
Algorithms M2–IF TD 2

October 6, 2021

1 A crowded theater

A theater has n seats, numbered 1, . . . , n. Tonight’s show is sold out, so there
are n spectators who want to enter. Every spectator has a ticket with the
number of her seat. The spectators enter the theater in a random order. We
assume that the following happens:

• The first person to enter ignores the number on his ticket and picks uni-
formly at random a seat to sit in. (What an idiot!)

• Every other spectator is nice, but a little shy. They all do the following:
first, they go to their assigned seat and if it is free, they sit there. If not,
they pick a seat uniformly at random and sit there.

Calculate the following:

1. The probability that the first spectator (the idiot) sits in someone else’s
seat.

2. The probability that the second spectator (the one who enters after the
idiot) sits in his own seat.

3. The probability that the second spectator (the one who enters after the
idiot) sits in the idiot’s seat.

4. The probability that the last spectator sits in his seat. (If it helps, start
with small values of n first).

5. Consider now a variation where the spectators go in in a completely ran-
dom order (that is, the idiot is not necessarily the first to enter). Calculate
the probability that the last spectator sits in his seat in this case.

Solution:

1. n−1
n

2. Also, n−1
n .
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3. Let A2 be the event that the idiot sits in the second spectator’s seat. Let
B be the event that the second spectator sits in the idiot’s seat. Then

Pr[B] = Pr[B | A2]Pr[A2] + Pr[B | ¬A2]Pr[¬A2]

But, Pr[B | ¬A2] = 0, because if ¬A2, then the second spectator seats in
his own seat. Furthermore, Pr[A2] = 1

n and Pr[B | A2] = 1
n−1 so we have

Pr[B] = 1
n(n−1) .

4. Let Ai be the event that the first spectator (the idiot) took the seat of
spectator i. Let Cn be the event that the last spectator sits in the correct
seat, assuming that the theater has n seats. We have

Pr[Cn] =

n∑
i=1

Pr[Cn | Ai]Pr[Ai] =
1

n

n∑
i=1

Pr[Cn | Ai]

We now observe that Pr[Cn | A1] = 1, because in this case everyone
takes the right seat. Also Pr[Cn | An] = 0, because in this case the first
spectator took the seat of the last spectator.

The main insight now is that Pr[Cn | Ai] = Pr[Cn−i+1] for all 2 ≤ i ≤
n − 1. To see this, suppose that Ai is true. Then, spectators 2, . . . , i − 1
take their assigned seats. We now have n − i + 1 remaining spectators
such that: the first among them will take a random seat, and everyone
else will act as normal. This is the same experiment, but with n − i + 1
seats remaining.

We now use induction. First, it is not hard to show that Pr[C2] =
Pr[C3] = 1

2 by analyzing all cases. Then we have

Pr[Cn] =
1

n
+

1

n

n−1∑
i=2

Pr[Cn | Ai] =
1

n
+

1

n

n−1∑
i=2

Pr[Cn−i+1] =
1

n
+
n− 2

2n
=

1

2

where we have assumed by the inductive hypothesis that Pr[Cn−i+1] = 1
2 ,

because 2 ≥ n− i+ 1 ≤ n− 1 for the values of i in the sum.

5. As shown in the previous question, the probability is still essentially 1
2 : if

the idiot is the i-th spectator, the first i− 1 spectators take their assigned
seats, so we run the same experiment in the remaining seats. There is,
however, one complication: if the idiot is last, then he will definitely take
his proper seat. Hence, the probability is n−1

2n + 1
n = n+1

2n .
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2 Another crowded theater

This is similar to the previous exercise, except now all spectators behave like
the first spectator: when they enter, they pick uniformly at random a random
seat, and sit there (ignoring their assigned number).

1. What is the probability that the i-th spectator sits in her assigned place?

2. What is the expected number of spectators sitting in their assigned places?

Solution:

1. Let Fi be the event that the seat of the i-th spectator is still free when she
enters the room, Ci be the event that the i-th spectator takes the right
seat. We have Pr[Ci] = Pr[Ci | Fi]Pr[Fi] + Pr[Ci | ¬Fi]Pr[¬Fi]. The
second term is clearly 0. Since the i-th spectator picks a seat uniformly
at random, we have Pr[Ci | Fi] = 1

n−(i−1) , because i − 1 seats are taken

when she enters. So what is left is to calculate Pr[Fi].

