
PSL Research University

Université Paris-Dauphine

Mémoire présenté en vue de l'obtention

de l'Habilitation à Diriger des Recherches

Transactional and QoS-aware Internet
Service Management

Maude Manouvrier

Jury :

Bernd Amann, Professeur, Université Pierre and Marie Curie rapporteur

Salima Benbernou, Professeur, Université Paris Descartes, rapportrice

Omar Boucelma, Professeur, Université d'Aix-Marseille, rapporteur

Dario Colazzo, Professeur, PSL Research University, président de jury

Université Paris-Dauphine

Lynda Mokdad, Professeur, Université Paris-Est, Créteil examinatrice

Marta Rukoz, Professeur, PSL Research University, coordinatrice

Université Paris-Dauphine et
Université Paris-Ouest Nanterre La Défense

Date de soutenance : 12 décembre 2016

ii

A ma petite DCB, mes grands-parents et J. de Romilly.

iii

Remerciements

Je remercie tout particulièrement :
Marta Rukoz, Professeur à l'Université Paris Ouest-Nanterre La Défense, et cher-

cheuse au LAMSADE de PSL Research University l'Université Paris-Dauphine, avec
qui je collabore depuis ma thèse de Doctorat. Son enthousiasme imperturbable, sa
très grande curiosité scienti�que, sa patience et son in�nie gentillesse ont été et restent
pour moi un moteur et un exemple. Je la remercie de tout mon c÷ur d'avoir ac-
cepté de travailler avec moi, de m'avoir tant appris et de m'avoir guidée depuis tant
d'années. Merci in�niment d'avoir accepté de coordonner mon habilitation et de me
faire l'honneur de participer à ce jury.

Salima Benbernou, Professeur à l'Université Paris Descartes, pour avoir chaleureuse-
ment accepté de rapporter sur mon travail et pour me faire l'honneur de participer à
ce jury.

Bernd Amann, Professeur à l'Université Pierre and Marie Curie, pour ses conseils et
sa gentillesse transmis à chacune de nos rencontres. Merci d'avoir accepté de rapporter
sur mon travail et de me faire l'honneur de participer à ce jury.

Omar Boucelma, Professeur à l'Université d'Aix-Marseille, pour avoir travaillé avec
nous à l'élaboration de plusieurs dossiers de candidature ANR et pour sa sympathie.
Merci d'avoir accepté de rapporter sur mon travail et de me faire l'honneur de participer
à ce jury.

Lynda Mokdad, Professeur à l'Université Paris-Est, Créteil, pour avoir travaillé
avec nous à l'élaboration de plusieurs dossiers de candidature ANR, pour sa joie de
vivre communicative et pour sa bienveillance. Merci de me faire l'honneur de participer
à ce jury.

Dario Colazzo, Professeur de PSL Research University - Université Paris-Dauphine,
pour ses encouragements et pour sa gentillesse. Merci de me faire l'honneur de par-
ticiper à ce jury.

Yudith Cardinale, Professeur à l'Université Simón Bolívar au Venezuela, pour son
amitié, son enthousiasme et tout le travail que nous avons fait ensemble. Merci in-
�niment, Yudith, d'avoir accepté de relire mon mémoire et pour tous tes conseils et
remarques.

Cécile Murat et Virginie Gabrel, Maîtres de Conférences à l'Université Paris-
Dauphine, pour m'avoir initiée à la RO, pour toutes nos chouettes séances de travail
et pour avoir été présentes à chacun de mes moments de doute.

Joyce El Haddad, Maîtres de Conférences à l'Université Paris-Dauphine, pour
toutes ces super années de collaboration.

Daniela Grigori, Professeur à l'Université Paris-Dauphine, pour m'avoir permis
d'encadrer la thèse d'Amine avec elle et pour ces encouragements.

Geneviève Jomier, Professeur à l'Université Paris-Dauphine, qui a été ma directrice
de thèse et qui m'a initiée à la recherche. Sans elle, je ne serai pas là aujourd'hui. Merci
pour son soutien depuis toutes ces années.

Rafael Angarita, N. Vu Hoàng (alias Rin), Mohammed Lamine Mouhoub (alias
Amine), pour m'avoir permis de co-diriger leur thèse et pour tout le travail que nous
avons réalisé ensemble.

Tous les membres du LAMSADE, Marie-Hélène (partie vers d'autres horizons mais
toujours là pour moi), Juliette, Hawa, Mireille, Olivier, Alexis (pour m'avoir mis la
"bonne" pression), Khalid, Elsa, Michel, et tous celles et ceux que je ne peux ajouter par
manque de place et qui font que je suis très heureuse de travailler dans ce laboratoire.

iv

Résumé

La gestion d'un grand nombre de services dans l'Internet crée de nombreux problèmes
de recherche ouverts allant de la découverte à la composition et l'exécution �able de
services. La découverte correspond à l'identi�cation des services capable d'atteindre un
objectif donné. La composition consiste à regrouper ou agréger de services existants, en
vue d'en créer un nouveau composite. Une exécution est �able lorsqu'elle est tolérante
aux panne ou auto-corrective (self-healing). Les travaux de recherche, présentés dans ce
document, décrivent les approches, modèles et analyse, que nous avons proposés pour la
gestion des services Internet. Ce document contient cinq chapitres. Un premier chapitre
présente les dé�nitions des concepts liés à notre travail. Les chapitres 3 et 4 présentent
les approches que nous avons proposées pour la sélection de services transactionnels
basée sur la qualité de service. Le chapitre 5 concerne les travaux, que nous avons
réalisés dans le cadre d'encadrement de doctorants, sur l'exécution �able de services et
la découverte de services. Finalement, le chapitre 6 présente quelques perspectives de
recherche.

Mots-Clés : Services transactionnels, Qualité de Service, séléction de services, Exé-
cution �able de services, Recherche de service

Abstract

The management of ultra large number of services in the global Internet creates many
open problems from discovering to composing services and o�ering a reliable service
execution. Discover services consists in identifying the services that are able to accom-
plish a given goal. Composing them correspond to grouping or aggregating existing
services to create a new composite one. A service execution is reliable when it is
fault-tolerant or self-healing. Research works presented in this document describes the
approaches, models and analysis, we have proposed for the management of Internet
services. This document is decomposed into �ve chapters. A �rst chapter introduces
the de�nitions of the concepts related to our work. Chapters 3 and 4 present the trans-
actional and QoS-aware selection approaches we have proposed. Chapter 5 concerns
the works, we have carried out with PhD students, about the reliable service execution
and the service discovery. Finally, chapter 6 outlines some research perspectives.

Keywords : Transactional services, Quality of Service, Service selection, Reliable
service execution, Service search

Contents

1 Introduction 1

1.1 Context . 1
1.2 Manuscript's organization . 1
1.3 Contributions synthesis . 2

1.3.1 Service composition . 2
1.3.2 Service search and service execution 3
1.3.3 Content-based image retrieval . 3

2 Preliminaries 5

2.1 Service-oriented architectural style . 5
2.2 Syntactic description of service . 6
2.3 Single vs. composite service . 8
2.4 Service registry/repository . 10
2.5 Quality of Service (QoS) . 12
2.6 Transactional properties . 13
2.7 Life-cycle of service composition . 18
2.8 Overview of our work . 20

3 Top-down Transactional and QoS-aware service selection 23

3.1 Problem de�nition . 23
3.2 Heuristic approach . 25

3.2.1 Description . 25
3.2.2 Related work . 26

3.3 Linear program . 27
3.3.1 Description . 27
3.3.2 Related work . 28

3.4 Complexity analysis . 28
3.5 Conclusion and prespectives . 29

4 Bottom-up Transactional and QoS-aware service selection 31

4.1 Problem de�nition . 31
4.2 Heuristic approach . 32

4.2.1 Description . 32
4.2.2 Related work . 34

4.3 Linear program . 34
4.3.1 Description . 35
4.3.2 Related work . 35

4.4 Complexity analysis . 36
4.5 Conclusion and perspectives . 36

v

vi CONTENTS

5 Towards a full service management framework 39
5.1 Self-healing transactional composite service 39

5.1.1 Description . 39
5.1.2 Related work . 40
5.1.3 Conclusion and perspectives . 41

5.2 Service search using SPARQL . 42
5.2.1 Description . 42
5.2.2 Related work . 43
5.2.3 Conclusion and perspectives . 43

5.3 Conclusion . 44

6 Research Perspectives 45
6.1 Combining Top-down and Bottom-up selection 45
6.2 Robust dynamic service composition . 45
6.3 Transactional properties issue . 46
6.4 Toward a full transactional service management 46

References 47
Personal references on services . 47

Papers in international journals 47
Papers in international conferences and workshops 47
Chapter in international books 48
Technical reports . 48

Personal references on content-based image retrieval 49
Papers in international journals 49
Papers in international conferences and workshops 49
Chapter in international books 49
Papers in national journals . 49
Papers in national conferences 49

Other personal references . 50
Related work references . 50

A Lists of Figures and Tables 65

B Abbreviation, symbol and de�nition tables 71

Chapter 1

Introduction

1.1 Context

A substantial part of the digital content is exposed via Web services (WS), i.e., internet-
based programmable application components accessible to other applications over the
Web [42, 226]. In 2010, seekda.com, for example, provided an index of more than
28,000 web services [188]. Nowadays, many web sites (e.g., Facebook1, Twitter2 or
Flickr3) o�er access to a part of their data throughWeb API (Application Programming
Interface). Programmableweb.com, for example, is a directory containing more than
15,000 Web APIs of di�erent types of services. Therefore, we are seeing a proliferation
of data o�ered in the Web and particularly a proliferation of services [211], called
Internet services in [188], allowing to access these data and a proliferation of their uses.

As explained in surveys [64, 88, 122, 215], the management of ultra large number
of services in the global Internet creates many open problems from discovering to com-
posing services. Service discovery is "the identi�cation of services that are capable of
accomplishing a given objective" [210]. Service composition "encompasses all the pro-
cesses that create added-value services called composite or aggregated services, from
existing services" [143].

This document presents a synthesis of the research work we have undertaken on
these topics, since 2006.

1.2 Manuscript's organization

This manuscript contains 6 chapters. Chapter 2 introduces the de�nitions of the con-
cepts related to our work. Our contributions are presented in chapters 3, 4 and 5, the
last one concerning particularly the works carried out with PhD students. Chapter 6
outlines some research perspectives.

In the following, references corresponding to our articles are underlined (see pages
47 to 49) while references corresponding to the related work are in normal text (see
references starting from page 50).

1https://developers.facebook.com/docs
2https://dev.twitter.com/overview/documentation
3https://www.flickr.com/services/api/

1

2 Introduction

1.3 Contributions synthesis

From our point of view, a service management framework must: (1) be able to dis-
cover/identify services achieving a speci�c goal, (2) compose them when no single
service can reach the needed goal, and (3) establish mechanisms to ensure a reliable
execution of the resulting composite service. The execution of a composite service is
reliable if, in case of component service failure, the negative impacts are negligible for
the user. Figure 1.1 represents such a service management framework. Our research
works address all the three aforementioned steps, as shown our references listed in each
box representing a speci�c step.

Figure 1.1: Our vision of a service management framework (cited references
correspond to our publications).

1.3.1 Service composition

A big part of our research work mainly deals with service composition. More precisely,
we have de�ned approaches to select service components of a composite service, in
such way the user preferences are optimized. The user preferences considered deal with
Quality of Service (QoS), for example service execution time, and with transactional
properties. Transactional properties are a set of rules that ensures a reliable (fault-
tolerant) execution of services. In [18], we have proposed a survey comparing the
QoS and transactional-aware service composition approaches. We considered two kind
of composite service representations, by work�ow (see Chapter 3), representing the
composite service as a combination of functionalities, and by graph (see Chapter 4),
representing the input/output dependencies between services.

When the composite service is represented by a work�ow (equivalent to a series-
parallel directed graph [229]), component services are generally grouped by functional-
ities (e.g., services providing image compression algorithms can be grouped together,

1.3. CONTRIBUTIONS SYNTHESIS 3

services allowing to reduce image noises can also constitute a service class). Therefore,
the composition problem consists in selecting a component service for each function-
ality of the work�ow. In [12], and in its extending version [3], we have proposed an
heuristic algorithm to locally optimize the QoS (measured by a weighted aggregated
function of QoS criteria) of a transactional composite service. In [3], we also have for-
malized the transactional properties of a composite or non-composite service. In [14],
we have proposed a 0-1 linear program for the QoS and transactional-aware service
composition, when the composition is speci�ed by a work�ow. This approach globally
optimizes the QoS of the resulting composite service. In [4], we have presented a com-
plexity analysis of the work�ow-based service composition problem, in regard to the
structural properties of the work�ow and the QoS models used.

When services are linked by their input/output dependencies, no work�ow is spec-
i�ed, and the service composition consists in selecting services by matching their pa-
rameters (I/O) so that the resulting composite service can produce a set of outputs
from a set of inputs provided by a user. This problem, generally called QoS-aware
automatic syntactic service composition problem, is tackled by the standard bench-
mark Web Service Challenge (WSC) (see in [50] for an overview of this benchmark).
In [2], [9], and [10], we have modelled the service composition problem by Coloured
Petri Net [125]. Our approach in [10] only deals with transactional service composition
(without considering QoS). The heuristic proposed in [2] is an extension of our ap-
proach [10], locally optimizing the QoS. In [9], our algorithm is an A*-based heuristic
allowing a global QoS optimization approach. Then, in [14], we have modelled the QoS
and transactional-aware service composition by a linear program globally optimizing a
weighted sum of QoS criteria. Our model had been extended to minmax-type criterion
(e.g.� service execution time), with or without considering transactional properties,
in [15], and has been experimented using the WSC data sets. In [20], we present a
complexity analysis of the QoS-syntactic service composition problem, and propose an
original formulation in terms of scheduling problem with AND/OR constraints, using
a directed graph structure.

1.3.2 Service search and service execution

Our work also deals with the steps processed before and after the service composition:
the service search or discovery and the service execution. In [8], as part of a PhD student
work, we have de�ned a model to support self-healing composite service executions
while maintaining the QoS requirements, even in presence of failures. In [5], we have
proposed a framework for QoS and transactional service selection based on crowd-
sourcing. Concerning transactional composite service execution, we have proposed, in
[13], a transactional execution model of composite service, exploiting the transactional
properties of its components. In [16], as part of a PhD student work, we had proposed
a framework for searching semantic data and services using SPARQL. A demonstration
of this framework is presented in [17].

1.3.3 Content-based image retrieval

Before working on service composition, we had worked, from 1996 to 2011, on Content-
Based Image Retrieval (CBIR). During my PhD thesis [34], we have proposed a set
of structures for managing similar large objects, and particularly a structure, called
Generic Quad-Tree, presented in [22, 28, 30], to store similar images. Two images are
de�ned similar if, for both images, the quad-trees (recursively cutting the images in four
quadrants), that encode them, are similar i.e., di�er only for a relative small number
of nodes (see our survey [26] on quad-tree-based image representation and retrieval, for
more details). The Generic Quad-Tree optimizes the memory space of similar images

4 Introduction

and allows image processing operations, like images comparison, comparison of the
same area in di�erent images, or simultaneous updates applied in di�erent images.
After my PhD thesis, we also have de�ned an index structure, in [24, 29], for content-
based image retrieval when images are organized by quad-trees, and a generalized
distance between image quad-trees, in [23, 32].

Content-based image retrieval can be improved by integrating the spatial layout of
objects in the image. Several approaches have been proposed for integrating spatial re-
lationships into the image description (see our study [27] about the spatial relationship
representation on symbolic images). Therefore, our research interest have been lied on
the spatial information embedded into image content description for scene retrieval.
Particularly, within the PhD work of Nguyen Vu Hoang [21][178], I had supervised
with Marta Rukoz and Valérie Gouet-Brunet, we have proposed an image content rep-
resentation describing the spatial layout with triangular relationships of visual entities,
which can be symbolic objects or low-level visual features.

Due to page limitation, this manuscript does not tackle our CBIR research works
but only presents the research works we have done about service management. Never-
theless, image management is an application domain of services. Thus, several exam-
ples, used in this document, deal with service providing image processing or content-
based image retrieval algorithms.

Chapter 2

Preliminaries

Internet services are "internet-based programmable application components that are
published using standard interface decription language and that are universally avail-
able via standard communication protocols" [226]. Drawing our inspiration from [236],
we de�ne an internet service description ontology in Figure 2.1. The following sec-
tions describe in details this �gure. Section 2.1 deals with the technological aspects
of services. The syntactic description of services is de�ned in Section 2.2. Di�erences
between non-composite and composite service are presented in Section 2.3. Section 2.4
characterises the service registry or repository. Quality of Service (QoS) is tackled in
Section 2.5. Section 2.6 addresses the service transactional properties and Section 2.7
de�nes the life-cycle of service composition. Finally, Section 2.8 positions our work in
relation to the di�erent provided de�nitions of this chapter.

is is

ServiceType

SOAP REST

QualityofService

is

ExecutionTime

Reliability

is

is

Cost/Price is hasQoS

(ObjectProperty)

CalculationMethod

(Object Property)hasValue

(DataType Property)

ExpressionLiteral

hasServiceType

(ObjectProperty)

InternetService

isis

TransactionalProperty

CompensatableRetriable

PivotRetriable AtomicRetriablePivot Atomic Compensatable

IsComposedBy

(ObjectProperty)

(ObjectProperty)

IsDescribedUsing

PublicInterface

IsPartOf

(ObjectProperty)
Output

Input

Concept

ObjectProperty)

IsInstanceOf

ObjectProperty)

IsInstanceOf

Functionality

Ontology

IsDescribedUsing

(ObjectProperty)

(ObjectProperty)

describesInputParameter

(ObjectProperty)

describesOutputParameter

(ObjectProperty)

hasInterface

WSDL

is

Language/Notation

JSON

is

Throughput

isis

is is

(ObjectProperty)

hasTransactionalProperty

(ObjectProperty)

describesFunctionality

Figure 2.1: Our internet service description ontology (inspired from [236]).

2.1 Service-oriented architectural style

As de�ned in [215], a Web Service (WS) "is often seen as an application accessible to
other over the Web". According to the World Wide Web Consortium (W3C) [72] and

5

6 Preliminaries

recent surveys [180, 235]: "a web service is a software system identi�ed by a Uniform
Resource Identi�er1 (URI), whose public interfaces and bindings are de�ned and de-
scribed using eXtensible Markup Language2 (XML) or JavaScript Object Notation3

(JSON)". The Web Services Description Language (WSDL) [63] is an XML-based in-
terface de�nition language generally used for describing the functionality o�ered by a
web service. JSON-WSP (JavaScript Object Notation Web-Service Protocol) is a web-
service protocol that uses JSON for service description, requests and responses [79].
"Web service de�nition can be discovered by other software systems. These systems
may then interact with the web service in a manner prescribed by its de�nition, using
messages conveyed by internet protocols" [72].

Web services, commonly just called "service" [180], are considered as the "best"
implementation of the Service-Oriented Architecture (SOA) [257]. They are often cat-
egorized as two types of implementations [38, 187, 215]: Simple Object Access Protocol
(SOAP)-based [81] ones, also called 'Big" or WS* services, and Representational State
Transfer (RESTful) ones [201]. According to [215, 198, 236], SOAP-based services
(described using WSDL [63]) are more related to complex business/enterprise appli-
cations (using business process modelling). On the other hand, RESTful services are
light-weight data/resource-centric services, prevalent in Web 2.0 [176] applications, due
to their �exibility and simplicity. They are generally preferred by Government depart-
ment or public data providers and are well suited for "tactical ad hoc integration over
the Web". Comparison of both technologies can be found in [38, 113, 126, 187]. Re-
cent works have been done to combine SOAP and RESTful services [141, 140, 198] or
propose to convert SOAP-based services to RESTful ones [228].

Remark 2.1.1 In our work, we do not consider technological aspects of services and
only take into account the syntactic description of services, and their non-functional
QoS properties, as de�ned in the next subsections.

2.2 Syntactic description of service

An internet service can be seen as a function provided through a web-accessible end-
point. As the syntactic description of functions in programming language, an internet
service can then be described by its input and output parameters: a service needs or
consumes one or several inputs to be invoked and executed, in order to produce one or
several outputs. As explained in [76], services in this case are regarded as black-boxes
that accept inputs to produce outputs.

De�nition 2.2.1 Syntactic description of service.
Let be s a service. A service s is syntactically described by its set of inputs, in(s), and
its set of outputs, out(s).

For example, authors in [129] had implemented several image processing services taking
an image as input and producing an output image (e.g. reducing the noise in the
input image or transforming a multi-channel input image into a single-channel one)
� see Table 2.1. Web Service Challenge (WSC) proposes an incremental synthetic
data benchmark providing syntactic service description since 2005: a WSDL standard
�le [63], called services.wsdl, describes input and output parameters of all services
available in the benchmark test sets (see in [238] for a description of WSC). Author
in [141] had extracted the syntactic description of several SOAP and REST APIs of
ProgrammableWeb.com.

1https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
2http://www.w3.org/XML/
3http://www.json.org/

2.2. SYNTACTIC DESCRIPTION OF SERVICE 7

Table 2.1: Examples of image processing services, from [129]
Service Inputs Outputs Functionality

s1 A multi-channel

image

A single-channel

(gray-scale)

image

Converts input image to a gray-

scale one

s2 A single-channel

image and a

threshold

A transformed

single-channel

image

Applies a binary thresholding

method to input image

s3 An image and a

kernel size

A transformed

image

Applies a blurring function for

reducing input image noise us-

ing Gaussian �lter

s4 An image and a

kernel size

A transformed

image

Applies a blurring function for

reducing input image noise us-

ing Median �lter

Syntactic description is used in many approaches. For example, authors in [242]
propose a multi-level index, whose �rst levels are constructed according to the inputs
and the outputs of services. In [139], services inputs and outputs are stored in a
relational database.

