Algorithms M2 IF Even More Randomized Algorithms

Michael Lampis

Fall 2019

The power of sampling

Finding the Median

Consider the following basic problem:

- We are given an array A of n integers.
- We are asked to calculate the Median of A.
- Reminder: the median is the element of the array that is larger than at most $\frac{n}{2}$ elements, and smaller than at most $\frac{n}{2}$ elements.

Easy algorithms?

Finding the Median

Consider the following basic problem:

- We are given an array A of n integers.
- We are asked to calculate the **Median** of A.
- Reminder: the median is the element of the array that is larger than at most $\frac{n}{2}$ elements, and smaller than at most $\frac{n}{2}$ elements.

Easy algorithms?

• For each $i \in \{1, ..., n\}$ check if A[i] is a median element.

• Complexity: $O(n^2)$. :-(

Finding the Median

Consider the following basic problem:

- We are given an array A of n integers.
- We are asked to calculate the Median of A.
- Reminder: the median is the element of the array that is larger than at most $\frac{n}{2}$ elements, and smaller than at most $\frac{n}{2}$ elements.

Easy algorithms?

- For each $i \in \{1, ..., n\}$ check if A[i] is a median element.
 - Complexity: $O(n^2)$. :-(
- Sort the array, return A[n/2]
 - Complexity: $O(n \log n)$.

Anything better than $O(n \log n)$?

A sampling-based algorithm for Median

- Select a random subset R of A with size $n^{3/4}$.
 - Repeat $n^{3/4}$ times: select a random element of A.
 - How to produce such an element? Flip $\log n$ fair coins, result gives index in binary.
 - Note: same element could be selected twice!
- Sort R
 - Takes time $O(n^{3/4} \log n) = o(n)$.
- Find elements d, u in R
 - d is \sqrt{n} positions before the middle of R
 - u is \sqrt{n} positions after the middle of R

A sampling-based algorithm for Median

- Select a random subset R of A with size $n^{3/4}$.
 - Repeat $n^{3/4}$ times: select a random element of A.
 - How to produce such an element? Flip $\log n$ fair coins, result gives index in binary.
 - Note: same element could be selected twice!
- Sort R
 - Takes time $O(n^{3/4} \log n) = o(n)$.
- Find elements d, u in R
 - d is \sqrt{n} positions before the middle of R
 - u is \sqrt{n} positions after the middle of R

Main intuition of the algorithm:

• We hope that if we sort A, the true median would be between d and u.

Sampling for the median continued

- Reminder: A has size n, R is a random subset of size $n^{3/4}$, $d, u \in R$
- Let
 - A_1 be the elements of A which are < d
 - A_2 be the elements of A which are between d and u
 - A_3 be the elements of A which are > u
- These sets can be found in O(n) time.
- We FAIL if
 - $|A_1| > n/2$ or $|A_3| > n/2$
 - $|A_2| > 4n^{3/4}$

Sampling for the median continued

- Reminder: A has size n, R is a random subset of size $n^{3/4}$, $d, u \in R$
- Let
 - A_1 be the elements of A which are < d
 - A_2 be the elements of A which are between d and u
 - A_3 be the elements of A which are > u
- These sets can be found in O(n) time.
- We FAIL if
 - $|A_1| > n/2$ or $|A_3| > n/2$
 - $|A_2| > 4n^{3/4}$
- In first case, A_2 does **not** contain the median
- In the second, A_2 is too large

Median continued

- Reminder: if we haven't failed so far A_2 has size at most $4n^{3/4}$ AND contains the median
- Also, we know $|A_1|$, which is < n/2.
- To finish things off, sort A_2
 - Time $O(n^{3/4} \log n)$, which is o(n).
- Let i be such that $i + |A_1| = n/2$.
- Return $A_2[i]$.

