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Abstract. MACBETH 2-additive is the generalization of the Choquet
integral to theMACBETH approach, a MultiCriteria Decision Aid method.
In the elicitation of a 2-additive capacity step, the inconsistencies of the
preferential information, given by the Decision Maker on the set of binary
alternatives, is tested by using the MOPI conditions. Since a 2-additive
capacity is related to all binary alternatives, this inconsistencies checking
can be more complex if the set of alternatives is very large. In this paper,
we show that it is possible to limited the test of MOPI conditions to the
only alternatives used in the preferential information.

Keywords: MCDA, Preference modeling, MOPI conditions, Choquet
integral, MACBETH

1 Introduction

Multiple Criteria Decision Aid (MCDA) aims at helping a decision maker (DM)
in the representation of his preferences over a set of alternatives, on the basis of
several criteria which are often contradictory. One possible model is the transitive
decomposable one where an overall utility is determined for each option. In this
category, we have the model based on Choquet integral, especially the 2-additive
Choquet integral (Choquet integral w.r.t. a 2-additive) [6, 8, 14]. The 2-additive
Choquet integral is defined w.r.t. a capacity (or nonadditive monotonic measure,
or fuzzy measure), and can be viewed as a generalization of the arithmetic mean.
Any interaction between two criteria can be represented and interpreted by a
Choquet integral w.r.t. a 2-additive capacity, but not more complex interaction.

Usually the DM is supposed to be able to express his preference over the set
of all alternatives X . Because this is not feasible in most of practical situations
(the cardinality of X may be very large), the DM is asked to give, using pairwise
comparisons, an ordinal information (a preferential information containing only
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a strict preference and an indifference relations) on a subset X ′ ⊆ X , called
reference set. The set X ′ we use in this paper is the set of binary alternatives or
binary actions denoted by B. A binary action is an (fictitious) alternative repre-
senting a prototypical situation where on a given subset of at most two criteria,
the attributes reach a satisfactory level 1, while on the remaining ones, they
are at a neutral level (neither satisfactory nor unsatisfactory) 0. The character-
ization theorem of the representation of an ordinal information by a 2-additive
Choquet integral [13] is based on the MOPI property. The inconsistencies test
of this condition is done on every subsets of three criteria.

We are interested in the following problem: how to reduce the complexity
of this test of inconsistencies when the number of criteria is large? We propose
here a simplification of the MOPI property based only on the binary alternatives
related to the ordinal information.

After some basic notions given in the next section, we present in Section 3
our main result.

2 Basic concepts

Let us denote by N = {1, . . . , n} a finite set of n criteria and X = X1×· · ·×Xn

the set of actions (also called alternatives or options), whereX1, . . . , Xn represent
the point of view or attributes. For all i ∈ N , the function ui : Xi → R is
called a utility function. Given an element x = (x1, . . . , xn), we set U(x) =
(u1(x1), . . . , un(xn)). For a subset A of N and actions x and y, the notation
z = (xA, yN−A) means that z is defined by zi = xi if i ∈ A, and zi = yi
otherwise.

2.1 Choquet integral w.r.t. a 2-additive capacity

The Choquet integral w.r.t. a 2-additive capacity [6], called for short a 2-additive
Choquet integral, is a particular case of the Choquet integral [8, 9, 14]. This inte-
gral generalizes the arithmetic mean and takes into account interactions between
criteria. A 2-additive Choquet integral is based on a 2-additive capacity [4, 8]
defined below and its Möbius transform [3, 7]:

Definition 1

1. A capacity on N is a set function µ : 2N → [0, 1] such that:

(a) µ(∅) = 0
(b) µ(N) = 1
(c) ∀A,B ∈ 2N , [A ⊆ B ⇒ µ(A) ≤ µ(B)] (monotonicity).

2. The Möbius transform [3] of a capacity µ on N is a function m : 2N → R

defined by:

m(T ) :=
∑

K⊆T

(−1)|T\K|µ(K), ∀T ∈ 2N . (1)
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When m is given, it is possible to recover the original µ by the following
expression:

µ(T ) :=
∑

K⊆T

m(K), ∀T ∈ 2N . (2)

For a capacity µ and its Möbius transform m, we use the following shorthand:
µi := µ({i}), µij := µ({i, j}), mi := m({i}), mij := m({i, j}), for all i, j ∈ N ,
i 6= j. Whenever we use i and j together, it always means that they are different.