Let A1, A2, . . . , Ai−1 be the event that the seat of the i-th spectator is still
free after the first, second, . . . , (i− 1)-th spectators take their seats. We
have Pr[Fi] = Pr[Ai−1], Pr[A1] = n−1

n , and for all j ∈ {2, . . . , i − 1} we
have Pr[Aj ] = Pr[Aj | Aj−1]Pr[Aj−1] + Pr[Aj | ¬Aj−1]Pr[¬Aj−1]. The
second term is 0. From the first term we get Pr[Aj ] = n−j

n−j+1Pr[Aj−1].
We therefore get,

Pr[Fi] = Pr[Ai−1] =
n− i+ 1

n− i+ 2

n− i+ 2

n− i+ 3
. . .

n− 1

n
=
n− i+ 1

n

We get Pr[Ci] = 1
n for all i.

2. Let Xi be a random variable that is 1 if Ci is true and 0 otherwise.
Then the number of spectators who sit in their seats is

∑n
i=1Xi. The

expectation of this variable is

E[

n∑
i=1

Xi] =

n∑
i=1

E[Xi] =

n∑
i=1

Pr[Ci] = 1

So, we expect 1 person on average to sit in the right place (independent
of the size of the theater!)

3 Dice and Expectations

[MU Ex 2.1] Suppose we roll a fair k-sided die with the numbers 1, . . . , k on its
faces. Let X be the number that appears. What is E[X]?
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[MU Ex 2.9] Suppose we roll a fair k-sided die twice. Let X1, X2 be the two
values we obtained. What is E[min{X1, X2}]? What is E[max{X1, X2}]. Cal-
culate also E[min{X1, X2}] + E[max{X1, X2}].

Solution:
For the first question we have E[X] =

∑k
i=1 iPr[X = i] = 1

k

∑k
i=1 i =

k(k+1)
2k = k+1

2 .

For the second question, E[min{X1, X2}] =
∑k

i=1 iPr[min{X1, X2} = i].
Let us therefore calculate Pr[min{X1, X2} = i]. We have

Pr[min{X1, X2} = i] = Pr[(X1 = i) ∧ (X2 > i)] + Pr[(X2 = i) ∧ (X1 > i)] + Pr[(X1 = i) ∧ (X2 = i)] =

= Pr[X1 = i]Pr[X2 > i] + Pr[X2 = i]Pr[X1 > i] + Pr[X1 = i]Pr[X2 = i] =

=
k − i
k2

+
k − i
k2

+
1

k2
=

2k − 2i+ 1

k2

We now have

E[min{X1, X2}] =

k∑
i=1

iPr[min{X1, X2} = i] =

=

k∑
i=1

i(2k − 2i+ 1)

k2
=

= (
2

k

k∑
i=1

i)− (
2

k2

k∑
i=1

i2) +
1

k2

k∑
i=1

i

Using the fact that
∑k

i=1 i = k(k+1)
2 and

∑k
i=1 i

2 = k(k+1)(2k+1)
6 we get

E[min{X1, X2}] = (k+1)(2k+1)
6k .

Instead of calculating E[max{X1, X2}] in the same way, we observe that
for all X1, X2 we have min{X1, X2} + max{X1, X2} = X1 + X2. Therefore,
E[max{X1, X2}] = E[X1] + E[X2]− E[min{X1, X2}].

4 Fair coins again

We flip a fair coin 2n times. Let X1 be the number of times the result was
heads, and X2 the number of times the result was tails. Prove that for any
ε > 0 there exists a c such that we have Pr[X1 −X2 > c

√
n] < ε.