Median continued

- Reminder: if we haven't failed so far A_2 has size at most $4n^{3/4}$ AND contains the median
- Also, we know $|A_1|$, which is < n/2.
- To finish things off, sort A_2
 - Time $O(n^{3/4} \log n)$, which is o(n).
- Let i be such that $i + |A_1| = n/2$.
- Return $A_2[i]$.
- If we've come this far
 - The algorithm ran in time O(n).
 - We output the correct median.
 - Need to calculate probability of reaching this point.

The algorithm fails if any of the following happen:

- A_1 is too big (> n/2)
- A_3 is too big (> n/2)
- A_2 is too big $(>4n^{3/4})$

The algorithm fails if any of the following happen:

- A_1 is too big (> n/2)
- A_3 is too big (> n/2)
- A_2 is too big $(>4n^{3/4})$
- The first two are symmetric.
- A_1 too big $\leftrightarrow d > m$, where m is the median.

The algorithm fails if any of the following happen:

- A_1 is too big (> n/2)
- A_3 is too big (> n/2)
- A_2 is too big $(>4n^{3/4})$
- The first two are symmetric.
- A_1 too big $\leftrightarrow d > m$, where m is the median.
- $d>m \leftrightarrow$ there exist $rac{|R|}{2}+\sqrt{n}$ elements of R which are >m

The algorithm fails if any of the following happen:

- A_1 is too big (> n/2)
- A_3 is too big (> n/2)
- A_2 is too big $(>4n^{3/4})$
- The first two are symmetric.
- A_1 too big $\leftrightarrow d > m$, where m is the median.
- $d>m \leftrightarrow$ there exist $rac{|R|}{2}+\sqrt{n}$ elements of R which are >m
- Each element of R is > m with probability at most 1/2
- If S_1 is number of elements of R which are >m then $E[S_1] \leq \frac{|R|}{2}$.

The algorithm fails if any of the following happen:

- A_1 is too big (> n/2)
- A_3 is too big (> n/2)
- A_2 is too big $(>4n^{3/4})$
- The first two are symmetric.
- A_1 too big $\leftrightarrow d > m$, where m is the median.
- $d>m \leftrightarrow$ there exist $rac{|R|}{2}+\sqrt{n}$ elements of R which are >m
- Each element of R is > m with probability at most 1/2
- If S_1 is number of elements of R which are >m then $E[S_1] \leq \frac{|R|}{2}$.
- What is $Pr[S_1 > \frac{|R|}{2} + \sqrt{n}]$?
 - $Pr[S_1 > \frac{|R|}{2} + \sqrt{n}] \le Pr[|S_1 E[S_1]| > \sqrt{n}]$
 - Should use Chebyshev!

WE are looking at the following failure possibility:

- A_1 is too big (> n/2)
- We argued it suffices to bound $Pr[|S_1 E[S_1]| > \sqrt{n}]$
- S_1 is number of elements of R which are > m

WE are looking at the following failure possibility:

- A_1 is too big (> n/2)
- We argued it suffices to bound $Pr[|S_1 E[S_1]| > \sqrt{n}]$
- S_1 is number of elements of R which are > m
- Let X_i be the event that the *i*-th sample (element of R) is > m.
- $S_1 = \sum_{i=1}^{n^{3/4}} X_i$ and the X_i are independent.
- $Var[S_1] = n^{3/4} Var[X_i] \le \frac{n^{3/4}}{4}$.

WE are looking at the following failure possibility:

- A_1 is too big (> n/2)
- We argued it suffices to bound $Pr[|S_1 E[S_1]| > \sqrt{n}]$
- S_1 is number of elements of R which are > m
- Let X_i be the event that the *i*-th sample (element of R) is > m.
- $S_1 = \sum_{i=1}^{n^{3/4}} X_i$ and the X_i are independent.
- $Var[S_1] = n^{3/4} Var[X_i] \le \frac{n^{3/4}}{4}$.
- Using Chebyshev's inequality we get

$$Pr[|S_1 - E[S_1]| > \sqrt{n}] < \frac{1}{4n^{1/4}} = o(1)$$

Second type of failure is handled in the same way

- A_2 has size $> 4n^{3/4}$.
- Reminder: A_2 has the elements of A which are between d and u.