Each input and output parameter can be instance (i.e. a leaf) of a concept de�ned
in an ontology (i.e. a hierarchy of concepts or speci�cation of conceptualization). For
example, a real image is an instance of concepts multi-channel image or single-channel
image, both being sub-concepts of concept image; authors in [105] present another
example of a concept hierarchy about snapshot (image) collected by camera sensor.
Web Service Challenge had integrated an OWL [56] ontology in 2007, and structured
data types in 2008 [51]: each input/output parameter is de�ned as an instance of the
ontology (i.e. as a leaf in a concept hierarchy) stored in the �le called taxonomy.owl.
Enriching the syntactic description of services with semantic information allows to
determine semantic services. Linking input and output parameters to an ontology is a
�rst step to semantic description of services. Authors of [257] propose for example an
automatic annotation of inputs and outputs of web services, each parameter being an
instance of an OWL class in the DBpedia4 ontology (see in [142] for a description of
DBpedia).

A service can also be described by its functionality, i.e. a semantic (generally
textual) description of what the service does (see for example last column of Table
2.1). Two services with the same input and output sets can be di�erentiated by their
functionality. For example, two service, one applying a Gaussian �lter and one applying
a Median �lter, as the one implemented in [129], take both an image as input to produce
a burred output image from the input one. Service functionality can also be de�ned
using an ontology.

Remark 2.2.1 In our work, we suppose that all services are syntactically described by
their inputs/outputs or by functionality. The mean to extract such description is out
of the scope of our work.

4http://dbpedia.org/ontology/

8 Preliminaries

2.3 Single vs. composite service

A service that works individually or in a stand-alone manner, i.e. without explicitly
relying on another service, to achieve a desired requirement, is called single in [186, 235]
or elementary5 in [214].

A service can be composite, i.e. composed by several other services, in order to
achieve a complex goal that cannot be ful�lled by a single individual service [186, 235].
The process of developing a composite service is called service composition [89].

De�nition 2.3.1 Composite service/component service.
A service s is a composite service if it is composed by several other services, called
component services. Let be Sc(s) = {sc1, ...scn}, the set of n component services of a
composite service s, with sci the ith component of s.

A composite service can be represented either by a work�ow, a graph or a Petri-
Net. When a composite service is represented by a worklfow (i.e. a structured and
ordered control �ow of functionalities or tasks), as we did in [3, 4, 12, 13, 14], it can be
designated as: an abstract work�ow representing a set of functionalities and a concrete
one, where each functionality is associated with a component service.

De�nition 2.3.2 Work�ow.
An abstract work�ow is a set of activities (also called tasks) combined by patterns,
representing the temporal dependency between activities, each activity representing a
functionality. A work�ow becomes concrete when activities have been associated with
(performed by) services (one service per activity).

Figure 2.2: Three work�ow patterns (from [3]).

s
3

s
4

s
1

XOR−joinXOR−split

s
2

Figure 2.3: A composite service (composed by services of Table 2.1) represented
by a concrete work�ow.

Activities in a work�ow are organized using patterns (see in [232] for a description
of the work�ow patterns). Figure 2.2 represents three work�ow patterns, based on the
YAWL model [231], we used in our work. The sequential pattern of Figure 2.2.(a)
represents the fact that activity A1 must be executed before activity A2. AND and

5Several authors call it also an atomic service (see for example [120, 215, 260]). However
we do not use this term which has another meaning in transactional properties (see Section
2.6).

2.3. SINGLE VS. COMPOSITE SERVICE 9

XOR patterns start with a split and �nish with a join, and are composed of two or
more branches. In Figures 2.2.(b) and 2.2.(c), the �rst branch contains activity A1 and
the second branch contains activity A2. An AND pattern represents parallel execution
of activities (for all branches). For XOR pattern, activities of only one branch have to
be executed. Figure 2.3 presents an example of an image processing composite service,
whose components are described in Table 2.1.

Note that a work�ow with interlaced patterns sequence, AND and XOR, is a Serie-
Parallel directed multigraph [87], whose nodes represent activities and patterns, as we
have explained in [4].

A composite service can also be represented by a graph, G = (V,U). When V con-
tains vertices representing both services and inputs and outputs, as we did in [15, 20],
the graph is called a ServiceData graph:

De�nition 2.3.3 ServiceData graph.
Let be S the set of vertices associated with services and D the set of vertices associated
with the inputs and the outputs of services. To simplify, let us consider that a vertex
i ∈ S is associated with a service si ∈ S. A ServiceData graphs is a graph G = (V,U),
such that:

• V = S ∪D, with S ∩D = ∅,

• ∀i ∈ S, i represents a service si,

• ∀j ∈ D, j represents an input or an output of a service,

• An arc u = (i, j) ∈ U , with i ∈ S and j ∈ D, represents the fact service si
produces output j (j ∈ out(si)) and an arc u = (j, i) ∈ U represents the fact
service si needs input j to be executed (j ∈ in(si)).

G is a bipartite graph: there does not exist any directed arc linking two vertices
belonging to S or two vertices belonging to D.

Figure 2.4 gives an example of a composite service represented by a ServiceData graph.
In this �gure, vertices representing services are drawn with squares, while vertices
representing inputs and outputs are drawn with circles.

d
2

d
4

d
1

d
3

d
5

d
61

s s
2 3

s

Figure 2.4: An composite service represented by a ServiceData graph.

Note that when an ontology is associated with the syntactic description of services
(as in Web Service Challenge for example � see details in Section 2.2), each input i
of a service s is represented by one vertex i ∈ D, and each output o of a service s is
represented by several vertices in D, as many as the concept of o has ancestors in the
ontology (i.e., as many super-concepts from the ontology concept root to concept o).

A composite service can also be represented by a Petri Net (PN) [116], as we did in
[2, 9, 10] (see in [1] for a survey of service approaches using PN). A Petri net [190] is a
directed bipartite graph whose nodes represent transitions (i.e. events that may occur)
and places (i.e. conditions to �re transitions). Compared with a ServiceData graph, a
Petri Net is dynamic: marking and tokens allow to model the dynamic behaviour of a
process.

10 Preliminaries

De�nition 2.3.4 Service Petri Net. A Service Petri Net is 3-tuple (P, T, F) where:
P is a �nite non-empty set of places, corresponding to the inputs and outputs services,
T is a �nite set of transitions corresponding to the set of services, and F : (P × T) ∩
(T × P) −→ {0, 1} is a �ow relation indicating the presence (1) or the absence (0) of
arcs between places and transitions de�ned as follows: ∀pl ∈ P, (∃t ∈ T |F (pl, t) = 1)
means that pl corresponds to an input of the service associated with transition t and
(∃pl ∈ P |F (t, pl) = 1) means that pl corresponds to an output of the service associated
with transition t.

Figure 2.5 gives an example of a composite service represented by a Service Petri Net.
Places are drawn with circles. Transitions are drawn with black rectangles. Both are
labelled by either inputs or outputs identi�er or service number.

d
6

d
1

d
5

d
3 21 3

d
2

d
4

Figure 2.5: A composite service represented by a Service Petri Net.

When the graph vertices only represent services (V = S), the graph is called a
Service Dependency graph. An arc between two vertices i and j exists if the corre-
sponding service si produces at least an output which is an input of service sj . Such
graph is used for example in [105, 127].

De�nition 2.3.5 Service Dependency graph.
A Service Dependency graph is a graph G = (V,U), where ∀i ∈ V , i represents a
service si ∈ S and where ∀u = (i, j) ∈ U , we have out(si) ∩ in(sj) 6= ∅.

d
3

d
5

d
3d1 1 d

5d
3

d
2

2 d
6

d
5

d
4

3

Figure 2.6: A composite service represented by a Service Dependency Graph.

Figure 2.6 gives an example of a composite service represented by a Service De-
pendency graph. In this �gure, vertices representing services are drawn with squares
divided in three parts representing the inputs, the service number and the outputs and
arcs are labelled by inputs and outputs.

Remark 2.3.1 In our work, we represent the composite services by work�ow, Service-
Data graph or Petri-Net.

2.4 Service registry/repository

A service registry or repository is a searchable directory providing service descriptions
[252]. For example, the Jena Geography Dataset6 groups the descriptions of almost
200 geography services that have been gathered from di�erent web sites. The Bio-
Catalogue7 provides a curated catalogue of 1189 web services devoted to life science.

6
http://fusion.cs.uni-jena.de/professur/jgd/

7
https://www.biocatalogue.org/

2.4. SERVICE REGISTRY/REPOSITORY 11

ProgrammableWeb8 directory is described as the "the world's largest API repository",
listing more than 14,000 APIs for various services. The OASIS standard Universal
Description, Discovery, and Integration (UDDI9) directory is a registry of web service
descriptions. Service descriptions can be stored in a relational database, as in [139].

Authors in [120] make a distinction between service registry and service repository.
For them, a service repository contains the human or machine understandable service
descriptions that can be utilized in software development. These descriptions are usu-
ally static. On the other hand, the service registry contains a machine-interpretable
run-time (or dynamic) descriptions of all the services that are currently available. Au-
thors in [251] consider that the service registry is a component of the repository that
stores service meta-data. In our work we do not make any distinction between registry
or repository.

De�nition 2.4.1 Service registry/repository.
A service registry, also called repository, is a set of available services.

When composite services are represented by a work�ow (see Def. 2.3.2), services
having the same functionality, but di�ering in their non-functional properties, are gath-
ered into a group/cluster, also called a community in [162, 235, 260]. A registry is
therefore a set of service communities (one community per functionality).

When composite services are represented by a graph (a ServiceData graph, see
Def. 2.3.3, a Petri Net, see Def. 2.3.4, or a Dependency graph, see Def. 2.3.5), the
entire registry is generally represented by a graph and composite services represent
a sub-graph of the entire graph corresponding to the registry. As we explained in
[20], a ServiceData graph can be, for example, easily built from the �les provided by
WSC-09 synthetic benchmark10 [135]. This benchmark provides 5 test sets, each one
containing one service registry described by: services.wsdl a �le describing services
of the registry by their input/output and taxonomy.owl containing the ontology. The
�rst �le contains all the services' identi�er and their inputs and outputs, each one
being de�ned as an instance of the ontology (i.e. as a leaf in a concept hierarchy)
stored in the second �le. Each service is then represented in the ServiceData graph
by a vertex s. Each input i of a service s is represented by vertex i. Each output
o of a service s is represented by several vertices, as many as the concept of o has
ancestors (i.e., super-concepts) in the ontology. As previously said, author in [141] had
built a Dependency graph from the syntactic description of several SOAP and REST
APIs of ProgrammableWeb.com. In [20] we mentioned that, for building a Dependency
graph, one needs to read the service registry and, for each service, one has to match
its inputs with the outputs of all the other services, inducing an O(|S|) complexity
for each service (cf. [179]). Consequently, the building step of a Dependency graph is
O(|S|2).

Remark 2.4.1 In our work, we suppose that the registry is available. When using
work�ow, we suppose that services of the registry are grouped by functionality. When
we use a graph structure, we either build the graph from provided �les (as the ones of the
WSC-09 synthetic benchmark) or we consider that the registry graph exists, considering
that the graph building is out of the scope of our work. This is the same, when we use
Petri Net.

8http://www.programmableweb.com/apis/directory
9http://uddi.xml.org/

10Available at http://www.it-weise.de/documents/files/wsc05-09.zip.

12 Preliminaries

2.5 Quality of Service (QoS)

The International Standards Organisation (ISO) de�nes quality as "the totality of
features and characteristics of a product or service that bear on its ability to satisfy
stated or implied needs" [121]. Quality of Service (QoS) is employed for describing
non-functional characteristics of services [262]. A discussion on QoS aspects for service-
oriented systems is presented in [138].

QoS encompasses several criteria [119] such as: execution time, throughput, cost or
reliability. Some criteria are positive or negative [264]: positive means that the higher
the value, the better the quality (e.g. throughput or reliability), while negative means
that the higher the value, the lower the quality (e.g. execution time or price). In the
following, we only de�ne the criteria used in our work. De�nitions of the other criteria
can be found in [255], for example.

QoS criteria apply both to single services and to composite ones [255]. When
composite services are represented by a work�ow, the QoS computation of a compos-
ite service depends on the patterns used. Authors of [255] and [119] present several
aggregation functions (minimum, summation or multiplication). To simplify, in the fol-
lowing, we represent a composite service by a graph and present the aggregate functions
we recalled in [20]. Let Ps be the set of paths in the graph representing a composite
service s and let Sc(s) = {sc1, ..scn} be the set of service components composing s.

De�nition 2.5.1 Execution time.
The execution time (also called response time) of a service s is the time e(s) ≥ 0 (gener-
ally in seconds or milliseconds) needed by s to produce its outputs out(s) from its inputs
in(s). When a service s is a composite one, its execution time is computed by summing

the execution time of the components of the maximal path: e(s) = max
µ∈Ps

(∑
sci∈µ

e(sci)

)
.

De�nition 2.5.2 Throughput.
The throughput of a service s is the average rate t(s) ≥ 0 of successful service executions
for a given period of time. It is generally expressed by a number of successful executions
per second. When a service s is a composite one, its throughput is the minimum
throughput of its components:

t(s) = min
sci∈Sc(s)

t(sci) = min
µ∈Ps

(
min
sci∈µ

t(sci)

)
.

Since 2009, the Web Service Challenge [135] has extended the syntactic service
description with the both aforementioned QoS criteria, a WSLA [158] �le storing the
QoS (response time and throughput) criteria values of each service.

De�nition 2.5.3 Cost.
The cost (also called price) of a service s is the fee a user has to pay to invoke the
service. When a service s is a composite one, its cost is computed by summing of its
component cost: c(s) =

∑
sci∈Sc(s)

c(sci).

De�nition 2.5.4 Reliability.
The reliability (also called successful execution rate) of a service s, denoted r(s), with
0 ≤ r(s) ≤ 1, is the probability of its successful execution. When a service s is a
composite one, its reliability is computed by: r(s) =

∏
sci∈Sc(s)

r(sci).

2.6. TRANSACTIONAL PROPERTIES 13

For real values of such criteria, the readers can refer to the QWS Dataset11 [39],
a set of QoS values extracted from 5,000 real web services, collected until 2008 or, to
the WS-DREAM12 [262], an evaluation of user-observed QoS of more than 30 million
real-word web services from distributed locations, from 2009 to 2012. Authors of [157]
had implemented a QoS registry collecting the QoS of all available services. Surveys
can be found in [136, 247] for example.

QoS criteria can be considered one by one or can be aggregated. In [44, 255] and
[3, 14], for example, a weight is assigned to each QoS criterion and a simple additive
weighting technique [250] is used to assign a quality score to each service as follows:

De�nition 2.5.5 QoS score.
Let {q1(s)...qk(s)} be k QoS criteria associated with a service s, let Vj(s) be the value
of criterion qj(s) for service s and let wj ∈ [0, 1] be the weight assigned to criterion
qj(s) such that

∑k
j=1 wj = 1. Let V jmax and V min

j be respectively the maximal and
the minimal value of criterion qj and, Q

+
j and Q−j be respectively the sets of positive

and negative criteria. The QoS score of service s, denoted Score(s), is computed by
the following formula (see for example in [107, 250, 255]):

Score(s) =
∑
Q+

j

wj ∗
Vj(s)− V min

j

V jmax − V min
j

+
∑
Q−

j

wj ∗
V max
j − Vj(s)

V jmax − V min
j

The higher the value of score Score(s), the better the quality of service s.

Weight assigned to the QoS criteria can be de�ned by the user or assigned us-
ing di�erent approaches. For example, the Best-worst multi-criteria decision-making
method [200] is used in [213] to compute and normalize the QoS criteria weights.

Remark 2.5.1 In our work, we suppose that the QoS values of services are available.
How these values are extracted and stored is out of the scope of our work.

2.6 Transactional properties

As explained by [49]: "To make service-oriented applications more robust, web ser-
vices must be examined from a transactional perspectives". Surveys on transaction
management in service-oriented applications can be found in [99, 220] and in our book
chapter [18]. Authors in [70] propose a generic framework for testing web services
transactions. As explained in [221], transaction management was initially proposed in
the context of database in order to ensure consistency and reliability of data centric
applications in case of failure (see in [110, 111]), and traditionally a transaction is a
set of operations locally constituting an atomic execution unit. Transactions are one of
the most fundamental concepts to deliver reliable applications [147]. The Two-Phase
Commit (2PC) protocol [91] guarantees the ACID properties (Atomicity, Consistency,
Isolation, Durability), de�ned in [110, 111, 115]. Several advanced transaction models
(e.g. SAGA model [101]) have been proposed to extend these properties to distributed
applications or long-running transactions � see in [78] or [80] for a synthesis.

Service-based transaction di�er from traditional ones [149] and are not traditional
ACID one due to the loosely-coupled, autonomous, and heterogeneous nature of the
execution environment [99]. Several transaction models, protocols and standards for
services have been proposed to relax some of the ACID properties [221]: we can mention

11http://www.uoguelph.ca/∼qmahmoud/qws/
12https://github.com/wsdream/wsdream-dataset

14 Preliminaries

OASIS Business Transactions Protocol (BTP) [71], Web Service Transaction [68] that
includes Web Service Business Activity (WS-BA) [96] and Web Service Atomic Trans-
action (WS-AT) [151] or Web Services Transaction Management (WS-TXM) [67] for
example � see [150] for a survey and in [70] for a comparison. Di�erent transactional
properties have also been associated to services (see in [18] for a survey), generally
extending the classical ACID properties of database transactions [110, 111, 115] to
services, by particularly relaxing the atomicity (i.e., all or nothing) property.

Before de�ning these transactional properties, we introduce several recovery tech-
niques, we had de�ned in [18]. As Liu et al. [152], we consider, in [18], that the
lifecycle of a service contains two phases: an active phase corresponding to the service
execution (see blue lines in Figure 2.7) and a completed phase beginning after the end
of the service execution. A failure can occur during the active phase. Depending on
which life-cycle phase the service is in, di�erent recovery techniques can be applied to
preserve the relax atomicity (see Figure 2.7):

Beginning of the

service execution

completed phase

Time

Backward recovery Forward Recovery

Semantic recovery

active phase

Failure of the

service execution

(service is failed)

service execution

End of the

(service is completed)

Figure 2.7: The service lifecycle and the di�erent possible recovery techniques.

De�nition 2.6.1 Backward recovery.
After a failure has occurred during a service execution, a backward recovery consists in
restoring the state that the system had at the beginning of the service execution or in
reaching a state semantically closed to the state that the system had at the beginning
of the service execution. A service supports backward recovery if, in case of failure
during its execution, all the e�ects produced by the service before the failure can be
rolled back or semantically undone.

De�nition 2.6.2 Forward recovery.
After a failure has occurred during a service execution, a forward recovery consists in
repairing the failure to allow the failed service to continue its execution.

In [80], authors said that "backward recovery backtracks to an earlier and cor-
rect state of the system before proceeding, while forward recovery attempts to correct
the error before proceeding". Moreover, they said that some processes cannot sim-
ply undone and forgotten but require to execute further counteractions, also knows
as compensations. Compensation, also called post facto process in [110], is generally
associated with semantic recovery:

2.6. TRANSACTIONAL PROPERTIES 15

De�nition 2.6.3 Semantic recovery.
After the end of a service execution, a semantic recovery consists in reaching a state,
which is semantically closed to the state the system had before the service execution.

To support these recovery techniques, several transactional properties have been
de�ned. We present below the main used ones, that are based on the multi-database
system transaction model of [165]. These properties have been analysed, formalized or
used, even recently, in di�erent service approaches [61, 70, 97, 98, 147, 173, 196, 197]
and, in our work, in [2, 3, 5, 15]. They can also be integrated in the WSDL interface
or in the OWL ontology associated with the services [61, 173].

De�nition 2.6.4 Pivot service.
A (non-composite) service s is pivot, denoted p, if its e�ects remain forever and cannot
be semantically undone once it has completed successfully. If it fails, then it has no
e�ect at all. Therefore a pivot service supports backward recovery. A completed pivot
service cannot be rolled back and cannot be semantically undone.

As an example, let consider that to obtain an improved and cost e�ective handling of
medical diagnostic imaging processes and infrastructures (e.g., PACS, teleradiology)
involving large datasets, as explained in [216], doctors have to use irreversible image
compression technologies and cannot store all original compressed images. A service
providing an irreversible image compression technology (and deleting the original image
after the compression) is pivot. Indeed, it can fails (compression could be stopped due
to technical problem before the end) and it cannot be semantically undone (compression
being irreversible, it is impossible to recover the original image which has been deleted
after the compression process).

De�nition 2.6.5 Compensatable service.
A (non-composite) service s is said to be compensatable, denoted c, if it exists another
service s′, or compensation policies, which can semantically undo the execution of s.
Service s supports backward recovery and can be semantically undone while service s′

has to guarantee a successfully termination.

As an example, a service providing reversible image compression technique (see for
example [148]) is compensatable.

De�nition 2.6.6 Pivot/Compensatable retriable service.
A (non-composite) service s is said to be retriable, denoted r, if it guarantees a suc-
cessfully termination after a �nite number of invocations. Therefore a retriable service
supports forward recovery. The retriable property is never used alone but is combined
with properties p and c de�ning pivot retriable service, denoted pr and supporting
forward recovery, and compensatable retriable service, denoted cr and supporting both
forward recovery and semantic recovery.

As an example, a service providing reversible image compression technique (see for
example [148]) could be compensatable retriable.

Figure 2.8 presents the state diagrams of these transactional properties. Final
states of the diagrams are represented by dotted lines.

A transactional (non-composite) service has the following de�nition:

De�nition 2.6.7 Transactional (non-composite) service.
A (non composite) service s is transactional if it supports the aforementioned trans-
actional properties p, c, pr or cr for its correct usage. Let TP (s) be the transactional
property of a non-composite service s: TP (s) ∈ {p, pr, c, cr}.

