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Review of Probability Theory



Definition of Probability

To define probabilities we need:

e A “universe” of events (2
e A collection of events £ such that for £ € £ we have £ C
e A probability function Pr : £ — [0, 1]
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Definition of Probability

To define probabilities we need:

e A “universe” of events (2
e A collection of events £ such that for £ € £ we have £ C
e A probability function Pr : £ — [0, 1]

Example:

e 0={1,2,3,4,56}.
e The following could be events in &£
o FE3={3}
e Flow = {1,2}
° Eodd — {1,3, 5}
e The natural (uniform) probability function would set
e Pr[E3=1/6
o PT:EIOW] =1/3
o Pr[E g4l =1/2
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Definition of Probability

To define probabilities we need:

e A “universe” of events (2
e A collection of events £ such that for £ € £ we have £ C
e A probability function Pr : £ — [0, 1]

Example (infinite space):

e (O =10,1].

e The following could be events in &£
e F3=1{1/3}
® EIOW [0 1/2]
¢ Eoqge =[0,1/4]U[3/4,1]

e The natural (uniform) probability function would set

e Pr|Es] =0 (why?)
o PrlEi ] =1/2

o Pr(Egqee] = 1/2
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Definition of Probability

To define probabilities we need:

e A “universe” of events (2
e A collection of events £ such that for £ € £ we have £ C
e A probability function Pr : £ — [0, 1]

A valid probability measure satisfies:

e PriQ=1
o IfEy,E,y,...,E,€&andforalli+#j E;NE; =0 (mutually disjoint

events), then
U Ej ZPr

These are called the Kolmogorov probability axioms.

e When ) is finite the distribution which sets for each 7 € 2
Pri{i}| = |Q| IS called the uniform distribution.

Algorithms M2 |F 3/20



Probability Basics

Remember: probabilities are sets deep down.

e Prjd]=0
o If E4 C E5 then PT[El] < PT[EQ]
e PrlAUB|= Pr|lAl+ Pr|B]| — Pr{An B

e Proof?

The last principle can be generalized to give the so-called
Inclusion-exclusion formula:

Pr[A; UAs U. ZPT Z Pr[A;, NA;,] +
11F12=1

Z Pr[A;, N A;, N A;,] —
11712 #13=1
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A very basic property that follows for any collection of events:

PrlUi,A;] <) Pr[A]]
1=1

e Thisis called the union bound.
e We often use this bound when A, are “bad” events, and we want to
show that the probability of one of them happening is small.

e Main interest: it might be hard to calculate exactly Pr|UA;|. This
allows us to upper bound it without worrying about how each event
affects the others.

e The bound becomes an equality only when events are disjoint
(mutually exclusive).
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Independence

e Informally: a set of events is independent, if knowing that one
happened gives us no additional information about the others.

e Formally: A, B independent if Pr{A N B|] = Pr|A]- Pr|B].

e Formally: A;,..., A, independent if for any S C {1,...n} we have
P’I“[miesAi] — HZQSP’F[Az]
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Independence

Informally: a set of events is independent, if knowing that one
happened gives us no additional information about the others.
Formally: A, B independent if Pr{A N B] = Pr|A| - Pr|B].
Formally: Ay,..., A, independent if forany S C {1,...n} we have
P’I“[miesAi] — HZQSP’F[Az]

e What is the difference between independence for two and for more
than two events?

Pair-wise independence: A,,..., A, are pair-wise independent iff for
any i # j€{1,...,n} we have Pr[A; N A;]| = Pr[A;] - Pr|A;].
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Independence

Informally: a set of events is independent, if knowing that one
happened gives us no additional information about the others.
Formally: A, B independent if Pr{A N B] = Pr|A| - Pr|B].
Formally: Ay,..., A, independent if forany S C {1,...n} we have
P’I“[miesAi] — HZQSP’F[Az]

e What is the difference between independence for two and for more
than two events?

Pair-wise independence: A,,..., A, are pair-wise independent iff for
any i # j€{1,...,n} we have Pr[A; N A;]| = Pr[A;] - Pr|A;].

Example: roll a die

A: result is odd
B: result is divisible by three
C:resultis >4
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Independence

e Informally: a set of events is independent, if knowing that one
happened gives us no additional information about the others.

e Formally: A, B independent if Pr{A N B|] = Pr|A]- Pr|B].

e Formally: A;,..., A, independent if for any S C {1,...n} we have
P’I“[miesAi] — HZQSP’F[Az]

e What is the difference between independence for two and for more
than two events?

e Pair-wise independence: A, ..., A, are pair-wise independent iff for
any i # j€{1,...,n} we have Pr[A; N A;]| = Pr[A;] - Pr|A;].

