
Algorithms M2 IF

Even More Randomized Algorithms

Michael Lampis

Fall 2019

The power of sampling

Finding the Median

Algorithms M2 IF 3 / 15

Consider the following basic problem:

• We are given an array A of n integers.

• We are asked to calculate the Median of A.

• Reminder: the median is the element of the array that is larger than at

most n
2

elements, and smaller than at most n
2

elements.

Easy algorithms?

Finding the Median

Algorithms M2 IF 3 / 15

Consider the following basic problem:

• We are given an array A of n integers.

• We are asked to calculate the Median of A.

• Reminder: the median is the element of the array that is larger than at

most n
2

elements, and smaller than at most n
2

elements.

Easy algorithms?

• For each i ∈ {1, . . . , n} check if A[i] is a median element.

• Complexity: O(n2). :-(

Finding the Median

Algorithms M2 IF 3 / 15

Consider the following basic problem:

• We are given an array A of n integers.

• We are asked to calculate the Median of A.

• Reminder: the median is the element of the array that is larger than at

most n
2

elements, and smaller than at most n
2

elements.

Easy algorithms?

• For each i ∈ {1, . . . , n} check if A[i] is a median element.

• Complexity: O(n2). :-(

• Sort the array, return A[n/2]

• Complexity: O(n logn).

Anything better than O(n logn)?

A sampling-based algorithm for Median

Algorithms M2 IF 4 / 15

• Select a random subset R of A with size n3/4.

• Repeat n3/4 times: select a random element of A.

• How to produce such an element? Flip logn fair coins, result gives

index in binary.

• Note: same element could be selected twice!

• Sort R

• Takes time O(n3/4 logn) = o(n).

• Find elements d, u in R

• d is
√
n positions before the middle of R

• u is
√
n positions after the middle of R

A sampling-based algorithm for Median

Algorithms M2 IF 4 / 15

• Select a random subset R of A with size n3/4.

• Repeat n3/4 times: select a random element of A.

• How to produce such an element? Flip logn fair coins, result gives

index in binary.

• Note: same element could be selected twice!

• Sort R

• Takes time O(n3/4 logn) = o(n).

• Find elements d, u in R

• d is
√
n positions before the middle of R

• u is
√
n positions after the middle of R

Main intuition of the algorithm:

• We hope that if we sort A, the true median would be between d and u.

Sampling for the median continued

Algorithms M2 IF 5 / 15

• Reminder: A has size n, R is a random subset of size n3/4, d, u ∈ R

• Let

• A1 be the elements of A which are < d
• A2 be the elements of A which are between d and u
• A3 be the elements of A which are > u

• These sets can be found in O(n) time.

• We FAIL if

• |A1| > n/2 or |A3| > n/2
• |A2| > 4n3/4

Sampling for the median continued

Algorithms M2 IF 5 / 15

• Reminder: A has size n, R is a random subset of size n3/4, d, u ∈ R

• Let

• A1 be the elements of A which are < d
• A2 be the elements of A which are between d and u
• A3 be the elements of A which are > u

• These sets can be found in O(n) time.

• We FAIL if

• |A1| > n/2 or |A3| > n/2
• |A2| > 4n3/4

• In first case, A2 does not contain the median

• In the second, A2 is too large

Median continued

Algorithms M2 IF 6 / 15

• Reminder: if we haven’t failed so far A2 has size at most 4n3/4 AND

contains the median

• Also, we know |A1|, which is < n/2.

• To finish things off, sort A2

• Time O(n3/4 logn), which is o(n).

• Let i be such that i+ |A1| = n/2.

• Return A2[i].

Median continued

Algorithms M2 IF 6 / 15

• Reminder: if we haven’t failed so far A2 has size at most 4n3/4 AND

contains the median

• Also, we know |A1|, which is < n/2.

• To finish things off, sort A2

• Time O(n3/4 logn), which is o(n).

• Let i be such that i+ |A1| = n/2.

• Return A2[i].
• If we’ve come this far

• The algorithm ran in time O(n).
• We output the correct median.

• Need to calculate probability of reaching this point.

Probability of failure

Algorithms M2 IF 7 / 15

The algorithm fails if any of the following happen:

• A1 is too big (> n/2)
• A3 is too big (> n/2)
• A2 is too big (> 4n3/4)

Probability of failure

Algorithms M2 IF 7 / 15

The algorithm fails if any of the following happen:

• A1 is too big (> n/2)
• A3 is too big (> n/2)
• A2 is too big (> 4n3/4)

• The first two are symmetric.

• A1 too big ↔ d > m, where m is the median.

Probability of failure

Algorithms M2 IF 7 / 15

The algorithm fails if any of the following happen:

• A1 is too big (> n/2)
• A3 is too big (> n/2)
• A2 is too big (> 4n3/4)

• The first two are symmetric.

• A1 too big ↔ d > m, where m is the median.

• d > m ↔ there exist
|R|
2

+
√
n elements of R which are > m

Probability of failure

Algorithms M2 IF 7 / 15

The algorithm fails if any of the following happen:

• A1 is too big (> n/2)
• A3 is too big (> n/2)
• A2 is too big (> 4n3/4)

• The first two are symmetric.