16 Preliminaries

Figure 2.8: The state diagrams of transactional properties p, c, pr and cr.

In [3], we have extended the pivot, compensatable and retriable properties to com-
posite services, de�ning atomic, compensatable, retriable, and transactional composite
service:

De�nition 2.6.8 Atomic (composite) service.
A composite service s is said to be atomic, denoted a, if once all its component services
complete successfully, their e�ect remains forever and cannot be semantically undone.
On the other hand, if one component service does not complete successfully, then all
component services, that are successfully executed previously, have to be compensated.
Therefore, an atomic composite service supports the same criteria than a pivot non-
composite one, except that the backward recovery of an atomic composite service allows
to reach a state of the system semantically closed to the state that the system had at
the beginning of the service execution.
A similar de�nition is used by [154]: "A composite service is atomic if it can be treated
as a unit of work. That is, it can use compensation mechanism to ensure that either
all of its component services complete successfully or none of them do".

De�nition 2.6.9 Compensatable (composite) service.
A composite service s is said to be compensatable, denoted c, if all its component
services are compensatable.

De�nition 2.6.10 Atomic/compensatable retriable (composite) service.
A composite service s is said to be retriable, denoted r, if all its component services are
retriable. The retriable property is combined with properties a and c de�ning atomic
retriable (ar) composite service (supporting the "same" criteria than a pivot retriable
non-composite service) and compensatable retriable (cr) composite service (supporting
the same criteria than a non-composite compensatable retriable service).

Using the aforementioned de�nitions, we can deduce that the characteristics of transac-
tional property p or a (i.e., no e�ect or e�ects forever) are included in the characteristics
of the other transactional properties. The characteristics of transactional property pr
or ar (i.e. forward recovery) are included in the characteristics of property cr, and the
characteristics of transactional property c (i.e. semantic recovery) are included in the
characteristics of property cr.

De�nition 2.6.11 Transactional composite service.
A composite service s is transactional if its transactional property TP (s) is in {a, ar, c, cr}.

2.6. TRANSACTIONAL PROPERTIES 17

The transactional property (TP) of a composite service depends on the transac-
tional property of its components and on the execution order of these components. In
[3], we de�ne some rules to de�ne the transactional property of a composite service,
recalled in Table 2.2. For example, a pivot or an atomic service s1 cannot be composed
with any atomic, pivot or compensatable service s2, as rule 1 of Table 2.2 dictates
(s1 being executed before s2 or in parallel with s2). Indeed, if s2 fails then s1, being
pivot (resp. atomic), cannot be compensated, making therefore the composite service,
composed by s1 and s2, non transactional. Moreover, if s1 and s2 are executed in
parallel and if s1 is atomic or pivot, s2 cannot be neither atomic retriable nor pivot
retriable. Indeed, s1 can failed requiring therefore a compensation of s2 to preserve the
transactional property of the composite service.

Table 2.2: Transactional rules of [3]
Transactional property Sequential Parallel

of a service incompatibility incompatibility

a, p a, c, p (rule 1) a, p, c, ar, pr (rule 2)

pr, ar a, p, c (rule 3) a, p, c (rule 4)

c a, p, ar, pr (rule 5)

cr

These rules have been also represented by a automaton (see Figure 2.9) containing
�ve states. State I is the initial one, representing an empty service (with no compo-
nent). The �nal states c, cr, a, and ar correspond to the transactional properties of a
composite service. When one of the �nal states is reached, a transactional composite
service is obtained. The alphabet of the language accepted by the automaton is {′p′,
′c′, ′cr′, ′pr′, ′; p′, ′//p′, ′; pr′, ′//pr′, ′; c′, ′//c′, ′; cr′, ′//cr′, ′; a′, ′; ar′, ′//ar′}. This
alphabet represents the transactional properties of component services (which can be
either elementary services or composite ones) executed in sequence (;) or in parallel
(//). Thanks to this automaton and Table 2.2, we can notice that a composite service
sc can only contain one pivot non-composite service or one atomic composite one.

I

cr

crp prc a ar

//c

;c

;cr
//cr

;c

//c

;cr
;pr //cr ;cr

//cr

;pr
//pr;cr

//cr

;pr;pr ;p ;p //p //pr
c

;ar ;a

;ar

;a //a ;ar //ar
ar

;ar

//ara

Figure 2.9: An automaton modelling the resulting TP of a composite service
depending on its components' TP.

Several authors had extended the aforementioned transactional property rules by
considering switch and loop work�ow patterns in [241], if and while in [93] and mutually
exclusive choice in [85]. Authors in [196] have de�ned another property: cancelable. A
cancelable service being a service that can be cancelled by an external entity during its

18 Preliminaries

execution. This property is associated with properties p, a , c and r. Authors in [93]
consider property r alone, without associating it with p or c.

Remark 2.6.1 In our work, we have only considered transactional properties a, p, ar,
pr, c and cr. We consider that these properties characterize the services we used in our
approaches.

2.7 Life-cycle of service composition

"A service composition is a process that combines a set of logically related services to
achieve a given goal" [228]. This process can be divided in di�erent phases or steps
[120, 215]. In [3, 18], we decomposed the composition process into a three-steps process:
query speci�cation (also called de�nition phase in [215]), the component selection step
and the execution phase.

The �rst step consists in specifying a composition query, request or composition
requirement, which describes the expected resulting composite service. This composi-
tion query depends on the service registry structure (see Section 2.4) and on the service
description (syntactic, with or without QoS and transactional properties). In the Web
Service Challenge [50, 135], for example, where services are syntactically described (see
Section 2.2) and are associated with two QoS criteria, the query is a tuple containing
the set of known concept instances, a set of concepts which should be found and a
registry.

De�nition 2.7.1 Composition query.
Let be Q a query specifying the composite service to reach. When services of the
registry are grouped by functionality, Q = (WFQ,WQ, TPQ), with: WFQ an abstract
work�ow (see Def. 2.3.2), WQ a set of weights associated to the QoS criteria considered
for the services (see Def. 2.5.5), and TPQ the transactional property (see Section 2.6)
of the expected resulting composite service. When the service registry is organized
by a graph (see Def. 2.3.3 to 2.3.4), Q = (IQ, OQ, TPQ), with: IQ a set of known
service inputs, OQ a set of expected outputs and TPQ the transactional properties (see
Section 2.6) of the expected resulting composite service (when services are described
by transactional properties).

The second step of the service composition process is the component selection.
It consists in searching/discovering/�nding, in the registry, the services that can be
combined to compute the expected composite service described by the composition
query. The composite service obtained after this step should match the composition
query Q. The component selection can be either top-down or bottom-up [54]. In
top-down selection approach, the composition logic is created on a high level and the
abstract model is re�ned to a service composition by selecting the appropriate candidate
services (e.g. one per activity of the abstract work�ow) [54]. In bottom-up selection,
candidate services ful�lling the query goal are selected and the composition logic (or
control �ow) is deduced from the selected component services [18].

De�nition 2.7.2 Top-down component service selection.
When Q = (WFQ,WQ, TPQ) and when services are organized into functionality com-
munities (see Def. 2.4.1), the component service selection is denoted as top-down
and consists in choosing, from the registry, one service si per activity Ai of work�ow
WFQ. The set Sc(s) of component services of resulting composite service s is such
that: Sc(s) = {s1, ..., sn}, si performing activity Ai of work�ow WFQ, ∀i ∈ {1, ...n}.

De�nition 2.7.3 Bottom-up component service selection.
When Q = (IQ, OQ, TPQ) and when services are organized into a graph (see Def.

2.7. LIFE-CYCLE OF SERVICE COMPOSITION 19

2.3.3 to 2.3.5), the component service selection is denoted as bottom-up and consists
in de�ning the sub-graph Gc that allows to obtain outputs IQ from inputs IQ. The
resulting composite service s, represented by sub-graph Gc, is such that: in(s) ⊆ IQ
and out(s) ⊇ OQ.

When several candidate services meet the requirements, the best matched services need
to be selected [215]. When services are described by QoS criteria, the best matched
services are the ones that optimize the QoS of the resulting composite service. The
composition problem is then called QoS-aware service composition.

De�nition 2.7.4 QoS-aware service selection.
Depending on the considered QoS criteria (see Section 2.5), the QoS-aware service se-
lection consists in selecting the component services that either minimize the considered
QoS criterion (e.g. execution time or cost) or maximize it (e.g. reliability, throughput
or QoS score).
The Web Service Challenge [50, 135] provides test sets to experiment QoS-aware service
selection approaches.

When services are described by transactional properties, the best matched services
are the one whose transactional properties allow to reach the expected transactional
property of the resulting composite service. In this case the composition problem is
transactional-aware.

De�nition 2.7.5 Transactional-aware service selection.
The transactional-aware service selection consists in selecting service components in
order to obtain a composite service s which transactional property TP (s) is such that
[5]:

if TPQ = a then TP (s) ∈ {a, ar, c, cr},
if TPQ = ar then TP (s) ∈ {ar, cr},
if TPQ = c then TP (s) ∈ {c, cr},
if TPQ = cr then TP (s) = cr.

Indeed, the resulting composite service smust provide at least the transactional support
required by query Q (see Section 2.6 for the characteristics of transactional properties).

De�nition 2.7.6 QoS and Transactional-aware service selection.
The QoS and transactional-aware service selection consists in simultaneously consider-
ing QoS optimization and transactional property support.

The last step of the service composition process is the service execution. During this
phase, an execution engine (either centralized or distributed) is responsible to invoke all
selected component services [215]. During the composite service execution, component
service can failed or the QoS of a component service can change (in such way that the
resulting QoS of the composite service becomes no more optimal). In this case, recovery
techniques should be used to retrying the failed component service, compensating it or
executing an alternative service [8]. A service execution is fault-tolerant when it allows
one or several of the aforementioned recovery technique to ensure a reliable execution
of a composite service. When the choice of the strategy is automatically done, the
service execution is denoted dynamic or self-healing.

De�nition 2.7.7 Self-healing fault-tolerant composite service execution.
A fault-tolerant composite execution is self-healing when in case of a component ser-
vice failure or in case of QoS change (even during failure free execution), the most
appropriate recovery technique (retrying the failed component service, compensating
it or executing an alternative service) is automatically chosen.

20 Preliminaries

2.8 Overview of our work

The research work presented in this manuscript deals with service management. Table
2.3 summaries our contributions. A big part of our work concerns top-down or bottom-
up component service selection. Table 2.4 positions our di�erent component service
selection approaches and surveys, according to the concepts de�ned in this chapter.
These approaches are more detailed in Chapters 3 and 4. We have also proposed
several approaches allowing service execution or service search. Table 2.5 positions
these approaches, complementary to our service selection approaches and presented in
Chapter 5, according to the concepts de�ned in this chapter.

Table 2.3: Summary of our contributions
Ref. Description

[12] and its

extended

version [3]

Heuristic algorithm for Top-down Transactional and QoS-aware service

composition with formal de�nitions and proofs of the transactional

properties.

[14]
Linear program for Top-down Transactional and QoS-aware service

composition.

[4]
Complexity analysis and models comparison of Top-Down QoS-aware

service composition.

[10]
Heuristic algorithm for Bottom-up Transactional-aware service

composition.

[2, 9]
Heuristic algorithms for Bottom-up Transactional and QoS-aware service

composition.

[15]
Linear program for Bottom-up Transactional and QoS-aware service

composition.

[1]
Survey and comparison of service composition approaches (component

service selection and execution steps) based on Petri Net.

[20]
Complexity analysis and models comparison of Bottom-up service

composition based on ServiceData and Dependency graph.

[18]

Survey and comparison of transactional and transactional-QoS

(Top-down or Bottom-up) service composition approaches (component

service selection and execution steps).

[13] Transactional model for composite service execution.

[5]
Framework for QoS-transactional service selection based on

crowdsourcing.

[6, 8] Fault-tolerant self-healing composite execution model.

[16, 17] Framework for semantic service search.

[11] Fuzzy atomicity measure for composite service execution.

2.8. OVERVIEW OF OUR WORK 21

Table 2.4: Characteristics of our component service selection approaches

Ref.
QoS-

aware

Transactional-

aware

Transactional

and

QoS-aware

Selection

type

Considered

QoS

[3, 12, 14] X

Top-down

based on

work�ow

QoS Score

[4] X

Top-down

based on

work�ow

Cost,

execution

time and

reliability

[9] X

Bottom-up

based on

Colored

Petri Net

Execution

Time

[10] X

Bottom-up

based on

Petri Net

[1, 2] X

Bottom-up

based on

Colored

Petri Net

QoS Score

[15] X X

Bottom-up

based on

ServiceData

graph

QoS Score

and

execution

time and

throughput

[20] X

Bottom-up

based on

ServiceData

graph

Cost,

execution

time

throughput

and

reliability

Table 2.5: Characteristics of our complementary approaches
Ref. Concepts used

[13] Work�ow and composite service execution

[5] Transactional properties, QoS and service selection

[8] Petri Net, transactional properties, QoS and composite service execution.

[16, 17] Syntactic service description and service discovery.

[11] Transactional properties and composite service execution.

22 Preliminaries

Chapter 3

Top-down Transactional and

QoS-aware service selection

As explained in [102], a composite service (see Def. 2.3.1) is similar to a work�ow (see
Def. 2.3.2 p. 8). There is a long history between web services issues and work�ow
community [265]. Industry and business solutions are mainly work�ow-based because
of the WSDL service interface de�nition, but several RESTful composition approaches
(35% of the approaches analysed in survey [102]) have also adopted a work�ow view.
Work�ows are particularly adapted for several application domains as e-Science [84]
and image processing [109, 199] for example.

This chapter addresses the QoS and Transactional-aware service selection based
on work�ow (see Def. 2.7.2) and presents our approaches and surveys published in
[3, 12] and in [4, 14]. The chapter is organized as follows. Section 3.1 de�nes the
component service selection problem when work�ows are used. Section 3.2 describes the
heuristic approach we have proposed in [3, 12]. Section 3.3 concerns the approach we
had proposed in [4, 14] using linear programming. Section 3.4 presents our complexity
analysis of the problem. Finally, Section 3.5 deals with the limits of our work and
highlights some future work.

3.1 Problem de�nition

As explained in Def. 2.7.2 (p. 18), the query Q for a Top-down Transactional and
QoS-aware service selection is composed by an abstract work�ow, denoted WFQ.

In our work, we only consider the three more frequent patterns: sequence, parallel
(AND) and exclusive choice (XOR) � see Figure 2.2. These patterns can be recursively
concatenated and interlaced.

As an example, let consider the input abstract work�ow represented in Figure 3.1.
This work�ow contains 7 activities for content-based image retrieval i.e., for retrieving
the images which are considered to be similar to a query image. After a �rst activity
of image analysis (activity A1), the process consists in three exclusive choices (using
pattern XOR). The �rst branch of the exclusive choice pattern contains three activities:
A2 to decompose the image into a quad-tree � see for example Figure 3.2.(c) � and two
parallel activities (using pattern AND), A3 and A4, to compute a similarity based on
the level 1 and level 2 sub-images resulting from the quad-tree decomposition, as the
ones we proposed in [23, 25]. The second branch contains only one activity A5 which
computes a similarity based on the image color histogram, as the ones presented in

23

24 Top-down Transactional and QoS-aware service selection

AND−split
AND−join

XOR−split
Analysis

Image

A1

Decomp.

Quadtree

A2

detection

Key point
A6

similarity

Key point

A7

QT Level 2

Similarity

 A4

Similarity

QT Level 1

A3

similarity

Histogram

A5

XOR−join

Figure 3.1: An abstract content-based image retrieval work�ow.

Figure 3.2: Several examples of image feature extraction.

[185] � see Figure 3.2.(b)1 for a color histogram example. The last branch contains
two activities: A6 which detects image key points � see for example Figure 3.2.(d) 2

� and A7 which computes a similarity based on the spatial relationships between the
detected salient points of the image is computed, as we did in [21].

The input of the Top-down QoS and Transactional-aware service selection process
contains queryQ and the service registry, where services are organized into functionality
communities (see Def. 2.4.1). Figure 3.3.(a) represents the same example of the input
abstract work�ow of Figure 3.1. Figure 3.3.(b) represents a part of the service registry,
each service being clustered in one functionality class (functionalities are represented
by color in the Figure), each work�ow activity being associated with one class. The
output of the selection process is a composite service represented by a concrete work�ow
(see Def. 2.3.2), activities being performed by services (one service per activity for
sequence and AND patterns, and one service per activity for only one branch of the
XOR patterns). In our example, several concrete work�ows can appear depending on
the XOR pattern branch selected. Figure 3.3.(d) represents an example of 3 composite
services, each one representing an instantiation of each branch of the XOR pattern.

De�nition 3.1.1 Top-down QoS and Transactional-aware composition prob-
lem.
The Top-down QoS and Transactional-aware composition problem consists in simulta-
neously [4]: (i) determining an end-to-end route (represented by a concrete work�ow)
and (ii) selecting one service per activity of the selected end-to-end route, such that
the resulting composite service is transactional (see Def. 2.6.11) and the QoS selected
criteria (see Section 2.5) are optimized. The end-to-end route depends on work�ow
patterns. It is a path from the �rst vertex of the work�ow to the last one, containing

1From http://opensource.graphics/tag/histogram/
2From https://mvassilevich-test.googlecode.com/hg/src/python/scikits.image/DOC/html/

auto_examples/plot_harris.html

3.2. HEURISTIC APPROACH 25

AND−split AND−join

(d) Several examples of the output

composite service

AND−split AND−join

XOR−split

(a) Input abstract workflow

(b) Service registry where services are

XOR−join

A1

A2

A3

A4

A5

A6 A7

(c) Transactional and/or QoS−aware service selection

organized into classes of functionality

Figure 3.3: The top-down service selection process.

all branches of each AND pattern belonging to the path, and containing exactly one
branch of each XOR pattern belonging to the path.

We tackle this problem using di�erent approaches: an heuristic one, presented in
Section 3.2 and an approach based on linear programming, presented in Section 3.3.
We also analysed the complexity of the problem, as recalled in Section 3.4.

3.2 Heuristic approach

In [12], and in its extended version [3], we had proposed an heuristic approach. It con-
sists in selecting component services of a transactional composite service represented by
a work�ow, where each selected component service locally optimizes the QoS, computed
by a score (see Def. 2.5.5). This algorithm is detailed in the next subsection.

3.2.1 Description

The inputs of our heuristic approach are: an abstract work�ow and a service registry,
where each service is described by its functionality, its transactional property and a

26 Top-down Transactional and QoS-aware service selection

QoS score. In our algorithm, the input abstract work�ow is analysed vertex per vertex,
incrementally building a composite service. At each step, the transactional property
(TP) of the current composite service (composed by the components selected at the
previous steps and representing a sub-part of the �nal composite service) is computed.
At the beginning of the algorithm, the transactional property of the current composite
service (which has no component) is I, the root of the automaton of Figure 2.9 (p. 17).
This transactional property is updated after each component selection. Indeed, the
transactional property of a component determines the possible transactional properties
that services, selected during the next steps (called candidate services), could have. For
example, as soon as a pivot or an atomic component service is selected, only retriable
services can be selected for the next activities of the work�ow (see Automaton of Figure
2.9).

When the current vertex is an activity Ai, the algorithm selects the service, that:
(i) can performed activity Ai (i.e., which is member of the corresponding functionality
class associated with Ai), (ii) have the best QoS (in our case the maximum QoS score
among the services of the class) and (iii) whose transactional property respects the
rules recalled in Automaton of Figure 2.9.

When the current vertex of the analysed work�ow is an AND-Split pattern, the
algorithm recursively selects services that locally optimize the QoS for all the activity of
all branches of the pattern, each branch being considered as a sub-work�ow i.e., a sub-
composite service. The transactional property of the composite service represented by
the �rst branch of the pattern, after the service selection of its activities, determines
the authorized transactional properties of the composite services represented by the
other branches of the pattern.

When the current vertex of the analysed work�ow is a XOR-Split pattern, the
activities of all branches of the pattern are associated with services and the algorithm
selects the branch whose corresponding composite service has the best QoS.

3.2.2 Related work

As far as we know, when our articles have been published, our approach was the �rst one
that not only ful�lled the global transactional property of the composite service but also
guaranteed to have locally the best QoS component services. A recent survey [93] seems
to show that it was always the case in 2013 (see Table 3 in [93]). When our articles have
been published, most approaches only dealt with QoS-aware selection [43, 123, 134, 239,
255, 256] (see e.g., surveys in [114, 218]), but did not consider transactional properties.
Other approaches [61, 62, 147, 161, 173, 174, 192] took into account transactional
properties but were generally based on a model, the Acceptable Termination States
(ATS), that implies to explore all the possible end-to-end route making the approaches
neither simple or scalable. Few approaches had proposed QoS and transactional-aware
service selection [155, 240] but by only considering the compensatable property. A
comparison of these approaches is presented in our survey [18].

In [223], authors propose an extension of our approach introducing two new pat-
terns (if and while). They de�ne a genetic algorithm to determine a near-optimal
transactional composite service. However, they conduct experiments on only small size
instance (6 activities and 72 services), while our approach has been experimented on
much more bigger data sets (more than 40 activities and 3000 services) to prove our
approach scalability. More recently, authors of [241] propose an approach based on ant
colony optimization for transactional and QoS-aware selection. They compare their
approach to our and extend our transactional rules to switch and loop patterns. Their
experiments show a better optimality than our approach (because the globally opti-
mized the QoS while our heuristic locally optimizes it) but with lower computational
time results. Authors of [196] extend our transactional properties, adding a cancellable

3.3. LINEAR PROGRAM 27

one, and proposed a dynamic service selection which only considers transactional prop-
erties without considering QoS. Authors in [196] propose a genetic algorithm for Top-
down Transactional and QoS-aware service selection. They extended the automaton
we had proposed in [3], by adding a mutually exclusive patterns and by considering the
retriable property without associating it with the pivot or compensatable one. Their
approach allows a global QoS optimization.