Example: roll a die

A: result is odd

B: result is divisible by three

C:resultis > 4

A, B are independent; A, C' are not; B, C' are independent.
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Conditional Probabilities

e To define independence we asked “Does A tell us anything about B?”
e This corresponds to the notion of conditional probabilities:

e Definition:
Pr|AnN B

Pr|B]

Pr|A | B] =

e In words: the probability of A, given B.
e Note: only makes sense if Pr|B] # 0.
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Conditional Probabilities

e To define independence we asked “Does A tell us anything about B?”
e This corresponds to the notion of conditional probabilities:

e Definition:
Pr|AnN B

Pr|B]

Pr|A | B] =

e In words: the probability of A, given B.
e Note: only makes sense if Pr|B] # 0.
e So,if A, B independent, then Pr[A | B] = Pr[A].

e Makes sense!
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Conditional Probabilities

e To define independence we asked “Does A tell us anything about B?”
e This corresponds to the notion of conditional probabilities:

e Definition:
Pr|AnN B

Pr|A| B] = PriB]

e In words: the probability of A, given B.
e Note: only makes sense if Pr|B] # 0.
e So,if A, B independent, then Pr[A | B] = Pr[A].

e Makes sense!
e Important not to confuse Pr|A | B] with Pr|B | A].

e Prl|lsneeze | I have a cold] = Pr[l have a cold | I sneeze]

o Pr[A| B|Pr[B] = Pr[B | A|Pr[A] = Pr[AN B].
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Useful Tools From Probability Theory



Expectation

e Random variable: a function X : 2 — R.
e Informally: a variable whose value depends on the outcome of a
random event.
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Expectation

e Random variable: a function X : 2 — R.
e Informally: a variable whose value depends on the outcome of a
random event.

Example: we roll a die
e |f X isthe number shown, X is a random variable that takes values in
{1,...,6}.
PriX=1]=3%
If we roll three dice, let Y be (a r.v. equal to) their sum
Y takes valuesin {3,...,18}
PrlY = 3] = & (why?)
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Expectation

e Random variable: a function X : 2 — R.
e Informally: a variable whose value depends on the outcome of a
random event.

Example: we roll a die
e |f X isthe number shown, X is a random variable that takes values in
{1,...,6}.
PriX=1]=3%
If we roll three dice, let Y be (a r.v. equal to) their sum
Y takes valuesin {3,...,18}
PrlY = 3] = & (why?)
Expectation (discrete variables)
e Foravariable X : Q) — Z we define

EX]=) i Pr[X =i]
1EL

e Informally F[X] is the “average” value of X.
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Expectation — Geometric distribution

e We have a coin which comes up heads with probability p. We start
flipping it until it comes up heads.

e Let X be the number of times we flipped it.

e X follows a geometric distribution.

e Whatis F[X]?
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Expectation — Geometric distribution

e We have a coin which comes up heads with probability p. We start
flipping it until it comes up heads.

e Let X be the number of times we flipped it.

e X follows a geometric distribution.

e Whatis F[X]?

e Makes sense!
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Linearity of Expectations

Why do we like expectations so much?

e Relatively easy to calculate
e Gives a good estimate for value of r.v. with high probability (using
Markov, Chebyshev, Chernoff,...)
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Linearity of Expectations

Why do we like expectations so much?

e Relatively easy to calculate

e Gives a good estimate for value of r.v. with high probability (using
Markov, Chebyshev, Chernoff,...)

e Why are they easy to calculate?

Linearity of expectations
e Forrandom variables X;,...,X,,, constants a1, ...,a, € R we have
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Linearity of Expectations

Why do we like expectations so much?

e Relatively easy to calculate

e Gives a good estimate for value of r.v. with high probability (using
Markov, Chebyshev, Chernoff,...)

e Why are they easy to calculate?

Linearity of expectations
e Forrandom variables X;,...,X,,, constants a1, ...,a, € R we have

e Important We don't care if the X;’s are independent or not!
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An application: Coupon Collector

e Experiment: we throw a die until we have seen all possible numbers

as outcomes.
e Let X be the number of throws until we stop.
e F[X] =7 (if the die has k sides)
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An application: Coupon Collector

e Experiment: we throw a die until we have seen all possible numbers
as outcomes.

e Let X be the number of throws until we stop.

e F[X] =7 (if the die has k sides)

e Define X;, throws needed to see the ¢-th distinct number, after we
have already seen ¢ — 1 distinct numbers.

o X;=1.
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An application: Coupon Collector

e Experiment: we throw a die until we have seen all possible numbers
as outcomes.

e Let X be the number of throws until we stop.

e F[X] =7 (if the die has k sides)

Define X;, throws needed to see the i-th distinct number, after we

have already seen ¢ — 1 distinct numbers.

® X1 = 1.

e X, follows a geom. dist. with probability p, = 2=
e X, follows a geom. dist. with probability p; = 2=t
e X=>3,,X
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An application: Coupon Collector

e Experiment: we throw a die until we have seen all possible numbers
as outcomes.

e Let X be the number of throws until we stop.

e F[X] =7 (if the die has k sides)

Define X;, throws needed to see the i-th distinct number, after we

have already seen ¢ — 1 distinct numbers.

e X, follows a geom. dist. with probability p, = n;1
e X, follows a geom. dist. with probability p; = 2=t
e X=>,,X
EX] = ) E[X)]=
1=1
n 1 n 1
- ~ ]
;pi n;n—vﬂrl A
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When average is not enough

e (Calculating E|X] is usually only a first step.
e We want to show that X is “good” (close to E|.X]) with high probability.
e For this, we need to use various helpful inequalities.
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When average is not enough

Calculating E|X]| is usually only a first step.

