Algorithms M2 IF Introduction to Randomized Algorithms

Michael Lampis

Fall 2019

Class Overview

This is an **Advanced Algorithms** class. We will care about:

- Time complexity (and also space complexity) of our algorithms as a function of n, the input size.
- We will pay close attention to the asymptotics. We distinguish between O(n) and $O(n^2)$
- Performance Guarantees. We only care about an algorithm if we can prove mathematically that it "works well".
- Possible definitions of "works well": solves the problem always or with high probability, its time complexity is below a certain bound always, or with high probability.

Algorithms M2 IF 2 / 27

Class Overview

This is an **Advanced Algorithms** class. We will care about:

- Time complexity (and also space complexity) of our algorithms as a function of n, the input size.
- We will pay close attention to the asymptotics. We distinguish between O(n) and $O(n^2)$
- Performance Guarantees. We only care about an algorithm if we can prove mathematically that it "works well".
- Possible definitions of "works well": solves the problem always or with high probability, its time complexity is below a certain bound always, or with high probability.

• With high probability (whp) is a precise mathematical statement \rightarrow with probability $\geq 1 - o(1)$.

Algorithms M2 IF 2 / 27

Class Overview

This is an **Advanced Algorithms** class. We will care about:

- Time complexity (and also space complexity) of our algorithms as a function of n, the input size.
- We will pay close attention to the asymptotics. We distinguish between O(n) and $O(n^2)$
- Performance Guarantees. We only care about an algorithm if we can prove mathematically that it "works well".
- Possible definitions of "works well": solves the problem always or with high probability, its time complexity is below a certain bound always, or with high probability.

Topics that will be covered (this may be updated during the semester):

- Randomized Algorithms
- Dynamic Programming (vs. Recursion and Divide-and-Conquer)
- (*) Sub-linear Algorithms Property Testing

(*) On-line Algorithms

Algorithms M2 IF 2 / 27

Administration

- Course taught in English.
- Web page:

```
https://www.lamsade.dauphine.fr/~mlampis/Algo/
```

- Regularly check web page (and Dauphine planning) for updates!
- Grading:
 - 30% Homework assignments (CC)
 - 70% Final exam
- Course organization:
 - 1h30 of lecture
 - 1h30 of exercises (TD)
 - Homeworks will be of same spirit as TD.
- Reading material (including these slides) found on the web page.

If in doubt, email me!

Algorithms M2 IF 3 / 27

Randomized Algorithms

Introduction

 A randomized algorithm is an algorithm which may at any step produce a random bit (say, by flipping a coin) and use this bit in its calculations.

Algorithms M2 IF 5 / 27

Introduction

- A randomized algorithm is an algorithm which may at any step produce a random bit (say, by flipping a coin) and use this bit in its calculations.
 - Example: Polling for elections. Given n voters, the algorithm selects k << n voters at random and uses their preferences to predict the outcome of the election.

Algorithms M2 IF 5 / 27

Introduction

 A randomized algorithm is an algorithm which may at any step produce a random bit (say, by flipping a coin) and use this bit in its calculations.

Main applications/advantages of randomized algorithms:

- Simpler to describe
- Faster to run (if we have access to random bits!)
- Performance guarantee depends on our own random bits, applies to all inputs

On a basic level, randomized algorithms make it easy to "find hay in a haystack". Same problem not obvious for deterministic algorithms (think serial search).

Disadvantages:

- Math is usually harder!
- Producing random bits is not obvious.

Algorithms M2 IF 5 / 27

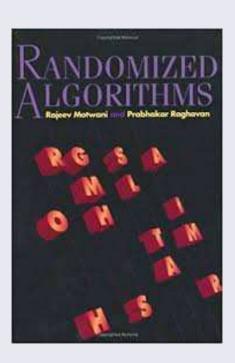
Randomized Algorithms – This course

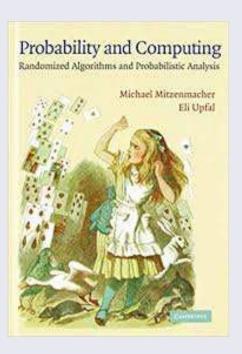
- We want to prove theorems of the form "With high probability, (randomized) algorithm A does X"
 - Implied → for any input.
- We assume that random bits are given for free.
 - Not necessarily realistic (pseudo-random bit generators are hard!)
- Type of performance guarantee we want:
 - Whp algorithm A is "fast"
 - Whp algorithm A is correct.
 - If not, what kind of error could we have?
 - Algorithm A is expected to be fast/good/correct.
 - Will discuss how to transform expectation guarantees to whp guarantees.