3.3 Linear program

Our approach presented in [3, 12] locally optimizes the QoS. In order to globally
optimize the QoS, we had proposed new linear programs for Top-down QoS and
Transactional-aware service composition in [14], optimizing a classical weighted sum of
QoS criteria, and for Top-down QoS-aware service composition in [20], where cost is
minimized while execution time and reliability constraints are satis�ed. This section
describes these linear programs and compares it with the related works.

3.3.1 Description

As explained in [191]: "When practical problems are formulated as combinatorial op-
timisation models one must often include logical implications between decisions. It
is useful to express these implications as linear constraints involving binary variables,
since linear constraints o�er the possibility of using linear programming and branch
and bound as an initial solution method." We therefore decide to represent the service
composition problem by a 0-1 linear program.

As we remarked in [14, 20], when some global QoS constraints or global transac-
tional constraint have to be satis�ed, services cannot be chosen independently for each
activity of the work�ow. Thus, it is not possible to decompose the composition problem
into two stages which consist in, �rstly, in selecting an end-to-end route, and secondly
selecting the best service for each activity of this end-to-end route. The choice of the
end-to-end route and services is linked. In our models, decision variables are de�ned
for both activities and services selection.

A work�ow can be represented by a graph G = (V,E) whose vertex are activities
and patterns. The inputs of our linear program-based models contain the graph G,
representing the work�ow and the lists of services which can performed the di�erent
activities of the work�ow. In [14], services are described by their QoS score (see Section
2.5) and their transactional property. In [20], services are described by a set of vectors
containing the values of three QoS criteria (cost, execution time and reliability). Using
this inputs, we de�ne di�erent kinds of constraints: constraints induced by the work-
�ow (describing the work�ow structure), those induced by the QoS constraints, those
resulting from the transactional properties and �nally those modelling the selection
constraints (e.g., a selected activity must be realized by exactly one service).

The QoS and transactional-aware model of [14] has been compared with our heuris-
tic approach of [3, 12]. In our experiments, the running time of our linear program (us-
ing CPLEX solver3) was always better than the one of our heuristic approach whereas
our linear program always determines the exact solution. Our QoS-aware model of
[20] also o�ers promising computational experiments, showing that composition prob-
lem with sum-type and a single QoS criterion to optimize is tractable, even for large
size instances (more than 200 activities with 100 services per activities). However, the
same problem with an additional QoS constraint is more di�cult to solve for large size
instances. Graph reduction has to be conducted (since a work�ow is a series-parallel

3http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

28 Top-down Transactional and QoS-aware service selection

graph [87] as we explained in [20]) in order to simplify the linear formulation of the
problem.

3.3.2 Related work

The work�ow-based QoS-aware service composition problem has received a lot of inter-
est (see e.g., surveys in [114, 124, 168, 218]). As shown in [20], concerning the work�ow
structure, two classes of work�ow are usually considered.

In the �rst one, the work�ow induces only one end-to-end route (this is the case
when the work�ow contains SEQ and AND patterns only) then the problem is to select
one WS for performing each activity of this end-to-end route. In the large majority
of the studies considering this class of work�ow, the QoS-aware service composition
problem is modelled as a Multidimensional Multi-choice Knapsack Problem (MMKP)
(see e.g., [253, 254]). An heuristic is proposed to solve this problem in [60].

In the second class, there exist several possible end-to-end routes (this is the case
when the work�ow contains XOR patterns) then the composition problem simultane-
ously induces the selection of one end-to-end route, and the selection of one WS for
each activity belonging to the selected end-to-end route. Authors in [255] claim that
all end-to-end routes of the work�ow must be generated in order to �nd the best com-
posite WS. Therefore, they propose to decompose the problem into two steps: (step 1)
an end-to-end route is chosen, and (step 2) they propose a MIP formulation to select
one WS per activity belonging to the chosen route in order to maximize QoS criteria.
With such a decomposition, the obtained solution is not necessarily optimal. Authors
in [264] for example have always found better results than [255], using SAT-based cost
planning solver. In [254], the proposed model contains as many constraints as end-
to-end paths in the work�ow. Therefore, as the number of end-to-end paths grows
exponentially with the work�ow size, some large-size instances may not be formulated
and even less solved. Thus, authors propose to �nd near-optimal solutions in polyno-
mial time with an approximate algorithm. The real challenge is then to include into
the same optimization problem the selection of activities and the selection of WS for
performing each activity structured by a complex work�ow. That is what we do in our
approaches.

Compared with graph approach [156, 254], we do not have to enumerate all the
potential end-to-end routes in the work�ow and the number of variables and constraints
of our proposed model is polynomial in function of the number of activities and WS
per activity.

3.4 Complexity analysis

To the best of our knowledge, before our article [4], the theoretical complexity of the
top-down service composition problem had not been extensively studied. Only the
connection between this problem and the MMKP, which theoretical complexity is well
known, had been shown [48]. More recently in [11], Goldman and Ngoko propose
a polynomial-time algorithm to determine the composite WS with minimal average
execution time. Their algorithm is based on a recursive reduction of the work�ow.

As we show in [4], the theoretical complexity can be analysed more precisely in
regard to the structural property of the considered work�ow. More precisely, we have
proved that the composition problem can be solved in polynomial time when optimizing
a sum-type QoS criterion (for cost or QoS score for example) or a product-type QoS
criterion (for reliability for example) on a work�ow (with interlaced patterns SEQ,
AND and XOR). When a min/max-type QoS criterion is used (for execution time for
example), the problem can be solved in O(m), with m the number of leaves in the

3.5. CONCLUSION AND PRESPECTIVES 29

decomposition tree associated with the serie-parallel graph representing the work�ow
(based on the decomposition algorithm of [229]). We also have remarked that if the
work�ow only contains SEQ and AND patterns (without exclusive choice of activities)
the problem of determining the composite WS with minimal execution time is simpli�ed
and can be formulated as a longest path problem between the source and the sink of
serie-parallel graph associated with the work�ow. Thus, considering only one QoS
criterion to optimize, the top-down service composition problem is easy to solve (even
for more complex criterion like execution time). The computational di�culty comes
from QoS constraints (e.g., the execution time has to be less than 5 s). Indeed, let
us recall that, even for work�ow with SEQ patterns only, Yu and Lin show in [253]
that the composition problem with one QoS constraint is exactly the Multiple-choice
Knapsack Problem which is known to be NP-hard. Recently, authors in [37] also show
the NP-hardness of the problem and also establish that it is solvable in polynomial
time for one criterion for complex work�ow (including OR-pattern).

3.5 Conclusion and prespectives

To the best of our knowledge, the heuristic we had proposed in [12] and in [3], and the
linear program we had de�ned in [14], are both the �rst approaches allowing Transac-
tional and QoS-aware top-down service composition. The model we had proposed in
[20] for QoS-aware top-down service composition is very interesting since it avoids the
enumeration of all end-to-end routes and since the number of variables and constraints
is a linear function of the work�ow size. Moreover, in [20] we have more precisely anal-
ysed the theoretical complexity in regard to the structural property of the considered
work�ow.

However, in our work, we only consider three patterns (sequence, parallel and
exclusive choice). A �rst perspective concerns the extension of our approach to others
patterns (conditional pattern, loop ...).

As shown by our experiment results in [20], the computation time of global QoS-
aware top-down service composition is more important when several QoS constraints
are considered. A second perspective concerns a study on graph reduction (since the
graph associated to the work�ow is series-parallel) in order to simplify the mixed integer
linear formulation. On the other hand, it would also be useful to propose approximate
algorithms to �nd solutions very rapidly and to compute the distance between the
optimal solution (that can be found by our global approach) and the approximate one
and thus to obtain an experimental approximation ratio.

In [3, 12], we assume that it always exists one service of each transactional property
for each task of the work�ow, which can be a strong hypothesis as said in [97]. This
limit does not exists any more in [14, 20] since approach is global. Authors in [97] and
[98] also argue that our approach of [3, 12] is limited to stateless (non conversational)
services. As explained in [172], terms such "conversational" and "stateless" are widely
used in the taxonomy of web services. A stateless service is considered as black box.
At the opposite, a conversational service is composed of a set of operations over which
a work�ow is speci�ed [74]. Authors in [97, 98] considered that only [48] and [171]
o�er Top-down QoS-aware conversational (also called statefull) service composition,
and that they are the �rst ones considering both QoS and transactional properties.
However, if as in [74], we consider each operation of a conversational service as an ele-
mentary service, therefore as in [244] we can treat stateful/conversational and stateless
services in a uniform way. Moreover, authors [172] argue that "it is possible to have a
stateful implementation of a stateless service speci�cation."

Finally, our work concerns what authors in [215] de�ne as static composition. In-
deed, the composition of service is done at design time. As explained in [215]: "Static

30 Top-down Transactional and QoS-aware service selection

Web services composition works well if the business partners involved in the process
are relatively �xed, and service functionalities or composition requirements do not, or
rarely, change." A perspective concerns that adaptation of our work to runtime com-
position. In [19], a preliminary version of context-based transactional top-down service
composition is presented. In this paper, we are addressing a service composition prob-
lem in a context-aware setting when user and service context changes (e.g., services
becoming busy or unavailable) while the business process is executing.

In Top-down approach, a service is selected for each activity of the work�ow. Links
between two consecutive services in the work�ow are not considered or veri�ed. At the
opposite, in Bottom-up approaches, services are linked by their inputs and outputs.
The next chapter presents our bottom-up approaches, where instead of prede�ning an
abstract work�ow for the selection of component services, our approaches consider the
service registry as a big graph where services are syntactically described (see Def.2.2.1 -
pp. 6) and deduce the composition logic (or control �ow) from the selected component
services.

Chapter 4

Bottom-up Transactional and

QoS-aware service selection

When the Transactional and QoS-aware service selection is Bottom-up, instead of pro-
viding a work�ow, the query contains a set of inputs and outputs (a syntactical service
description - see Section 2.2), and a composite service is automatically designed, from
the available services (represented by a given graph), to produce the outputs from the
provided inputs. As explained in [76], in this case, the automatic service composition
is considered at operational level and services are regarded as black-box that accept
inputs to produce outputs. This kind of service composition problem has spawned a
synthetic benchmark, the Web Service Challenge (WSC) [50, 135, 238], to allow an
evaluation of service composition approaches. There is also a growing interest of this
kind of problem in the �eld of image processing (see for example [129, 166]).

This chapter deals with our approaches published in [2, 9, 10, 15, 20]. The chapter
is organized as follows. Section 4.1 de�nes the Bottom-up service composition problem.
Section 4.2 describes the heuristic approaches we had proposed in [2, 9, 10]. Section
4.3 concerns the approach we had proposed in [15] using linear programming. Section
4.4 presents our complexity analysis of the problem and the formulation, we proposed
in [20], in terms of scheduling problem with AND/OR constraints. Finally, Section 4.5
deals with the limits of our work and highlights some future work.

4.1 Problem de�nition

As explained in Def. 2.7.3 (p. 18), in Bottom-up service composition, the query
Q contains two sets of parameters, one for inputs and one for outputs (IQ and OQ
respectively), and the service registry is generally represented by a graph G (see Section
2.4). Therefore:

De�nition 4.1.1 Bottom-up QoS service composition problem.
As we de�ne in [20], the Bottom-up QoS and Transactional-aware composition consists
in de�ning a composite service s such that:

1. (Feasibility part of the problem) in(s) ⊆ IQ and out(s) ⊇ OQ, and

2. (Optimality part) the resulting composite service is transactional and it optimizes
the QoS (e.g., minimizing the execution time or maximizing the throughput).

The graph representing the service registry is an input the service selection process.
When the service registry is represented by a bipartite graph G = (V,U) (see Def. 2.3.3

31

32 Bottom-up Transactional and QoS-aware service selection

and 2.3.4 p. 9), with V = S ∪ D, the feasibility part consists in �nding a sub-graph
Gc = (V c, U c) of G, with V c = Dc ∪ Sc, such that:

• Vertices ∈ Dc with no predecessor correspond to the vertices associated with
inputs in IQ in G and vertices ∈ Dc with no successor correspond to the vertices
associated with outputs in OQ.

• If a vertex i ∈ (D \ IQ), and i ∈ V c, then at least one arc (j, i) ∈ U , with j ∈ S,
belongs to U c (it is due to the fact that each data i /∈ IQ has to be produced by
at least one service).

• If a vertex i ∈ S, and i ∈ V c, then all arcs (j, i) ∈ U , with j ∈ D, belong to
U c (it is due to the fact that each service i can be executed if and only if all its
inputs data are available).

• Gc does not contain any directed cycle.

To better understand the problem, let us consider the simple example of service
registry we used in [20], represented in Table 4.1, which contains 9 services and 9 data.

s 1 2 3 4 5 6 7 8 9

in(s) j k, i l,m m m i j n, i l

out(s) m j,m n i i, q r, q l t n, i

Table 4.1: An example of a simple service registry

The bottom-up service composition problem, using this registry, with IQ = {j, k}
and OQ = {q, t}, is represented in Figure 4.1. Depending on the transactional proper-
ties and on the QoS criteria (not represented in the �gure), several resulting composite
services are possible. Figure 4.1 only represents the resulting composite services that
resolve the feasibility part of the problem.

We tackle this problem using di�erent approaches: heuristic ones, presented in
Section 4.2 and an approach based on linear programming, presented in Section 4.3.
We also analysed the complexity of the problem and propose an original formulation
of the problem, as recalled in Section 4.4.

4.2 Heuristic approach

We had proposed heuristic methods based on Petri Net for bottom-up transactional
service composition in [10] and for transactional and QoS-aware service composition in
[9, 2]. All these approaches adapt a Petri-Net unfolding algorithm to select component
services.

4.2.1 Description

In [2, 10], the Colored Petri Net (CPN) (see in [263] for a description of CPN) formalism
is extended to incorporate the transactional properties: the color function associated
with transitions and tokens (which describe the selection process progress) represents
the transactional properties of the current selected composite service. Our approaches
use CPN model because it allows to describe not only a static vision of a system,
but also its dynamic behaviour; it is expressive enough to capture the semantics of
complex service combinations and their respective interactions. Such structure allows

4.2. HEURISTIC APPROACH 33

9

3

4

5

l

m1

n 8

6

r

7

2

i

l
n 8

6

7

9

m1

8

6

n

3

4

i

i

k

k

s
0

k

s
0

End

End

t

q

t

 (a) Input service registry

b) query; inpout in red and output in blue

(c) Transactional and/or QoS−aware service selection

j

j

q

j

q

t

composite service

(d) Several examples of the resulting

Figure 4.1: The bottom-up service selection process using registry of Table 4.1,
with IQ = {j, k} and OQ = {q, t}.

us to know the transactional property of the current composite service, after each
component selection.

In [2, 10], the input of our algorithm is query Q and the service registry is rep-
resented by a Colored Petri Net. The output is a transactional composite service
(represented by a CPN) in [10], which moreover locally optimizes the QoS in [2]. Our
algorithm adapts a Petri Net unfolding approach to perform a Best-First Search, which
stops when a desired marking (i.e., needed outputs are produced), reachable from an
initial marking (i.e., from available inputs) in the CPN, is found. The algorithm is
composed by four steps. Step 1 veri�es the admissibility of Q: it veri�es that at least
one service can be invoked using inputs of IQ and that all outputs of OQ can be pro-
duced by services of the registry. Step 2 identi�es the services of the registry (i.e.,
the transitions of the CPN) that may be useful to produce the outputs of OQ by only
considering transactional properties. This step produces a reduced CPN. Steps 1 and
2 are inspired from the yellow colouring step of the Service Aggregation Matchmaking
(SAM) algorithm of [65, 66]. Step 3 detects the transitions in the reduced CPN that
corresponds to the services component that locally optimize the QoS and that produce
outputs of OQ. Step 4 returns a CPN only containing the places and transitions that
correspond to the components of the resulting composite service.

Our experimental results show that taking into account the transactional properties

34 Bottom-up Transactional and QoS-aware service selection

additionally with the QoS optimization does not have a real impact on the execution
time of the service selection. The execution time depends on the size of the registry, the
complexity of our algorithm being O(|S|). While our algorithm [2] locally optimizes the
QoS, our experiments show that it founds the best QoS solution in 83% of evaluated
cases, considering di�erent service registry sizes.

The approach proposed in [9] also extends the greedy algorithm SAM [65, 66] but
di�ers from our aforementioned approaches in several aspects. Firstly, transactional
properties and QoS are aggregated in a utility function used to select services. Therefore
no color is used: services and service registry are represented by standard (not colored)
Petri Net. Secondly, the work follows a global optimization approach, implementing
an A*-based heuristic [117].

4.2.2 Related work

As far as we know, one of the �rst approaches using Petri Nets to model WS composition
is [116]. This work proposed a Petri Net-based algebra to represent a Web service by a
Petri Net, called Service Net. Because this approach did not include the management
of time and resources of services, it has been extended, for example in [258], to Colored
Petri Net, where color of tokens represents the type of information managed by services.
Recently in [76], Fuzzy Predicate Petri Nets have been used to integrate fuzzy semantic
into Bottom-up service selection.

Bottom-up QoS-aware automatic syntactic service composition problem has at-
tracted a lot of attention in recent years. They can be classify into �ve groups: search
approaches as in [128, 159], planning graph approaches as in [75, 245], integer linear
programming ones as in [182, 249], dependency graph approaches as in [106, 127] and
Petri Net based ones as in [65, 66, 144, 195]. However, as far as we know, when our
articles have been published, our approaches were the �rst ones that allow Bottom-up
Transactional and QoS-aware service composition. In [9], we had compared our ap-
proach with the Service Aggregation Matchmaking (SAM) algorithm of [65, 66]. Our
approach outperforms SAM by identifying service compositions that better meet the
QoS and that are transactional, while the composition time of both approaches are in
the same order of magnitude. Our approach [2] has been extended, in [8],[45, 46, 69],
to manage the execution of a transactional composite service represented by a CPN.
This extension particularly concerns the PhD work of R. Angarita [8],[45, 46], which
is detailed in Chapter 5.

When services are syntactically described by their inputs/outputs and when the ser-
vice registry is represented by a graph, related work approaches are generally compared
using the synthetic Web Service Challenge (WSC) [50, 51, 135, 238]. The following sec-
tion presents the linear program we had proposed in [15] for Bottom-up Transactional
and QoS-aware service selection and our experimental results obtained using the WSC
benchmark.

4.3 Linear program

The approach we had proposed in [15] allows a Bottom-up QoS-aware service selection
which is adaptable: the considered QoS can be either a QoS score (as de�ned in Def.
2.5.5 p. 13) or a single QoS criteria to optimize (e.g., execution time � see Def. 2.5.1
p. 12 � or cost, see Def. 2.5.3). Moreover our model can be extended to consider
transactional properties.

4.3. LINEAR PROGRAM 35

4.3.1 Description

In [15], the service registry is represented by a ServiceData Graph (see Def. 2.3.3, p.
9). Our 0-1 linear program contains three kinds of decision variables: variables associ-
ated with graph nodes representing services (allowing to determine the components of
the �nal service composition), variables associated with edges (allowing to determine
the sub-graph representing the �nal service composition) and temporal variables asso-
ciated graph nodes (representing the topological order of the components of the �nal
composite service).

We had de�ned constraints modelling the input/output of each service of the reg-
istry, constraints implied by the query (de�ning the provided inputs and the needed
outputs), constraints linking decision variables (particularly decision variables associ-
ated with nodes representing services and edges) and constraints to eliminate directed
cycles. QoS score can be considered in the objective function or QoS constraints (for
execution time or cost for example) can be added to our model. Moreover, our linear
program can be extended by adding constraints modelling the transactional properties.

Our experiments (using CPLEX solver) have been done without transactional prop-
erties using the well-known WS-Challenge 2009 (WSC-09) benchmark [135], and when
considering transactional properties, using the synthetic service repository we had used
in [2]. Our model �nds the optimal solution for all the 5 test sets of the WS-Challenge
in less time than the time-out �xed by the WS-Challenge. Experiments done, when
transactional properties have been considered, highlights the important di�culty in-
ducing by transactional requirements.

4.3.2 Related work

When our model integrates the transactional properties, our experimental results show
that, when an optimal solution exists, our model can �nd it generally faster than our
approximate approach proposed in [2]. When our model does not take into account
the transactional properties (then only considering QoS), our model is comparable,
in terms of quality of the solutions, to the recent related approaches experimented
with WSC-09 test sets, for example [128, 202, 245]. The approach of [128] won the
WSC-09 by proposing a polynomial-time algorithm to solve the composition problem
minimizing the execution time or maximizing the throughput. Authors in [202, 245]
propose Dijkstra's algorithms. Moreover, our model always �nds the optimal solution
while the other aforementioned approaches, for example [202], can not always �nd it
for the biggest data set without any cleaning process (that �lters all services relevant
for the query and discards the rest).

Integer Linear Programming (ILP) model have been proposed for QoS-aware service
composition in [182, 249]. In these approaches, a composite service is decomposed
into stages: a stage contains one service or several services executed in parallel. The
associated ILP represents the problem of selecting one or several services per stage.
Thus, the number of variables and constraints can be huge since there are proportional
to the number of services and data, times the number of stages. Moreover, the number
of stages is not known in advance; only upper bounds can be chosen (the worst one
is to set the number of stages equals to the number of services). Our experimental
results, without considering transactional properties, show that our model dominates
the more recent one proposed in [182].

The next section presents an analysis of the complexity of the QoS-aware problems
and a new formulation of the problems.

36 Bottom-up Transactional and QoS-aware service selection

4.4 Complexity analysis

In [20], we classi�ed the Bottom-up QoS-aware automatic syntactic service composition
problem into four categories depending on the QoS criterion type: (i) QoS criterion to
be minimized (e.g., for execution time), (ii) QoS criterion to be maximized (e.g., for
throughput), (iii) sum-type criterion to be minimized (e.g., cost) and (iv) product-type
criterion to be maximized (e.g., for reliability).