• A1 too big ↔ d > m, where m is the median.

• d > m ↔ there exist
|R|
2

+
√
n elements of R which are > m

• Each element of R is > m with probability at most 1/2

• If S1 is number of elements of R which are > m then E[S1] ≤ |R|
2

.

Probability of failure

Algorithms M2 IF 7 / 15

The algorithm fails if any of the following happen:

• A1 is too big (> n/2)
• A3 is too big (> n/2)
• A2 is too big (> 4n3/4)

• The first two are symmetric.

• A1 too big ↔ d > m, where m is the median.

• d > m ↔ there exist
|R|
2

+
√
n elements of R which are > m

• Each element of R is > m with probability at most 1/2

• If S1 is number of elements of R which are > m then E[S1] ≤ |R|
2

.

• What is Pr[S1 >
|R|
2

+
√
n]?

• Pr[S1 >
|R|
2

+
√
n] ≤ Pr[|S1 − E[S1]| >

√
n]

• Should use Chebyshev!

Probability of failure

Algorithms M2 IF 8 / 15

WE are looking at the following failure possibility:

• A1 is too big (> n/2)
• We argued it suffices to bound Pr[|S1 − E[S1]| >

√
n]

• S1 is number of elements of R which are > m

Probability of failure

Algorithms M2 IF 8 / 15

WE are looking at the following failure possibility:

• A1 is too big (> n/2)
• We argued it suffices to bound Pr[|S1 − E[S1]| >

√
n]

• S1 is number of elements of R which are > m

• Let Xi be the event that the i-th sample (element of R) is > m.

• S1 =
∑n3/4

i=1
Xi and the Xi are independent.

• V ar[S1] = n3/4V ar[Xi] ≤ n3/4

4
.

Probability of failure

Algorithms M2 IF 8 / 15

WE are looking at the following failure possibility:

• A1 is too big (> n/2)
• We argued it suffices to bound Pr[|S1 − E[S1]| >

√
n]

• S1 is number of elements of R which are > m

• Let Xi be the event that the i-th sample (element of R) is > m.

• S1 =
∑n3/4

i=1
Xi and the Xi are independent.

• V ar[S1] = n3/4V ar[Xi] ≤ n3/4

4
.

• Using Chebyshev’s inequality we get

Pr[|S1 − E[S1]| >
√
n] <

1

4n1/4
= o(1)

• Second type of failure is handled in the same way

Last type of failure

Algorithms M2 IF 9 / 15

• A2 has size > 4n3/4.

• Reminder: A2 has the elements of A which are between d and u.

Last type of failure

Algorithms M2 IF 9 / 15

• A2 has size > 4n3/4.

• Reminder: A2 has the elements of A which are between d and u.

• Either A2 has > 2n3/4 elements which are > m
• or it has > 2n3/4 elements which are < m
• Cases are symmetric, so we handle the first.

Last type of failure

Algorithms M2 IF 9 / 15

• A2 has size > 4n3/4.

• Reminder: A2 has the elements of A which are between d and u.

• Either A2 has > 2n3/4 elements which are > m
• or it has > 2n3/4 elements which are < m
• Cases are symmetric, so we handle the first.

• If A2 has > 2n3/4 elements > m,

• then u in the sorted array A is in position at least n/2 + 2n3/4

• But R has
|R|
2

−√
n elements bigger than u

• So R has
|R|
2

−√
n among the last n/2− 2n3/4 elements of A

Last type of failure

Algorithms M2 IF 9 / 15

• A2 has size > 4n3/4.

• Reminder: A2 has the elements of A which are between d and u.

• Either A2 has > 2n3/4 elements which are > m
• or it has > 2n3/4 elements which are < m
• Cases are symmetric, so we handle the first.

• If A2 has > 2n3/4 elements > m,

• then u in the sorted array A is in position at least n/2 + 2n3/4

• But R has
|R|
2

−√
n elements bigger than u

• So R has
|R|
2

−√
n among the last n/2− 2n3/4 elements of A

• So what?

Last type of failure

Algorithms M2 IF 9 / 15

• A2 has size > 4n3/4.

• Reminder: A2 has the elements of A which are between d and u.

• Either A2 has > 2n3/4 elements which are > m
• or it has > 2n3/4 elements which are < m
• Cases are symmetric, so we handle the first.

• If A2 has > 2n3/4 elements > m,

• then u in the sorted array A is in position at least n/2 + 2n3/4

• But R has
|R|
2

−√
n elements bigger than u

• So R has
|R|
2

−√
n among the last n/2− 2n3/4 elements of A

• So what?