Algorithms M2 IF 6 / 27

References

- Refs:
 - Mitzenmacher and Upfal, Probability and Computing [MU]
 - Motwani and Raghavan, Randomized Algorithms [MR]





Algorithms M2 IF 7 / 27

Average-Case Analysis of (Deterministic) Algorithms

- Probabilities are also important for "normal" (deterministic) algorithms.
- Example: algorithm A works great "most of the time".
 - Meaning what?
- One possible interpretation:
 - Define a natural probability distribution over inputs (uniform?)
 - Prove that if input follows this distribution, then algorithm A is "good".
 - algorithm A is good with high probability!

Example Theorem:

• (Deterministic) Quicksort takes time $O(n \log n)$ on average.

Algorithms M2 IF 8 / 27

Worst-Case Analysis of Randomized Algorithms

- In this course we are less interested in average-case guarantees, and more in worst-case (i.e. all cases) guarantees.
- Problems with average-case guarantees:
 - What is the average case? Uniform? Sparse? Gaussian?
 - Hard to analyze.
 - Still may fail badly sometimes (though not often).
- We prefer theorems which prove a statement for all inputs, and may rely on probabilities on bits picked by the algorithm.
- Think that the input is selected by an adversary, but the random bits by the referee.
 - Example Theorem:

• Randomized Quicksort takes $O(n \log n)$ time on average.

Algorithms M2 IF 9 / 27

Worst-Case Analysis of Randomized Algorithms

- In this course we are less interested in average-case guarantees, and more in worst-case (i.e. all cases) guarantees.
- Problems with average-case guarantees:
 - What is the average case? Uniform? Sparse? Gaussian?
 - Hard to analyze.
 - Still may fail badly sometimes (though not often).
- We prefer theorems which prove a statement for all inputs, and may rely on probabilities on bits picked by the algorithm.
- Think that the input is selected by an adversary, but the random bits by the referee.
 - Example Theorem:
- Randomized Quicksort takes $O(n \log n)$ time on average.
- Can you tell the difference with the previous slide? Which is better?

Algorithms M2 IF 9 / 27

An example: the complexity of Quicksort

Problem:

- Input: an array of n distinct integers.
- Operations: Compare, Swap, in unit time.
- Output: the same numbers sorted in increasing order.

Quicksort

- If n < 1 Done!
- Partition the array into $L = \{x \mid x < A[1]\}, R = \{x \mid x > A[1]\}$
 - We are using A[1] as the **pivot**
- Output QSort(L), A[1], QSort(R).

Algorithms M2 IF 10 / 27

An example: the complexity of Quicksort

Problem:

- Input: an array of n distinct integers.
- Operations: Compare, Swap, in unit time.
- Output: the same numbers sorted in increasing order.

Quicksort

- If n < 1 Done!
- Partition the array into $L = \{x \mid x < A[1]\}, R = \{x \mid x > A[1]\}$
 - We are using A[1] as the **pivot**
- Output QSort(L), A[1], QSort(R).
- Correctness?
- Worst-case complexity: $O(n^2)$ operations. (Why?)

Algorithms M2 IF 10 / 27

Theorem: (Det.) Quicksort on average

Time complexity on n elements:

$$T(n) \le T(q) + T(n - q - 1) + O(n)$$

where q = |L|.

Algorithms M2 IF 11 / 27

Theorem: (Det.) Quicksort on average

Time complexity on n elements:

$$T(n) \le T(q) + T(n - q - 1) + O(n)$$

where q = |L|.

This gives

- $T(n) = O(n \log n)$ if q = n/2 always (unlikely!)
- $T(n) = O(n \log n)$ if $q \in [n/4, 3n/4]$ always (more likely)
- $T(n) = O(n^2)$ if q = O(1). (Tight example?)

Algorithms M2 IF 11 / 27

Theorem: (Det.) Quicksort on average

Time complexity on n elements:

$$T(n) \le T(q) + T(n - q - 1) + O(n)$$

where q = |L|.

This gives

- $T(n) = O(n \log n)$ if q = n/2 always (unlikely!)
- $T(n) = O(n \log n)$ if $q \in [n/4, 3n/4]$ always (more likely)
- $T(n) = O(n^2)$ if q = O(1). (Tight example?)

Would like to prove:

• If A is in a (uniformly) random permutation, then the expected time complexity of Quicksort is $O(n \log n)$.

Algorithms M2 IF 11 / 27

Theorem: (Det.) Quicksort on average continued

- T(n) now denotes **expected** number of steps. (We are using linearity of expectations.)
- Assume that T(n) is increasing, and in fact super-linear $(\Omega(n \log n))$.
- Say A[1] is a good pivot if $q \in [n/4, 3n/4]$.

