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Dynamic Programming

• DP is a general algorithmic technique for solving optimization

problems.

• Key idea: finding the optimal solution to the input instance can be

reduced to finding the optimal solution to some smaller instance(s).

• This can then be done with the same algorithm, until we arrive at trivial

instances of constant size.
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Dynamic Programming

• DP is a general algorithmic technique for solving optimization

problems.

• Key idea: finding the optimal solution to the input instance can be

reduced to finding the optimal solution to some smaller instance(s).

• This can then be done with the same algorithm, until we arrive at trivial

instances of constant size.

So what is the difference with
Divide&Conquer?



An example: Fibonacci
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Recall the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, . . .

• F (n) = F (n− 1) + F (n− 2)

Recursive implementation:

i n t f i b o ( i n t n ){
i f ( n<=2) return 1;

return f i b o ( n−1)+ f i b o ( n −2) ; }

Implementation with loop:

i n t f i b o ( i n t n ){
i n t a=1 , b=1 , c ;

while ( n−−){
c=a+b ;

b=a ;

a=c ;

}
return a ; }



Fibonacci continued
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Let’s compare the complexities of the two algorithms:

• Second algorithm runs in O(n). (easy to see)

• First algorithm has complexity T (n) ≤ T (n− 1) + T (n− 2)
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Let’s compare the complexities of the two algorithms:

• Second algorithm runs in O(n). (easy to see)

• First algorithm has complexity T (n) ≤ T (n− 1) + T (n− 2)
• Let’s be generous: say T (n) ≤ 2T (n− 2)

• ⇒ T (n) = Ω(1.4n)
• (Correct ratio is ≈ 1.618n ≈ F (n))

• Linear vs Exponential!

• What went wrong?
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Let’s compare the complexities of the two algorithms:

• Second algorithm runs in O(n). (easy to see)

• First algorithm has complexity T (n) ≤ T (n− 1) + T (n− 2)
• Let’s be generous: say T (n) ≤ 2T (n− 2)

• ⇒ T (n) = Ω(1.4n)
• (Correct ratio is ≈ 1.618n ≈ F (n))

• Linear vs Exponential!

• What went wrong?

• The recursive algorithm solves the same sub-instances many times.

• Key idea of Dynamic Programming (difference with D&C)

Build solution bottom-up, store solutions to smaller
sub-problems so that they don’t need to be
recomputed.
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• Input: an array A of n integers.

• Output: a subsequence (not necessarily consecutive) of A that is

increasing and has maximum length.
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increasing and has maximum length.

Example:

A = [2, 5, 3, 9, 1, 4, 7, 6]

• 2, 5, 9 is a valid solution

• 2, 3, 9, 7 is not (not increasing)

• 1, 2, 3 is not (not a subsequence)
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• Input: an array A of n integers.

• Output: a subsequence (not necessarily consecutive) of A that is

increasing and has maximum length.

Example:

A = [2, 5, 3, 9, 1, 4, 7, 6]

• 2, 5, 9 is a valid solution

• 2, 3, 9, 7 is not (not increasing)

• 1, 2, 3 is not (not a subsequence)

• 2, 3, 4, 6 is an optimal solution

Objective: a polynomial-time (in n) algorithm that computes the length of

the LIS.

Note: computing the length of the optimal solution is probably good enough. . .
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• Define L(i): length of LIS of A[1 . . . i] which contains A[i].

• L(0) = 0, L(1) = 1 (base case)

• L(n) = OPT (what we want to know)
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• Define L(i): length of LIS of A[1 . . . i] which contains A[i].

• L(0) = 0, L(1) = 1 (base case)

• L(n) = OPT (what we want to know)

• L(i) = 1 + L(j), where j is the position of the second from the end

element of the LIS.

• j < i

• A[j] < A[i]



Longest Increasing Subsequence

Algorithms M2 IF 7 / 18

• Define L(i): length of LIS of A[1 . . . i] which contains A[i].

• L(0) = 0, L(1) = 1 (base case)

• L(n) = OPT (what we want to know)

• L(i) = 1 + L(j), where j is the position of the second from the end

element of the LIS.

• j < i

• A[j] < A[i]

• Therefore L(i) = maxj<i∧A[j]<A[i] L(j) + 1



Longest Increasing Subsequence

Algorithms M2 IF 7 / 18

• Define L(i): length of LIS of A[1 . . . i] which contains A[i].