- A_2 has size $> 4n^{3/4}$.
- Reminder: A_2 has the elements of A which are between d and u.
- Either A_2 has $> 2n^{3/4}$ elements which are > m
- or it has $> 2n^{3/4}$ elements which are < m
- Cases are symmetric, so we handle the first.

- A_2 has size $> 4n^{3/4}$.
- Reminder: A_2 has the elements of A which are between d and u.
- Either A_2 has $> 2n^{3/4}$ elements which are > m
- or it has $> 2n^{3/4}$ elements which are < m
- Cases are symmetric, so we handle the first.
- If A_2 has $> 2n^{3/4}$ elements > m,
 - then u in the sorted array A is in position at least $n/2 + 2n^{3/4}$
 - But R has $\frac{|R|}{2} \sqrt{n}$ elements bigger than u
 - So R has $\frac{|R|}{2} \sqrt{n}$ among the last $n/2 2n^{3/4}$ elements of A

- A_2 has size $> 4n^{3/4}$.
- Reminder: A_2 has the elements of A which are between d and u.
- Either A_2 has $> 2n^{3/4}$ elements which are > m
- or it has $> 2n^{3/4}$ elements which are < m
- Cases are symmetric, so we handle the first.
- If A_2 has $> 2n^{3/4}$ elements > m,
 - then u in the sorted array A is in position at least $n/2 + 2n^{3/4}$
 - But R has $\frac{|R|}{2} \sqrt{n}$ elements bigger than u
 - So R has $\frac{|R|}{2} \sqrt{n}$ among the last $n/2 2n^{3/4}$ elements of A

So what?

- A_2 has size $> 4n^{3/4}$.
- Reminder: A_2 has the elements of A which are between d and u.
- Either A_2 has $> 2n^{3/4}$ elements which are > m
- or it has $> 2n^{3/4}$ elements which are < m
- Cases are symmetric, so we handle the first.
- If A_2 has $> 2n^{3/4}$ elements > m,
 - then u in the sorted array A is in position at least $n/2 + 2n^{3/4}$
 - But R has $\frac{|R|}{2} \sqrt{n}$ elements bigger than u
 - So R has $\frac{|R|}{2} \sqrt{n}$ among the last $n/2 2n^{3/4}$ elements of A
 - So what?
- The expected number of elements of R from the $n/2-2n^{3/4}$ largest elements of A is

$$E[Z] = n^{3/4} \left(\frac{1}{2} - \frac{2}{n^{1/4}}\right) = \frac{|R|}{2} - 2\sqrt{n}$$

- Reminder: we consider the case $|A_2| > 4n^{3/4}$
- In particular, A_2 has $> 2n^{3/4}$ elements > m
- If A' is the set of $n/2 2n^{3/4}$ largest elements of A we argued that if Z is the expected number of such elements in R we have
 - $\bullet \quad E[Z] = \frac{|R|}{2} 2\sqrt{n}$

- Reminder: we consider the case $|A_2| > 4n^{3/4}$
- In particular, A_2 has $> 2n^{3/4}$ elements > m
- If A' is the set of $n/2 2n^{3/4}$ largest elements of A we argued that if Z is the expected number of such elements in R we have
 - $\bullet \quad E[Z] = \frac{|R|}{2} 2\sqrt{n}$
- So if we have a problem then $Z E[Z] > \sqrt{n}$.
- Let's show this is unlikely
- Recall $Z = \sum_{i=1}^{n^{3/4}} X_i$, and X_i is 1 with probability $\frac{1}{2} \frac{2}{n^{1/4}}$
- $Var[Z] = n^{3/4} \left(\frac{1}{2} \frac{2}{n^{1/4}}\right) \left(\frac{1}{2} + \frac{2}{n^{1/4}}\right) < n^{3/4}$
- Chebyshev: $Pr[Z E[Z] > \sqrt{n}] < \frac{1}{n^{1/4}} = o(n)$

Putting everything together

- Sampled a **sub-linear** number of elements, still enough to get a good representation of $\cal A$
- Three types of failure. Probability of at least one ≤ sum of their probabilities
 - Union bound!
- Used variance to show that each failure type has o(1) probability.
- Here, all events were independent

Pair-wise independent would have been enough!