Then:

$$T(n) \le \frac{1}{2}(T(q_{good}) + T(n - q_{good})) + \frac{1}{2}T(n) + c \cdot n$$
 $T(n) \le T(3n/4) + T(n/4) + 2c \cdot n$
 $T(n) \le O(n \log n)$

Algorithms M2 IF 12 / 27

Theorem: (Det.) Quicksort on average continued

- T(n) now denotes **expected** number of steps. (We are using linearity of expectations.)
- Assume that T(n) is increasing, and in fact super-linear $(\Omega(n \log n))$.
- Say A[1] is a good pivot if $q \in [n/4, 3n/4]$.

Then:

$$T(n) \le \frac{1}{2}(T(q_{good}) + T(n - q_{good})) + \frac{1}{2}T(n) + c \cdot n$$
 $T(n) \le T(3n/4) + T(n/4) + 2c \cdot n$
 $T(n) \le O(n \log n)$

- We use the fact that T(n) is increasing (so in case of bad pivot we assume we spend another T(n) steps).
- T(n) is super-linear $\rightarrow T(q) + T(n-q) \le T(n/4) + T(3n/4)$.

 Final recurrence can be solved with standard techniques (or verified with induction).

Algorithms M2 IF 12 / 27

Theorem: Rand. Quicksort with high probability

Alternative algorithm:

- 1. Pick a random element x of A as pivot.
- 2. If x is a good pivot, partition, recurse.
- 3. If not, go back to step 1.

Algorithms M2 IF 13 / 27

Theorem: Rand. Quicksort with high probability

Alternative algorithm:

- 1. Pick a random element x of A as pivot.
- 2. If x is a good pivot, partition, recurse.
- 3. If not, go back to step 1.

Notes:

- Can check if x is a good pivot in O(n) time. (How?)
- Probability that x is a good pivot is $\frac{1}{2}$.
- \rightarrow Expected number of times going back to 1 is 2.

Algorithms M2 IF 13 / 27

Theorem: Rand. Quicksort with high probability

Alternative algorithm:

- 1. Pick a random element x of A as pivot.
- 2. If x is a good pivot, partition, recurse.
- 3. If not, go back to step 1.

Notes:

- Can check if x is a good pivot in O(n) time. (How?)
- Probability that x is a good pivot is $\frac{1}{2}$.
- \rightarrow Expected number of times going back to 1 is 2.

$$T(n) \le T(n/4) + T(3n/4) + 2 \cdot c \cdot n$$

 $T(n) \le O(n \log n)$

Algorithms M2 IF 13 / 27

Summary

Important lessons to remember.

- "Alg A is good on most inputs" is NOT THE SAME as "Alg A is good most of the time"
 - For the former we need input to be random.
 - For the latter we need random bits to be random. Much more realistic.
 - Example: for Quicksort, second algorithm is provably expected $O(n \log n)$, no matter the input.
- Only proved expected performance (because it's easier). How to get "with high probability" guarantee?

Algorithms M2 IF 14 / 27

Summary

Important lessons to remember.

- "Alg A is good on most inputs" is NOT THE SAME as "Alg A is good most of the time"
 - For the former we need input to be random.
 - For the latter we need random bits to be random. Much more realistic.
 - Example: for Quicksort, second algorithm is provably expected $O(n \log n)$, no matter the input.
- Only proved expected performance (because it's easier). How to get "with high probability" guarantee?

• Here, use Markov's inequality. $Prob[X > aE[X]] \leq \frac{1}{a}$.

Algorithms M2 IF 14 / 27

Summary

Important lessons to remember.

- "Alg A is good on most inputs" is NOT THE SAME as "Alg A is good most of the time"
 - For the former we need input to be random.
 - For the latter we need random bits to be random. Much more realistic.
 - Example: for Quicksort, second algorithm is provably expected $O(n \log n)$, no matter the input.
- Only proved expected performance (because it's easier). How to get "with high probability" guarantee?
- This algorithm ALWAYS produces the correct answer.

→ Las Vegas algorithm

Algorithms M2 IF 14 / 27

Testing Matrix Multiplication

Problem:

- Input: Three $n \times n$ matrices A, B, C.
- Operations: Addition, multiplication over scalars.
- Question: Is it true that AB = C?

Example:

$$\left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right] \cdot \left[\begin{array}{cc} 3 & 4 \\ 1 & 2 \end{array}\right] \stackrel{?}{=} \left[\begin{array}{cc} 5 & 8 \\ 13 & 20 \end{array}\right]$$

 Important note: we do not need to calculate C from scratch! It is given to us and we want to verify if it is correct (or find an error).