Categories (i) and (ii) has been considered by the Web Service Challenge (WSC)
2009 [135]. The service composition problem presented in WSC-08 [51] only tackles the
feasibility part of the composition problem (see Def. 4.1.1) without QoS while QoS is
considered in WSC-09 [135]. Although the problem presented in WSC-08 is NP-Hard,
the problem presented in WSC-09 can be solved with polynomial time algorithms.
In [20], we show that the problem of category (i) is exactly a well studied project
scheduling problem with AND/OR constraints. In a scheduling problem with AND/OR
precedence constraints, two kinds of jobs are considered: jobs with AND precedence
constraints which can be executed when all their precedence jobs are �nished, and
jobs with OR precedence constraints can be performed when at least one of their
precedence jobs is terminated. In [169], authors propose a Dijkstra-like algorithm
to solve the project scheduling problem with AND/OR constraints. This algorithm
is similar to the one proposed in [127] for Bottom-up service composition based on
dependency graph. In [20], we propose to adapt the algorithm of [169] to Bottom-up
service composition based on a ServiceData graph (without computing a dependency
graph). Our adaptation is more e�cient on WSC-09 test sets than related algorithms
[127, 128, 159].

Some authors, for example in [127] and in [203], claim that their algorithm, initially
proposed for categories (i) and (ii), can be applied to category (iv). However, we prove,
in [20], that problem of category (iv) is NP-hard, and we exhibit a polynomial case.
Problem of category (iii) is proved to be NP-hard in [106]. We also exhibit a polynomial
case in [20] for such problem, associated with a particular class of ServiceData graph.

4.5 Conclusion and perspectives

To the best of our knowledge, the heuristic we had proposed in [2, 9, 10] and the
linear program we had de�ned in [15], are the �rst approaches allowing Bottom-up
Transactional and QoS-aware service composition. Our models are extendible since
they can only take into account transactional properties without QoS [10], or QoS
without transactional properties [15] or both [2, 9, 10, 15]. Moreover, in [15] di�erent
kinds of QoS optimization can be done: optimizing a sum-type criterion (e.g., QoS
score or cost) or maximizing a QoS criterion (e.g., execution time). Our experimental
results show that our approaches outperform the related ones: in [9], we o�er a better
QoS optimization than in the Service Aggregation Matchmaking (SAM) algorithm of
[65, 66]; using the WSC-09 benchmark, our 0-1 linear program dominates the one
proposed in [182]; and our scheduling problem with AND/OR constraints formulation
[20] is more e�cient than the algorithms of [127, 128, 159].

The di�culty inducing by transactional properties being important, our 0-1 linear
program, depending on CPLEX solver, is too long to �nd optimal solutions for big-size
test sets. Therefore, a �rst perspective of our work is to propose speci�c resolution
methods to solve such big problems.

Thanks to the simple graph structure of the ServiceData graph, the models we
proposed in [15, 20] are the most e�cient ones for exactly solving, in polynomial time,
the service composition problem with a maxmin-type criterion (like execution time or
throughput criterion). Unfortunately, for sum-type criterion (like cost QoS criterion)

4.5. CONCLUSION AND PERSPECTIVES 37

or product-type criterion optimization (like reliability), polynomial time approaches
can not be applied, since this problem has been shown as NP-hard. As second perspec-
tive, approximate approaches should be de�ned for solving such NP-hard composition
problems.

The next chapter presents the approaches we have proposed for transactional com-
posite service execution (how allowing a fault-tolerant service execution) and for service
search (how �nding services based on their syntactic description).

38 Bottom-up Transactional and QoS-aware service selection

Chapter 5

Towards a full service

management framework

A full service management framework must: (1) be able to discover/identify services
achieving a speci�c goal, (2) compose them when no single service can reach the needed
goal, and (3) establish mechanisms to ensure a reliable execution of the resulting com-
posite service. This chapter presents the works we have carried out within two PhD
works, Rafael Angarita's PhD [5, 6, 8][45], I had supervised with Marta Rukoz, and Mo-
hamed Lamine Mouhoub's PhD [16, 17], I am supervising with Daniela Grigori. These
proposed approaches are complementary to the selection ones, presented in Chapters
3 and 4, since they concern the composite service execution (step following the com-
posite service selection) and the service search (step done before the service selection).
Section 5.1 deals with the self-healing transactional composite service and Section 5.2
concerns the service search using SPARQL.

5.1 Self-healing transactional composite service

Once a transactional composite service has been selected, using for example the selec-
tion approaches we had proposed in Chapters 3 and 4, its reliable execution should
be automatically supported. In [8] (more detailed in [45]), we propose a self-healing
(i.e non intrusive dynamic fault-tolerant) approach for composite services supported by
knowledge-based agents capable of making decisions at runtime. This section presents
this approach and its related work.

5.1.1 Description

As explained by Kephart and Chess [131], the self-healing property of a system is
the ability of the system to automatically detect, diagnose, and repair software and
hardware problems. Our self-healing transactional composite service approach is a
continuation of the work proposed by Cardinale and Rukoz in [69]. It implements
three di�erent recovery mechanisms: backward recovery through service compensation,
forward recovery through service retry and replacement, and check-pointing as an al-
ternative strategy. As explained in De�nition 2.6.1 (p. 14), backward recovery consists
in restoring the state that the system had at the beginning of the service execution or in
reaching a state semantically closed to the state that the system had at the beginning
of the service execution. Forward recovery (see Def. 2.6.2, p. 14) consists in repairing
the failure to allow the failed service to continue its execution. Backward recovery
can imply long times and lost work due to the compensation of previously successfully

39

40 Towards a full service management framework

executed component services. Forward recovery can also cause long waiting times and
deterioration of QoS criteria (e.g., price and reputation) due to component service retry
or replacement. Both ensure the all-or-nothing transactional property [8], stating that
each component service of a composite one must either complete successfully or have
almost no e�ect (i.e., can be semantically undone). Check-pointing [207, 233] is used to
relax the atomicity (all-or-nothing) transactional property, allowing to obtain partial
results and to resume the execution later.

Monitoring QoS, environment and execution state, we have de�ned a self-healing
model, formally described using the Colored Petri net formalism, that allows to dy-
namically decide the best recovery strategy (backward, forward or check-pointing) in
case of a component failure � more detailed can be found in [7] and [45, 47]. We
have proposed an agent architecture where service agents are knowledge-based agents,
i.e., are self- and context-aware, able to make deductions based on the information
they have about the whole composite service, about themselves, and about what is
expected and what it is really happening at runtime [45]. We have extended our agent
architecture, in [6], to provide self-healing capabilities for Web of Things applications,
where agents are the representation of physical objects, web services or humans in the
Web. We recently have also proposed a model, in [11], to measure the fuzzy atomicity
of composite service execution. This model complements our self-healing one by pro-
viding an accurate measure of atomicity. It ensures a fuzzy all-or-nothing execution of
a composite service and allows to envisage di�erent recovery strategies depending on a
the acceptable fuzzy atomicity the user may accept in case of failure.

In [5], we have also proposed a service replacement approach which is complemen-
tary to our execution system for fault-tolerant composite services. This work in progress
allows to determine the most suitable transactional service from a set of functionally
equivalent services, according to the opinions of multiple independent contributors,
using crowds of voting services. Each voting service ranks candidate services for a
selection or a service replacement, according to their own criteria, and do not have to
know nor interact with each other; the only requirement is to rank a list of candidate
services. Experimental evaluation has been done using three kinds of voting services:
ones based on normalized advertised QoS parameters, ones based on historical QoS
values and others based on QoS prediction.

5.1.2 Related work

Works supporting reliable execution of composite services can be classi�ed into two
groups [45]: fault tolerant approaches [36, 57, 58, 69, 153, 208, 237, 260], focusing
in recovery mechanisms, and self-healing research ones [52, 145, 175, 219, 248, 259],
dealing with QoS monitoring and pre/post condition satisfaction. Among fault tolerant
approaches, some [58, 69, 153] use transactional properties, as we did. Others [57, 208,
237] use exception handling, and others are based on redundancy and design diversity
(replicating component services) [36] or are optimization approaches [260]. Among
self-healing approaches, some [52, 219] are build on the top of BPEL (Business Process
Execution Language) [230], dedicated to BPEL developers, while others [145, 175, 248,
259] are non-BPEL-based, generally based on QoS monitoring.

As far as we know, when our work has been published, none of the related fault
tolerant approaches consider dynamism in the execution environment to adapt the
decision regarding to which recovery strategy is the most appropriate [47]. Compared
with self-healing approaches, our approach is non intrusive (i.e., transparent for users
and developers) and selects the most appropriate recovery and preventive strategy
using a measure expressed in terms of (expected, current, and remaining) QoS and
(expected and produced) outputs [47]. Moreover, while our approach is not built on
top of accepted standards (e.g., BPEL), its execution engine has been designed to

5.1. SELF-HEALING TRANSACTIONAL COMPOSITE SERVICE 41

operate with the least possible human intervention. A recent work [40] is related to
our. It presents a self-healing framework for managing bottom-up faults in composite
services, in which bottom-up faults correspond to the faults that happen at a component
service and whose knowledge is propagated to any composite service that uses the
faulty component. In this work, each service is associated with a coordinator, similar
to our agents, except that coordinator and service are deployed on the same node, to
detect infrastructure faults, while in our approach the execution control is detached
from services. As we do (see details in [7] and [45]), authors in [40] use a rule-based
approach to apply multiple recovery strategies. However, the selected recovery strategy
depends on the detected faults, while in our approach, we do not distinguish among
the types of faults. Moreover, authors in [40] do not consider transactional properties
nor QoS monitoring. Both approaches can be therefore be complementary.

Concerning the crowdsourcing for candidate service selection, only few approaches
[217, 243] exist. Authors in [243] propose a consensus-based service selection approach
in which di�erent agents evaluate each candidate service QoS to aggregate it into one
accepted QoS assessment. The work presented in [217] presents a �rst step toward
hybrid human-automatic web service discovery. None of them consider transactional
properties. Moreover, we propose a framework to gather together di�erent service
selection approaches, and to take advantage of their multiple techniques with a minimal
e�ort. In our framework, contributors (services or human experts) have neither to know
each other nor to form social networks to reach consensus about QoS of candidate
services.

5.1.3 Conclusion and perspectives

Our self-healing composite service approach is based on transactional properties and
on knowledge-based agents. The transactional properties are used as a deep-seated
notion for fault tolerance, allowing to implement automatic backward and recovery
mechanisms that do not need developers or any other kind of human intervention
[45]. The transactional approach is extended with knowledge-based agents allowing a
decision making process at runtime. Our approach deals with services at a conceptual
providing a formal model for composite service executions.

The perspectives we envision are the following ones. Firstly, our agent architecture
can be extended to Web of Things (WoT) applications, as we propose in [6]. Formal
de�nition, implementation and experimentation have to be done to achieve this ex-
tension. Secondly, we would like to take into account the possible changes that may
appear during the composite service execution during the selection process, in order to
de�ne reliable composite service selection. We would like to provide new models that
o�er new service compositions that integrate, as soon as they are de�ned, the envisaged
recovery strategies. The challenge is to investigate a novel approach based on robust
optimization, never used for service composition to our knowledge. Performance eval-
uation should also be done and, as explained in [170], is a challenging issue. Finally,
concerning the crowdsourcing-based in progress approach, presented in [5], analysis
and evaluation using di�erent realistic scenarios and di�erent voting systems should be
done, and management policies for voting agents should be implemented.

To be able to have a composite service to execute or to have a service that can
replace a failed one, identi�cation of services, accomplishing a given goal, should be
done. This step is generally called service search or service discovery. The next section
presents a work in progress allowing to search services using SPARQL [194] queries.

42 Towards a full service management framework

5.2 Service search using SPARQL

Service discovery, also called service search in [133], concerns the identi�cation of suit-
able existing services that satisfy a speci�c goal [210]. It has been considered as one
of the key challenges for achieving e�cient service oriented computing [217]. Service
discovery approaches di�er in their support of service description language(s), the or-
ganization of the search, and means used to select services [132]. Semantic web service
[164, 189] enriches services with semantic ontology-based annotations to better support
their discovery, composition and execution. As explained in [100], using semantic web
query language, especially SPARQL [194], which is the current W3C Recommenda-
tion, allows to perform semantic service discovery. From a user perspective, data and
services provide complementary view of information source, and users need to perform
aggregated searches to identify data and services [183]. In [16, 17], we present a frame-
work for searching semantic data and services using SPARQL. This section presents
this framework and its related work.

5.2.1 Description

Authors in [210] consider SPARQL as the most widely used language for knowledge
based employing the Resource Description Framework (RDF) and Web Ontology Lan-
guage (OWL) [55]. RDF1 [167] is a standard model for data interchange on the Web.
It is used to represent information modelled as a "graph" [112, 193], whose nodes are
entities (e.g., students, lessons, teachers), and whose edges are relationships (e.g.,
TakesAClassAbout, Teachs). A RDF data collection consists of a set of subject-
property-object triples [90, 112]. An example of such triple can be: student1 (subject)
takes a class (property) about web service (object). OWL2 is the language for de�ning
ontologies on the Web [55]. It shares many characteristics with RDF [118]. SPARQL
is a graph-based query language [112], which is the W3C standard for querying RDF
data [90]. Several OWL/RDF service descriptions exist: for example OWL-S, "OWL
for Services", a service description ontology based on OWL [163, 177], or Minimal Ser-
vice Model (MSM3), a RDF vocabulary that can represent the syntax of Web services
or Web APIs [189].

The goal of our framework, called LIDSEARCH [17], for Linked Data and Service
Search, is to extend a search of linked data with a service discovery to �nd relevant
services that provide complementary data related to a user query on knowledge bases.
Given (1) a SPARQL query on linked data, composed of sets of triple patterns and
selection variables, and (2) a collection of RDF/OWL service descriptions (using OWL-
S [163] or MSM [189] for example), the process is decomposed into several steps. First,
it analyses the data query by extracting the output informations needed by user from
the input ones provided in the data query. Then, it generates multiple service queries
consisting of sets of triples that match the input and output of the data query with
the input and output of a service. This matching can be either exact, i.e., resulting
services have exactly the inputs/outputs extracted from the data query, or resulting
services can return some of the inputs or of the some outputs extracted from the data
query, providing additional information or allowing service composition. Generated
service queries can be enriched by semantic lookup, such as concept lookup, when no
concept has been specify in a triple of the data query, or similarity looked, �nding
similar concepts of a speci�c one.

The framework has been implemented using Apache Jena framework4 to manage

1https://www.w3.org/RDF/
2https://www.w3.org/2004/OWL/
3http://iserve.kmi.open.ac.uk/ns/msm/msm-2014-09-03.html
4https://jena.apache.org/

5.2. SERVICE SEARCH USING SPARQL 43

SPARQL queries and RDF. A demonstration5 has been presented in [17]. Experiments
are also be done using some queries of the OWL-S-TC benchmark6.

5.2.2 Related work

The majority of services available on the web lack of explicit and su�cient semantic
information [257], and o�er many heterogeneous formats [132]. Moreover, paucity of
service registries does not allow expressive queries on services [189]. Therefore, many
approaches and benchmarks have been proposed to better support semantic service
discovery, as shown in surveys [132, 133, 177].

Our framework is inspired by the approach of [183] which aims to look for services
that are related to a given query based on keywords comparison between a SQL-like
query and a service ontology. This approach relies on semantic annotations generated
using WordNet7 on top of the classic service descriptions in order to expand the search
area with the taxonomy provided by semantics [17]. Another work, related to the an-
swer of a user query using services, is the ANGIE system [193]. This system enriches
RDF knowledge bases by incorporating data from web services that provide encapsu-
lated functions. This work assumes the existence of a global schema for both data
and services. On the other hand, our approach consists in generating di�erent service
queries, depending on the provided service descriptions, without any global schema.

Several approaches are complementary to ours: SPARQL query processing (see for
example in [181] for a recent survey), SPARQL federation approaches, such as FedX
[212] or HiBISCuS [209], both used in LIDSEARCH [17] to optimize the SPARQL query
management, and approaches enriching service description with semantic annotations,
based for example on DBPedia knowledge base [142] as in [77, 257], or approaches that
encode service description as linked data [189, 225], o�ering semantic service models
to generate service query.

5.2.3 Conclusion and perspectives

The SPARQL-driven approach for searching linked data and related relevant services,
we propose in [16], o�ers many perspectives not only in standard service discovery
domain but also in emergent domains. For example, authors of [77] propose a mobile
service discovery based on semantic annotations from DBpedia knowledge base. The
Minimal Service Model proposed for iServe plateform [189] has been extended for ad-
vanced semantic discovery of things as services [234]. Therefore, our framework can
also be extended in a similar way.

As it is a not yet �nish work, several improvements of our approach are needed.
Firstly, comparison with related works, and particularly with [100, 206, 210], should be
improved. Secondly, more experiments should be done to totally validate the approach.
Finally, QoS integration, query optimization, and improvement of search capabilities,
can also be added to our framework. No QoS is currently considered to our approach
to discover services or rank the services returned by the query. It should be integrated
in our approach. Our framework is currently based on SPARQL federation approaches
[212, 209]. Cloud-based approaches (see in [130] for a recent survey) or RDF distri-
bution algorithms (see in [82] for a recent comparison of distributed approaches over
a cluster computing engine) can also be envisaged to process our SPARQL queries.
Concerning the improvement of search capabilities, we could introduce some similarity
measures, as the ones proposed for example in [41], for enriching our semantic lookup

5https://sites.google.com/site/lidsearch/
6http://projects.semwebcentral.org/projects/owls-tc/
7http://wordnet.princeton.edu/

44 Towards a full service management framework

and comparing the services. We should also o�er mechanisms (e.g. inferences from
ontologies) to guarantee the completeness of our SPARQL query result, as it has been
recently done for example in [83]. Moreover, when no single service satis�es the user
query, a composite service should be found. Therefore, improvement should be done
for simultaneously carrying out service search and automatic service composition, con-
sidering for example our previous approaches (presented in Chapter 3) or related work
(for example [206]).

5.3 Conclusion

Both approaches presented in the chapter represent the �rst (service search) and the
last step (service execution) of a full service management. As far as we know, only
authors of [204, 206] have proposed an integrated semantic web service discovery and
composition framework. They use two pre-existing components, iServe [189], for service
discovery, and CompositIT [205], for service composition. In [206], experiments of this
integrated framework have been done using WS-Challenge 2008 [51], that contains
syntactic synthetic service descriptions without QoS. The approach presented in [204]
extends the one proposed in [206], by integrating QoS optimization and minimizing
the number of component services. Experiments have been done using WS-Challenge
2009 [135]. However, neither transactional properties nor the reliable execution of the
resulting composite service have not been considered in this integrated framework.
Integrating the selection approaches, presented in chapters 3 and 4, with the service
search and the reliable service execution approaches, presented in this chapter, may
allow us to propose an integrated QoS and transactional-aware semantic web service
discovery and composition framework.

Chapter 6

Research Perspectives

In this document, we have summarized the approaches and analyses we have proposed
for the Transactional and QoS-aware service selection (see Chapters 3 and 4), and the
propositions, we have done under two PhD works, concerning the service execution and
the service search (see Chapter 5). We conclude this document by identifying several
open research issues we would like to tackle in the future: the combination of Top-down
and Bottom-up selection, the robust dynamic service composition, the transactional
properties issue, and the challenge of providing a full framework that allows dynamic
discovery, composition, and fault-tolerant execution of composite Internet services.

6.1 Combining Top-down and Bottom-up selection

When service selection is Top-down, as we did in [3, 4, 12, 14] (see Chapter 3), a
work�ow with a �xed number of abstract activities should be de�ned, and for each
activity, a set of concrete services, that can implement the activity, should be known. In
such approach, no input/output links between services are considered. As explained in
[203], both work�ow and candidate services are assumed to be prede�ned beforehand,
inducing a resulting composition with a �xed size. In the other hand, when service
selection is Bottom-up, as we did in [2, 9, 10, 14, 20] (see Chapter 4), services are linked
by their input/output dependencies in a graph and the selection consists in selecting
a sub-graph that satis�es a query corresponding to a pair of inputs and outputs sets.
In this case, user can only expresses what he wants (outputs) and what he is able to
provide (inputs), without being able to really express the business process he �nally
wants to execute. Since we deeply study both approaches, we should be able to propose
a model that mix both types of selection and analyse if such combination can improve
the service selection process.

6.2 Robust dynamic service composition

Until now, we �rstly execute a service selection process (by identifying the components
of a composite service that satis�es a query), using the approaches we have presented
in Chapters 3 and 4, and then execute the resulting composite service, using the self-
healing approach we have presented in Section 5.1. The selection is done with an
optimistic assumption: characteristics and behaviours of services seldom change. Fail-
ures or changes in service characteristics (e.g., QoS degradation) are considered during
the execution. A recent approach [160] has been proposed to enable evolution of service
composition. Following a static Top-down service composition, presented in [128], the
authors propose to update the service dependency graph when selected services change

45

46 Research Perspectives

and to rebuild the composition is case of the original one is invalid or suboptimal. Such
proposition is really equivalent to an approach that �rstly composes services and then
manages failures and changes during the execution of the composition, as we do until
now. However, in order to prevent undesirable impacts, notably the degradation of
the QoS performances of the composition or the component failures, we have to take
into account possible changes in the work�ow or in the graph, during the optimization
process. Based on the recovery strategies we o�er in [6, 8], we would like to provide
new models that o�er new service compositions that integrate, as soon as they are
de�ned, the envisaged recovery strategies.