Approximate Sampling

Approximate Median

- We saw an O(n) algorithm to find the median.
- Clearly impossible to do better. (Why??)
- Consider an approximate version of the problem:
- A has n elements
 - A_1 is the set of 45% smallest elements
 - A_3 is the set of 45% largest elements
 - A_2 is the rest (10% in the middle)
- Question: Output any item of A_2
- Such an item is "close" to a median
- Problem can be adjusted (decreasing size of A_2)
- Obviously, previous algorithm works.
- Objective to do o(n)
- In fact, possible to do O(1) !!!
 - More precisely, running time depends on acceptable size of A_2 and failure probability.

A simple algorithm for approximate median

- Form a random subset R of size s by sampling A
- Sort R
- Output the median of R

A simple algorithm for approximate median

- Form a random subset R of size s by sampling A
- Sort R
- Output the median of R
- Algorithm runs in $O(s \log s)$ (provided we have random access to A)

Question is success probability (as a function of s)

A simple algorithm for approximate median

- Form a random subset R of size s by sampling A
- Sort R
- Output the median of R
- Algorithm runs in $O(s \log s)$ (provided we have random access to A)
- Question is success probability (as a function of s)
- Let A'_1, A'_2, A'_3 be the elements of R which come from A_1, A_2, A_3 respectively.

$$E[A'_1] = s \frac{|A_1|}{n} = 0.45s$$

 $E[A'_2] = s \frac{|A_2|}{n} = 0.10s$
 $E[A'_3] = s \frac{|A_3|}{n} = 0.45s$

We want to be close to these values.

Algorithms M2 IF

Chebyshev again

- $Var[A_1'] = s \frac{|A_1|}{n} (1 \frac{|A_1|}{n}) \le s/4$
- $Var[A_2'] = s \frac{|A_2|}{n} (1 \frac{|A_2|}{n}) \le s/4$
- $Var[A_3'] = s \frac{|A_3|}{n} (1 \frac{|A_3|}{n}) \le s/4$

Chebyshev again

- $Var[A'_1] = s \frac{|A_1|}{n} (1 \frac{|A_1|}{n}) \le s/4$ $Var[A'_2] = s \frac{|A_2|}{n} (1 \frac{|A_2|}{n}) \le s/4$ $Var[A'_3] = s \frac{|A_3|}{n} (1 \frac{|A_3|}{n}) \le s/4$

$$Pr[|A'_{1} - E[A'_{1}]| > s^{3/4}] < \frac{1}{\sqrt{s}}$$

$$Pr[|A'_{2} - E[A'_{2}]| > s^{3/4}] < \frac{1}{\sqrt{s}}$$

$$Pr[|A'_{3} - E[A'_{3}]| > s^{3/4}] < \frac{1}{\sqrt{s}}$$

Algorithms M2 IF 15 / 15

Chebyshev again

- $Var[A'_1] = s \frac{|A_1|}{n} (1 \frac{|A_1|}{n}) \le s/4$ $Var[A'_2] = s \frac{|A_2|}{n} (1 \frac{|A_2|}{n}) \le s/4$ $Var[A'_3] = s \frac{|A_3|}{n} (1 \frac{|A_3|}{n}) \le s/4$

$$Pr[|A'_{1} - E[A'_{1}]| > s^{3/4}] < \frac{1}{\sqrt{s}}$$

$$Pr[|A'_{2} - E[A'_{2}]| > s^{3/4}] < \frac{1}{\sqrt{s}}$$

$$Pr[|A'_{3} - E[A'_{3}]| > s^{3/4}] < \frac{1}{\sqrt{s}}$$

All we need to do is to increase s to a sufficiently large constant (independent of n!) and we get that the algorithm is correct with high probability.

Algorithms M2 IF 15 / 15