Algorithms M2 IF 15 / 27

Testing Matrix Multiplication

Problem:

- Input: Three $n \times n$ matrices A, B, C.
- Operations: Addition, multiplication over scalars.
- Question: Is it true that AB = C?

Example:

$$\left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right] \cdot \left[\begin{array}{cc} 3 & 4 \\ 1 & 2 \end{array}\right] \stackrel{?}{=} \left[\begin{array}{cc} 5 & 8 \\ 13 & 20 \end{array}\right]$$

- Important note: we do not need to calculate C from scratch! It is given to us and we want to verify if it is correct (or find an error).
- Can we do this in linear time?
 - **Linear in what**? Here, the input has size $\Theta(n^2)$ (if we assume numbers take constant space). Hence, we are looking for an $O(n^2)$ algorithm.

Algorithms M2 IF 15 / 27

Naive algorithm:

- Calculate AB from scratch.
- Compare each element of AB with the corresponding element of C.

What is the complexity of this algorithm?

Algorithms M2 IF 16 / 27

Naive algorithm:

- Calculate AB from scratch.
- Compare each element of AB with the corresponding element of C.

What is the complexity of this algorithm?

- Step 1 takes time:
 - $O(n^3)$ if done trivially.
 - About $O(n^{2.3})$ if we use state of the art MM algorithms.
 - HUGE open problem if it can be done in $O(n^2)$.
- Step 2 takes $O(n^2)$ and this is obviously tight (why?)
- ullet ightarrow algorithm runs in more than linear time.

Algorithms M2 IF 16 / 27

Let's use randomness!

- Pick a random element C[i, j]
- Calculate the product of row i of A with column j of B.
- If not equal, we have found an error.
- Otherwise, accept as "probably equal".

This algorithm has

- One-sided error (can only be wrong if it accepts that AB = C). :-)
 - Monte Carlo algorithm
- Running time O(n) (sub-linear!) :-)
- Probability of success?

Algorithms M2 IF 17 / 27

Let's use randomness!

- Pick a random element C[i, j]
- Calculate the product of row i of A with column j of B.
- If not equal, we have found an error.
- Otherwise, accept as "probably equal".

This algorithm has

- One-sided error (can only be wrong if it accepts that AB = C). :-)
 - Monte Carlo algorithm
- Running time O(n) (sub-linear!) :-)
- Probability of success?
 - Suppose C is incorrect in just 1 element.
 - With probability $1 \frac{1}{n^2}$ algorithm picks another element \rightarrow error. :-(
 - Even if we repeat n times prob of error $(1 \frac{1}{n^2})^n \to 1$. :-(

Algorithms M2 IF 17 / 27

Let's use randomness in a more clever way!

- Pick d to be an $n \times 1$ vector.
 - Each element is $\{0,1\}$ independently with probability 1/2.
- Check if ABd = Cd.
 - If no, we have a proof that $AB \neq C$.
 - If yes, say "probably equal".

Algorithms M2 IF 18 / 27

Let's use randomness in a more clever way!

- Pick d to be an $n \times 1$ vector.
 - Each element is $\{0,1\}$ independently with probability 1/2.
- Check if ABd = Cd.
 - If no, we have a proof that $AB \neq C$.
 - If yes, say "probably equal".

Analysis:

- Calculating Bd takes $O(n^2)$ (trivial). Same for Cd.
- Given Bd, calculating A(Bd) = ABd takes $O(n^2)$.
- Checking if ABd = Cd takes $O(n^2)$. Total time = $O(n^2)$.

Probability of success?

Algorithms M2 IF 18 / 27

Algorithm 3 continued

Let D = AB - C. If $D \neq 0$ then what is the probability that Dd = 0?

- Note: if Dd = 0 the algorithm is wrong! We want this probability to be low.
- Suppose that $D \neq 0$, so D contains a non-zero element. Without loss of generality $D[1,1] \neq 0$.
- If Dd = 0 then

$$D[1,1]d[1] + \sum_{j=2}^{n} D[1,j]d[j] = 0 \Rightarrow$$

$$d[1] = -\frac{\sum_{j=2}^{n} D[1,j]d[j]}{D[1,1]}$$

- Note: we have used that $D[1,1] \neq 0$
- Prob that d[1] takes the rhs value is at most 1/2.

Algorithms M2 IF 19 / 27

Summary

Important lessons to remember.

- Randomized algorithms are great for finding hay in a haystack.
- If we want to find a needle in a haystack (here: one out of n^2 elements) we need to do some work to "spread it around" so that it's easy to find.
- Probability of success is $\frac{1}{2}$. Can be improved:
 - Repeat the algorithm k times, independently. Because one-sided error, error probability becomes 2^{-k} .
 - Important here: randomness is over our own bits!
 - Alternative: set d a random vector over $\{0, \ldots, k\}$. (Problem-specific solution).

