Algorithms M2 IF
Divide and Conquer

Michael Lampis

Fall 2019

Divide and Conquer

e Divide and Conquer is a basic algorithmic technique

e |dea: solve a problem by breaking it down into sub-instances,
solving independently, merging solutions.
e Algorithms are usually recursive.

e Inthese slides:

Reminder: Binary search

Reminder: Mergesort

Master Theorem for Analyzing recurrences
Integer Multiplication

Matrix Multiplication

Median

Algorithms M2 |F 227

Reminder of two basic algorithms:
Binary Search and Mergesort

Binary Search

Problem:

e Given: sorted array A[l...n| of n elements, specific element z.
e Question: is x in the array? If yes, at what position?

? ?
o Operations: Ali] < z, Ali] > z, Ali] = = take O(1) time.

Algorithms M2 |F 427

Binary Search

Problem:

e Given: sorted array A[l...n| of n elements, specific element z.
e Question: is x in the array? If yes, at what position?

? ?
o Operations: Ali] < z, Ali] > z, Ali] = = take O(1) time.
Trivial to solve in O(n) time:

e Fori=1,...nif Ali] = z then return 7.
e Return NO.

Algorithms M2 |F 427

Binary Search

Problem:

e Given: sorted array A[l...n| of n elements, specific element z.
e Question: is x in the array? If yes, at what position?

? ?
o Operations: Ali] < z, Ali] > z, Ali] = = take O(1) time.
Trivial to solve in O(n) time:

e Fori=1,...nif Ali] = z then return 7.
e Return NO.

Binary Search achieves logarithmic time:

e BinSearch(A,lh):

If [> h return NO

If | == h return (A[l] == z)?l: NO

Letm = (l+ h)/2

If Ajm] == x return m

If A[m] > x return BinSearch(A,l,m — 1)

If Alm] < x return BinSearch(A, m + 1, h)

Algorithms M2 |F 427

Binary Search

e Recursive algorithm of previous slide is called with parameters A, 1, n.
e Idea: will search area of array from A[l] to A[h] (inclusive).

Algorithms M2 |F 5/27

Binary Search

e Recursive algorithm of previous slide is called with parameters A, 1, n.
e Idea: will search area of array from A[l] to A[h] (inclusive).

Correctness:

Proof by induction on h — L.

For h — [< 0 trivial.

Forh—1>1,|l,m — 1] and [m + 1, h] are strictly smaller intervals.
By induction algorithm is correct for both. Because A is sorted, if x is
somewnhere it must be in the interval we search.

Algorithms M2 |F 5/27

Binary Search

e Recursive algorithm of previous slide is called with parameters A, 1, n.
e Idea: will search area of array from A[l] to A[h] (inclusive).

Correctness:

Proof by induction on h — L.

For h — [< 0 trivial.

Forh—1>1,|l,m — 1] and [m + 1, h] are strictly smaller intervals.
By induction algorithm is correct for both. Because A is sorted, if x is
somewnhere it must be in the interval we search.

Complexity:

e Searching an interval of length <1 — O(1) time.
e Searching an interval of length n takes at most O(1) plus the time it
takes for an interval of length n /2.

T(n) <T(n/2)+ O0(1) < O(logn)

Algorithms M2 |F 5/27

Mergesort

Problem:

e Given: array A[l...n| of n elements.

e Question: output elements of A in increasing order (sort A).
?

o Operations: Afi] < Alj], Ali] > Alj], A[i] = A[j], copies take O(1) time.

Algorithms M2 |F 6/27

Mergesort

Problem:

e Given: array A[l...n| of n elements.

e Question: output elements of A in increasing order (sort A).
?

o Operations: Afi] < Alj], Ali] > Alj], A[i] = A[j], copies take O(1) time.
Mergesort:

e Suppose we have a Merge procedure

e Merge is given two sorted arrays A, B
e Qutput: a sorted array with all the elements of A, B

Mergesort(A[l...n])

o Ifn <10trivial...
e Else

e Mergesort(A[l...n/2]) — A;
e Mergesort(An/2+1...n]) — Ao

o Merge(A;, Ay)
Algorithms M2 |F 6/27

Mergesort

Correctness:

e Proof by induction on size of array n.

o Ifn <10 trivial.

e By induction algorithm correctly sorts A;, As. If Merge is correct, then
the sorting is correct.