Definition 2 A capacity µ on N is said to be 2-additive if

– For all subsets T of N such that |T | > 2, m(T ) = 0;
– There exists a subset B of N such that |B| = 2 and m(B) 6= 0.

The following important Lemma shows that a 2-additive capacity is entirely
determined by the value of the capacity on the singletons {i} and pairs {i, j} of
2N :

Lemma 1

1. Let µ be a 2-additive capacity on N . We have for all K ⊆ N , |K| ≥ 2,

µ(K) =
∑

{i,j}⊆K

µij − (|K| − 2)
∑

i∈K

µi. (3)

2. If the coefficients µi and µij are given for all i, j ∈ N, then the necessary
and sufficient conditions that µ is a 2-additive capacity are:

∑

{i,j}⊆N

µij − (n− 2)
∑

i∈N

µi = 1 (4)

µi ≥ 0, ∀i ∈ N (5)

For all A ⊆ N, |A| ≥ 2, ∀k ∈ A,

∑

i∈A\{k}

(µik − µi) ≥ (|A| − 2)µk. (6)

Proof. See [6].

For an alternative x := (x1, ..., xn) ∈ X , the expression of the Choquet
integral w.r.t. a capacity µ is given by:

Cµ(U(x)) :=
n
∑

i=1

(uτ(i)(xτ(i))− uτ(i−1)(xτ(i−1))) µ({τ(i), . . . , τ(n)})

where τ is a permutation on N such that uτ(1)(xτ(1)) ≤ uτ(2)(xτ(2)) ≤ · · · ≤
uτ(n−1)(xτ(n−1)) ≤ uτ(n)(xτ(n)), and uτ(0)(xτ(0)) := 0.

The 2-additive Choquet integral can be written also as follows [9]:

Cµ(U(x)) =

n
∑

i=1

viui(xi)−
1

2

∑

{i,j}⊆N

Iij |ui(xi)− uj(xj)| (7)
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where vi =
∑

K⊆N\i

(n− |K| − 1)!|K|!

n!
(µ(K ∪ i) − µ(K)) is the importance of

criterion i corresponding to the Shapley value of µ [17] and Iij = µij − µi − µj

is the interaction index between the two criteria i and j [6, 15].

2.2 Binary actions and relations

MCDA methods based on multiattribute utility theory, e.g, UTA [19], robust
methods [1, 5, 11], require in practice a preferential information of the DM on
a subset XR of X because of the cardinality of X which can be very large.
The set XR is called reference subset and it is generally chosen by the DM.
His choice may be guided by his knowledge about the problem addressed, his
experience or his sensitivity to one or more particular alternatives, etc. This task
is often difficult for the DM, especially when the alternatives are not known in
advance, and sometimes his preferences on XR are not sufficient to specify all
the parameters of the model as interaction between criteria. For instance, in the
problem of the design of a complex system for the protection of a strategic site
[16], it is not easy for the DM to choose XR himself because these systems are
not known a priori. For these reasons, we suggest him to use as a reference subset
a set of fictitious alternatives called binary actions defined below. We assume
that the DM is able to identify for each criterion i two reference levels:

1. A reference level 1i in Xi which he considers as good and completely sat-
isfying if he could obtain it on criterion i, even if more attractive elements
could exist. This special element corresponds to the satisficing level in the
theory of bounded rationality of Simon [18].

2. A reference level 0i in Xi which he considers neutral on i. The neutral level is
the absence of attractiveness and repulsiveness. The existence of this neutral
level has roots in psychology [20], and is used in bipolar models [21].

We set for convenience ui(1i) = 1 and ui(0i) = 0. Because the use of Choquet
integral requires to ensure the commensurateness between criteria, the previous
reference levels can be used in order to define the same scale on each criterion
[10, 12]. More details about these reference levels can be found in [8, 9].