Testing Polynomial Identities

Problem:

- Input: Two polynomials on one variable x
- Operations: Normal arithmetic
- Output: Are the two polynomials equal for all x?

Examples:

$$(x+1)(x+2) \stackrel{?}{=} x^2 + 2x + 1$$

Testing Polynomial Identities

Problem:

- Input: Two polynomials on one variable x
- Operations: Normal arithmetic
- Output: Are the two polynomials equal for all x?

Examples:

$$(x+1)(x+2) \stackrel{?}{=} x^2 + 2x + 1$$
$$(x+1)(x+2)(x-1)(x-2) \stackrel{?}{=} (x^2-1)(x^2-4)$$

Testing Polynomial Identities

Problem:

- Input: Two polynomials on one variable x
- Operations: Normal arithmetic
- Output: Are the two polynomials equal for all x?

Examples:

$$(x+1)(x+2) \stackrel{?}{=} x^2 + 2x + 1$$

$$(x+1)(x+2)(x-1)(x-2) \stackrel{?}{=} (x^2-1)(x^2-4)$$

$$(x^3+9x^2+23x+15)(x^3+12x^2+44x+48) \stackrel{?}{=}$$

$$(x^2+3x+2)(x^2+7x+1)(x^2+11x+30)$$

Every polynomial has a canonical form as a sum of monomials

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

Could try to calculate canonical forms for both polynomials, compare.

Every polynomial has a canonical form as a sum of monomials

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

- Could try to calculate canonical forms for both polynomials, compare.
- Problem: this form may be exponentially longer than the original input!!

$$\left(\left((x+1)^2+1\right)^2+1\right)^2+1\dots$$

- Degree of this polynomial is 2^n
- However, we can use the fact that evaluating a polynomial on a given value of x is easy.

Recall MM verification algorithm:

 We prove that two objects are different by showing that they interact in different ways with a random object.

Recall MM verification algorithm:

- We prove that two objects are different by showing that they interact in different ways with a random object.
- Given $P_1(x), P_2(x)$, select a random value x_0 .
- If $P_1(x_0) \neq P_2(x_0)$, reject.
- Otherwise, accept as "probably equal".

Recall MM verification algorithm:

- We prove that two objects are different by showing that they interact in different ways with a random object.
- Given $P_1(x), P_2(x)$, select a random value x_0 .
- If $P_1(x_0) \neq P_2(x_0)$, reject.
- Otherwise, accept as "probably equal".

Problem: even if $P_1(x) \neq P_2(x)$, they could still agree on x_0 !

• If $P_1(x) \neq P_2(x)$, in how many values could P_1, P_2 agree?

Recall MM verification algorithm:

- We prove that two objects are different by showing that they interact in different ways with a random object.
- Given $P_1(x), P_2(x)$, select a random value x_0 .
- If $P_1(x_0) \neq P_2(x_0)$, reject.
- Otherwise, accept as "probably equal".

Problem: even if $P_1(x) \neq P_2(x)$, they could still agree on x_0 !

- If $P_1(x) \neq P_2(x)$, in how many values could P_1, P_2 agree?
 - Let $Q(x) = P_1(x) P_2(x)$. The degree of Q is at most the degree of P_1, P_2 , say n.

• $\Rightarrow Q$ has at most n roots.

- Calculate the degrees of the two polynomials n.
- Pick a random number x_0 in $\{0, \ldots, 2n\}$.
- Check if $P_1(x_0) = P_2(x_0)$.
 - If no, reject.
 - If yes, say "probably equal"

Analysis:

- Probability of success at least 1/2.
- Can be increased by repeating the algorithm.
- Derandomizing this algorithm is a major open research problem.

Min-Cut

Problem:

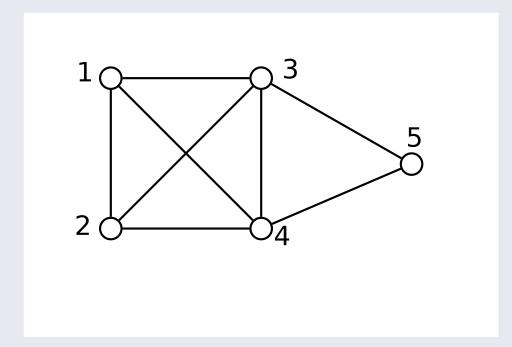
- Input: Graph G = (V, E)
- Output: A minimum cut of G
- A cut is a set of edges whose removal creates at least two connected components.
- Problem solvable in polynomial time using max flow techniques.
- Goal: simple polynomial-time (randomized) algorithm.
- Note: linear-time probably very hard to do!