Algorithms M2 |F 7127

Mergesort

Correctness:

e Proof by induction on size of array n.

o Ifn <10 trivial.

e By induction algorithm correctly sorts A;, As. If Merge is correct, then
the sorting is correct.

Complexity:

e LetT(n),M(n)be the complexity of Mergesort, Merge
respectively, where n is total input size.
e Then

T(n)=2T(n/2)+ M(n)+ O(1)
e If M(n)=0(n)thenT(n)= O(nlogn) (why?)

Algorithms M2 |F 7127

e Qur sorting algorithm is done, except for Merge
e (Can we merge two sorted arrays in linear time?

Merge(A[l...n|,B[l...m])

e Ifn=0o0rm =0 trivial
e If A[1] < B[1] output A[1] and then Merge(A[2...n],
e If A[1] > BJ[1] output B[1] and then Merge(A|[l...n],

Algorithms M2 |F 8/27

e Qur sorting algorithm is done, except for Merge
e (Can we merge two sorted arrays in linear time?

Merge(A[l...n|,B[l...m])

e Ifn=0o0rm =0 trivial
e If A[1] < B[1] output A[1] and then Merge(A[2...n],
e If A[1] > BJ[1] output B[1] and then Merge(A|[l...n],

Correctness: easy by induction (how?)

Complexity:

Mn+m)<O1)+Mn+m-—1)=0(n+m)

Algorithms M2 |F 8/27

Analysis of Divide and Conquer

Solving Recurrence Relations: Induction

e When analyzing recursive (divide&conquer) algorithms we often have
to solve equations of the form:

T(n) <T(ni)+T(n2)+ ...+ f(n)

e Where:
e T'(n) is the running time of the algorithm for an input of size n
e ni,na,...,<n(why?)

e f(n) is the running time of breaking down the problem into
sub-problems and then putting the solutions back together.

Example:
T(n) < 2T(n/2)+Cn (Mergesort)
T(n) < (n/2) + C' (BinSearch)
Tn) < — Z n—1)+T(i))+Cn (Quicksort Avg)

Algorithms M2 |F 10/ 27

Solving Recurrence Relations: Induction

e Solving such relations can be tricky. One approach: guess the
solution, prove by induction.

Algorithms M2 |F 11 /27

Solving Recurrence Relations: Induction

e Solving such relations can be tricky. One approach: guess the
solution, prove by induction.

Claim: Mergesort has T'(n) < Cnlogn

T(n)

VAN

2T (n/2) + Cn <
20% 10gg +Cn =
Cnlogn — Cn+ Cn = Cnlogn

IA

Algorithms M2 |F 11/ 27

Solving Recurrence Relations: Induction

e Solving such relations can be tricky. One approach: guess the
solution, prove by induction.

Claim: BinSearch has T'(n) < C'logn

T(n)

VAN

T(n/2)+C <
C’logngC:
C'logn —C+ C =CC'logn

IA

Algorithms M2 |F 11/ 27

Solving Recurrence Relations: Induction

e Solving such relations can be tricky. One approach: guess the
solution, prove by induction.

e Generally, this approach is tricky, because we have to “guess” and
then prove the correct formula.

e It often helps to “unroll” the recurrence for a few steps to see where
things are going. Example (Mergesort):

T(n) < 2T(n/2) + Cn < 4T(n/4) + 20% + Cn < 8T(n/8) +3Cn. ..

Algorithms M2 |F 11/ 27

The Master Theorem

A more standard way to handle (some) recurrence relations
o LetT(n)=al(n/b)+ O(n?)

(O(n?) if d > logy a
T(n) =< O(n%logn) ifd=log,a
O(nl°ev @) if d < log, a

\

Algorithms M2 |F 12 /27

The Master Theorem

A more standard way to handle (some) recurrence relations
o LetT(n)=al(n/b)+ O(n?)

