
Algorithms M2 IF

Divide and Conquer

Michael Lampis

Fall 2019

Divide and Conquer

Algorithms M2 IF 2 / 27

• Divide and Conquer is a basic algorithmic technique

• Idea: solve a problem by breaking it down into sub-instances,

solving independently, merging solutions.

• Algorithms are usually recursive.

• In these slides:

• Reminder: Binary search

• Reminder: Mergesort

• Master Theorem for Analyzing recurrences

• Integer Multiplication

• Matrix Multiplication

• Median

Reminder of two basic algorithms:

Binary Search and Mergesort

Binary Search

Algorithms M2 IF 4 / 27

Problem:

• Given: sorted array A[1 . . . n] of n elements, specific element x.

• Question: is x in the array? If yes, at what position?

• Operations: A[i]
?
< x,A[i]

?
> x,A[i]

?
= x take O(1) time.

Binary Search

Algorithms M2 IF 4 / 27

Problem:

• Given: sorted array A[1 . . . n] of n elements, specific element x.

• Question: is x in the array? If yes, at what position?

• Operations: A[i]
?
< x,A[i]

?
> x,A[i]

?
= x take O(1) time.

Trivial to solve in O(n) time:

• For i = 1, . . . n if A[i] = x then return i.
• Return NO.

Binary Search

Algorithms M2 IF 4 / 27

Problem:

• Given: sorted array A[1 . . . n] of n elements, specific element x.

• Question: is x in the array? If yes, at what position?

• Operations: A[i]
?
< x,A[i]

?
> x,A[i]

?
= x take O(1) time.

Trivial to solve in O(n) time:

• For i = 1, . . . n if A[i] = x then return i.
• Return NO.

Binary Search achieves logarithmic time:

• BinSearch(A,l,h):

• If l > h return NO

• If l == h return (A[l] == x)?l : NO
• Let m = (l + h)/2
• If A[m] == x return m
• If A[m] > x return BinSearch(A, l,m− 1)

• If A[m] < x return BinSearch(A,m+ 1, h)

Binary Search

Algorithms M2 IF 5 / 27

• Recursive algorithm of previous slide is called with parameters A, 1, n.

• Idea: will search area of array from A[l] to A[h] (inclusive).

Binary Search

Algorithms M2 IF 5 / 27

• Recursive algorithm of previous slide is called with parameters A, 1, n.

• Idea: will search area of array from A[l] to A[h] (inclusive).

Correctness:

• Proof by induction on h− l.
• For h− l ≤ 0 trivial.

• For h− l ≥ 1, [l,m− 1] and [m+ 1, h] are strictly smaller intervals.

• By induction algorithm is correct for both. Because A is sorted, if x is

somewhere it must be in the interval we search.

Binary Search

Algorithms M2 IF 5 / 27

• Recursive algorithm of previous slide is called with parameters A, 1, n.

• Idea: will search area of array from A[l] to A[h] (inclusive).

Correctness:

• Proof by induction on h− l.
• For h− l ≤ 0 trivial.

• For h− l ≥ 1, [l,m− 1] and [m+ 1, h] are strictly smaller intervals.

• By induction algorithm is correct for both. Because A is sorted, if x is

somewhere it must be in the interval we search.

Complexity:

• Searching an interval of length ≤ 1 → O(1) time.

• Searching an interval of length n takes at most O(1) plus the time it

takes for an interval of length n/2.

T (n) ≤ T (n/2) +O(1) ≤ O(logn)

Mergesort

Algorithms M2 IF 6 / 27

Problem:

• Given: array A[1 . . . n] of n elements.

• Question: output elements of A in increasing order (sort A).

• Operations: A[i]
?
< A[j], A[i]

?
> A[j], A[i]

?
= A[j], copies take O(1) time.

Mergesort

Algorithms M2 IF 6 / 27

Problem:

• Given: array A[1 . . . n] of n elements.