We call a binary action or binary alternative, an element of the set

B = {0N , (1i,0N−i), (1ij ,0N−ij), i, j ∈ N, i 6= j} ⊆ X

where

– 0N = (1∅,0N−∅) =: a0 is an action considered neutral on all criteria.
– (1i,0N−i) =: ai is an action considered satisfactory on criterion i and neutral

on the other criteria.
– (1ij ,0N−ij) =: aij is an action considered satisfactory on criteria i and j

and neutral on the other criteria.

Using the Choquet integral, we get the following consequences:
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1. For any capacity µ,

Cµ(U((1A,0N−A))) = µ(A), ∀A ⊆ N. (8)

2. Using Equation (2), we have for any 2-additive capacity µ:

Cµ(U(a0)) = 0 (9)

Cµ(U(ai)) = µi = vi −
1

2

∑

k∈N, k 6=i

Iik (10)

Cµ(U(aij)) = µij = vi + vj −
1

2

∑

k∈N, k 6∈{i,j}

(Iik + Ijk) (11)

With the arithmetic mean, we are able to compute the weights by using the
reference subset XR = {a0, ai, ∀i ∈ N} (see MACBETH methodology [2]). For
the 2-additive Choquet integral model, these alternatives are not sufficient to
compute interaction between criteria, hence the elaboration of B by adding the
alternatives aij . The Equations (10) and (11) show that the binary actions are
directly related to the parameters of the 2-additive Choquet integral model.
Therefore a preferential information on B given by the DM permits to determine
entirely all the parameters of the model.

As shown by the previous equations (9),(10), (11) and Lemma 1, it should be
sufficient to get some preferential information from the DM only on binary ac-
tions. To entirely determine the 2-additive capacity this information is expressed
by the following relations:

– P = {(x, y) ∈ B × B : DM strictly prefers x to y},

– I = {(x, y) ∈ B × B : DM is indifferent between x and y}.

The relation P is irreflexive and asymmetric while I is reflexive and symmetric.
Here P does not contradict the classic dominance relation.

Definition 3 The ordinal information on B is the structure {P, I}.

These two relations are completed by adding the relation M which models the
natural relations of monotonicity between binary actions coming from the mono-
tonicity conditions µ({i}) ≥ 0 and µ({i, j}) ≥ µ({i}) for a capacity µ. For
(x, y) ∈ {(ai, a0), i ∈ N} ∪ {(aij , ai), i, j ∈ N, i 6= j},

x M y if not(x (P ∪ I) y).

Example 1 Mary wants to buy a digital camera for her next trip. To do this,
she consults a website where she finds six propositions based on three criteria:
resolution of the camera (expressed in million of pixels), price (expressed in
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euros) and zoom (expressed by a real number)

Cameras 1 : Resolution 2 : Price 3 : Zoom
a : Nikon 6 150 5
b : Sony 7 180 5
c : Panasonic 10 155 4
d : Casio 12 175 5
e : Olympus 10 160 3
f : Kodak 8 165 4

The criteria 1 and 3 have to be maximize while criterion 2 have to minimize.
Using our notations, we have N = {1, 2, 3}, X1 = [6, 12], X2 = [150, 180],

X3 = [3, 5] and X = X1 ×X2 ×X3.
Mary chooses for each criterion the following reference levels with some un-

derstanding of meaning in her mind.

1 : Resolution 2 : Price 3 : Zoom
Satisfactory

level
12 150 4

Neutral

level
9 160 3.5

Based on these reference levels, the set of binary actions is
B = {a0, a1, a2, a3, a12, a13, a23}, where for instance the alternative a12 refers to
a camera for which Mary is satisfied on resolution and price, but neutral on zoom.
In order to make her choice, Mary gives also the following ordinal information:
I = {(a12, a3)}, P = {(a13, a1), (a2, a0)}. Hence we have M = {(a1, a0), (a3, a0),
(a12, a1), (a12, a2), (a13, a3), (a23, a2), (a23, a3)}.

