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The power of sampling



Finding the Median
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Consider the following basic problem:

• We are given an array A of n integers.

• We are asked to calculate the Median of A.

• Reminder: the median is the element of the array that is larger than at

most n
2

elements, and smaller than at most n
2

elements.

Easy algorithms?
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Consider the following basic problem:

• We are given an array A of n integers.

• We are asked to calculate the Median of A.

• Reminder: the median is the element of the array that is larger than at

most n
2

elements, and smaller than at most n
2

elements.

Easy algorithms?

• For each i ∈ {1, . . . , n} check if A[i] is a median element.

• Complexity: O(n2). :-(

• Sort the array, return A[n/2]

• Complexity: O(n logn).

Anything better than O(n logn)?



A sampling-based algorithm for Median
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• Select a random subset R of A with size n3/4.

• Repeat n3/4 times: select a random element of A.

• How to produce such an element? Flip logn fair coins, result gives

index in binary.

• Note: same element could be selected twice!

• Sort R

• Takes time O(n3/4 logn) = o(n).

• Find elements d, u in R

• d is
√
n positions before the middle of R

• u is
√
n positions after the middle of R
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• Select a random subset R of A with size n3/4.

• Repeat n3/4 times: select a random element of A.

• How to produce such an element? Flip logn fair coins, result gives

index in binary.

• Note: same element could be selected twice!

• Sort R

• Takes time O(n3/4 logn) = o(n).

• Find elements d, u in R

• d is
√
n positions before the middle of R

• u is
√
n positions after the middle of R

Main intuition of the algorithm:

• We hope that if we sort A, the true median would be between d and u.
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• Reminder: A has size n, R is a random subset of size n3/4, d, u ∈ R

• Let

• A1 be the elements of A which are < d
• A2 be the elements of A which are between d and u
• A3 be the elements of A which are > u

• These sets can be found in O(n) time.

• We FAIL if

• |A1| > n/2 or |A3| > n/2
• |A2| > 4n3/4
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• Reminder: A has size n, R is a random subset of size n3/4, d, u ∈ R

• Let

• A1 be the elements of A which are < d
• A2 be the elements of A which are between d and u
• A3 be the elements of A which are > u

• These sets can be found in O(n) time.

• We FAIL if

• |A1| > n/2 or |A3| > n/2
• |A2| > 4n3/4

• In first case, A2 does not contain the median

• In the second, A2 is too large



Median continued
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• Reminder: if we haven’t failed so far A2 has size at most 4n3/4 AND

contains the median

• Also, we know |A1|, which is < n/2.

• To finish things off, sort A2

• Time O(n3/4 logn), which is o(n).

• Let i be such that i+ |A1| = n/2.

• Return A2[i].
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• Reminder: if we haven’t failed so far A2 has size at most 4n3/4 AND

contains the median

• Also, we know |A1|, which is < n/2.

• To finish things off, sort A2

• Time O(n3/4 logn), which is o(n).

• Let i be such that i+ |A1| = n/2.

• Return A2[i].
• If we’ve come this far

• The algorithm ran in time O(n).
• We output the correct median.

• Need to calculate probability of reaching this point.
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The algorithm fails if any of the following happen:

• A1 is too big (> n/2)
• A3 is too big (> n/2)
• A2 is too big (> 4n3/4)
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The algorithm fails if any of the following happen:

• A1 is too big (> n/2)
• A3 is too big (> n/2)
• A2 is too big (> 4n3/4)

• The first two are symmetric.

• A1 too big ↔ d > m, where m is the median.

• d > m ↔ there exist
|R|
2

+
√
n elements of R which are > m

• Each element of R is > m with probability at most 1/2

• If S1 is number of elements of R which are > m then E[S1] ≤ |R|
2

.

• What is Pr[S1 >
|R|
2

+
√
n]?

• Pr[S1 >
|R|
2

+
√
n] ≤ Pr[|S1 − E[S1]| >

√
n]

• Should use Chebyshev!



Probability of failure

Algorithms M2 IF 8 / 15

WE are looking at the following failure possibility:

• A1 is too big (> n/2)
• We argued it suffices to bound Pr[|S1 − E[S1]| >

√
n]

• S1 is number of elements of R which are > m
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WE are looking at the following failure possibility:

• A1 is too big (> n/2)
• We argued it suffices to bound Pr[|S1 − E[S1]| >

√
n]

• S1 is number of elements of R which are > m

• Let Xi be the event that the i-th sample (element of R) is > m.

• S1 =
∑n3/4

i=1
Xi and the Xi are independent.

• V ar[S1] = n3/4V ar[Xi] ≤ n3/4

4
.