• Question: output elements of A in increasing order (sort A).

• Operations: A[i]
?
< A[j], A[i]

?
> A[j], A[i]

?
= A[j], copies take O(1) time.

Mergesort:

• Suppose we have a Merge procedure

• Merge is given two sorted arrays A,B
• Output: a sorted array with all the elements of A,B

Mergesort(A[1 . . . n])

• If n ≤ 10 trivial. . .

• Else

• Mergesort(A[1 . . . n/2]) → A1

• Mergesort(A[n/2 + 1 . . . n]) → A2

• Merge(A1, A2)

Mergesort

Algorithms M2 IF 7 / 27

Correctness:

• Proof by induction on size of array n.

• If n ≤ 10 trivial.

• By induction algorithm correctly sorts A1, A2. If Merge is correct, then

the sorting is correct.

Mergesort

Algorithms M2 IF 7 / 27

Correctness:

• Proof by induction on size of array n.

• If n ≤ 10 trivial.

• By induction algorithm correctly sorts A1, A2. If Merge is correct, then

the sorting is correct.

Complexity:

• Let T (n),M(n) be the complexity of Mergesort, Merge

respectively, where n is total input size.

• Then

T (n) = 2T (n/2) +M(n) +O(1)

• If M(n) = O(n) then T (n) = O(n logn) (why?)

Merge

Algorithms M2 IF 8 / 27

• Our sorting algorithm is done, except for Merge

• Can we merge two sorted arrays in linear time?

Merge(A[1 . . . n], B[1 . . .m])

• If n = 0 or m = 0 trivial

• If A[1] < B[1] output A[1] and then Merge(A[2 . . . n], B[1 . . .m])
• If A[1] ≥ B[1] output B[1] and then Merge(A[1 . . . n], B[2 . . .m])

Merge

Algorithms M2 IF 8 / 27

• Our sorting algorithm is done, except for Merge

• Can we merge two sorted arrays in linear time?

Merge(A[1 . . . n], B[1 . . .m])

• If n = 0 or m = 0 trivial

• If A[1] < B[1] output A[1] and then Merge(A[2 . . . n], B[1 . . .m])
• If A[1] ≥ B[1] output B[1] and then Merge(A[1 . . . n], B[2 . . .m])

Correctness: easy by induction (how?)

Complexity:

M(n+m) ≤ O(1) +M(n+m− 1) = O(n+m)

Analysis of Divide and Conquer

Solving Recurrence Relations: Induction

Algorithms M2 IF 10 / 27

• When analyzing recursive (divide&conquer) algorithms we often have

to solve equations of the form:

T (n) ≤ T (n1) + T (n2) + . . .+ f(n)

• Where:

• T (n) is the running time of the algorithm for an input of size n
• n1, n2, . . . , < n (why?)

• f(n) is the running time of breaking down the problem into

sub-problems and then putting the solutions back together.

Example:

T (n) ≤ 2T (n/2) + Cn (Mergesort)

T (n) ≤ T (n/2) + C (BinSearch)

T (n) ≤
1

n

n
∑

i=0

(T (n− i) + T (i)) + Cn (Quicksort Avg)

Solving Recurrence Relations: Induction

Algorithms M2 IF 11 / 27

• Solving such relations can be tricky. One approach: guess the

solution, prove by induction.

Solving Recurrence Relations: Induction

Algorithms M2 IF 11 / 27

• Solving such relations can be tricky. One approach: guess the

solution, prove by induction.

Claim: Mergesort has T (n) ≤ Cn logn

T (n) ≤ 2T (n/2) + Cn ≤

≤ 2C
n

2
log

n

2
+ Cn =

= Cn logn− Cn+ Cn = Cn log n

Solving Recurrence Relations: Induction

Algorithms M2 IF 11 / 27

• Solving such relations can be tricky. One approach: guess the

solution, prove by induction.