• L(0) = 0, L(1) = 1 (base case)

• L(n) = OPT (what we want to know)

• L(i) = 1 + L(j), where j is the position of the second from the end

element of the LIS.

• j < i

• A[j] < A[i]

• Therefore L(i) = maxj<i∧A[j]<A[i] L(j) + 1

A = [2, 5, 3, 9, 1, 4, 7, 6]

L(i) = [1, 2, 2, 3, 1, 3, 4, 4]



Correctness and DP implementation
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• Similar to Divide&Conquer:

• Finding recursive formula for L leads to an algorithm

• Also to a correctness proof by induction:

• Suppose that L(j) is correctly computed

• → then L(i) is correctly computed because we consider all

feasible j’s (subsequence must increase) and we pick the best

(exchange argument).
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• DP: we do not implement this with recursion!
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• We construct a table L(i) bottom-up (starting from smaller values)

• Running time O(n2)

• O(n) to find max, repeated n times
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• Similar to Divide&Conquer:

• Finding recursive formula for L leads to an algorithm

• Also to a correctness proof by induction:

• Suppose that L(j) is correctly computed

• → then L(i) is correctly computed because we consider all

feasible j’s (subsequence must increase) and we pick the best

(exchange argument).

• DP: we do not implement this with recursion!

• Would take exponential time for L(n) !!

• We construct a table L(i) bottom-up (starting from smaller values)

• Running time O(n2)

• O(n) to find max, repeated n times

• From DP table we can also deduce the actual LIS.

• Can use secondary table L′(i) which stores that indices j used to

maximize L(i)



Subset Sum



Knapsack
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Story:

• Your friend gave you a 100$ gift card for Christmas. You can use it in

an online store.

• The card cannot be used in combination with other payment methods.

• The items in the store have the following values:

[14, 17, 19, 23, 28, 31, 45, 47]

• You want to select a set of items that

• Has maximum total value.

• Has total cost at most 100$.
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Story:

• Your friend gave you a 100$ gift card for Christmas. You can use it in

an online store.

• The card cannot be used in combination with other payment methods.

• The items in the store have the following values:

[14, 17, 19, 23, 28, 31, 45, 47]

• You want to select a set of items that

• Has maximum total value.

• Has total cost at most 100$.

Example:

• 45 + 47 = 92 (Greedy algorithm, buy most expensive feasible item)

• 19 + 31 + 47 = 97
• 23 + 28 + 47 = 98
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• Input: array of values A, budget B.

• Output: subset of values with sum ≤ B such that sum is maximized.
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• Input: array of values A, budget B.

• Output: subset of values with sum ≤ B such that sum is maximized.

• Break down the problem into sub-problems.

• Let P (i,W ) be the maximum value I can achieve if items A[1, . . . , i]
are available and my budget is W .

• I want to know P (n,B)
• P (i, 0) is easy, P (0,W ) is easy.
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• Input: array of values A, budget B.

• Output: subset of values with sum ≤ B such that sum is maximized.

• Break down the problem into sub-problems.

• Let P (i,W ) be the maximum value I can achieve if items A[1, . . . , i]
are available and my budget is W .

• I want to know P (n,B)
• P (i, 0) is easy, P (0,W ) is easy.

P (n,W ) = max{P (n− 1,W ), (P (n− 1,W −A[n]) +A[n])}

Explanation:

• I can either

• Ignore last element

• Or take it, gain A[n] in profit, but decrease budget accordingly.

• (Note: clearly, if A[n] > W only first choice is feasible)



Knapsack DP
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• Implementation: construct an n×B matrix to represent P (i,W ).
• Use formula of previous slide to fill each row after the previous row has

been filled.

• Complexity: O(nB). Polynomial?

• Not quite! Since B is written in binary, it could be a huge number!

We call this type of complexity pseudo-polynomial: polynomial if

all values are small.
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• Implementation: construct an n×B matrix to represent P (i,W ).
• Use formula of previous slide to fill each row after the previous row has

been filled.

• Complexity: O(nB). Polynomial?

• Not quite! Since B is written in binary, it could be a huge number!

We call this type of complexity pseudo-polynomial: polynomial if

all values are small.