6.3 Transactional properties issue

In [3], we extended the most used transactional properties of services, pivot, retriable,
and compensatable, to composite services, and we de�ned a formal model of trans-
actional composite service. As indicated in Chapter 2, this model has been extended
by several authors (see for example [85, 93, 196, 241]). Transactional properties of a
composite service implicitly describe its behaviour in case of failures and are considered
to ensure a relaxation of the classical all-or-nothing property, as explained in Section
2.6. Even if some recent works analyse how such transactional properties can a�ect
the QoS of a composite service (see for example [86]) or how transactional require-
ments can be speci�ed (see for example [197]), more work should be done to be able to
provide real services implementing such transactional properties. For example, several
questions remains unresolved such as: how to really implement the retriable property
which is a very strong restriction or how to transform the all-or-nothing paradigm to
an all-or-something based on check-pointing. A �rst step to answer these questions is
presented in our recent approach [11].

6.4 Toward a full transactional service management

As we previously mentioned, we consider that a full service management framework
must: (1) be able to discover/identify services achieving a speci�c goal, (2) compose
them when no single service can reach the needed goal, and (3) establish mechanisms
to ensure a reliable execution of the resulting composite service. Moreover, we consider
that real service benchmarks are needed to evaluate such framework. However, to ver-
ify the scalability of the proposed algorithms, selection approaches, even recent ones
[146, 160, 204], are generally experimented using the Web Service Challenge [50, 135],
i.e., using synthetic randomly generated services or using old QoS data extracted from
real services, e.g., the QWS Dataset of [39]. Some authors, e.g., in [141], manually ex-
tract the information they need (e.g., inputs/outputs of services to build a dependency
graph), from several selected real services. However, as far as we know, no real service
registry is available to allow real comparison of the proposed approaches. Building
such real service registries is a real challenge. We would like to analyse why such real
benchmark does not exist and how it could exist.

Service composition is a very active area of research [143]. While many works
have addressed the topic of Internet services from multiple angles (see surveys [143,
215, 218, 224]), and have proposed solutions for service discovery, composition, and
evaluation, no framework really ensures and supports reliable service composition and
execution. Our research work is a �rst step of such framework. Indeed, the resulting
composite service obtained after one of our transactional service selection approaches
can be the input of our self-healing composite service execution. The next challenge
consists in integrating these approaches with service discovery, in order to provide a
full transactional service management framework.

References

Personal references on services

Papers in international journals

[1] Y. Cardinale, J. El Haddad, M. Manouvrier, and M. Rukoz. Web Service Com-
position Based on Petri Nets: Review and Contribution. In Resource Discovery
(RED) - LNSC 8194, pages 83�122, 2013. Volume containing extended papers of
the works presented at 5th Int. Workshop on Resource Discovery 2012, through
a two-step peer-review process.

[2] Y. Cardinale, J. E. Haddad, M. Manouvrier, and M. Rukoz. CPN-TWS: a
coloured petri-net approach for transactional-QoS driven Web Service compo-
sition. Int. Journal of Web and Grid Services (IJWGS - 2011 Impact Factor
1.919), 7(1):91�115, 2011.

[3] J. El Haddad, M. Manouvrier, and M. Rukoz. TQoS: Transactional and QoS-
Aware Selection Algorithm for Automatic Web Service Composition. IEEE
Trans. on Services Comp., 3(1):73�85, 2010. Special Section on Transactional
Web Services - Selectivity rate: 21%.

[4] V. Gabrel, M. Manouvrier, and C. Murat. Web services composition: Complexity
and models. Discrete Applied Mathematics, 196:100�114, 2015.

Papers in international conferences and workshops

[5] R. Angarita, M. Manouvrier, and M. Rukoz. A Framework for Transactional
Service Selection Based on Crowdsourcing. In Int. Conf. on Mobile Web and
Intelligent Inf. Sys. (MobiWis) - LNCS 9228, pages 137�148, 2015.

[6] R. Angarita, M. Manouvrier, and M. Rukoz. An Agent Architecture to En-
able Self-healing and Application-context-aware Web of Things Applications. In
Int. Conf. on Internet of Things and Big Data - IoTBD, 2016. Position Paper
accepted as a Short Paper for a 20 minutes Oral Presentation (2016).

[7] R. Angarita, M. Manouvrier, M. Rukoz, and Y. Cardinale. A knowledge-based
approach for self-healing service-oriented applications. In Int. ACM Conf. on
Management of Digital EcoSystems (MEDES), 2016.

[8] R. Angarita, M. Rukoz, and M. Manouvrier. Dynamic Composite Web Service
Execution by Providing Fault-Tolerance and QoS Monitoring. In PhD Symp. of
the Int. Conf. on Service-Oriented Comp. (ICSOC - CORE 2014 A-ranked conf.)
- LNCS 8831, pages 371�377, 2014. PhD Symposium.

[9] E. Blanco, Y. Cardinale, M.-E. Vidal, J. El Haddad, M. Manouvrier, and
M. Rukoz. A transactional-qos driven approach for web service composition.

47

48 BIBLIOGRAPHY

In Int. Workshop on Resource Discovery (RED) - LNCS 6799, pages 23�42.
Springer, 2012.

[10] Y. Cardinale, J. El Haddad, M. Manouvrier, and M. Rukoz. Web service selection
for transactional composition. In Int. Conf. on Computational Science (ICCS -
ERA 2010 A-ranked conf.), volume 1(1) of Procedia CS, pages 2689�2698, 2010.

[11] Y. Cardinale, J. El Haddad, M. Manouvrier, and M. Rukoz. Measuring Fuzzy
Atomicity for Composite Service Execution. In Int. Conf. on Open and Big Data
(OBD), 2016. Invited paper.

[12] J. El Haddad, M. Manouvrier, G. Ramirez, and M. Rukoz. Qos-driven selection of
web services for transactional composition. In IEEE Int. Conf. on Web Services
(ICWS), pages 653�660, 2008. Selectivity rate 16%.

[13] J. El Haddad, M. Manouvrier, and M. Rukoz. A Hierarchical Model for Trans-
actional Web Service Composition in P2P Networks. In IEEE Int. Conf.on Web
Services (ICWS), pages 346�353, 2007. Selectivity rate 18%.

[14] V. Gabrel, M. Manouvrier, I. Megdiche, and C. Murat. A new 0-1 linear program
for qos and transactional-aware web service composition. In IEEE Symp. on
Comp. and Comm. (ISCC), pages 845�850, 2012.

[15] V. Gabrel, M. Manouvrier, and C. Murat. Optimal and Automatic Transactional
Web Service Composition with Dependency Graph and 0-1 Linear Programming.
In Int. Conf. on Service-Oriented Comp. (ICSOC - CORE 2014 A-ranked conf.)
- LNCS 8831, pages 108�122, 2014. Selectivity rate 15%.

[16] M. Mouhoub, D. Grigori, and M. Manouvrier. A Framework for Searching Se-
mantic Data and Services with SPARQL. In Int. Conf. on Service-Oriented
Comp. (ICSOC - CORE 2014 A-ranked conf.) - LNCS 8831, pages 123�138,
2014. Selectivity rate 15%.

[17] M. Mouhoub, D. Grigori, and M. Manouvrier. LIDSEARCH: A SPARQL-Driven
Framework for Searching Linked Data and Semantic Web Services. In The Se-
mantic Web: ESWC Satellite Events (CORE 2014 A-ranked conf.), LNCS 9341,
pages 112�117, 2015. Demo Session.

Chapter in international books

[18] Y. Cardinale, J. El Haddad, M. Manouvrier, and M. Rukoz. Handbook of Research
on Non-Functional Properties for Service-oriented Systems: Future Directions,
chapter Transactional-aware web service composition: A survey, pages 116�141.
IGI Global-Advances in Knowledge Management (AKM) Book Series - S. Rei�-
Marganiec and M. Tilly Ed(s)., 2011. Chapter accepted after a peer-review
process.

Technical reports

[19] J. El Haddad, M. Manouvrier, S. Rei�-Marganiec, and M. Rukoz.
Context-based transactional service selection approach for service composi-
tion. Note de recherche 49, LAMSADE - Université Paris-Dauphine, 2010.
https://basepub.dauphine.fr/handle/123456789/5251.

[20] V. Gabrel, M. Manouvrier, C. Murat, and K. Moreau. Qos-aware auto-
matic syntactic service composition problem: complexity and resolution. Tech-
nical report, Cahier du Lamsade N◦367 - Univeristé Paris-Dauphine, 2015.
http://www.lamsade.dauphine.fr/sites/default/IMG/pdf/cahier_367.pdf.

BIBLIOGRAPHY 49

Personal references on content-based image retrieval

Papers in international journals

[21] N. V. Hoàng, V. Gouet-Brunet, M. Rukoz, and M. Manouvrier. Embedding
spatial information into image content description for scene retrieval. Pattern
Recognition (ERA 2010 A*-ranked J. - 2010 Impact Factor 2.607), 43(9):3013�
3024, 2010.

[22] M. Manouvrier, M. Rukoz, and G. Jomier. Quadtree representations for storage
and manipulation of clusters of images. Image Vision Comput. (ERA 2010 B-
ranked J. - 2002 Impact Factor 1.029), 20(7):513�527, 2002.

[23] M. Rukoz, M. Manouvrier, and G. Jomier. Delta-distance: A family of dissim-
ilarity metrics between images represented by multi-level feature vectors. Inf.
Retr. (ERA 2010 B-ranked J. - 2006 Impact Factor 1.744), 9(6):633�655, 2006.

Papers in international conferences and workshops

[24] G. Jomier, M. Manouvrier, V. Oria, and M. Rukoz. Multi-level index for global
and partial content-based image retrieval. In IEEE Int. Workshop on Manag-
ing Data for Emerging Multimedia Applications (EMMA), in conj. with IEEE
Conf.on Data Eng. (ICDE), page 1176, 2005.

[25] M. Manouvrier, M. Rukoz, and G. Jomier. A generalized metric distance between
hierarchically partitioned images. In Int. Workshop on Multimedia data mining
- mining integrated media and complex data, MDM, pages 33�41, 2005.

Chapter in international books

[26] M. Manouvrier, M. Rukoz, and G. Jomier. Quadtree-Based Image Representation
and Retrieval. In Spatial Databases: Technologies, Techniques and Trends, pages
81�106. IDEA Group Publishing, Information Science Publishing and IRM Press,
Y. Manolopoulos, A. Papadopoulos and M. Vassilakopoulos Ed.(s), 2005. Chapter
accepted after a peer-review process.

Papers in national journals

[27] V. Gouet-Brunet, M. Manouvrier, and M. Rukoz. Synthèse sur les modèles de
représentation des relations spatiales dans les images symboliques. Revue des
Nouvelles Technologies de l'Information (RNTI), 1(1):19�54, 2008. Numéro spé-
cial "Les relations spatiales : de la modélisation à la mise en ÷uvre" - Rap-
port CEDRIC-CNAM No 1600 - Version étendue de 51 pages Rapport technique
CEDRIC-CNAM No 1325.

[28] G. Jomier, M. Manouvrier, and M. Rukoz. Storage and management of similar
images. Journal Braz. Comp. Soc., 6(3):13�25, 2000.

Papers in national conferences

[29] G. Jomier, M. Manouvrier, V. Oria, and M. Rukoz. Indexation multi-niveaux
pour la recherche globale et partielle d'images par le contenu. In 20èmes Journées
Bases de Données Avancées, (BDA), Actes (Informal Proceedings)., pages 177�
196, 2004.

50 BIBLIOGRAPHY

[30] G. Jomier, M. Manouvrier, and M. Rukoz. Stockage et gestion d'images par
un arbre quaternaire générique. In Proc. 15èmes Journées Bases de Données
Avancées, BDA, pages 405�424, 1999.

[31] G. Jomier, M. Manouvrier, M. Rukoz, J. Ramirez, and Y. Valero. Mis: Un
prototipo de un sistema de manipulación de imágenes similares. In XXVème
Congrès Latino - Américain en Informatique (Panel), 1999.

[32] M. Rukoz, M. Manouvrier, and G. Jomier. Distances de similarité d'images basées
sur les arbres quaternaires. In 18èmes Journées Bases de Données Avancées,
(BDA), 2002.

Other personal references

[33] W. Cellary, S. Gançarski, G. Jomier, and M. Manouvrier. Chapitre 8 - Les
versions. In Bases de données et internet Modèles, langages et système, sous
la direction de A. Doucet et G. Jomier, Traité IC2 Information - Commande -
Communication, pages 235�255. Edition Lavoisier, 2001.

[34] M. Manouvrier. Objets Similaires de Grande Taille dans les Bases de Données.
PhD thesis, Univeristé Paris-Dauphine (France), Jan. 2000.

[35] C. B. Medeiros, O. Carles, F. D. Vuyst, G. Hébrail, B. Hugueney, M. Joliveau,
G. Jomier, M. Manouvrier, Y. Naïja, G. Scémama, and L. Ste�an. Vers un en-
trepôt de données pour le tra�c routier. In Actes de la 2ème journée francophone
sur les Entrepôts de Données et l'Analyse en ligne, EDA, pages 119�138, 2006.

Related work references

[36] H. Abdeldjelil, N. Faci, Z. Maamar, and D. Benslimane. A diversity-based ap-
proach for managing faults in web services. In IEEE Int. Conf. on Advanced
Information Networking and Applications (AINA), pages 81�88, 2012.

[37] F. N. Abu-Khzam, C. Bazgan, J. El Haddad, and F. Sikora. On the Complexity of
QoS-Aware Service Selection Problem. In Int. Conf. on Service-Oriented Comp.
(ICSOC) - LNCS 9435, pages 345�352. Springer, 2015.

[38] P. Adamczyk, P. H. Smith, R. E. Johnson, and M. Ha�z. Rest and web services:
In theory and in practice. In REST: from research to practice, pages 35�57.
Springer, 2011.

[39] E. Al-Masri and Q. H. Mahmoud. QoS-based discovery and ranking of web
services. In Int. Conf. on Comp. Communications and Networks (ICCCN), pages
529�534. IEEE, 2007.

[40] A. Alhosban, K. Hashmi, Z. Malik, B. Medjahed, and S. Benbernou. Bottom-up
fault management in service-based systems. ACM Tran. on Internet Technology
(TOIT), 15(2):7, 2015.

[41] S. Aljalbout, O. Boucelma, and S. Sellami. Modeling and Retrieving Linked
RESTful APIs: A Graph Database Approach. In Conf. on the Move to Mean-
ingful Internet Systems (OTM), pages 443�450, 2015.

[42] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web services. Springer, 2004.

[43] M. Alrifai and T. Risse. Combining global optimization with local selection
for e�cient qos-aware service composition. In Int. Conf. on World Wide Web
(WWW), pages 881�890. ACM, 2009.

BIBLIOGRAPHY 51

[44] M. Alrifai, D. Skoutas, and T. Risse. Selecting skyline services for QoS-based web
service composition. In Int. Conf. on World Wide Web (WWW), pages 11�20.
ACM, 2010.

[45] R. Angarita. An approach for Self-healing Transactional Composite Ser-
vices. PhD thesis, Université Paris-Dauphine (France), Dec. 2015.
https://tel.archives-ouvertes.fr/tel-01281384/document.

[46] R. Angarita, Y. Cardinale, and M. Rukoz. Reliable composite web services ex-
ecution: towards a dynamic recovery decision. Electronic Notes in Theoretical
Computer Science, 302:5�28, 2014.

[47] R. Angarita, M. Rukoz, and Y. Cardinale. Modeling dynamic recovery strategy
for composite web services execution. World Wide Web, 19(1):89�109, 2016.

[48] D. Ardagna and B. Pernici. Global and local qos constraints guarantee in web
service selection. In IEEE Int. Conf. on Web Services (ICWS), 2005.

[49] Y. Badr, D. Benslimane, Z. Maamar, and L. Liu. Guest Editorial: Special Section
on Transactional Web Services. IEEE Trans. on Services Comp., 3(1):30�31,
2010.

[50] A. Bansal, S. Bansal, M. B. Blake, S. Bleul, and T. Weise. Overview of the
Web Services Challenge (WSC): Discovery and Composition of Semantic Web
Services. In Semantic Web Services, pages 297�311. Springer, 2012.

[51] A. Bansal, M. Blake, S. Kona, S. Bleul, T. Weise, and M. Jaeger. WSC-08:
Continuing the Web Services Challenge. In IEEE CEC, pages 351�354, July
2008.

[52] L. Baresi and S. Guinea. Dynamo and self-healing bpel compositions. In Int.
Conf. on Software Engineering, pages 69�70, 2007.

[53] P. Bartalos and M. Bieliková. Automatic dynamic web service composition: A
survey and problem formalization. Computing and Informatics, 30(4):793�827,
2012.

[54] G. Baryannis, O. Danylevych, D. Karastoyanova, K. Kritikos, P. Leitner,
F. Rosenberg, and B. Wetzstein. Service composition. In Service research chal-
lenges and solutions for the future internet, pages 55�84. Springer, 2010.

[55] S. Bechhofer. Owl: Web ontology language. In Encyclopedia of Database Systems,
pages 2008�2009. Springer, 2009.

[56] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuin-
ness, P. F. Patel-Schneider, and L. A. Stein. OWL Web On-
tology Language Reference. Technical report, W3C, February 2004.
http://www.w3.org/TR/2004/REC-owl-ref-20040210/ - Ext. on Nov. 2015.

[57] J. Behl, T. Distler, F. Heisig, R. Kapitza, and M. Schunter. Providing fault-
tolerant execution of web-service-based work�ows within clouds. In Int. Workshop
on Cloud Computing Platforms, 2012.

[58] N. Ben Lakhal, T. Kobayashi, and H. Yokota. FENECIA: failure endurable
nested-transaction based execution of composite Web services with incorporated
state analysis. The VLDB Journal, 18(1):1�56, 2009.

[59] D. Benslimane, S. Dustdar, and A. Sheth. Services Mashups: The New Genera-
tion of Web Applications. IEEE Internet Comp., 12(5):13�15, 2008.

52 BIBLIOGRAPHY

[60] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Steinmetz. Heuristics for
qos-aware web service composition. In IEEE Int. Conf. on Web Services (ICWS),
pages 72�82, 2006.

[61] S. Bhiri, O. Perrin, and C. Godart. Ensuring required failure atomicity of com-
posite web services. In Int. Conf. on World Wide Web (WWW), pages 138�147.
ACM, 2005.

[62] S. Bhiri, O. Perrin, and C. Godart. Extending work�ow patterns with transac-
tional dependencies to de�ne reliable composite web services. In Advanced Int.
Conf. on Telecommunications and Int. Conf. on Internet and Web Applications
and Services (AICT/ICIW), pages 145�150, 2006.

[63] D. Booth and C. K. Liu. Web Services Description Language
(WSDL) Version 2.0 Part 0: Primer. Technical report, W3C, 2007.
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626 - Ext. on Nov. 2015.

[64] A. Bouguettaya, Q. Z. Sheng, and F. Daniel. Web Services Foundations. Springer,
2014.

[65] A. Brogi and S. Cor�ni. SAM: A semantic web service discovery system. In
Knowledge-Based Intelligent Inf. and Eng. Sys., pages 703�710, 2007.

[66] A. Brogi, S. Cor�ni, and R. Popescu. Semantics-based composition-oriented
discovery of web services. ACM Trans. on Internet Techn. (TOIT), 8(4):19,
2008.

[67] D. Bunting, M. C. O. Hurley, M. Little, J. Mischkinsky, E. Newcomer,
J. Webber, and K. Swenson. Web Services Transaction Management
(WS-TMX) ver1. 0. Technical report, Arjuna Tech. Ltd., Fujitsu Lim-
ited, IONA Tech. Ltd., Oracle Corp., and Sun Microsystems, Inc, 2003.
http://www.immagic.com/eLibrary/ARCHIVES/TECH/ARJUNA/A030728M.pdf - Ext. on
Nov. 2015.

[68] F. Cabrera, G. Copeland, B. Cox, T. Freund, J. Klein, T. Storey, and S. Thatte.
Web Services Transaction (WS-Transaction). Technical report, BEA Systems,
IBM, and Microsoft, 2002. http://xml.coverpages.org/WS-Transaction2002.pdf

- Ext. on Nov. 2015.

[69] Y. Cardinale and M. Rukoz. A framework for reliable execution of transac-
tional composite web services. In Int. Conf. on Management of Emergent Digital
EcoSystems, pages 129�136, 2011.

[70] R. Casado, M. Younas, and J. Tuya. A Generic Framework for Testing the Web
Services Transactions. In Advanced Web Services, pages 29�49. Springer, 2014.

[71] A. Ceponkus, P. Furniss, A. Green, S. Dalal, and M. Little.
Business Transaction Protocol. Technical report, OASIS, 2002.
https://www.oasis-open.org/committees/business-transaction/ - Ext. on
Nov. 2015.

[72] M. Champion, C. Ferris, E. Newcomer, and D. Orchard. Web
Services Architecture, W3C Working Draft 14 November 2002, 2002.
http://www.w3.org/TR/2002/WD-ws-arch-20021114/ - Ext. on Nov. 2015.

[73] L. Chen, J. Wu, H. Jian, H. Deng, and Z. Wu. Instant recommendation for web
services composition. Services Computing, IEEE Transactions on, 7(4):586�598,
2014.

BIBLIOGRAPHY 53

[74] M. Chen, P. Poizat, and Y. Yan. Adaptive composition and qos optimization
of conversational services through graph planning encoding. In Web Services
Foundations, pages 423�449. Springer, 2014.

[75] M. Chen and Y. Yan. QoS-aware Service Composition over Graphplan through
Graph Reachability. In IEEE Int. Conf. on Services Computing (SCC),, pages
544�551, 2014.

[76] J. Cheng, C. Liu, M. Zhou, Q. Zeng, and A. Yla-Jaaski. Automatic Composition
of Semantic Web Services Based on Fuzzy Predicate Petri Nets. IEEE Trans. on
Automation Science and Eng., 12(2):680�689, 2015.

[77] N. Cheniki, A. Belkhir, and Y. Atif. Mobile services discovery framework using
DBpedia and non-monotonic rules. Computers & Electrical Engineering, 2016.

[78] P. K. Chrysanthis and K. Ramamritham. Synthesis of extended transaction
models using ACTA. ACM Trans. on Database Sys. (TODS), 19(3):450�491,
1994.