Claim: BinSearch has T (n) ≤ C logn

T (n) ≤ T (n/2) + C ≤

≤ C log
n

2
+ C =

= C logn− C + C = C log n

Solving Recurrence Relations: Induction

Algorithms M2 IF 11 / 27

• Solving such relations can be tricky. One approach: guess the

solution, prove by induction.

• Generally, this approach is tricky, because we have to “guess” and

then prove the correct formula.

• It often helps to “unroll” the recurrence for a few steps to see where

things are going. Example (Mergesort):

T (n) ≤ 2T (n/2) + Cn ≤ 4T (n/4) + 2C
n

2
+ Cn ≤ 8T (n/8) + 3Cn . . .

The Master Theorem

Algorithms M2 IF 12 / 27

A more standard way to handle (some) recurrence relations

• Let T (n) = aT (n/b) +O(nd)

T (n) =







O(nd) if d > logb a
O(nd logn) if d = logb a
O(nlogb a) if d < logb a

The Master Theorem

Algorithms M2 IF 12 / 27

A more standard way to handle (some) recurrence relations

• Let T (n) = aT (n/b) +O(nd)

T (n) =







O(nd) if d > logb a
O(nd logn) if d = logb a
O(nlogb a) if d < logb a

Proof:

T (n) = aiT (n/bi) + nd

(

1 +
a

bd
+

(a

bd

)2

+ . . .+
(a

bd

)i−1
)

=

= ?

• If a < bd then → alogb n +O(nd) = nlogb a +O(nd) = O(nd)
• If a = bd then → nd (logb n) = O(nd logn)
• If a > bd then → alogb n + nd

(

(a
bd
)logb n

)

= O(nlogb a)

Integer Multiplication

Integer Multiplication

Algorithms M2 IF 14 / 27

Problem:

• Input: two n-bit numbers, A = an−1, an−2, . . . , a0 and

B = bn−1, bn−2, . . . , b0 where a0, b0 are the least significant bits.

• Output: the product A×B

Integer Multiplication

Algorithms M2 IF 14 / 27

Problem:

• Input: two n-bit numbers, A = an−1, an−2, . . . , a0 and

B = bn−1, bn−2, . . . , b0 where a0, b0 are the least significant bits.

• Output: the product A×B

Elementary-school algorithm relies on two observations:

• Multiplication of a number by 2i is easy (append i times 0 at the end)

• Addition can be done in time O(n)
• (We of course assume that addition/multiplication of two bits is O(1))

Integer Multiplication

Algorithms M2 IF 14 / 27

Problem:

• Input: two n-bit numbers, A = an−1, an−2, . . . , a0 and

B = bn−1, bn−2, . . . , b0 where a0, b0 are the least significant bits.

• Output: the product A×B

Elementary-school algorithm relies on two observations:

• Multiplication of a number by 2i is easy (append i times 0 at the end)

• Addition can be done in time O(n)
• (We of course assume that addition/multiplication of two bits is O(1))

Part 1: Multiply A = an−1 . . . a0 with bi

• Can be done in O(n):
• If bi = 0, result is 0, otherwise result is A.

Integer Multiplication

Algorithms M2 IF 14 / 27

Problem:

• Input: two n-bit numbers, A = an−1, an−2, . . . , a0 and

B = bn−1, bn−2, . . . , b0 where a0, b0 are the least significant bits.

• Output: the product A×B

Elementary-school algorithm relies on two observations:

• Multiplication of a number by 2i is easy (append i times 0 at the end)

• Addition can be done in time O(n)
• (We of course assume that addition/multiplication of two bits is O(1))

Part 1: Multiply A = an−1 . . . a0 with bi

• Can be done in O(n):
• If bi = 0, result is 0, otherwise result is A.

Part 2: General multiplication

• For each i ∈ {0, . . . , n− 1} compute bi ×A× 2i.
• Sum all these values.