(O(n?) if d > logy a
T(n) =< O(n%logn) ifd=log,a
O(nl°ev @) if d < log, a

\

Proof:

T(n) = a'T(n/b")+n (1 - l% + (b—d)2 +..+ (_)H> _

= 7

e Ifa<b?then — a8 + O(nd) = n'°& 2 + O(n%) = O(n?)
o Ifa=10then — n?(log,n) = O(n%logn)
o Ifa>0b?then — a'°8™ 4 nd ((gid)logb") = O(n'o8)

Algorithms M2 |F 12 /27

Integer Multiplication

Integer Multiplication

Problem:
e Input: two n-bit numbers, A =a,,_1,a,_9,...,a9 and
B =b,_1,b,_2,...,by Where ag, by are the least significant bits.

e Output: the product A x B

Algorithms M2 |F 14 /27

Integer Multiplication

Problem:
e Input: two n-bit numbers, A =a,,_1,a,_9,...,a9 and
B =b,_1,b,_2,...,by Where ag, by are the least significant bits.

e Output: the product A x B
Elementary-school algorithm relies on two observations:

e Multiplication of a number by 2¢ is easy (append i times 0 at the end)
e Addition can be done in time O(n)
e (We of course assume that addition/multiplication of two bits is O(1))

Algorithms M2 |F 14 /27

Integer Multiplication

Problem:
e Input: two n-bit numbers, A =a,,_1,a,_9,...,a9 and
B =b,_1,b,_2,...,by Where ag, by are the least significant bits.

e Output: the product A x B
Elementary-school algorithm relies on two observations:

e Multiplication of a number by 2¢ is easy (append i times 0 at the end)
e Addition can be done in time O(n)
e (We of course assume that addition/multiplication of two bits is O(1))

Part 1: Multiply A = a,,_1...ag with b;

e (Can be donein O(n):
e Ifb; =0, resultis 0, otherwise result is A.

Algorithms M2 |F 14 /27

Integer Multiplication

Problem:
e Input: two n-bit numbers, A =a,,_1,a,_9,...,a9 and
B =b,_1,b,_2,...,by Where ag, by are the least significant bits.

e Output: the product A x B
Elementary-school algorithm relies on two observations:

e Multiplication of a number by 2¢ is easy (append i times 0 at the end)
e Addition can be done in time O(n)
e (We of course assume that addition/multiplication of two bits is O(1))

Part 1: Multiply A = a,,_1...ag with b;

e (Can be donein O(n):
e Ifb; =0, resultis 0, otherwise result is A.

Part 2: General multiplication

e Foreachic{0,...,n— 1} compute b; x A x 2°.
e Sum all these values.

e n additions of O(n) time each — O(n?)
Algorithms M2 |F 14 /27

Karatsuba’s algorithm

e Goal: do better than O(n?) for n-bit integer multiplication
e Note: Kolmogorov conjectured in the '60s that this is impossible

e He was wrong!

Algorithms M2 |F 15/27

Karatsuba’s algorithm

e Goal: do better than O(n?) for n-bit integer multiplication
e Note: Kolmogorov conjectured in the '60s that this is impossible

e He was wrong!

A divide&conquer approach

e Let A; the number made up of the first n/2 bits of A, A, the rest.
(Slmllarly B, B2)

A = A2Y%4 A
B = B12Y?4+By=
Ax B = (Al XBl)Qn—I—(Al X Bo + As XBl)Zn/Z—I—AQ X By

Algorithms M2 |F 15/27

Karatsuba’s algorithm

e Goal: do better than O(n?) for n-bit integer multiplication
e Note: Kolmogorov conjectured in the '60s that this is impossible

e He was wrong!

A divide&conquer approach

e Let A; the number made up of the first n/2 bits of A, A, the rest.
(Slmllarly B, B2)

A = A2Y%4 A
B = B12Y?4+By=
Ax B = (Al XBl)Qn—I—(Al X Bo + As XBl)Zn/Z—I—AQ X By

Complexity: T'(n) = 4T (n/2) + O(n)

Algorithms M2 |F 15/27

Karatsuba’s algorithm

e Goal: do better than O(n?) for n-bit integer multiplication
e Note: Kolmogorov conjectured in the '60s that this is impossible

e He was wrong!