• Using Chebyshev’s inequality we get

Pr[|S1 − E[S1]| >
√
n] <

1

4n1/4
= o(1)

• Second type of failure is handled in the same way
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• Reminder: A2 has the elements of A which are between d and u.
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• A2 has size > 4n3/4.

• Reminder: A2 has the elements of A which are between d and u.

• Either A2 has > 2n3/4 elements which are > m
• or it has > 2n3/4 elements which are < m
• Cases are symmetric, so we handle the first.

• If A2 has > 2n3/4 elements > m,

• then u in the sorted array A is in position at least n/2 + 2n3/4

• But R has
|R|
2

−√
n elements bigger than u

• So R has
|R|
2

−√
n among the last n/2− 2n3/4 elements of A

• So what?

• The expected number of elements of R from the n/2− 2n3/4 largest

elements of A is

E[Z] = n3/4

(

1

2
− 2

n1/4

)

=
|R|
2

− 2
√
n
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• Reminder: we consider the case |A2| > 4n3/4

• In particular, A2 has > 2n3/4 elements > m
• If A′ is the set of n/2− 2n3/4 largest elements of A we argued that if Z

is the expected number of such elements in R we have

• E[Z] = |R|
2

− 2
√
n

• Z > |R|
2

−√
n
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• Reminder: we consider the case |A2| > 4n3/4

• In particular, A2 has > 2n3/4 elements > m
• If A′ is the set of n/2− 2n3/4 largest elements of A we argued that if Z

is the expected number of such elements in R we have

• E[Z] = |R|
2

− 2
√
n

• Z > |R|
2

−√
n

• So if we have a problem then Z − E[Z] >
√
n.

• Let’s show this is unlikely

• Recall Z =
∑n3/4

i=1
Xi, and Xi is 1 with probability 1

2
− 2

n1/4

• V ar[Z] = n3/4
(

1

2
− 2

n1/4

)(

1

2
+ 2

n1/4

)

< n3/4

• Chebyshev: Pr[Z − E[Z] >
√
n] < 1

n1/4 = o(n)
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• Sampled a sub-linear number of elements, still enough to get a good

representation of A
• Three types of failure. Probability of at least one ≤ sum of their

probabilities

• Union bound!

• Used variance to show that each failure type has o(1) probability.

• Here, all events were independent

• Pair-wise independent would have been enough!



Approximate Sampling



Approximate Median
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• We saw an O(n) algorithm to find the median.

• Clearly impossible to do better. (Why??)

• Consider an approximate version of the problem:

• A has n elements

• A1 is the set of 45% smallest elements

• A3 is the set of 45% largest elements

• A2 is the rest (10% in the middle)

• Question: Output any item of A2

• Such an item is “close” to a median

• Problem can be adjusted (decreasing size of A2)

• Obviously, previous algorithm works.

• Objective to do o(n)
• In fact, possible to do O(1) !!!

• More precisely, running time depends on acceptable size of A2 and

failure probability.
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• Form a random subset R of size s by sampling A
• Sort R
• Output the median of R
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• Form a random subset R of size s by sampling A
• Sort R
• Output the median of R

• Algorithm runs in O(s log s) (provided we have random access to A)

• Question is success probability (as a function of s)
• Let A′

1
, A′

2
, A′

3
be the elements of R which come from A1, A2, A3

respectively.

E[A′
1] = s

|A1|
n

= 0.45s

E[A′
2] = s

|A2|
n

= 0.10s

E[A′
3] = s

|A3|
n

= 0.45s

We want to be close to these values.
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• V ar[A′
1
] = s |A1|

n (1− |A1|
n ) ≤ s/4

• V ar[A′
2
] = s |A2|

n (1− |A2|
n ) ≤ s/4

• V ar[A′
3
] = s |A3|

n (1− |A3|
n ) ≤ s/4
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• V ar[A′
1
] = s |A1|

n (1− |A1|
n ) ≤ s/4

• V ar[A′
2
] = s |A2|

n (1− |A2|
n ) ≤ s/4

• V ar[A′
3
] = s |A3|

n (1− |A3|
n ) ≤ s/4

Pr[|A′
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• V ar[A′
1
] = s |A1|

n (1− |A1|
n ) ≤ s/4

• V ar[A′
2
] = s |A2|

n (1− |A2|
n ) ≤ s/4

• V ar[A′
3
] = s |A3|

n (1− |A3|
n ) ≤ s/4

Pr[|A′
1 − E[A′

1]| > s3/4] <
1√
s

Pr[|A′
2 − E[A′

2]| > s3/4] <
1√
s

Pr[|A′
3 − E[A′

3]| > s3/4] <
1√
s

• All we need to do is to increase s to a sufficiently large constant

(independent of n!) and we get that the algorithm is correct with high

probability.
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