[79] S. Cirani, L. Davoli, G. Ferrari, R. Léone, P. Medagliani, M. Picone, and L. Veltri.
A scalable and self-con�guring architecture for service discovery in the internet
of things. IEEE Internet of Things Journal, 1(5):508�521, 2014.

[80] C. Colombo and G. J. Pace. Recovery within long-running transactions. ACM
Comp. Surveys (CSUR), 45(3):28, 2013.

[81] W. W. W. Consortium et al. Simple object access protocol (SOAP), 2000.
http://www.w3.org/TR/soap/ - Ext. on Nov. 2015.

[82] O. Curé, H. Naacke, M. A. Baazizi, and B. Amann. On the Evaluation of RDF
Distribution Algorithms Implemented over Apache Spark. In Int. Workshop on
Scalable Semantic Web Knowledge Base Systems (SSWSISWC), pages 16�31,
2015.

[83] O. Curé, H. Naacke, T. Randriamalala, and B. Amann. LiteMat: a scalable, cost-
e�cient inference encoding scheme for large RDF graphs. In IEEE Int. Conf. on
Big Data (Big Data), pages 1823�1830, 2015.

[84] L. M. da Silva, R. Braga, and F. Campos. Composer-Science: A semantic service
based framework for work�ow composition in e-Science projects. Information
Sciences, 186(1):186�208, 2012.

[85] Z. Ding, J. Liu, Y. Sun, C. Jiang, and M. Zhou. A transaction and qos-aware
service selection approach based on genetic algorithm. Systems, Man, and Cy-
bernetics: Systems, IEEE Transactions on, 45(7):1035�1046, 2015.

[86] Z. Ding and Y. Sun. Performance evaluation of composite web service based
on transaction. In Int. Conf. on Service Sciences (ICSS), pages 214�219. IEEE,
2013.

[87] R. Du�n. Topology of series-parallel networks. Journal of Mathematical Analysis
and App., 10:303�313, 1965.

[88] S. Dustdar, R. Pichler, V. Savenkov, and H.-L. Truong. Quality-aware service-
oriented data integration: requirements, state of the art and open challenges.
ACM SIGMOD Record, 41(1):11�19, 2012.

[89] S. Dustdar and W. Schreiner. A survey on web services composition. Int. journal
of web and grid services, 1(1):1�30, 2005.

[90] S. Elbassuoni, M. Ramanath, R. Schenkel, and G. Weikum. Searching RDF
Graphs with SPARQL and Keywords. IEEE Data Eng. Bull., 33(1):16�24, 2010.

54 BIBLIOGRAPHY

[91] A. K. Elmagarmid. Database transaction models for advanced applications. Mor-
gan Kaufmann Publishers Inc., 1992.

[92] D. Eppstein. Parallel recognition of series-parallel graphs. Information and Com-
putation, 98(1):41�55, 1992.

[93] Y.-Y. FanJiang and Y. Syu. Semantic-based automatic service composition with
functional and non-functional requirements in design time: A genetic algorithm
approach. Information and Software Tech., 56(3):352�373, 2014.

[94] T. A. Farrag, A. I. Saleh, and H. A. Ali. Semantic web services matchmaking:
Semantic distance-based approach. Computers & Electrical Eng., 39(2):497�511,
2013.

[95] L. Frank, R. U. Pedersen, C. H. Frank, and N. J. Larsson. The CAP theorem
versus databases with relaxed ACID properties. In Int. Conf. on Ubiquitous
Information Management and Communication, page 78. ACM, 2014.

[96] T. Freund and M. Little (Eds.). Web Services Business Ac-
tivity (WS-BusinessActivity). Technical report, OASIS, 2007.
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec/wstx-wsba-1.1-spec.html

- Ext. on Nov. 2015.

[97] N. Gamez, J. El Haddad, and L. Fuentes. Managing the Variability in the
Transactional Services Selection. In Int. Workshop on Variability Modelling of
Software-intensive Systems, page 88. ACM, 2015.

[98] N. Gamez, J. El Haddad, and L. Fuentes. SPL-TQSSS: A Software Product Line
Approach for Stateful Service Selection. In IEEE Int. Conf. on Web Services
(ICWS), pages 73�80, 2015.

[99] L. Gao, S. D. Urban, and J. Ramachandran. A survey of transactional issues for
web service composition and recovery. Int. Journal of Web and Grid Services,
7(4):331�356, 2011.

[100] J. M. García, D. Ruiz, and A. Ruiz-Cortés. Improving semantic web services
discovery using SPARQL-based repository �ltering. Web Semantics: Science,
Services and Agents on the World Wide Web, 17:12�24, 2012.

[101] H. Garcia-Molina and K. Salem. Sagas, volume 16 (3). ACM, 1987.

[102] M. Garriga, C. Mateos, A. Flores, A. Cechich, and A. Zunino. RESTful Service
Composition at a Glance: a Survey. Journal of Network and Computer App.,
2015. In Press. Available online 13 Dec. 2015.

[103] Gartner. Gartner Reveals Five Business Process Manage-
ment Predictions for 2010 and Beyond, 2010. Press Release,
http://www.gartner.com/newsroom/id/1278415 - Ext. on April. 2016.

[104] Gartner. Gartner Says That Consumers Will Store More Than a Third
of Their Digital Content in the Cloud by 2016, 2012. Press Release,
http://www.gartner.com/newsroom/id/2060215 - Ext. on Oct. 2015.

[105] S. C. Geyik, B. K. Szymanski, and P. Zerfos. Robust dynamic service composition
in sensor networks. IEEE Trans. on Services Comp., 6(4):560�572, 2013.

[106] S. C. Geyik, B. K. Szymanski, and P. Zerfos. Robust dynamic service composition
in sensor networks. Services Computing, IEEE Transactions on, 6(4):560�572,
2013.

BIBLIOGRAPHY 55

[107] A. Ghari Neiat, A. Bouguettaya, and T. Sellis. Spatio-Temporal Composition of
Crowdsourced Services. In Service-Oriented Computing, pages 373�382. Springer,
2015.

[108] A. Goldman and Y. Ngoko. On graph reduction for qos prediction of very large
web service compositions. In IEEE Int. Conf. on Services Comp. (SCC), pages
258�265, 2012.

[109] D. Gorgan, V. Bacu, T. Stefanut, D. Rodila, and D. Mihon. Earth Observa-
tion application development based on the Grid oriented ESIP satellite image
processing platform. Comp. Standards & Interfaces, 34(6):541�548, 2012.

[110] J. Gray. The Transaction Concept: Virtues and Limitations (Invited Paper). In
Int. Conf. on Very Large Data Bases (VLDB), pages 144�154, 1981.

[111] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Mor-
gan Kaufmann Publishers Inc., 1992.

[112] M. Grobe. RDF, Jena, SparQL and the 'Semantic Web'. In ACM SIGUCCS fall
Conf.: communication and collaboration, pages 131�138. ACM, 2009.

[113] K. Grolinger, M. A. Capretz, A. Cunha, and S. Tazi. Integration of business
process modeling and Web services: A survey. Service Oriented Comp. and
App., 8(2):105�128, 2014.

[114] J. E. Haddad. Optimization Techniques for QoS-Aware Work�ow Realization
in Web Services Context. In Inter. Workshop on Resource Discovery (RED) -
LNCS 6799 (2012), pages 134�149, 2010.

[115] T. Haerder and A. Reuter. Principles of Transaction-oriented Database Recovery.
ACM Comput. Surv., 15(4):287�317, Dec. 1983.

[116] R. Hamadi and B. Benatallah. A petri net-based model for web service compo-
sition. In Australasian Database Conf. -Volume 17, pages 191�200, 2003.

[117] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Sys. Science and
Cybernetic, 4(2):100�107, 1968.

[118] I. Horrocks, P. F. Patel-Schneider, and F. Van Harmelen. From SHIQ and RDF
to OWL: The making of a web ontology language. Web semantics: science,
services and agents on the World Wide Web, 1(1):7�26, 2003.

[119] A. F. Huang, C.-W. Lan, and S. J. Yang. An optimal QoS-based Web service
selection scheme. Information Sciences, 179(19):3309�3322, 2009.

[120] A. Immonen and D. Pakkala. A survey of methods and approaches for reliable
dynamic service compositions. Service Oriented Comp. and App., 8(2):129�158,
2014.

[121] I. O. f. S. ISO. ISO 8402: Quality Management and Quality Assurance-
Vocabulary. International Organization for Standardization, 1994.

[122] V. Issarny, N. Georgantas, S. Hachem, A. Zarras, P. Vassiliadist, M. Autili, M. A.
Gerosa, and A. B. Hamida. Service-oriented middleware for the future internet:
state of the art and research directions. Journal of Internet Services and App.,
2(1):23�45, 2011.

[123] M. C. Jaeger, G. Rojec-Goldmann, and G. Mühl. Qos aggregation for web ser-
vice composition using work�ow patterns. In IEEE Int. Conf. on Enterprise
distributed object comp., pages 149�159, 2004.

56 BIBLIOGRAPHY

[124] C. Jatoth, G. Gangadharan, and R. Buyya. Computational intelligence based
qos-aware web service composition: A systematic literature review. IEEE Trans.
on Services Comp., PP(99), 2015.

[125] K. Jensen. Coloured petri nets. Springer, 1987.

[126] W. Jiang, D. Lee, and S. Hu. Large-scale longitudinal analysis of soap-based
and restful web services. In IEEE Int. Conf. on Web Services (ICWS), pages
218�225, 2012.

[127] W. Jiang, T. Wu, S.-L. Hu, and Z.-Y. Liu. QoS-aware automatic service com-
position: A graph view. Journal of Comp. Science and Tech., 26(5):837�853,
2011.

[128] W. Jiang, C. Zhang, Z. Huang, M. Chen, S. Hu, and Z. Liu. QSynth: A Tool for
QoS-aware Automatic Service Composition. In IEEE Int. Conf. on Web Services
(ICWS), pages 42�49, 2010.

[129] A. Jungmann and F. Mohr. An approach towards adaptive service composition in
markets of composed services. Journal of Internet Services and App., 6(1):1�18,
2015.

[130] Z. Kaoudi and I. Manolescu. RDF in the Clouds: A Survey. The VLDB Journal,
24(1):67�91, 2015.

[131] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer,
36(1):41�50, 2003.

[132] M. Klusch. Service discovery. In Encyclopedia of Social Network Analysis and
Mining, pages 1707�1717. Springer, 2014.

[133] M. Klusch, P. Kapahnke, S. Schulte, F. Lecue, and A. Bernstein. Semantic Web
Service Search: A Brief Survey. KI-Künstliche Intelligenz, pages 1�9, 2015.

[134] N. Kokash and V. D'Andrea. Evaluating quality of web services: A risk-driven
approach. In Business Inf. Sys., pages 180�194. Springer, 2007.

[135] S. Kona, A. Bansal, M. B. Blake, S. Bleul, and T. Weise. WSC-2009: A Quality
of Service-Oriented Web Services Challenge. In IEEE CEC, pages 487�490, 2009.

[136] O. Kondratyeva, N. Kushik, A. Cavalli, and N. Yevtushenko. Evaluating Quality
of Web Services: A Short Survey. In IEEE Int. Conf. on Web Services (ICWS),
pages 587�594, 2013.

[137] M. Koutraki, D. Vodislav, and N. Preda. Deriving intensional descriptions for
web services. In ACM Int. on Conf. on Information and Knowledge Management,
pages 971�980, 2015.

[138] K. Kritikos, B. Pernici, P. Plebani, C. Cappiello, M. Comuzzi, S. Benbernou,
I. Brandic, A. Kertész, M. Parkin, and M. Carro. A survey on service quality
description. ACM Comp. Surveys (CSUR), 46(1):1, 2013.

[139] D. Lee, J. Kwon, S. Lee, S. Park, and B. Hong. Scalable and e�cient web services
composition based on a relational database. Journal of systems and Software,
84(12):2139�2155, 2011.

[140] J. Lee, S.-J. Lee, and P.-F. Wang. A Framework for Composing SOAP, Non-
SOAP and Non-Web Services. IEEE Trans. on Services Comp., 8(2):240�250,
2015.

[141] Y.-J. Lee. Algorithm for Automatic Web API Composition. In Int. Conf. on
Building and Exploring Web Based Env. (WEB), pages 57�62, 2013.

BIBLIOGRAPHY 57

[142] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes,
S. Hellmann, M. Morsey, P. van Kleef, S. Auer, et al. DBpedia-a large-scale,
multilingual knowledge base extracted from wikipedia. Semantic Web Journal,
5:1�29, 2014.

[143] A. L. Lemos, F. Daniel, and B. Benatallah. Web Service Composition: A Survey
of Techniques and Tools. ACM Comput. Surv., 48(3):33:1�33:41, Dec. 2015.

[144] B. Li, Y. Xu, J. Wu, and J. Zhu. A petri-net and qos based model for automatic
web service composition. Journal of Software, 7(1):149�155, 2012.

[145] G. Li, L. Liao, D. Song, and Z. Zhang. Self-Adaptive Web Service Composition
Based on Stochastic Context-Free Grammar. In IEEE Int. Conf. one-Business
Engineering (ICEBE), pages 139�144, 2014.

[146] J. Li, Y. Yan, and D. Lemire. Full solution indexing using database for qos-aware
web service composition. In IEEE Int. Conf. on Services Comp. (SCC), pages
99�106. IEEE, 2014.

[147] L. Li, C. Liu, and J. Wang. Deriving Transactional Properties of Composite Web
Services. In IEEE Int. Conf. on Web Services (ICWS), pages 631�638, 2007.

[148] C.-C. Lin, X.-L. Liu, and S.-M. Yuan. Reversible data hiding for vq-compressed
images based on search-order coding and state-codebook mapping. Information
Sciences, 293:314�326, 2015.

[149] M. Little. Transactions and Web services. Comm. of the ACM, 46(10):49�54,
2003.

[150] M. Little. Web services transactions: Past, present and future. In XML Conf.
and Exposition, 2003.

[151] M. Little and A. Wilkinson (Eds.). Web Services Atomic Transaction
(WS-AtomicTransaction) Version 1.2). Technical report, OASIS, 2009.
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec.html - Ext. on Nov.
2015.

[152] A. Liu, L. Huang, Q. Li, and M. Xiao. Fault-tolerant orchestration of transac-
tional web services. InWeb Information Systems (WISE), pages 90�101. Springer,
2006.

[153] A. Liu, Q. Li, L. Huang, and M. Xiao. Facts: A framework for fault-tolerant com-
position of transactional web services. IEEE Trans. on Services Comp., 3(1):46�
59, 2010.

[154] A. Liu, H. Liu, Q. Li, L.-S. Huang, and M.-J. Xiao. Constraints-aware scheduling
for transactional services composition. Journal of Comp. Science and Tech.,
24(4):638�651, 2009.

[155] H. Liu, W. Zhang, K. Ren, C. Liu, and Z. Zhang. A risk-driven selection approach
for transactional web service composition. In Int. Conf; on Grid and Cooperative
Comp. (GCC), pages 391�397. IEEE, 2009.

[156] H. Liu, Z. Zheng, W. Zhang, and K. Ren. A Global Graph-based Approach for
Transaction and QoS-aware Service Composition. KSII Transactions on Internet
& Information Systems (TIIS), 5(7):1252�1273, 2011.

[157] Y. Liu, A. H. Ngu, and L. Z. Zeng. Qos computation and policing in dynamic
web service selection. In Int. World Wide Web Conf. on Alternate track papers
& posters, pages 66�73. ACM, 2004.

58 BIBLIOGRAPHY

[158] H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck. Web Service
Level Agreement (WSLA) Language Speci�cation. Technical report, W3C,
2003. http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf - Ext. on
Nov. 2015.

[159] S. Luo, B. Xu, and Y. Yan. An accumulated-qos-�rst search approach for seman-
tic web service composition. In IEEE Int. Conf. on Service-Oriented Computing
and Applications (SOCA), pages 1�4, 2010.

[160] C. Lv, W. Jiang, S. Hu, J. Wang, G. Lu, and Z. Liu. E�cient Dynamic Evolution
of Service Composition. IEEE Trans. on Services Comp., PP(99), 2015.

[161] Z. Maamar, N. C. Narendra, D. Benslimane, and S. Subramanian. Policies
for context-driven transactional web services. In Advanced Information Systems
Eng., pages 249�263. Springer, 2007.

[162] Z. Maamar, S. Subramanian, P. Thiran, D. Benslimane, and J. Bentahar. An
approach to engineer communities of web services: Concepts, architecture, oper-
ation, and deployment. Int. Journal of E-Business Research (IJEBR), 5(4):1�21,
2009.

[163] D. Martin, M. Burstein, D. Mcdermott, S. Mcilraith, M. Paolucci, K. Sycara,
D. L. Mcguinness, E. Sirin, and N. Srinivasan. Bringing semantics to web services
with OWL-S. World Wide Web, 10(3):243�277, 2007.

[164] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web services. IEEE intelligent
systems, 16(2):46�53, 2001.

[165] S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz. A Transaction Model
for Multidatabase Systems. In Int. Conf. on Distributed Comp. Sys. (ICDC),
pages 56�63, 1992.

[166] S. A. D. Midouni, Y. Amghar, and A. Chikh. A Full Service Approach for
Multimedia Content Retrieval. In Int. Conf. on Model and Data Engineering
MEDI, pages 125�137, 2014.

[167] E. Miller. An introduction to the resource description framework. Bulletin of the
American Society for Information Science and Technology, 25(1):15�19, 1998.

[168] M. Moghaddam and J. G. Davis. Service selection in web service composition: A
comparative review of existing approaches. In Web Services Foundations, pages
321�346. Springer, 2014.

[169] R. H. Möhring, M. Skutella, and F. Stork. Scheduling with AND/OR precedence
constraints. SIAM Journal on Computing, 33(2):393�415, 2004.

[170] L. Mokdad, J. Ben-Othman, and A. Abdelkrim. Performance evaluation of com-
posite Web services. EAI Endorsed Trans. Indust. Netw. & Intellig. Syst., 2(4):e4,
2015.

[171] S. B. Mokhtar, N. Georgantas, and V. Issarny. COCOA: COnversation-based
service COmposition in pervAsive computing environments with QoS support.
Journal of Systems and Software, 80(12):1941�1955, 2007.

[172] L. Momtahan, A. Martin, and A. Roscoe. A taxonomy of web services using csp.
Electronic Notes in Theoretical Computer Science, 151(2):71�87, 2006.

[173] F. Montagut, R. Molva, and S. T. Golega. Automating the composition of trans-
actional web services. Int. Journal of Web Services Research, 5(1):24, 2008.

BIBLIOGRAPHY 59

[174] F. Montagut, R. Molva, and S. T. Golega. The pervasive work�ow: A decen-
tralized work�ow system supporting long-running transactions. IEEE Trans. on
Sys., Man, and Cybernetics, Part C: App. and Reviews, 38(3):319�333, 2008.

[175] F. Moo-Mena, J. Garcilazo-Ortiz, L. Basto-Díaz, F. Curi-Quintal, and F. Alonzo-
Canul. De�ning a self-healing qos-based infrastructure for web services applica-
tions. In IEEE Computational Science and Engineering Workshops (CSEWORK-
SHOPS), pages 215�220. IEEE, 2008.

[176] S. Murugesan. Understanding Web 2.0. IT professional, 9(4):34�41, 2007.

[177] L. D. Ngan and R. Kanagasabai. Semantic Web service discovery: state-of-the-
art and research challenges. Personal and ubiquitous computing, 17(8):1741�1752,
2013.

[178] H. Nguyen Vu. Prise en compte des relations spatiales dans les bases d'images
symboliques. PhD thesis, Université Paris-Dauphine / CNAM, 2011.

[179] A. M. Omer. A framework for Automatic Web Service Composi-
tion based on service dependency analysis. PhD thesis, TU Dres-
den, 2011. http://www.qucosa.de/fileadmin/data/qucosa/documents/7074/

Abrehet_Mohammed_Omer_PhD_dissertation.pdf - Ext. on Oct. 2015.

[180] A. Ordónez, V. Alcazar, O. M. C. Rendon, P. Falcarin, J. C. Corrales, and L. Z.
Granville. Towards automated composition of convergent services: A survey.
Computer Communications, 69:1�21, 2015.

[181] M. T. Özsu. A survey of rdf data management systems. Frontiers of Computer
Science, 10(3):418�432, 2016.

[182] F. Paganelli, T. Ambra, and D. Parlanti. A QoS-aware service composition
approach based on semantic annotations and integer programming. Int. J. of
Web Info. Sys. (IJWIS), 8(3):296�321, 2012.

[183] M. Palmonari, A. Sala, A. Maurino, F. Guerra, G. Pasi, and G. Frisoni. Aggre-
gated search of data and services. Information Systems, 36(2):134�150, 2011.

[184] M. P. Papazoglou and W.-J. Van Den Heuvel. Service oriented architectures:
approaches, technologies and research issues. The VLDB journal, 16(3):389�415,
2007.

[185] D.-S. Park, J.-S. Park, T. Kim, and J. H. Han. Image indexing using weighted
color histogram. In Int. Conf. on Image Analysis and Processing, pages 909�914.
IEEE, 1999.

[186] J. Pathak, S. Basu, and V. Honavar. Assembling composite web services from
autonomous components. Emerging Arti�cial Intelligence Applications in Comp.
Eng., 160:394�405, 2007.

[187] C. Pautasso, O. Zimmermann, and F. Leymann. Restful web services vs. big'web
services: making the right architectural decision. In Int. Conf. on World Wide
Web (WWW), pages 805�814. ACM, 2008.

[188] C. Pedrinaci and J. Domingue. Web services are dead. long live inter-
net services. Technical report, Knowledge Media Institute-The Open
University, W. Hall, M. Keynes, MK7 6AA, UK, 2010. SOA4All
White Paper, http://cordis.europa.eu/docs/projects/cnect/9/215219/080/

deliverables/001-WhitePaperv23.pdf - Ext. on Nov. 2015.