A divide&conquer approach

e Let A; the number made up of the first n/2 bits of A, A, the rest.
(Slmllarly B, B2)

A = A2Y%4 A
B = B12Y?4+By=
Ax B = (Al XBl)Qn—I—(Al X Bo + As XBl)Zn/Z—I—AQ X By

Complexity: T'(n) = 4T (n/2) + O(n)
T(n) = O(n?) ~(

Algorithms M2 |F 15/27

Karatsuba’s algorithm

e Karatsuba'’s algorithm relies on divide&conquer but:

e Recognizes that the costly part is multiplication
e Manages to reduce the number of multiplications by doing more
additions/subtractions

Algorithms M2 |F 16 /27

Karatsuba’s algorithm

e Karatsuba'’s algorithm relies on divide&conquer but:

e Recognizes that the costly part is multiplication
e Manages to reduce the number of multiplications by doing more

additions/subtractions

e Recall:

AXBZ(Al XBl)Qn—I—(Al XBQ+A2XBl)2n/2—I—A2><BQ

Algorithms M2 |F 16 /27

Karatsuba’s algorithm

e Karatsuba'’s algorithm relies on divide&conquer but:

e Recognizes that the costly part is multiplication
e Manages to reduce the number of multiplications by doing more
additions/subtractions

e Recall:
AxX B = (Al X Bl)Qn—I—(Al X By + Ao X Bl)Zn/2—|—A2 X By

Calculate:
[Al X Bl
[AQ X BQ

Algorithms M2 |F 16 /27

Karatsuba’s algorithm

e Karatsuba'’s algorithm relies on divide&conquer but:

e Recognizes that the costly part is multiplication
e Manages to reduce the number of multiplications by doing more
additions/subtractions

e Recall:
AxX B = (Al X Bl)Qn—I—(Al X By + Ao X Bl)Zn/2—|—A2 X By

Calculate:
[Al X Bl
[AQ X BQ
° (A1 -+ AQ) X (Bl -+ BQ)

Algorithms M2 |F 16 /27

Karatsuba’s algorithm

e Karatsuba'’s algorithm relies on divide&conquer but:

e Recognizes that the costly part is multiplication
e Manages to reduce the number of multiplications by doing more
additions/subtractions

e Recall:
AxX B = (Al X Bl)Qn—I—(Al X By + Ao X Bl)Zn/2—|—A2 X By

Calculate:

Al X Bl

AQ X BQ

(A1 + A2) x (B1 + B2)

Key idea:

Ay X By + Ay X By = <A1—|—A2) X <B1—|—B2)—A1 X B1 — Ao X By

Algorithms M2 |F 16 /27

Karatsuba’s algorithm — Analysis

e We perform 3 (instead of 4) multiplications of numbers with n /2 digits

e Not quite true: A; + A, could have n/2 + 1 digits. Doesn’t matter
much for asymptotic analysis.

e We perform several additions/subtractions of n digit numbers.

Algorithms M2 |F 17 /27

Karatsuba’s algorithm — Analysis

e We perform 3 (instead of 4) multiplications of numbers with n /2 digits

e Not quite true: A; + A, could have n/2 + 1 digits. Doesn’t matter
much for asymptotic analysis.

e We perform several additions/subtractions of n digit numbers.

Complexity:
T(n) <3T(n/2)+ O(n)

Algorithms M2 |F 17 /27

Karatsuba’s algorithm — Analysis

e We perform 3 (instead of 4) multiplications of numbers with n /2 digits

e Not quite true: A; + A, could have n/2 + 1 digits. Doesn’t matter
much for asymptotic analysis.

e We perform several additions/subtractions of n digit numbers.
Complexity:
T(n) <3T(n/2)+ O(n)

Master Theorem
a=3b=2d=1,d <log,a=T(n) =0(n"83) ~ O(n'd) << n?

Algorithms M2 |F 17 /27

Karatsuba’s algorithm — Analysis

e We perform 3 (instead of 4) multiplications of numbers with n /2 digits

e Not quite true: A; + A, could have n/2 + 1 digits. Doesn’t matter
much for asymptotic analysis.

e We perform several additions/subtractions of n digit numbers.
Complexity:

T(n) <3T(n/2)+ O(n)

Master Theorem

a=3b=2d=1,d <log,a=T(n) =0(n"83) ~ O(n'd) << n?

Lesson: in divide&conquer, decreasing the number of sub-problems is
hugely important, because their total number increases exponentially!

Algorithms M2 |F 17 /27

Matrix Multiplication

Matrix Multiplication — Easy Algorithm

Problem:

e Input: two n x n matrices A, B
e Output: the product C = A x B
e Assumption: adding/multiplying two elements takes time O(1)

Algorithms M2 |F 19 /27

Matrix Multiplication — Easy Algorithm

Problem:

e Input: two n x n matrices A, B
e Output: the product C = A x B
e Assumption: adding/multiplying two elements takes time O(1)

Simple algorithm:

e To calculate Ci, j] we multiply row i of A with column j of B
e Forke{l,...,n}sumup Ali, k| x Blk, j]

e O(n) per element of C = O(n?).