• n additions of O(n) time each → O(n2)

Karatsuba’s algorithm

Algorithms M2 IF 15 / 27

• Goal: do better than O(n2) for n-bit integer multiplication

• Note: Kolmogorov conjectured in the ’60s that this is impossible

• He was wrong!

Karatsuba’s algorithm

Algorithms M2 IF 15 / 27

• Goal: do better than O(n2) for n-bit integer multiplication

• Note: Kolmogorov conjectured in the ’60s that this is impossible

• He was wrong!

A divide&conquer approach

• Let A1 the number made up of the first n/2 bits of A, A2 the rest.

(Similarly B1, B2)

A = A12
n/2 +A2

B = B12
n/2 +B2 ⇒

A×B = (A1 ×B1)2
n + (A1 ×B2 +A2 ×B1)2

n/2 +A2 ×B2

Karatsuba’s algorithm

Algorithms M2 IF 15 / 27

• Goal: do better than O(n2) for n-bit integer multiplication

• Note: Kolmogorov conjectured in the ’60s that this is impossible

• He was wrong!

A divide&conquer approach

• Let A1 the number made up of the first n/2 bits of A, A2 the rest.

(Similarly B1, B2)

A = A12
n/2 +A2

B = B12
n/2 +B2 ⇒

A×B = (A1 ×B1)2
n + (A1 ×B2 +A2 ×B1)2

n/2 +A2 ×B2

Complexity: T (n) = 4T (n/2) +O(n)

Karatsuba’s algorithm

Algorithms M2 IF 15 / 27

• Goal: do better than O(n2) for n-bit integer multiplication

• Note: Kolmogorov conjectured in the ’60s that this is impossible

• He was wrong!

A divide&conquer approach

• Let A1 the number made up of the first n/2 bits of A, A2 the rest.

(Similarly B1, B2)

A = A12
n/2 +A2

B = B12
n/2 +B2 ⇒

A×B = (A1 ×B1)2
n + (A1 ×B2 +A2 ×B1)2

n/2 +A2 ×B2

Complexity: T (n) = 4T (n/2) +O(n)
T (n) = O(n2) :-(

Karatsuba’s algorithm

Algorithms M2 IF 16 / 27

• Karatsuba’s algorithm relies on divide&conquer but:

• Recognizes that the costly part is multiplication

• Manages to reduce the number of multiplications by doing more

additions/subtractions

Karatsuba’s algorithm

Algorithms M2 IF 16 / 27

• Karatsuba’s algorithm relies on divide&conquer but:

• Recognizes that the costly part is multiplication

• Manages to reduce the number of multiplications by doing more

additions/subtractions

• Recall:

A×B = (A1 ×B1)2
n + (A1 ×B2 +A2 ×B1)2

n/2 +A2 ×B2

Karatsuba’s algorithm

Algorithms M2 IF 16 / 27

• Karatsuba’s algorithm relies on divide&conquer but:

• Recognizes that the costly part is multiplication

• Manages to reduce the number of multiplications by doing more

additions/subtractions

• Recall:

A×B = (A1 ×B1)2
n + (A1 ×B2 +A2 ×B1)2

n/2 +A2 ×B2

Calculate:

• A1 ×B1

• A2 ×B2

Karatsuba’s algorithm

Algorithms M2 IF 16 / 27

• Karatsuba’s algorithm relies on divide&conquer but:

• Recognizes that the costly part is multiplication

• Manages to reduce the number of multiplications by doing more

additions/subtractions

• Recall:

A×B = (A1 ×B1)2
n + (A1 ×B2 +A2 ×B1)2

n/2 +A2 ×B2

Calculate:

• A1 ×B1

• A2 ×B2

• (A1 +A2)× (B1 +B2)

Karatsuba’s algorithm

Algorithms M2 IF 16 / 27

• Karatsuba’s algorithm relies on divide&conquer but:

• Recognizes that the costly part is multiplication

• Manages to reduce the number of multiplications by doing more

additions/subtractions

• Recall:

A×B = (A1 ×B1)2
n + (A1 ×B2 +A2 ×B1)2

n/2 +A2 ×B2

Calculate:

• A1 ×B1

• A2 ×B2

• (A1 +A2)× (B1 +B2)
• Key idea:

A1 ×B2 +A2 ×B1 = (A1 +A2)× (B1 +B2)−A1 ×B1 −A2 ×B2

Karatsuba’s algorithm – Analysis

Algorithms M2 IF 17 / 27

• We perform 3 (instead of 4) multiplications of numbers with n/2 digits

• Not quite true: A1 +A2 could have n/2 + 1 digits. Doesn’t matter

much for asymptotic analysis.

• We perform several additions/subtractions of n digit numbers.

Karatsuba’s algorithm – Analysis

Algorithms M2 IF 17 / 27

• We perform 3 (instead of 4) multiplications of numbers with n/2 digits

• Not quite true: A1 +A2 could have n/2 + 1 digits. Doesn’t matter

much for asymptotic analysis.

• We perform several additions/subtractions of n digit numbers.

Complexity:

T (n) ≤ 3T (n/2) +O(n)

Karatsuba’s algorithm – Analysis

Algorithms M2 IF 17 / 27

• We perform 3 (instead of 4) multiplications of numbers with n/2 digits

• Not quite true: A1 +A2 could have n/2 + 1 digits. Doesn’t matter

much for asymptotic analysis.

• We perform several additions/subtractions of n digit numbers.

Complexity:

T (n) ≤ 3T (n/2) +O(n)
Master Theorem

a = 3, b = 2, d = 1, d < logb a ⇒ T (n) = O(nlog 3) ≈ O(n1.6) << n2

Karatsuba’s algorithm – Analysis

Algorithms M2 IF 17 / 27

• We perform 3 (instead of 4) multiplications of numbers with n/2 digits

• Not quite true: A1 +A2 could have n/2 + 1 digits. Doesn’t matter

much for asymptotic analysis.

• We perform several additions/subtractions of n digit numbers.

Complexity:

T (n) ≤ 3T (n/2) +O(n)
Master Theorem

a = 3, b = 2, d = 1, d < logb a ⇒ T (n) = O(nlog 3) ≈ O(n1.6) << n2

Lesson: in divide&conquer, decreasing the number of sub-problems is

hugely important, because their total number increases exponentially!

Matrix Multiplication

Matrix Multiplication – Easy Algorithm

Algorithms M2 IF 19 / 27

Problem:

• Input: two n× n matrices A,B
• Output: the product C = A×B
• Assumption: adding/multiplying two elements takes time O(1)

Matrix Multiplication – Easy Algorithm

Algorithms M2 IF 19 / 27

Problem:

• Input: two n× n matrices A,B
• Output: the product C = A×B
• Assumption: adding/multiplying two elements takes time O(1)

Simple algorithm:

• To calculate C[i, j] we multiply row i of A with column j of B

• For k ∈ {1, . . . , n} sum up A[i, k]×B[k, j]

• O(n) per element of C ⇒ O(n3).

Goal: achieve complexity less than O(n3).

Matrix Multiplication – Divide&Conquer

Algorithms M2 IF 20 / 27

• We want to calculate C = A×B

A =

[

A11 A12

A21 A22

]

, B =

[

B11 B12

B21 B22

]

, C =

[

C11 C12

C21 C22

]

Matrix Multiplication – Divide&Conquer

Algorithms M2 IF 20 / 27

• We want to calculate C = A×B

A =

[

A11 A12

A21 A22

]

, B =

[

B11 B12

B21 B22

]

, C =

[

C11 C12

C21 C22

]