Solution:
Let Y = X1 − X2. Then, E[Y ] = 0, because E[X1] = E[X2] (the coin is

fair). V ar[Y ] = E[Y 2]− E[Y ]2 = E[Y 2] = E[X2
1 ] + E[X2

2 ]− 2E[X1X2].
Now we observe that E[X2

1 ] = E[X2
2 ] (because the coin is fair). Also E[X1] =

n and X1 +X2 = 2n. We therefore have
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V ar[Y ] = 2E[X2
1 ]− 2E[X1(2n−X1)] =

= 4E[X2
1 ]− 4nE[X1] =

= 4E[X2
1 ]− 4(E[X1])2 = 4V ar[X1]

Let us now calculate V ar[X1]. Let Hi, i ∈ {1, . . . , 2n} be a random variable
that takes value 1 if the i-th flip was heads and 0 otherwise. Then X1 =∑2n

i=1Hi. Also the variables Hi are independent, so V ar[X1] =
∑2n

i=1 V ar[Hi].
But V ar[Hi] = E[H2

i ] − E[Hi]
2 = 1

2 −
1
4 = 1

4 . So, V ar[X1] = n
2 , which gives

V ar[Y ] = 2n.
We now use Chebyshev’s inequality:

Pr[X1−X2 > c
√
n] = Pr[Y−E[Y ] > c

√
n] ≤ Pr[|Y−E[Y ]| > c

√
n] ≤ V ar[Y ]

c2n
=

2

c2

Therefore, setting c =
√

2/ε gives the result.

5 Secretary Problem

We are interviewing candidates for a job. Suppose there are n candidates overall.
If we had perfect information, we could assign each candidate a score from
{1, . . . , n} such that all candidates have distinct scores and the best candidate
has score n. (In other words, if we could interview everyone before deciding, we
could produce a ranking of the candidates).

The problem is that we see candidates one by one, in a random order, and
after seeing a candidate we have to immediately decide if this candidate is hired.
If not, this candidate leaves (and gets a job somewhere else).

We want to adopt a strategy that maximizes the probability of hiring the best
candidate. Suppose we adopt the following strategy: we interview m candidates
just to get a feeling of their level, but we don’t hire anyone among them; then
we hire the first candidate who is better than all the m candidates in our initial
sample.

• Let E be the event that we hire the best candidate. Show that Pr[E] =
m
n

∑n
j=m+1

1
j−1 .

• Using the approximation
∑n

i=1
1
n ≈ lnn show that

m

n
(lnn− lnm) ≤ Pr[E] ≤ m

n
(ln(n− 1)− ln(m− 1))

• Show that Pr[E] is maximized when m = n/e. How much is Pr[E] for
this value?
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Solution:
For the first question, let Ei be the event that the i-th candidate to be

interviewed is in fact the best (this candidate may or may not be interviewed
in the end, here we are talking about her order in the interview list). Then
Pr[Ei] = 1

n , since we consider all candidates with random order.
Now we have, Pr[E] =

∑n
i=1 Pr[E | Ei] · Pr[Ei] = 1

n

∑n
i=1 Pr[E | Ei].

Observe that if i ≤ m then Pr[E | Ei] = 0, because in this case we surely
reject the best candidate. We therefore have Pr[E] = 1

n

∑n
i=m+1 Pr[E | Ei].

If i > m, then (assuming Ei), the candidate in position i will be hired if and
only if we do not hire anyone among the (m+1)-th and the (i−1)-th candidates,
because if we reach candidate i, she is the best (therefore she is better than the
first m), so she is hired. Therefore, it must be the case that among the first i−1
candidates, the best is one the first m candidates of the sample. This happens
with probability m

i−1 . We therefore have: Pr[E] = m
n

∑n
i=1

1
i−1 .

For the second question we have
∑n

i=m+1
1

i−1 =
∑n−1

i=m
1
i =

∑n−1
i=1

1
i −∑m−1

i=1
1
i

For the last question we approximate Pr[E] ≈ m
n (lnn − lnm). Suppose

m = αn. We would like to find the value of α for which Pr[E] is maximized.
We have Pr[E] = −α lnα. By taking the derivative (which is − lnα− 1) we see
that this function has a maximum at α = 1

e .
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