2.3 The representation of ordinal information by the Choquet

integral

An ordinal information {P, I} is said to be representable by a 2-additive Choquet
integral if there exists a 2-additive capacity µ such that:

1. ∀x, y ∈ B, x P y ⇒ Cµ(U(x)) > Cµ(U(y))
2. ∀x, y ∈ B, x I y ⇒ Cµ(U(x)) = Cµ(U(y)).

A characterization of an ordinal information is given by Mayag et al. [13]. This
result, presented below, is based on the following property called MOPI:

Definition 4 [MOPI property]

1. For a binary relation R on B and x, y elements of B, {x1, x2, · · · , xp} ⊆ B
is a path of R from x to y if x = x1 R x2 R· · ·R xp−1 R xp = y. A path
of R from x to x is called a cycle of R.

– We denote x TC y if there exists a path of (P ∪ I ∪M) from x to y.
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– A path {x1, x2, ..., xp} of (P ∪ I ∪M) is said to be a strict path from x

to y if there exists i in {1, ..., p − 1} such that xi P xi+1. In this case,
we will write x TCP y.

– We write x ∼ y if there exists a nonstrict cycle of (P ∪ I ∪M) (hence a
cycle of (I ∪M)) containing x and y.

2. Let i, j, k ∈ N . We call Monotonicity of Preferential Information in {i, j, k}
w.r.t. i the following property (denoted by ({i, j, k},i)-MOPI):

{

aij ∼ ai
aik ∼ ak

⇒ not(aj TCP a0)

and
{

aij ∼ aj
aik ∼ ak

⇒ not(ai TCP a0)

and
{

aij ∼ aj
aik ∼ ai

⇒ not(ak TCP a0).

3. We say that, the set {i, j, k} satisfies the property of MOnotonicity of Pref-
erential Information (MOPI) if ∀l ∈ {i, j, k}, ({i, j, k}, l)-MOPI is satisfied.

Theorem 1 An ordinal information {P, I} is representable by a 2-additive Cho-
quet integral on B if and only if the following two conditions are satisfied:

1. (P ∪ I ∪M) contains no strict cycle;
2. Any subset K of N such that |K| = 3 satisfies the MOPI property.

Proof. See [13].

Using this characterization theorem, we deal with inconsistencies in the or-
dinal information [14]. But, the inconsistencies test of MOPI conditions requires
to test them on all subsets of three criteria. Therefore, all the binary alterna-
tives are used in the MOPI conditions test. If the number of elements of B is
large (n > 2), it can be impossible to show to the DM a graph, where vertices
are binary actions, for the explanation of inconsistencies. To solve this problem,
we give an equivalent characterization of an ordinal information which concerns
only the binary actions related the preferences {P, I}. This is done by extending
the relation M to some couples (aij , a0). Therefore, this new characterization
theorem can be viewed as a reduction of complexity of inconsistencies test

3 Reduction of the complexity in the inconsistencies test

of ordinal information

Let us consider the following sets:

B′ = {a0} ∪ {x ∈ B | ∃y ∈ B such that (x, y) ∈ (P ∪ I) or (y, x) ∈ (P ∪ I)}
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M ′ = M ∪ {(aij , a0) | aij ∈ B′, ai 6∈ B′ et aj 6∈ B′}

(P ∪ I ∪M ′)|B′
= {(x, y) ∈ B′ × B′ | (x, y) ∈ (P ∪ I ∪M ′)}

The set B′ is the set of all binary actions related to the preferential information
of the DM. The relation on M ′ on B is an extension of the monotonicity relation
on B. The restriction of the relation (P ∪ I ∪M ′) to the set B′ corresponds to
(P ∪ I ∪M ′)|B′

.
The following result shows that, when it is possible to extend the monotonic-

ity relationM to the set B′, then the test of inconsistencies for the representation
of ordinal information can be only limited to the elements of B′.

Proposition 1 Let be {P, I} an ordinal information on B.
The ordinal information {P, I} is representable by a 2-additive Choquet in-

tegral if and only if the following two conditions are satisfied:

1. (P ∪ I ∪M ′)|
B′

contains no strict cycle;
2. Every subset K of N such that |K| = 3 satisfies the MOPI conditions re-

stricted to B′ (Only the elements of B′ are concerned in this condition and
paths considered in these conditions are paths of (P ∪ I ∪M ′)|B′

).

