + 1 for each (vg,vyr) linked in H,

and 2wy, > |I| + 1 and wy, < |I| for each vy, € H.

Proof. Consider an interval of contiguous slots I = [s;, s;] C [1,5]. Let H be an odd-hole in
the conflict graph G, and K = {k € K s.t. vgs € H} be a subset of demands in K with K
is an odd-hole in the conflict graph G¥ for the interval I = [s;, s].

Neccessity.
First, assume that

se{s—wr+1,...,s}N{s’ —wp + 1,5} for each pair of nodes (vy s, vy s) in H,

and [ min (s —wg + 1), max s] C I.
Uk,seH 'Uk,seH

Given that s —w, +1 > min (s —wy + 1) and s < max s for each vy s € H, and
’Uk/’s/GH Uk,/“g/GH

that [{s —wy + 1,...,s}| = wy, for each vy, € H, it follows that s € {s; + wr, — 1,...,s5;} =

[si +wy, — 1, 55] for each v, s € H of demand k € K. As a result, we get that

k k k
Y OY 4A-XEY X & e
keK s'€{sitwp—1,...5;} keK keK s'e{sitwr—1,...,5; }\{s}
Taking into account that K = {k € K s.t. vy s € H}, this means that
k k
PRI D
ke[}' ’UkyseH

This implies that

Z Z zf/ = Z zf+ Z Z zfl

keK s'€{sitwr—1,..,8;} vg,s €H keK s'€{sitwr—1,...,5;}\{s}
= Z zf =< Z Z z§, = zf =< Z zé‘} for each v, € H.
v, s €H keK s'e{si+wr—1,...,5;} s'e{si+wr—1,...,5;}
Hence, the inequality (2.40]) is dominated by the inequality ([2.36]).

Sufficiency.
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Assume that the inequality (2.40) is dominated by the inequality (2.36) and given that
K ={k € K s.t. v, € H}, this means that

k k
doA= ) A
kef{ UkysEH
It follows that

)DIEED SN SRS SR DRND DI

vg,s€EH keK s'€{sitwr—1,...,5;} ek keK s'€{sitwr—1,...,s;}

x>

Given that the demands in K are independants, this implies that

2k < Z zf, for each k € K —> se{si+wr—1,..,s5} for each k € K = s & {s; +wy — 1,...

s'e{sitwr—1,...,s5}

As a result,

s —wy + 1 € I for each node vy s € H = minH(s—wk—i—l) el
Vk,s€

and max s € I for each node vy s € H = [ min (s —wy + 1), max s] C I.
vk,seH ’ vk,seH vk,seH

Furthermore, and given that wy 4wy > |I| for each pair of demands k, k' € K., it follows that
{s—wp+1,..,s}N{s’ —wp +1,...,s} # 0 for each s € {s;+wr—1,...,s;} and &' € {s; +wy —
1,...,5;} of each pair of demands k, k' € K. Hence, {s —wg+1,...,s} N {s' —wp +1,...,5} #
for each pair (vys, Vi) € H since s € {s; +wy —1,...,s;} and s’ € {s; +wpr — 1,...,5;}. We
conclude at the end that

se{s—wr+1,...,s}N{s —wp + 1,5} for each pair of nodes (vy s, vy &) in H,

d i — 1 cl
an [UglenH(s wy, + ),vir,lszg{s] :

which ends the proof. O

Note that the inequality (2.40|) can be strengthened without modifying its right-hand side
by combining the inequality (2.40) and ({2.38]).

Proposition 2.4.18. Let H be an odd-hole, and C be a clique in the conflict graph ég with
|H| > 5,

and |C| > 3,

and HNC =0,

and the nodes (vy s, vy s) are linked in ég for all vy, s € H and vy ¢ € C.

Then, the inequality

H| -1 . |H|-1
> z§+T Y k< B (2.42)

v, s €EH vy o EC

is valid for P(G, K,S).
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Proof. 1t is trivial given the definition of the odd-hole and clique in Gg s.t. if ka/,S/GC zf, =1
for a vy ¢ € C € C which implies that the quantity ka cH 2F is forced to be equal to 0.
Otherwise, we know from the inequality (2.40) that the sum ka cH zf is always smaller

than % We strengthen the proof by assuming that the inequality (2.42)) is not valid for
P(G,K,S). It follows that there exists a C-RSA solution S in which s’ ¢ Sy for each node
Vg ¢ in the clique C s.t.

3 zf(S)+’m2_1 S s> AL

2
v, s €H ’L}k/7S/EC

/

Since s’ ¢ Sy for each node vy ¢ in the clique C' this means that ka, eC zf, (S) =0, and

taking into account the inequality (2.40), 2°(S) < 1 for each vy, € H, and that 2% (S) < 1
for each vy ¢ € C, it follows that

Z Zk(S)S |}I|_17

2
Uk’SGH

which contradicts that ka,seH 28(89) + ‘H|2_1 ka/,sle(i 2H(8) > %
Similar for a solution S’ in which s ¢ S}, for each node v s in the odd-hole H s.t.
H| -1 / H| -1
D> S+ A=t > 20 > A1

2 2
’Uk’SEH ’Uk/’SIGC

Since s ¢ S} for each node vy 5 in the odd-hole H this means that >, 2F(S") = 0, and
taking into account the inequality (2.38)), zf,/(S’ ) <1 for each vy ¢ € C, it follows that

[H| -1 [H| -1

LB S R

2
Vgt st eC

which contradicts that >, g 2R(8") + |H‘2_1 D vy eC 2K (8" > |H|T_1

H|-1
Hence 37, cp|SeN{s} + Evk/,S/eC 1S N {s'}] < =L |2 )
[

Remark 2.4.6. The inequality (2.42) is dominated by the inequality (2.37) iff there exists
an interval of contiguous slots I = [s;, s;] C [1, 5] with

min (s —wg+1), max |CI,
vy, s €HUC v, s EHUC

and wi + wy > |I| + 1 for each (v, vgr) linked in H,

and wg, + wy > |I| + 1 for each (v, vyr) linked in C,

and wg, + wy > |I| + 1 for each v € H and vy € C,

and 2wy, > |I| + 1 and wy, < |I| for each vy, € H,

and 2wy > |I| 4+ 1 and wy < |I| for each vy € C.

Proof. Similar to the proof of the remark O
Theorem 2.4.12. Let H be an odd-hole in the conflict graph C:’g with |H| > 5. Then, the
inequality (2.40) is facet defining for P