Goal: achieve complexity less than O(n?).

Algorithms M2 |F 19 /27

Matrix Multiplication — Divide&Conquer

e We wanttocalculate C = A x B

Ajr Ar [By11 Bio] [Ci1 Cio]
A = . B= O =
[A21 AQQ] B21 B22

Algorithms M2 |F 20/ 27

Matrix Multiplication — Divide&Conquer

e We wanttocalculate C = A x B

All A12 Bll Blg [011 012]
A p— ; B p— ; C p—
[A21 AQQ] [Bgl BQQ] 021 022

Ci1 = AuBii+ ApBoy
Cia2 = A11Bi2+ A12B2
Co1 = A21B11+ Ay Boy

Cog = Ao Bia+ A9Bo

Algorithms M2 |F 20/ 27

Matrix Multiplication — Divide&Conquer

e We wanttocalculate C = A x B

Apn Ar Bi1 Bis] []
A = . B= O =
[Ao1 Ago] [Bo1 Bag Co1 O

Ci1 = AuBii+ ApBoy
Cia2 = A11Bi2+ A12B2
Co1 = A21B11+ Ay Boy

Coo = Az Bia+ A22B2
8 multiplications of (n/2) x (n/2) matrices (additions take time O(n?))

T(n) = 8T (n/2) + O(n?)

Algorithms M2 |F 20/ 27

Matrix Multiplication — Divide&Conquer

e We wanttocalculate C = A x B

All A12 Bll Blg [011 012]
A p— ; B p— ; C p—
[A21 AQQ] [Bgl BQQ] 021 022

Ci1 = AuBii+ ApBoy
Cia2 = A11Bi2+ A12B2
Co1 = A21B11+ Ay Boy

Coo = Az Bia+ A22B2
8 multiplications of (n/2) x (n/2) matrices (additions take time O(n?))
T(n) = 8T (n/2) + O(n?)

Master Theorem a = 8,b = 2,d = 2,log, a = 3 > 2 = O(n'°% %) = O(n?)

Algorithms M2 |F 20/ 27

Strassen’s algorithm

Need to calculate:

Ci1 = AuBi1+ AaBoy
Cia = A11B12+ A28
Co1 = A21B11+ Ax2Boy

Coo = A21Bi2+ AaBoo

Algorithms M2 |F 21/ 27

Strassen’s algorithm

Need to calculate:

Ci1 = AuBi1+ AaBoy
Cia = A11B12+ A28
Co1 = A21B11+ Ax2Boy

Coo = A21Bi2+ AaBoo
Will calculate:

M; = (A1 + Az)(B11 + B22)
My = (A2 + Az2)B1
Ms = Aj1(B12 — Ba)
My = A(B21 — B1i)
Ms = (A1 + A12)Boo
Mg = (A2 — A11)(B11 + Bi2)
M; = (A2 — As2)(B21 + B22)

Algorithms M2 |F 21/ 27

Strassen’s algorithm

Need to calculate:

Ci1 = AuBi1+ AaBoy
Cia = A11B12+ A28
Co1 = A21B11+ Ax2Boy

Coo = A21Bi2+ AaBoo

Will calculate:

My = (A + Ax)(B11 + B22)
???? My = (A1 + Ag2)Bn1

Ms = Aj1(B12 — Ba)
My = A(B21 — B1i)
Ms = (A1 + A12)Boo
Mg = (A2 — A11)(B11 + Bi2)
M; = (A2 — As2)(B21 + B22)

Algorithms M2 |F 21/ 27

Strassen’s algorithm

e Easy but tedious to verify that:

Cii = M+ My— Ms+ My
Ci2 = Ms+ M;s
Cop = M+ My

Coo = M;— M+ Ms+ Mg

Algorithms M2 |F 22 | 27

Strassen’s algorithm

e Easy but tedious to verify that:

Ci1 = M+ My— Ms+ My
Ci2 = Ms+ M;s
Co1 = M+ My

Cog = M;— My+ M3+ Mg

e We calculate C with 7 multiplications of (n/2) x (n/2) matrices (and
some additions)
o Complexity: O(n'8e7) ~ O(n?38!) << n?