Algorithm for Min-Cut on multi-graphs (allow parallel edges).

- 1. If n=2 output the trivial cut.
- 2. Otherwise, pick a random edge $(u, v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.

Algorithm for Min-Cut on multi-graphs (allow parallel edges).

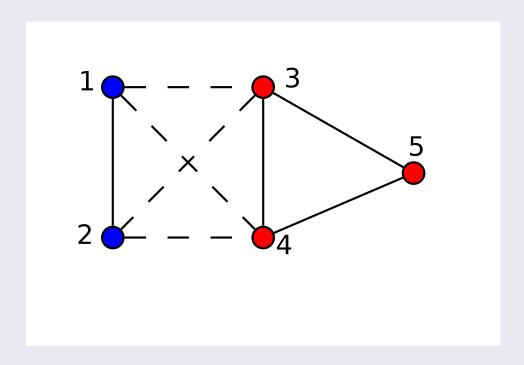
- 1. If n=2 output the trivial cut.
- 2. Otherwise, pick a random edge $(u, v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.



A possible input

Algorithm for Min-Cut on multi-graphs (allow parallel edges).

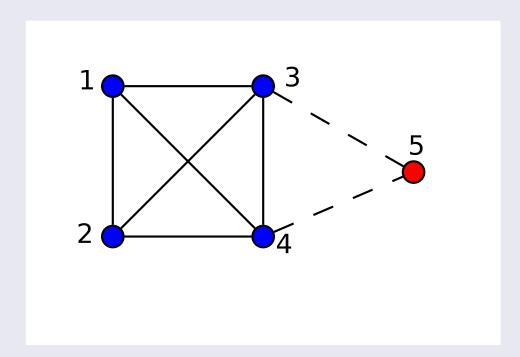
- 1. If n = 2 output the trivial cut.
- 2. Otherwise, pick a random edge $(u, v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.



A bad solution

Algorithm for Min-Cut on multi-graphs (allow parallel edges).

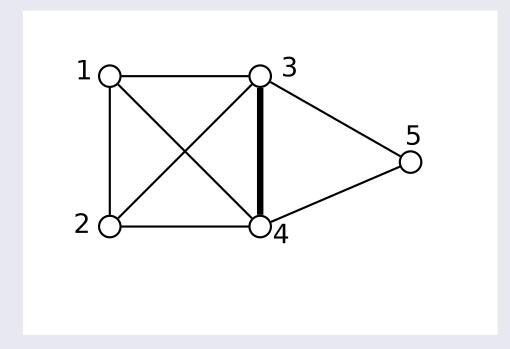
- 1. If n=2 output the trivial cut.
- 2. Otherwise, pick a random edge $(u, v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.



A good solution

Algorithm for Min-Cut on multi-graphs (allow parallel edges).

- 1. If n = 2 output the trivial cut.
- 2. Otherwise, pick a random edge $(u, v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.



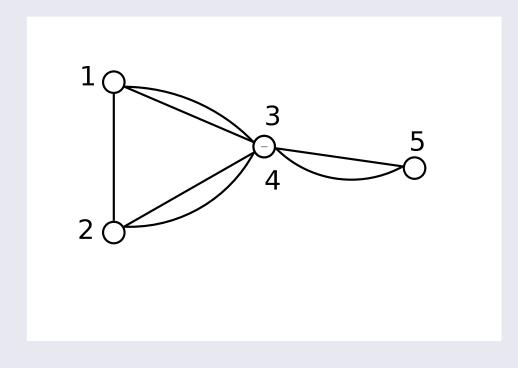
A "good" run of the algorithm:

We never contract an edge of the min cut.

Solution size = 2

Algorithm for Min-Cut on multi-graphs (allow parallel edges).

- 1. If n = 2 output the trivial cut.
- 2. Otherwise, pick a random edge $(u, v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.



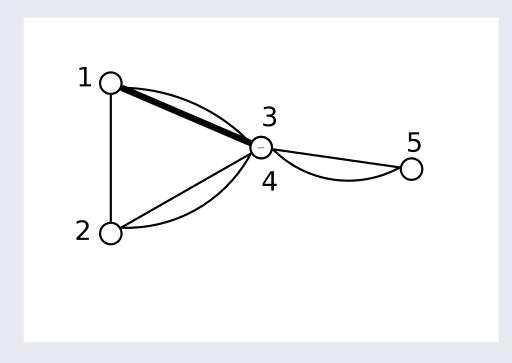
A "good" run of the algorithm:

We never contract an edge of the min cut.

Solution size = 2

Algorithm for Min-Cut on multi-graphs (allow parallel edges).

