Algorithms M2-Homework 2

November 2, 2021

1 Recurrence Relations

For the following recurrence relations give an estimate (using O-notation) of
the asymptotic complexity of each function. Give a short justification for your
answers (proof by induction or using Master Theorem).

1. Ti(n) = 27Ty (n/3) + n?
2. Ty(n) = To(n/2) +n
3. Ty(n) = T3(n/2) + logn
4. Ty(n) = 2°Ty(n — 1)

2 Tournament Rankings

We set up a round-robin tennis tournament among n players: each player plays
each other once, and one of the two players wins. We would like to rank the
players according to the results of the tournament.

A perfect ranking is an ordering of the players p1, ..., p, such that for all
i,7, if ¢ < j then p; won the game against p;. Not all tournaments have perfect
rankings (this depends on the individual results), so we also define the notion
of reasonable ranking. A reasonable ranking is an ordering of the players
D1, .., Pn such that for all ¢, p; won the game against p;+1. (Note that p; may
have lost the game against, for example p; 12, but the ranking is still considered
reasonable).

1. Give an example of a tournament that does not have a perfect ranking
and an example of a tournament that does.

2. Prove by induction that for any set of tournament results, a reasonable
ranking always exists.

3. Give a polynomial-time algorithm to find a reasonable ranking.



3 Making Change

([DPV] Exercise 6.17) We are given an unlimited supply of coins of values
Z1,%2,...,Ty and a target value v. We are asked if it is possible to produce
value v using these coins. For example, if we have coins with values 5 and 10,
we can produce the value 15 but not the value 12.

1. Give an example where the greedy algorithm fails for this problem. That
is, give some coin values and target v, such that it is possible to produce
v using these coin values, but if keep using the largest coin that is smaller
than the remaining change, we cannot produce the value v.

2. Given a dynamic programming algorithm that decides if it is possible to
produce value v, running in time polynomial in n + v.

4 A card game

([DPV] Exercise 6.13) Consider the following game: we are given a sequence
of n cards s1,...,s,, where each card has an integer value. Two players take
turns playing. In each turn the current player may pick up either the left-most
or the right-most available card. This card is then removed from the game and
the player gains the value of the card he selected. In the end the winner is the
player whose selected cards have the higher sum.

1. Give an example that shows that it is not optimal to be greedy. That
is, an example where if the first player selects the card with higher value
(between the two available), he loses.

2. Give a dynamic programming algorithm to determine the optimal strategy
for the first player.

5 Two-Dimensional Knapsack

You go to the supermarket. You have with you a bag that can take items of
total weight W. You also have with you B euros. The supermarket sells n items
and the i-th item has weight w; and price p;.

Give a DP algorithm that decides if it is possible to fill your bag completely
(that is, with items of total weight W) without spending more than your budget
B. You can assume that the supermarket has many copies of the same item,
so that if a melon has weight w; = 1 and p; = 3 you are allowed to take three
melons for a total weight of 3 and price of 9. Your algorithm should run in time
polynomial in n, W, B.



6 Estimate a probability

([DPV] Exercise 6.15) Two teams A,B are repeatedly playing a best-of-n contest,
that is, the two teams play repeatedly and the first team to win n teams is the
champion. The two teams are of equal strength, so each team wins each match
independently with probability 50%. Suppose that team A has so far won i
matches and team B has won j, where i,j < n. Give an algorithm which,
with input 4, j, n calculates the probability that A wins overall. For example, if
i=n—1,7 =n — 3 your algorithm should output 7/8.

Generalize your algorithm so that it outputs the probability that A wins
overall assuming that the probability that A wins a specific match is p4 # 1/2.

7 Bin Packing

We are given n items with weights wq,...,w,. We have three bags, each of
which can take items of maximum total weight W. Is it possible to fit all the
items into the three bags? Give an algorithm that decides this in time O(nW?3).