60 BIBLIOGRAPHY

[189] C. Pedrinaci, D. Liu, M. Maleshkova, D. Lambert, J. Kopecky, and J. Domingue.
iserve: a linked services publishing platform. In Workshop on Ontology Reposi-
tories and Editors for the Semantic Web (ORES), volume CEUR 596, 2010.

[190] J. L. Peterson. Petri nets. ACM Comput. Surv., 9(3):223�252, 1977.

[191] F. Plastria. Formulating logical implications in combinatorial optimisation. Eu-
ropean Journal of Operational Research, 140(2):338�353, 2002.

[192] A. Portilla, G. Vargas-Solar, C. Collet, J.-L. Zechinelli-Martini, and L. García-
Bañuelos. Contract based behavior model for services coordination. In Web
Information Systems and Tech., pages 109�123. Springer, 2008.

[193] N. Preda, G. Kasneci, F. M. Suchanek, T. Neumann, W. Yuan, and G. Weikum.
Active knowledge: dynamically enriching RDF knowledge bases by web services.
In ACM SIGMOD Int. Conf. on Management of Data (SIGMOD), pages 399�
410. ACM, 2010.

[194] E. Prud'hommeaux and A. Seaborne. SPARQL Query Language for RDF. Tech-
nical report, W3C, 2008. https://www.w3.org/TR/rdf-sparql-query/ - Ext. on
March 2016.

[195] Z. Qian, S. Lu, and L. Xie. Colored petri net based automatic service composition.
In IEEE Asia-Paci�c Service Comp. Conf., pages 431�438, 2007.

[196] K. Rajaram and C. Babu. Deriving reliable compositions using cancelable web
services. ACM SIGSOFT Software Eng. Notes, 39(1):1�6, 2014.

[197] K. Rajaram, C. Babu, and A. Adiththan. Speci�cation of transactional require-
ments for web services using recoverability. Int. Journal of Inf. Tech. and Web
Eng. (IJITWE), 8(1):51�65, 2013.

[198] K. Rajaram, C. Babu, and A. Ganesan. DILT: A Hybrid Model for Dynamic
Composition and Execution of Heterogeneous Web Services. InDistributed Comp.
and Internet Tech., pages 239�244. Springer, 2015.

[199] É. Ranisavljevi¢, F. Devin, D. La�y, and Y. Le Nir. A dynamic and generic cloud
computing model for glaciological image processing. Int. Journal of Applied Earth
Observation and Geoinformation, 27:109�115, 2014.

[200] J. Rezaei. Best-worst multi-criteria decision-making method. Omega, 53:49�57,
2015.

[201] L. Richardson and S. Ruby. RESTful web services. "O'Reilly Media, Inc.", 2008.

[202] P. Rodriguez-Mier, M. Mucientes, and M. Lama. A dynamic qos-aware semantic
web service composition algorithm. In ICSOC - LNCS Vol. 7636, pages 623�630,
2012.

[203] P. Rodriguez Mier, M. Mucientes, and M. Lama. A hybrid local-global op-
timization strategy for qos-aware service composition. In IEEE International
Conferrence on Web Services (ICWS), pages 735�738, 2015.

[204] P. Rodriguez-Mier, M. Mucientes, and M. Lama. Hybrid Optimization Algo-
rithm for Large-Scale QoS-Aware Service Composition. IEEE Trans. on Services
Comp., PP, 2015.

[205] P. Rodríguez-Mier, M. Mucientes, J. C. Vidal, and M. Lama. An optimal and
complete algorithm for automatic web service composition. Int. Journal of Web
Services Research (IJWSR), 9(2):1�20, 2012.

BIBLIOGRAPHY 61

[206] P. Rodríguez-Mier, C. Pedrinaci, M. Lama, and M. Mucientes. An Integrated
Semantic Web Service Discovery and Composition Framework. IEEE Trans. on
Services Comp., 1, 2015. PrePrints, doi:10.1109/TSC.2015.2402679.

[207] M. Rukoz, Y. Cardinale, and R. Angarita. Faceta*: Checkpointing for trans-
actional composite web service execution based on petri-nets. In Int. Symp. on
Advances in Transaction Processing (ATP) - Procedia Computer Science. Else-
vier, 2012.

[208] H. Saboohi and S. A. Kareem. Failure recovery of world-altering composite
semantic services-a two phase approach. In Int. Conf. on Information Integration
and Web-based Applications & Services, pages 299�302. ACM, 2012.

[209] M. Saleem and A.-C. N. Ngomo. HiBISCuS: Hypergraph-Based Source Selection
for SPARQL Endpoint Federation. In The Semantic Web: Trends and Chal-
lenges, pages 176�191. Springer, 2014.

[210] M. L. Sbodio, D. Martin, and C. Moulin. Discovering Semantic Web services
using SPARQL and intelligent agents. Web Semantics: Science, Services and
Agents on the World Wide Web, 8(4):310�328, 2010.

[211] E. Schouten. Big Data 'as a Service', 2012.
http://edwinschouten.nl/2012/09/19/bigdata-as-a-service/ - Ext. on Nov.
2015.

[212] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. Fedx: Optimiza-
tion techniques for federated query processing on linked data. In The Semantic
Web�Int. Semantic Web Confe. (ISWC), pages 601�616. Springer, 2011.

[213] W. Serrai, A. Abdelkrim, L. Mokdad, and Y. Hammal. An e�cient approach for
Web service selection. In IEEE Symp. on Comp. and Communication (ISCC),
pages 167�172, 2016.

[214] Q. Z. Sheng, B. Benatallah, M. Dumas, and E. O.-Y. Mak. SELF-SERV: a Plat-
form for Rapid Composition of Web Services in a Peer-to-Peer Environment. In
Int. Conf. on Very Large Data Bases (VLDB), pages 1051�1054. VLDB Endow-
ment, 2002.

[215] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu. Web
services composition: A decade's overview. Information Sciences, 280:218�238,
2014.

[216] A. Signoroni, M. Pezzoni, C. Tonoli, and R. Leonardi. A comparison of state-of-
the-art technologies for irreversible compression of large medical datasets. In Int.
Symp. on Computer-Based Medical Systems (CBMS), pages 1�6. IEEE, 2012.

[217] F. Slaimi, S. Sellami, O. Boucelma, and A. Ben Hassine. Crowdsourcing for
Web Service Discovery. In On the Move to Meaningful Internet System (OMT)
Confederated Int Conf. - LNCS Vol. 9415, pages 451�464, 2015.

[218] A. Strunk. Qos-aware service composition: A survey. In IEEE European Conf.
on Web Services (ECOWS), pages 67�74, 2010.

[219] S. Subramanian, P. Thiran, N. C. Narendra, G. K. Mostefaoui, and Z. Maamar.
On the enhancement of bpel engines for self-healing composite web services. In
Int. Symp. on Applications and the Internet, pages 33�39, 2008.

[220] C.-a. Sun, E. El Khoury, and M. Aiello. Transaction management in service-
oriented systems: Requirements and a proposal. IEEE Trans. on Services Comp.,
4(2):167�180, 2011.

62 BIBLIOGRAPHY

[221] C.-A. Sun, X. Zhang, Y. Shang, and M. Aiello. Integrating transactions into
bpel service compositions: An aspect-based approach. ACM Trans. on the Web
(TWEB), 9(2):9, 2015.

[222] L. Sun, H. Dong, F. K. Hussain, O. K. Hussain, and E. Chang. Cloud service
selection: State-of-the-art and future research directions. Journal of Network and
Computer App., 45:134�150, 2014.

[223] Y. Syu, Y.-Y. FanJiang, J.-Y. Kuo, and S.-P. Ma. Towards a genetic algorithm
approach to automating work�ow composition for web services with transactional
and qos-awareness. In IEEE World Congress on Services (SERVICES), pages
295�302, 2011.

[224] Y. Syu, Y.-Y. Fanjiang, J.-Y. Kuo, and S.-P. Ma. A Review of the Automatic Web
Service Composition Surveys. In IEEE Int. Conf. on Semantic Comp. (ICSC),
pages 199�202, 2014.

[225] M. Taheriyan, C. A. Knoblock, P. Szekely, and J. L. Ambite. Rapidly Integrating
Services into the Linked Data Cloud. In Int. Conf. on The Semantic Web (ISWC)
- Volume Part I, pages 559�574, 2012.

[226] B. Thuraisingham, L.-J. L. Zhang, and L. Moser. Emerging Web Services. IEEE
Trans. on Services Comp., 8(3):341�342, 2015.

[227] H. T. Tran and G. Feuerlicht. Service Repository for Cloud Service Consumer
Life Cycle Management. In Service Oriented and Cloud Comp., pages 171�180.
Springer, 2015.

[228] B. Upadhyaya, Y. Zou, H. Xiao, J. Ng, and A. Lau. Migration of SOAP-based
services to RESTful services. In IEEE Int. Symp. on Web Systems Evolution
(WSE), pages 105�114, 2011.

[229] J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series parallel
digraphs. In ACM Symp. on Theory of comp., pages 1�12. ACM, 1979.

[230] W. M. van der Aalst. Business Process Execution Language. In Encyclopedia of
Database Systems, pages 288�289. Springer, 2009.

[231] W. M. Van Der Aalst and A. H. Ter Hofstede. YAWL: yet another work�ow
language. Information Sys., 30(4):245�275, 2005.

[232] W. M. van Der Aalst, A. H. Ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Work�ow patterns. Distributed and parallel databases, 14(1):5�51, 2003.

[233] A. V. Vathsala and H. Mohanty. A survey on checkpointing web services. In Int.
Workshop on Principles of Eng. Service-Oriented and Cloud Sys., pages 11�17.
ACM, 2014.

[234] Á. Villalba, J. L. Pérez, D. Carrera, C. Pedrinaci, and L. Panziera. servIoTicy
and iServe: A Scalable Platform for Mining the IoT. In Int. Conf. on Ambient
Systems, Networks and Technologies (ANT), Int. Conf. on Sustainable Energy
Information Technology (SEIT) - Procedia Computer Science (Elsevier), pages
1022�1027, 2015.

[235] O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad. A survey on trust and rep-
utation models for Web services: Single, composite, and communities. Decision
Support Sys., 74:121�134, 2015.

[236] W. Wang, S. De, R. Toenjes, E. Reetz, and K. Moessner. A Comprehensive
Ontology for Knowledge Representation in the Internet of Things. In IEEE Int.
Conf. on Trust, Security and Privacy in Comp. and Comm. (TrustCom), pages
1793�1798, 2012.

BIBLIOGRAPHY 63

[237] W. Wang, L. Wang, and W. Lu. A Resilient Framework for Fault Handling in
Web Service Oriented Systems. In IEEE Int. Conf. on Web Services (ICWS),
pages 663�670, 2015.

[238] T. Weise, M. B. Blake, and S. Bleul. Web Services Foundations, chapter Semantic
Web Service Composition: The Web Service Challenge Perspective, pages 161�
187. Springer, 2014.

[239] B. Wu, C.-H. Chi, and S. Xu. Service selection model based on qos reference
vector. In IEEE Congress on Services, pages 270�277, 2007.

[240] J. Wu and F. Yang. Qos prediction for composite web services with transactions.
In Int. Conf. on Service-Oriented Comp. (ICSOC), pages 86�94. Springer, 2007.

[241] Q. Wu and Q. Zhu. Transactional and QoS-aware dynamic service composition
based on ant colony optimization. Future Generation Computer Sys., 29(5):1112�
1119, 2013.

[242] Y. Wu, C.-G. Yan, Z. Ding, G.-P. Liu, P. Wang, C. Jiang, and M. Zhou. A
Multilevel Index Model to Expedite Web Service Discovery and Composition in
Large-Scale Service Repositories. IEEE Trans. on Services Comp., 9(3):330�342,
2016.

[243] M. XShari�, A. Manaf, A. Memariani, H. Movahednejad, H. Md Sarkan, and
A. Dastjerdi. Multi-criteria consensus-based service selection using crowdsourc-
ing. In Advanced Information Networking and Applications Workshop (WAINA),
pages 114�â��120, 2014.

[244] Y. Yan and M. Chen. Anytime qos-aware service composition over the graphplan.
Service Oriented Comp. and App., 9(1):1�19, 2015.

[245] Y. Yan, M. Chen, and Y. Yang. Anytime QoS Optimization over the PlanGraph
for Web Service Composition. In ACM Symp. on Applied Comp. (SAC), pages
1968�1975, 2012.

[246] Y. Yan, B. Xu, and Z. Gu. Automatic Service Composition Using AND/OR
Graph. In E-Commerce Technology and the Fifth IEEE Conference on Enterprise
Computing, E-Commerce and E-Services, 2008 10th IEEE Conference on, pages
335�338. IEEE, 2008.

[247] Y. Yang, M. Dumas, L. García-Bañuelos, A. Polyvyanyy, and L. Zhang. Gener-
alized aggregate Quality of Service computation for composite services. Journal
of Systems and Software, 85(8):1818�1830, 2012.

[248] Y. Yin, B. Zhang, X. Zhang, and Y. Zhao. A self-healing composite web service
model. In IEEE Asia-Paci�c Services Comp. Conf. (APSCC), pages 307�312,
2009.

[249] J. J.-W. Yoo, S. Kumara, D. Lee, and S.-C. Oh. A Web Service Composi-
tion Framework Using Integer Programming with Non-functional Objectives and
Constraints. In IEEE CEC/EEE, pages 347�350, 2008.

[250] K. P. Yoon and C.-L. Hwang. Multiple attribute decision making: an introduction,
volume 104. Sage publications, 1995.

[251] J. Yu, Q. Z. Sheng, J. Han, Y. Wu, and C. Liu. A semantically enhanced service
repository for user-centric service discovery and management. Data & Knowledge
Eng., 72:202�218, 2012.

64 BIBLIOGRAPHY

[252] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed. Deploying and managing Web
services: issues, solutions, and directions. The VLDB Journal, 17(3):537�572,
2008.

[253] T. Yu and K.-J. Lin. Service selection algorithms for web services with end-to-end
qos constraints. Information Systems and E-Business Management, 3(2):103�
126, 2005.

[254] T. Yu, Y. Zhang, and K.-J. Lin. E�cient algorithms for web services selection
with end-to-end qos constraints. ACM Trans. on the Web (TWEB), 1(1):6, 2007.

[255] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang.
Qos-aware middleware for web services composition. IEEE Trans. on Software
Eng., 30(5):311�327, 2004.

[256] W. Zhang, Y. Yang, S. Tang, and L. Fang. Qos-driven service selection optimiza-
tion model and algorithms for composite web services. In Annual Int. Conf. on
Computer Software and App., volume 2, pages 425�431. IEEE, 2007.

[257] Z. Zhang, S. Chen, and Z. Feng. Semantic Annotation for Web Services Based on
DBpedia. In IEEE Int. Symp. on Service Oriented System Eng. (SOSE), pages
280�285, 2013.

[258] Z.-l. Zhang, F. Hong, and H.-j. Xiao. A colored petri net-based model for web
service composition. Journal of Shanghai University (English Ed.), 12:323�329,
2008.

[259] Z. Zheng and M. R. Lyu. An adaptive qos-aware fault tolerance strategy for web
services. Empirical Software Eng., 15(4):323�345, 2010.

[260] Z. Zheng and M. R. Lyu. Selecting an optimal fault tolerance strategy for reli-
able service-oriented systems with local and global constraints. IEEE Trans. on
Comp., 64(1):219�232, 2015.

[261] Z. Zheng, H. Ma, M. R. Lyu, and I. King. Qos-aware web service recommendation
by collaborative �lterin. IEEE Transactions Services Comp., 4(2):140â��152,
2011.

[262] Z. Zheng, Y. Zhang, and M. R. Lyu. Investigating QoS of real-world web services.
IEEE Trans. on Services Comp., 7(1):32�39, 2014.

[263] A. Zimmermann. Colored Petri Nets. Stochastic Discrete Event Systems: Mod-
eling, Evaluation, Applications, pages 99�124, 2008.

[264] G. Zou, Q. Lu, Y. Chen, R. Huang, Y. Xu, and Y. Xiang. Qos-aware dynamic
composition of web services using numerical temporal planning. IEEE Trans. on
Services Comp., 7(1):18�31, 2014.

[265] M. Zur Muehlen, J. V. Nickerson, and K. D. Swenson. Developing web services
choreography standards-the case of REST vs. SOAP. Decision Support Sys.,
40(1):9�29, 2005.

Appendix A

Lists of Figures and Tables

65

66 APPENDIX A. LISTS OF FIGURES AND TABLES

List of Figures

1.1 Our vision of a service management framework (cited references corre-
spond to our publications). 2

2.1 Our internet service description ontology (inspired from [236]). 5
2.2 Three work�ow patterns (from [3]). 8
2.3 A composite service (composed by services of Table 2.1) represented by

a concrete work�ow. 8
2.4 An composite service represented by a ServiceData graph. 9
2.5 A composite service represented by a Service Petri Net. 10
2.6 A composite service represented by a Service Dependency Graph. 10
2.7 The service lifecycle and the di�erent possible recovery techniques. . . . 14
2.8 The state diagrams of transactional properties p, c, pr and cr. 16
2.9 An automaton modelling the resulting TP of a composite service de-

pending on its components' TP. 17

3.1 An abstract content-based image retrieval work�ow. 24
3.2 Several examples of image feature extraction. 24
3.3 The top-down service selection process. 25

4.1 The bottom-up service selection process using registry of Table 4.1, with
IQ = {j, k} and OQ = {q, t}. 33

67

68 LIST OF FIGURES

List of Tables

2.1 Examples of image processing services, from [129] 7
2.2 Transactional rules of [3] . 17
2.3 Summary of our contributions . 20
2.4 Characteristics of our component service selection approaches 21
2.5 Characteristics of our complementary approaches 21

4.1 An example of a simple service registry 32

B.1 Acronym and Abbreviation table . 71
B.2 Table of symbols . 72
B.3 De�nition table . 73

69

70 LIST OF TABLES

Appendix B

Abbreviation, symbol and

de�nition tables

Table B.1: Acronym and Abbreviation table
Abbreviation Description

CPN Colored Petri Net

CS Composite Service

OWL Web Ontology Language

PN Petri Net

QoS Quality of Service

RDF Resource Description Framework

TP Transactional Property

WS Web Service

WSC Web Service Challenge

WSDL Web Services Description Language

WSLA Web Service Level Agreement

71

72APPENDIX B. ABBREVIATION, SYMBOL AND DEFINITION TABLES

Table B.2: Table of symbols

Symbol Description

s A service

in(s) The input set needed by service s to be invoked

out(s) The out set produced by service s after its execution

e(s) The execution time of service s

t(s) The throughput of service s

c(s) The cost of service s

r(s) The reliability of service s

Score(s) The QoS score associated with service s

qj(s) The jth QoS criterion associated with service s

wj The weight associated with qj .

Sc(s) The set of service components composing a composite service s

sci The ith component of a composite service s

S Set of vertices in a graph representing services

D Set of of vertices in a graph representing the inputs and the outputs
of services

G = (V,U) A ServiceData graph (see Def. 2.3.3)
with V = S ∪D

Gc = (V c, U c) A sub graph of graph G

G = (V,A) A service dependency graph (see Def. 2.3.5)

(P, T, F) A Petri Net with P , a set of places, T , a set of transitions and F ,
�ow relation (see Def. 2.3.4)

p Pivot transactional property (see Def. 2.6.4)

c Compensatable transactional property (see Def. 2.6.5 and 2.6.9)

pr Pivot retriable transactional property (see Def. 2.6.6)

cr Compensatable retriable transactional property (see Def. 2.6.6 and
and 2.6.10)

a Atomic transactional property (see Def. 2.6.8)

ar Atomic retriable transactional property (see Def. 2.6.10)

TP (s) The transactional property of service s

Q Composition query (see Def. 2.7.1)

WFQ Abstract work�ow associated with Q (see Def. 2.3.2 and 2.7.1)

WQ Set of QoS weights associated with Q (see Def. 2.5.5 and 2.7.1)

TPQ Transactional property of the expected composite service (see Sec-
tion 2.6 and 2.7.1))

IQ Set of inputs associated with Q (see Def. 2.2.1 and 2.7.1)

OQ Set of the expected outputs associated with Q (see Def. 2.2.1 and
2.7.1)

Ai ith activity of a work�ow (see Def. 2.7.2)

73

Table B.3: De�nition table
N◦ De�ned term Page

2.2.1 Syntactic description of service 6

2.3.1 Composite service/component service 8

2.3.2 Work�ow 8

2.3.3 ServiceData graph 9

2.3.5 Service Dependency graph 10

2.3.4 Service Petri Net 10

2.4.1 Service directory/registry/repository 11

2.5.1 Execution time 12

2.5.2 Throughput 12

2.5.3 Cost 12

2.5.4 Reliability 12

2.5.5 QoS Score 13

2.6.1 Backward recovery 14

2.6.2 Forward recovery 14

2.6.3 Semantic recovery 15

2.6.4 Pivot service 15

2.6.5 Compensatable non-composite service 15

2.6.6 Pivot or compensatable non-composite service 15

2.6.7 Transactional (non-composite) service 15

2.6.8 Atomic service 16

2.6.9 Compensatable composite service 16

2.6.10 Pivot or compensatable composite service 16

2.6.11 Transactional composite service 16

2.7.1 Composition query 18

2.7.2 Top-down component service selection 18

2.7.3 Bottom-up component service selection 18

2.7.4 QoS-aware service selection 19

2.7.5 Transactional-aware service selection 19

2.7.6 QoS and Transactional-aware service selection 19

2.7.7 Dynamic fault-tolerant composite service execution 19

3.1.1 Top-down QoS and Transactional-aware composition
problem

24

4.1.1 Bottom-up QoS and Transactional-aware composition
problem

31