- 1. If n=2 output the trivial cut.
- 2. Otherwise, pick a random edge $(u, v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.



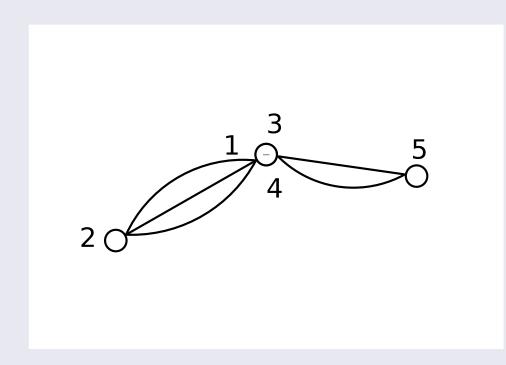
A "good" run of the algorithm:

We never contract an edge of the min cut.

Solution size = 2

Algorithm for Min-Cut on multi-graphs (allow parallel edges).

- 1. If n = 2 output the trivial cut.
- 2. Otherwise, pick a random edge $(u, v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.



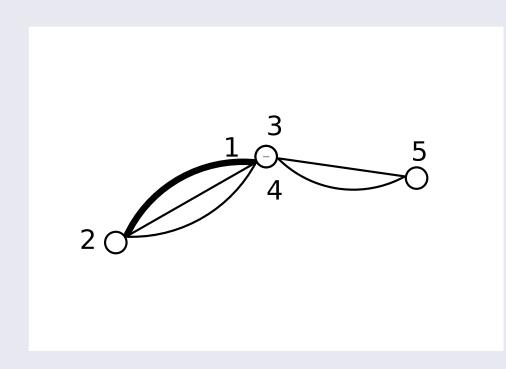
A "good" run of the algorithm:

We never contract an edge of the min cut.

Solution size = 2

Algorithm for Min-Cut on multi-graphs (allow parallel edges).

- 1. If n = 2 output the trivial cut.
- 2. Otherwise, pick a random edge $(u, v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.



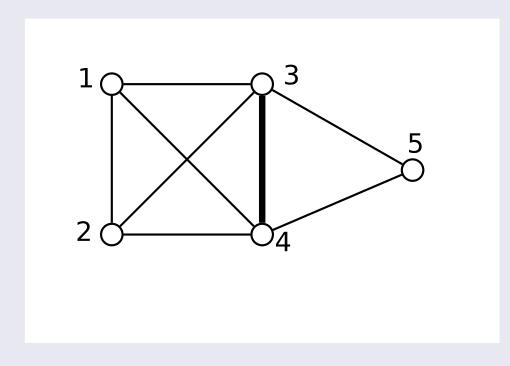
A "good" run of the algorithm:

We never contract an edge of the min cut.

Solution size = 2

Algorithm for Min-Cut on multi-graphs (allow parallel edges).

- 1. If n = 2 output the trivial cut.
- 2. Otherwise, pick a random edge $(u, v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.



A "good" run of the algorithm:

We never contract an edge of the min cut.

Solution size = 2

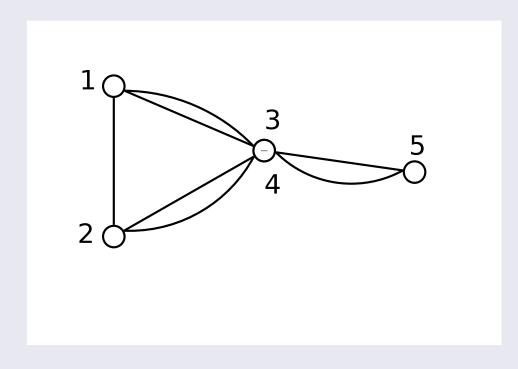
A "bad" run of the algorithm:

We mistakenly contract an edge of the min cut.

Solution size ≥ 3

Algorithm for Min-Cut on multi-graphs (allow parallel edges).

- 1. If n = 2 output the trivial cut.
- 2. Otherwise, pick a random edge $(u, v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.



A "good" run of the algorithm:

We never contract an edge of the min cut.

Solution size = 2

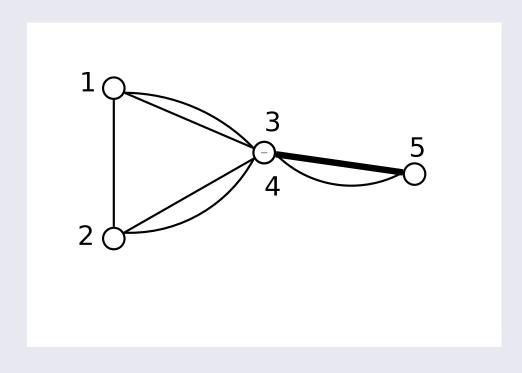
A "bad" run of the algorithm:

We mistakenly contract an edge of the min cut.