C11 = A11B11 +A12B21

C12 = A11B12 +A12B22

C21 = A21B11 +A22B21

C22 = A21B12 +A22B22

Matrix Multiplication – Divide&Conquer

Algorithms M2 IF 20 / 27

• We want to calculate C = A×B

A =

[

A11 A12

A21 A22

]

, B =

[

B11 B12

B21 B22

]

, C =

[

C11 C12

C21 C22

]

C11 = A11B11 +A12B21

C12 = A11B12 +A12B22

C21 = A21B11 +A22B21

C22 = A21B12 +A22B22

8 multiplications of (n/2)× (n/2) matrices (additions take time O(n2))

T (n) = 8T (n/2) +O(n2)

Matrix Multiplication – Divide&Conquer

Algorithms M2 IF 20 / 27

• We want to calculate C = A×B

A =

[

A11 A12

A21 A22

]

, B =

[

B11 B12

B21 B22

]

, C =

[

C11 C12

C21 C22

]

C11 = A11B11 +A12B21

C12 = A11B12 +A12B22

C21 = A21B11 +A22B21

C22 = A21B12 +A22B22

8 multiplications of (n/2)× (n/2) matrices (additions take time O(n2))

T (n) = 8T (n/2) +O(n2)

Master Theorem a = 8, b = 2, d = 2, logb a = 3 > 2 ⇒ O(nlogb a) = O(n3)

Strassen’s algorithm

Algorithms M2 IF 21 / 27

Need to calculate:

C11 = A11B11 +A12B21

C12 = A11B12 +A12B22

C21 = A21B11 +A22B21

C22 = A21B12 +A22B22

Strassen’s algorithm

Algorithms M2 IF 21 / 27

Need to calculate:

C11 = A11B11 +A12B21

C12 = A11B12 +A12B22

C21 = A21B11 +A22B21

C22 = A21B12 +A22B22

Will calculate:

M1 = (A11 +A22)(B11 +B22)

M2 = (A21 +A22)B11

M3 = A11(B12 −B22)

M4 = A22(B21 −B11)

M5 = (A11 +A12)B22

M6 = (A21 −A11)(B11 +B12)

M7 = (A12 −A22)(B21 +B22)

Strassen’s algorithm

Algorithms M2 IF 21 / 27

Need to calculate:

C11 = A11B11 +A12B21

C12 = A11B12 +A12B22

C21 = A21B11 +A22B21

C22 = A21B12 +A22B22

Will calculate:

M1 = (A11 +A22)(B11 +B22)

M2 = (A21 +A22)B11

M3 = A11(B12 −B22)

M4 = A22(B21 −B11)

M5 = (A11 +A12)B22

M6 = (A21 −A11)(B11 +B12)

M7 = (A12 −A22)(B21 +B22)

????

Strassen’s algorithm

Algorithms M2 IF 22 / 27

• Easy but tedious to verify that:

C11 = M1 +M4 −M5 +M7

C12 = M3 +M5

C21 = M2 +M4

C22 = M1 −M2 +M3 +M6

Strassen’s algorithm

Algorithms M2 IF 22 / 27

• Easy but tedious to verify that:

C11 = M1 +M4 −M5 +M7

C12 = M3 +M5

C21 = M2 +M4

C22 = M1 −M2 +M3 +M6

• We calculate C with 7 multiplications of (n/2)× (n/2) matrices (and

some additions)

• Complexity: O(nlog 7) ≈ O(n2.81) << n3

Median

Median

Algorithms M2 IF 24 / 27

Reminder:

• Input: unsorted array A[1 . . . n].
• Output: median element (element which would be in A[n/2] in sorted

array)

• Easy O(n log n) (sort)

• We have seen O(n) randomized

• Goal: O(n) deterministic

Will solve a more general problem: given A, k, return the k-th smallest

element.

Median – Given good pivot

Algorithms M2 IF 25 / 27

First idea: suppose that it’s easy to find a number p “close” to the median.