We want to show that X is “good” (close to £|X]|) with high probability.
For this, we need to use various helpful inequalities.

Markov’s inequality

Assumes that X is always > 0 (Pr[X < 0] = 0)

Pr(X > aE[X]] < é
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When average is not enough

e Calculating E|X] is usually only a first step.
e We want to show that X is “good” (close to E|.X]) with high probability.
e For this, we need to use various helpful inequalities.
e Markov’s inequality
e Assumes that X is always > 0 (Pr[X < 0] = 0)
PriX > aE[X]] < -
87
e Proof:
EX] = ) iPrlX=4d>
1=0
Y iPr[X =i > aE[X]Pr[X > aE[X]]
i=aFk[X]
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When average is not enough

e Calculating E|X] is usually only a first step.
e We want to show that X is “good” (close to E|.X]) with high probability.
e For this, we need to use various helpful inequalities.
e Markov’s inequality
e Assumes that X is always > 0 (Pr[X < 0] = 0)
PriX > aE[X]] < -
87
e Proof:
EX] = ) iPrlX=4d>
1=0
Y iPr[X =i > aE[X]Pr[X > aE[X]]
i=aFk[X]

e Makes sense!
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Markov collects coupons

Connecting the two previous slides:

e If X isthe number of repetitions until we see all numbers,
EX]=nlnn
e Foralla>0, PriX >aF[X]] <1

e = Pr[X >100nlnn] < w5

e With high probability X = O(nlogn)
e Note: we use the factthat X > 0
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Using Variance



Variance

e A basic way to bound the distance of X from E[X] is to calculate
Var|X]
e Definition:

Var[X] = E[(X - E[X])"] = E[X"] - (E[X])*

e Reminder: we often write o = \/Var[X] to denote the standard
deviation of X.

Algorithms M2 |F 16 /20



Variance

e A basic way to bound the distance of X from E[X] is to calculate
Var|X]
e Definition:

Var[X] = E[(X - E[X])"] = E[X"] - (E[X])*

e Reminder: we often write o = \/Var[X] to denote the standard
deviation of X.

e Reminder: variance is not as nice as expectation.

e Example: ingeneral Var[X + Y] # Var[X] + VarlY]

e However, Var|X +Y] =Var[X]+ VarlY] if X,Y independent.
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Chebyshev’s inequality:

X
Pr(|X — E[X]| > o] < V‘”Q[ |
(87
e In other words, probability that we fall more than ao(X) away from
E[X]is at most -

e Thisiswhy o(X) = +/Var[X]is called “standard” deviation.
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Chebyshev’s inequality:

Pr|X — E[X]| > a] < V‘ZQ[X]

e In other words, probability that we fall more than ao(X) away from
E[X]is at most -

e Thisiswhy o(X) = +/Var[X]is called “standard” deviation.
e Proof:
Pr[|X —E[X]|>a] = Pr[(X-E[X])?*>a%]<
E[(X — E[X])2] Var| X]
< _
— o2 o2
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Application: Coupon collector again

e Recall Coupon Collector problem: X is the number of repetitions until
we see all outcomes

e EX|=nlnn

e By Markov, Pr|X > 2nlnn| <

DO =
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Application: Coupon collector again

e Recall Coupon Collector problem: X is the number of repetitions until
we see all outcomes

E|X]=nlnn

By Markov, Pr(X > 2nlnn] < 3

Recall that X; is repetitions in phase ¢

X =) X;, and the X;’s are independent

Var(X|=> Var|X;]

Variance of a geometrically distributed random variable?

o Var[Y]= £, for Y geom. with parameter p
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Application: Coupon collector again

e Recall Coupon Collector problem: X is the number of repetitions until
we see all outcomes

E|X]=nlnn

By Markov, Pr(X > 2nlnn] < 3

Recall that X; is repetitions in phase ¢

X =) X;, and the X;’s are independent

Var(X|=> Var|X;]

Variance of a geometrically distributed random variable?

o Var[Y]= £, for Y geom. with parameter p

Var|X]

n n 2
n

Sovarx) <Y (=)
1=1 1=1

"1 m2n?
2
— <
" ;z‘?— 6
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Application: Coupon collector again

mn?

6

Var|X] <

We then use Chebyshev’s inequality which gives

Pr(X >2nlnn] < Pr|{|X —nlnn|>nlnn| <
22
< n°mw* /6 _ o 12
(nlnn)? log”n

Note: Markov’s inequality only gives that this probability is at most 1/2.
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Important lessons to remember.

e Inclusion-Exclusion: Pr|AU B| = Pr|A] + Pr|B] — Pr[AN B]
Union bound: Pr{AU B| < Pr|A| + Pr[B]|

Linearity of Expectation: E[X; + Xs| = E[X1] + E[X5]
Markov’s inequality: Pr[X > a] < %

Variance: Var[X] = E[X?] — E[X]?

Variance only linear for independent variables!

Chebyshev’s inequality: Pr[|X — E[X]| > o] < Y¥X]
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