Proof. See Section 3.1.

Example 2 N = {1, 2, 3, 4, 5, 6}, P = {(a5, a12)}, I = {(a3, a5)}, B = {a0, a1, a2, a3, a4, a5,
a6, a12, a13, a14, a15, a16, a23, a24, a25, a26, a34, a35, a36, a45, a46, a56}.

According to our notations, we will have

B′ = {a0, a12, a3, a5},

M ′ = M ∪ {(a12, a0)},

(P ∪ I ∪M ′)|B′
= {(a5, a12), (a3, a5), (a5, a3), (a3, a0), (a5, a0), (a12, a0)}

Hence, Proposition 1 shows that the inconsistencies test of the ordinal infor-
mation {P, I} will be limited on B′ by satisfying the following conditions:

– (P ∪ I ∪M ′)|B′
contains no strict cycle;

– MOPI conditions written only by using elements of B′ and paths of (P ∪ I ∪
M ′)|B′

.

3.1 Proof of Proposition 1

Let be {P, I} an ordinal information on B. In this section, for all elements x, y ∈
B, we denote by:

1. x TC′ y a path of (P ∪ I ∪M ′) from x to y.
2. x TC′

|B′
y a path of (P ∪ I ∪ M ′)|

B′
from x to y i.e. a path from x to y

containing only the elements of B′.
3. x ∼′ y if one of the two following conditions happens:
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(a) x = y;
(b) there is a non strict cycle (P ∪ I ∪M ′) containing x and y.

4. x ∼′
|B′

y if one of the two following conditions happens:

(a) x = y;
(b) there is a non strict cycle of (P ∪ I ∪M ′)|B′

containing x and y.

We will use the following lemmas in the proof of the result:

Lemma 2 If (x1, x2, . . . , xp) is a cycle of (P ∪ I ∪M), then every elements of
B′ of this cycle are contained in a cycle of (P ∪ I ∪M ′)|

B′
.

Proof. For all xl, elements of the cycle (x1, x2, . . . , xp) which are not in B′,
there exists necessarily i, j ∈ N such that aij M ai M a0 (see Figure 1) where
xl−1 = aij , xl = ai and xl+1 = a0 (x0 = xp and xp+1 = x1). Therefore, We can
cancel the element ai of the cycle because the elements aij and a0 can be related
as follows:

– if aj 6∈ B′, we will have aij M ′ a0;
– if aj ∈ B′, we will have aij (P ∪ I ∪M) aj (P ∪ I ∪M) a0. This element aj ,

which is not necessarily an element of the cycle (x1, x2, . . . , xp), will be an
element of the new cycle of (P ∪ I ∪M ′)|B′

.

The cycle of (P ∪ I ∪ M ′)|B′
obtained is then constituted by the elements of

(x1, x2, . . . , xp) belonging in B′ and eventually the elements aj coming from the
cancelation of the elements ai of (x1, x2, . . . , xp) which are not in B′.

a0 ai

aij

M

M

M′

Fig. 1. Relation M
′ between aij , ai and a0

Lemma 3

1. Let i, j ∈ N such that aij ∼ ai. We have the following results:
(a) aij ∈ B′;
(b) If ai 6∈ B′ then aij ∼′

|B′
a0;

(c) If ai ∈ B′ then aij ∼′
|B′

ai.

2. Let i, j ∈ N such that aij ∼ aj. We have the following results:
(a) aij ∈ B′;
(b) If aj 6∈ B′ then aij ∼′

|B′
a0;
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(c) If aj ∈ B′ then aij ∼′
|
B′

aj.

Proof.

1. If aij ∼ ai then there exists x ∈ B such that x (P ∪ I ∪M) aij . Using the
definition of M , one may not have x M aij . Hence aij ∈ B′ by the definition
of B′.

2. aij ∼ ai ⇒ aij M ai M a0 TC aij because ai 6∈ B′. Using Lemma 2, aij and
a0 are contained in a cycle of (P ∪ I ∪M ′)|B′

i.e. aij ∼′
|B′

a0.