• The expected number of elements of R from the n/2− 2n3/4 largest

elements of A is

E[Z] = n3/4

(

1

2
− 2

n1/4

)

=
|R|
2

− 2
√
n

Last type of failure

Algorithms M2 IF 10 / 15

• Reminder: we consider the case |A2| > 4n3/4

• In particular, A2 has > 2n3/4 elements > m
• If A′ is the set of n/2− 2n3/4 largest elements of A we argued that if Z

is the expected number of such elements in R we have

• E[Z] = |R|
2

− 2
√
n

• Z > |R|
2

−√
n

Last type of failure

Algorithms M2 IF 10 / 15

• Reminder: we consider the case |A2| > 4n3/4

• In particular, A2 has > 2n3/4 elements > m
• If A′ is the set of n/2− 2n3/4 largest elements of A we argued that if Z

is the expected number of such elements in R we have

• E[Z] = |R|
2

− 2
√
n

• Z > |R|
2

−√
n

• So if we have a problem then Z − E[Z] >
√
n.

• Let’s show this is unlikely

• Recall Z =
∑n3/4

i=1
Xi, and Xi is 1 with probability 1

2
− 2

n1/4

• V ar[Z] = n3/4
(

1

2
− 2

n1/4

)(

1

2
+ 2

n1/4

)

< n3/4

• Chebyshev: Pr[Z − E[Z] >
√
n] < 1

n1/4 = o(n)

Putting everything together

Algorithms M2 IF 11 / 15

• Sampled a sub-linear number of elements, still enough to get a good

representation of A
• Three types of failure. Probability of at least one ≤ sum of their

probabilities

• Union bound!

• Used variance to show that each failure type has o(1) probability.

• Here, all events were independent

• Pair-wise independent would have been enough!

Approximate Sampling

Approximate Median

Algorithms M2 IF 13 / 15

• We saw an O(n) algorithm to find the median.

• Clearly impossible to do better. (Why??)

• Consider an approximate version of the problem:

• A has n elements

• A1 is the set of 45% smallest elements

• A3 is the set of 45% largest elements

• A2 is the rest (10% in the middle)

• Question: Output any item of A2

• Such an item is “close” to a median

• Problem can be adjusted (decreasing size of A2)

• Obviously, previous algorithm works.

• Objective to do o(n)
• In fact, possible to do O(1) !!!

• More precisely, running time depends on acceptable size of A2 and

failure probability.

A simple algorithm for approximate median

Algorithms M2 IF 14 / 15

• Form a random subset R of size s by sampling A
• Sort R
• Output the median of R

A simple algorithm for approximate median

Algorithms M2 IF 14 / 15

• Form a random subset R of size s by sampling A
• Sort R
• Output the median of R

• Algorithm runs in O(s log s) (provided we have random access to A)

• Question is success probability (as a function of s)

A simple algorithm for approximate median

Algorithms M2 IF 14 / 15

• Form a random subset R of size s by sampling A
• Sort R
• Output the median of R

• Algorithm runs in O(s log s) (provided we have random access to A)

• Question is success probability (as a function of s)
• Let A′

1
, A′

2
, A′

3
be the elements of R which come from A1, A2, A3

respectively.

E[A′
1] = s

|A1|
n

= 0.45s

E[A′
2] = s

|A2|
n

= 0.10s

E[A′
3] = s

|A3|
n

= 0.45s

We want to be close to these values.

Chebyshev again

Algorithms M2 IF 15 / 15

• V ar[A′
1
] = s |A1|

n (1− |A1|
n) ≤ s/4

• V ar[A′
2
] = s |A2|

n (1− |A2|
n) ≤ s/4

• V ar[A′
3
] = s |A3|

n (1− |A3|
n) ≤ s/4

Chebyshev again

Algorithms M2 IF 15 / 15

• V ar[A′
1
] = s |A1|

n (1− |A1|
n) ≤ s/4

• V ar[A′
2
] = s |A2|

n (1− |A2|
n) ≤ s/4

• V ar[A′
3
] = s |A3|

n (1− |A3|
n) ≤ s/4

Pr[|A′
1 − E[A′

1]| > s3/4] <
1√
s

Pr[|A′
2 − E[A′

2]| > s3/4] <
1√
s

Pr[|A′
3 − E[A′

3]| > s3/4] <
1√
s

Chebyshev again

Algorithms M2 IF 15 / 15

• V ar[A′
1
] = s |A1|

n (1− |A1|
n) ≤ s/4

• V ar[A′
2
] = s |A2|

n (1− |A2|
n) ≤ s/4

• V ar[A′
3
] = s |A3|

n (1− |A3|
n) ≤ s/4

Pr[|A′
1 − E[A′

1]| > s3/4] <
1√
s

Pr[|A′
2 − E[A′

2]| > s3/4] <
1√
s

Pr[|A′
3 − E[A′

3]| > s3/4] <
1√
s

• All we need to do is to increase s to a sufficiently large constant

(independent of n!) and we get that the algorithm is correct with high

probability.

	The power of sampling
	Finding the Median
	A sampling-based algorithm for Median
	Sampling for the median continued
	Median continued
	Probability of failure
	Probability of failure
	Last type of failure
	Last type of failure
	Putting everything together

	Approximate Sampling
	Approximate Median
	A simple algorithm for approximate median
	Chebyshev again