• Partition A into L,R, elements smaller, larger than p respectively.

• If |L| ≥ k then we solve the same problem in L
• If |L| < k then we solve the problem in A \ L for k′ = k − |L|

Median – Given good pivot

Algorithms M2 IF 25 / 27

First idea: suppose that it’s easy to find a number p “close” to the median.

• Partition A into L,R, elements smaller, larger than p respectively.

• If |L| ≥ k then we solve the same problem in L
• If |L| < k then we solve the problem in A \ L for k′ = k − |L|

Suppose that min(|L|, |R|) ≥ n/3.

T (n) ≤ T (2n/3) +O(n)

Median – Given good pivot

Algorithms M2 IF 25 / 27

First idea: suppose that it’s easy to find a number p “close” to the median.

• Partition A into L,R, elements smaller, larger than p respectively.

• If |L| ≥ k then we solve the same problem in L
• If |L| < k then we solve the problem in A \ L for k′ = k − |L|

Suppose that min(|L|, |R|) ≥ n/3.

T (n) ≤ T (2n/3) +O(n)

• This gives T (n) = O(n).
• If we find a good pivot problem is easy!

• How do we find it?

• Best pivot is the median.

• This is the same as the original problem.

• We must find it in sub-linear time! (otherwise we’ll get O(n logn))

Find a good pivot

Algorithms M2 IF 26 / 27

Idea: median is a good pivot!

• We will find the median of a much smaller array.

• Partition A into groups of 5 elements.

• Sort each group

• Let B be the array that contains the median of each group

• |B| = n/5

• Find the median of B (recurse!). Let p be that number.

• Use algorithm of previous slide with p as pivot.

Analysis

Algorithms M2 IF 27 / 27

• Key observation: p is always a pretty good pivot

• p is bigger than 3n/10 elements and smaller than 3n/10 elements

of A (why?)

• ⇒ max(|L|, |R|) ≤ 7n/10

Analysis

Algorithms M2 IF 27 / 27

• Key observation: p is always a pretty good pivot

• p is bigger than 3n/10 elements and smaller than 3n/10 elements

of A (why?)

• ⇒ max(|L|, |R|) ≤ 7n/10

T (n) ≤ T (n/5) + T (7n/10) +O(n)

Analysis

Algorithms M2 IF 27 / 27

• Key observation: p is always a pretty good pivot

• p is bigger than 3n/10 elements and smaller than 3n/10 elements

of A (why?)

• ⇒ max(|L|, |R|) ≤ 7n/10

T (n) ≤ T (n/5) + T (7n/10) +O(n)

Master Theorem doesn’t work!

Analysis

Algorithms M2 IF 27 / 27

• Key observation: p is always a pretty good pivot

• p is bigger than 3n/10 elements and smaller than 3n/10 elements

of A (why?)

• ⇒ max(|L|, |R|) ≤ 7n/10

T (n) ≤ T (n/5) + T (7n/10) +O(n)

Master Theorem doesn’t work!

But by induction we can prove that T (n) = O(n).

• Intuition 1/5 + 7/10 < 1, so the total size of subproblems increases

exponentially fast, hence O(n) term dominates.

	Divide and Conquer
	Reminder of two basic algorithms: Binary Search and Mergesort
	Binary Search
	Binary Search
	Mergesort
	Mergesort
	Merge

	Analysis of Divide and Conquer
	Solving Recurrence Relations: Induction
	Solving Recurrence Relations: Induction
	The Master Theorem

	Integer Multiplication
	Integer Multiplication
	Karatsuba's algorithm
	Karatsuba's algorithm
	Karatsuba's algorithm – Analysis

	Matrix Multiplication
	Matrix Multiplication – Easy Algorithm
	Matrix Multiplication – Divide&Conquer
	Strassen's algorithm
	Strassen's algorithm

	Median
	Median
	Median – Given good pivot
	Find a good pivot
	Analysis