Example:

A = [3, 4, 5, 6], B = 12

Item Budget – Profit

(3) 0 0 0 3 3 3 3 3 3 3 3 3

(4) 0 0 0 3 4 4 4 7 7 7 7 7

(5) 0 0 0 3 4 5 5 7 8 9 9 12

(6) 0 0 0 3 4 5 6 7 8 9 11 12



Matrix Chain Multiplication
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• Input: We are given n matrices A1, A2, . . . , An with dimensions

r0 × r1, r1 × r2, . . . , rn−1 × rn
• Output: Optimal way to compute A1 ×A2 × . . .×An.
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• Input: We are given n matrices A1, A2, . . . , An with dimensions

r0 × r1, r1 × r2, . . . , rn−1 × rn
• Output: Optimal way to compute A1 ×A2 × . . .×An.

• Important: this is a meta-problem. We want to plan how to perform the

multiplication.

• Assumption: multiplying an a× b matrix with a b× c matrix takes time

O(abc).
• Reminder: Multiplication is associative ABC = (AB)C = A(BC).
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• Input: We are given n matrices A1, A2, . . . , An with dimensions

r0 × r1, r1 × r2, . . . , rn−1 × rn
• Output: Optimal way to compute A1 ×A2 × . . .×An.

• Important: this is a meta-problem. We want to plan how to perform the

multiplication.

• Assumption: multiplying an a× b matrix with a b× c matrix takes time

O(abc).
• Reminder: Multiplication is associative ABC = (AB)C = A(BC).

Example:

A1 : 2× 100

A2 : 100× 2

A3 : 2× 2

Best order?



Matrix Multiplication
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Another example (from [DPV]):

A1 : 50× 20

A2 : 20× 1

A3 : 1× 10

A4 : 10× 100

Possible solutions:
Order Cost Analysis Cost

A1 × ((A2 ×A3)×A4) 20 · 10 + 20 · 10 · 100 + 50 · 20 · 100 120, 200
(A1 × (A2 ×A3))×A4 20 · 10 + 50 · 20 · 10 + 50 · 10 · 100 60, 200
(A1 ×A2)× (A3 ×A4) 50 · 20 + 10 · 100 + 50 · 100 7, 000

Note: greedy algorithm (make easy multiplication first), is not optimal.



Dynamic Programming solution
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Main idea: define C[i, j] for 1 ≤ i < j ≤ n as the minimum cost of

multiplying matrices Ai, . . . , Aj .

• Base case: C[i, i] = 0, C[i, i+ 1] = ri−1riri+1.

• Want to know: C[1, n].

• What is a “smaller” subproblem?
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• Want to know: C[1, n].

• What is a “smaller” subproblem?

• We will calculate C[i, j] in order of increasing (j − i).

C[i, j] = min
k:i<k<j

C[i, k] + C[k + 1, j] + ri−1rkrj
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Main idea: define C[i, j] for 1 ≤ i < j ≤ n as the minimum cost of

multiplying matrices Ai, . . . , Aj .

• Base case: C[i, i] = 0, C[i, i+ 1] = ri−1riri+1.

• Want to know: C[1, n].

• What is a “smaller” subproblem?

• We will calculate C[i, j] in order of increasing (j − i).

C[i, j] = min
k:i<k<j

C[i, k] + C[k + 1, j] + ri−1rkrj

• Explanation: there will be several multiplications that will be done for

the matrices Ai, . . . , Aj . The last multiplication will involve the product

of matrices Ai, . . . , Ak, with the product of matrices Ak+1, . . . , Aj .

• If we are given k the best way to do this is to

• Optimally do Ai . . . Ak

• Optimally do Ak+1 . . . Aj

• Do the last multiplication (fixed cost)

• We pick the best k



Complexity
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• We need to fill up the C[i, j] table

• Table has O(n2) elements.

• For each element we spend O(n) time.

• ⇒ algorithm to find optimal planning takes O(n3).
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• We need to fill up the C[i, j] table

• Table has O(n2) elements.

• For each element we spend O(n) time.

• ⇒ algorithm to find optimal planning takes O(n3).

• As before, algorithm can be modified to output the optimal planning

instead of just its cost.
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Important lessons to remember.

• Induction/Recursion are powerful techniques

• Solve problem by solving sub-problems.

• Divide&Conquer:

• Implement with recursion

• Sub-problems usually much smaller

• Analyze running time with Master Theorem/recurrence relations

• Dynamic Programming:

• More efficient/powerful by making more clever us of memory.

• Avoid recomputing the same subproblems.

• Running time usually close to memory usage.
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