Solution size ≥ 3

Algorithm for Min-Cut on multi-graphs (allow parallel edges).

- 1. If n = 2 output the trivial cut.
- 2. Otherwise, pick a random edge $(u, v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.



A "good" run of the algorithm:

We never contract an edge of the min cut.

Solution size = 2

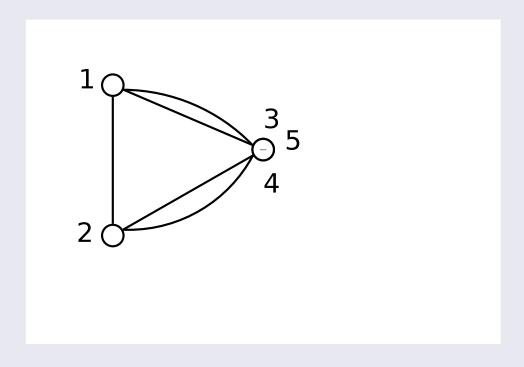
A "bad" run of the algorithm:

We mistakenly contract an edge of the min cut.

Solution size ≥ 3

Algorithm for Min-Cut on multi-graphs (allow parallel edges).

- 1. If n = 2 output the trivial cut.
- 2. Otherwise, pick a random edge $(u, v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.



A "good" run of the algorithm:

We never contract an edge of the min cut.

Solution size = 2

A "bad" run of the algorithm:

We mistakenly contract an edge of the min cut.

Solution size ≥ 3

Theorem: Algorithm of previous slide finds min cut with probability at least $\frac{1}{n^2}$.

- Suppose min cut size is k. Consider a specific min cut C.
- \Rightarrow min degree is $\geq k$. Therefore, $|E| \geq kn/2$.
- Probability that algorithm avoids cut at first iteration:

$$\geq 1 - \frac{k}{kn/2} = 1 - \frac{2}{n} = \frac{n-2}{n}$$
.

Theorem: Algorithm of previous slide finds min cut with probability at least $\frac{1}{n^2}$.

- Suppose min cut size is k. Consider a specific min cut C.
- \Rightarrow min degree is $\geq k$. Therefore, $|E| \geq kn/2$.
- Probability that algorithm avoids cut at first iteration:

$$\geq 1 - \frac{k}{kn/2} = 1 - \frac{2}{n} = \frac{n-2}{n}$$
.

• Probability that algorithm avoids cut at first iteration, assuming first iteration OK: $\geq 1 - \frac{k}{k(n-1)/2} = 1 - \frac{2}{n} = \frac{n-3}{n-1}$.

Theorem: Algorithm of previous slide finds min cut with probability at least $\frac{1}{n^2}$.

- Suppose min cut size is k. Consider a specific min cut C.
- \Rightarrow min degree is $\geq k$. Therefore, $|E| \geq kn/2$.
- Probability that algorithm avoids cut at first iteration:

$$\geq 1 - \frac{k}{kn/2} = 1 - \frac{2}{n} = \frac{n-2}{n}$$
.

- Probability that algorithm avoids cut at first iteration, assuming first iteration OK: $\geq 1 \frac{k}{k(n-1)/2} = 1 \frac{2}{n} = \frac{n-3}{n-1}$.
- Probability that all iterations good:

$$\frac{n-2}{n} \frac{n-3}{n-1} \frac{n-4}{n-2} \dots \frac{2}{4} \frac{1}{3} = \frac{2}{n(n-1)}$$

Theorem: Algorithm of previous slide finds min cut with probability at least $\frac{1}{n^2}$.

- Suppose min cut size is k. Consider a specific min cut C.
- \Rightarrow min degree is $\geq k$. Therefore, $|E| \geq kn/2$.
- Probability that algorithm avoids cut at first iteration:

$$\geq 1 - \frac{k}{kn/2} = 1 - \frac{2}{n} = \frac{n-2}{n}$$
.

- Probability that algorithm avoids cut at first iteration, assuming first iteration OK: $\geq 1 \frac{k}{k(n-1)/2} = 1 \frac{2}{n} = \frac{n-3}{n-1}$.
- Probability that all iterations good:

$$\frac{n-2}{n} \frac{n-3}{n-1} \frac{n-4}{n-2} \dots \frac{2}{4} \frac{1}{3} = \frac{2}{n(n-1)}$$

- Can repeat many (n^2) times to get better $(\Omega(1))$ probability.
- Better idea to run the algorithm until graph small, then use some other algorithm (notice probability of success keeps falling).