3. Since aij and ai are in B′, then using Lemma 2, they are contained in a cycle
of (P ∪ I ∪M ′)|B′

i.e. aij ∼′
|
B′

ai.

The proof of the second point of the Lemma is similar to the previous one by
replacing ai by aj .

Lemma 4 If (P ∪ I ∪M ′)|
B′

contains no strict cycle then (P ∪ I ∪M) contains
no strict cycle.

Proof. Let (x1, x2, . . . , xp) a strict cycle of (P ∪ I ∪ M). Using Lemma 2, all
the elements of (x1, x2, . . . , xp) belonging to B′ are contained in a cycle C de
(P ∪I ∪M ′)|B′

. Since (x1, x2, . . . , xp) is a strict cycle of (P ∪I ∪M), there exists
xio , xio+1 ∈ {x1, x2, . . . , xp} such that xio P xio+1. Therefore C is a strict cycle
of (P ∪ I ∪M ′)|B′

because xio , xio+1 ∈ B′, a contradiction with the hypothesis.

Lemma 5 Let x ∈ B. If x TCP a0 then x ∈ B′ and for each strict path (P ∪
I ∪M) from x to a0, there exists a strict path of (P ∪ I ∪M ′)|B′

from x to a0.

Proof. If x 6∈ B′ then we can only have x M a0. Therefore we will not have
x TCP a0, a contradiction. Hence we have x ∈ B′.

Let x (P ∪ I ∪ M) x1 (P ∪ I ∪ M) . . . xp (P ∪ I ∪ M) a0 a strict path of
(P ∪I∪M) from x to a0. If there exists an element y 6∈ B′ belonging to this path,
then there necessarily exists i, j ∈ N such that y = ai and x TCP aij M ai M a0.
So we can suppress the element y and have the path x TCP aij M ′ a0 if aj 6∈ B′

or the path x TCP aij (P ∪ I ∪M) aj (P ∪ I ∪M) a0 if aj ∈ B′. If we suppress
all the elements of B \B′ like this, then we obtain a strict path of (P ∪I ∪M ′)|B′

containing only elements of B′.

Lemma 6 Let us suppose that (P ∪ I ∪M ′)|
B′

contains no strict cycle.

1. If we have

{

aij ∼ ai
aik ∼ ak

and (aj TCP a0) then ai, ak and aj are the elements

of B′.

2. If we have

{

aij ∼ aj
aik ∼ ai

and (ak TCP a0) then ai, aj and ak are the elements

B′.

3. If we have

{

aij ∼ aj
aik ∼ ak

and (ai TCP a0) then aj , ak and ai are the elements

of B′.
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Proof.

1. aj is an element of B′ using Lemma 5.
– If ai 6∈ B′ then using Lemma 3 we have aij ∼′

|B′
a0. Since aj TCP a0,

then using Lemma 5, we have aj TC′
P |B′

a0 a strict path from aj to a0.

Hence, we will have a0 ∼′
|
B′

aij (P ∪I ∪M) aj TC
′
P |

B′
a0. Therefore we

obtain un strict cycle of (P ∪ I ∪M ′)|
B′
, which is a contradiction with

the hypothesis. Hence ai ∈ B′

– If ak 6∈ B′ then using Lemma 3, aik ∼′
|B′

a0. Therefore, since ai ∈ B′

(using the previous point), we will have the following cycle (P ∪I∪M ′)|B′

of
a0 ∼′

|B′
aik M ai TC

′
|B′

aij (P ∪ I ∪M) aj TC′
P |B′

a0.

This cycle is strict because aj TC′
P |

B′
a0 is a strict path from aj to a0

using Lemma 5, a contradiction. Hence ak ∈ B′.
2. The proof of the two last points is similar to the first point.

Proof of the Proposition 1 :
Il is obvious that if {P, I} is representable by a 2-additive Choquet integral

then the two following conditions are satisfied:

– (P ∪ I ∪M ′)|
B′

contains no strict cycle;
– Every subsetK ofN such that |K| = 3 satisfies the MOPI conditions reduced

to B′ (Only the elements of B′ are concerned in this condition).

The converse of the proposition is a consequence of Lemmas 4 and 6.
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