Algorithms M2 |F 22 | 27

Median

Reminder:

e Input: unsorted array A[l...n].
e Output: median element (element which would be in A[n/2] in sorted

array)

e Easy O(nlogn) (sort)
e We have seen O(n) randomized
e Goal: O(n) deterministic

Will solve a more general problem: given A, k, return the k-th smallest
element.

Algorithms M2 |F 24 | 27

Median — Given good pivot

First idea: suppose that it’s easy to find a number p “close” to the median.

e Partition A into L, R, elements smaller, larger than p respectively.
e If|L| > k then we solve the same problem in L
e If |L| < k then we solve the problem in A\ L for k' = k — | L]

Algorithms M2 |F 25/ 27

Median — Given good pivot

First idea: suppose that it’s easy to find a number p “close” to the median.

e Partition A into L, R, elements smaller, larger than p respectively.
e If|L| > k then we solve the same problem in L
e If |L| < k then we solve the problem in A\ L for k' = k — | L]

Suppose that min(|L|, |R|) > n/3.

T(n) <T(2n/3)+ O(n)

Algorithms M2 |F 25/ 27

Median — Given good pivot

First idea: suppose that it’s easy to find a number p “close” to the median.

e Partition A into L, R, elements smaller, larger than p respectively.
e If|L| > k then we solve the same problem in L
e If |L| < k then we solve the problem in A\ L for k' = k — | L]

Suppose that min(|L|, |R|) > n/3.

T(n) <T(2n/3)+ O(n)

e Thisgives T'(n) = O(n).
e If we find a good pivot problem is easy!
e How do we find it?

e Best pivot is the median.
e This is the same as the original problem.
e We must find it in sub-linear time! (otherwise we’ll get O(nlogn))

Algorithms M2 |F 25/ 27

Find a good pivot

ldea: median is a good pivot!

We will find the median of a much smaller array.

Partition A into groups of 5 elements.

Sort each group

Let B be the array that contains the median of each group

e |Bl=n/5

e Find the median of B (recurse!). Let p be that number.
e Use algorithm of previous slide with p as pivot.

Algorithms M2 |F 26 / 27

e Key observation: p is always a pretty good pivot

e pis bigger than 3n/10 elements and smaller than 3n/10 elements
of A (why?)
e = max(|L|,|R|) < Tn/10

Algorithms M2 |F 27 | 27

e Key observation: p is always a pretty good pivot

e pis bigger than 3n/10 elements and smaller than 3n/10 elements
of A (why?)
e = max(|L|,|R|) < Tn/10

T(n) <T(n/5)+T("/10) + O(n)

Algorithms M2 |F 27 | 27

e Key observation: p is always a pretty good pivot

e pis bigger than 3n/10 elements and smaller than 3n/10 elements
of A (why?)
e = max(|L|,|R|) < Tn/10

T(n) <T(n/5)+T("/10) + O(n)

Master Theorem doesn’t work!

Algorithms M2 |F 27 | 27

e Key observation: p is always a pretty good pivot

e pis bigger than 3n/10 elements and smaller than 3n/10 elements
of A (why?)
e = max(|L|,|R|) < Tn/10

T(n) <T(n/5)+T("/10) + O(n)

Master Theorem doesn’t work!
But by induction we can prove that 7'(n) = O(n).

e Intuition 1/5+ 7/10 < 1, so the total size of subproblems increases
exponentially fast, hence O(n) term dominates.

Algorithms M2 |F 27 | 27

	Divide and Conquer
	Reminder of two basic algorithms: Binary Search and Mergesort
	Binary Search
	Binary Search
	Mergesort
	Mergesort
	Merge

	Analysis of Divide and Conquer
	Solving Recurrence Relations: Induction
	Solving Recurrence Relations: Induction
	The Master Theorem

	Integer Multiplication
	Integer Multiplication
	Karatsuba's algorithm
	Karatsuba's algorithm
	Karatsuba's algorithm – Analysis

	Matrix Multiplication
	Matrix Multiplication – Easy Algorithm
	Matrix Multiplication – Divide&Conquer
	Strassen's algorithm
	Strassen's algorithm

	Median
	Median
	Median – Given good pivot
	Find a good pivot
	Analysis

