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Administration

● Class website
http://www.lamsade.dauphine.fr/~mlampis/Cpp/

● Cours: Mondays 8:30-10:00

● TDs: Mondays 10:15-11:45 or Wednesdays 17:15-18:45 

● Check schedule and announcements on web page

● Final exam: in May/June

● No mid-term exam! (partiel)

● TDs will include programming exercises

● Grade = 70% Final Exam + 30% TDs



  

C++ overview

● Who cares?
– One of the most popular programming languages
– Widely available, multi-platform, standardized
– Powerful, lots of features, great for “low-level” 

system development
● Why not C++?

– Less “programmer-friendly” → bugs
– Too complicated??



  

C++ vs C

● History: C++ == C with added features
– Objects (!!!)
– References
– Templates
– Exceptions
– …

● Lots of C++ code is basically C code with some 
“extra sauce”

● Important: memory management, pointers, etc.



  

C++ vs Java

● Java was designed after C++
– Java == (C++) - - 
– Meaning: Java tries to keep the “good parts” of C++
– Basic syntax is same
– “Confusing” parts are simplified
– Important: Garbage collection in Java vs C++



  

My first C++ program

#include <iostream>

using namespace std;

int main()

{

        cout << "Hello world!" << endl;

        return 0;

}



  

How to run this

In a Unix/Linux terminal
$ g++ hello.cpp -o hello
$ ./hello

● Generally:

– Programs are compiled from source files (.cpp) to 
executables. g++ is the compiler.

– A program may be broken into multiple .cpp files, which are 
compiled separately and linked (more later)

– Part of a program may be in a header file (.h) (more later)



  

My first C++ program explained

#include <iostream> //Preprocessor directive for cout

using namespace std; //std::cout, std::endl otherwise

int main() //Always the main function in C++

{

        cout << "Hello world!" << endl;

        return 0; //Tell the OS that all is OK

}



  

Program Structure (in C)

● A program is a collection of functions
● A function is a sequence of statements, 

terminated by semi-colons ( ; )

int main()
{

stmt1; stmt2; stmt3; .
}



  

Program Structure (cont'd)

● Whitespace is ignored
● Statements can be grouped into blocks 

denoted with curly braces { }

int main()
{

{stmt1;} {stmt2;} {stmt3;} .
}



  

Variables

● Data in C/C++ is stored into variables
● Variables must be declared, along with type

int x = 5; //integer
double y; //floating point number, e.g. y=0.8
char c; //character, e.g. c='a'
bool b; //true or false



  

Variable Scope/Memory

● Variables must be declared before use
● Their scope is the block in which they are 

declared (usually a function)
● They can be global (bad idea)
● Declaring a variable → The computer allocated 

some space in memory to store the appropriate 
value (depends on type)



  

Dealing with simple variable types

● The = operator means “assign” the right-hand-
side to the left-hand-side (which should be 
usually a variable)

int x,y;
x = 5; //The value 5 is stored in x
y = x; //The value 5 is also stored in y
x = 3; //Now 3 is stored in x but 5 is still in y



  

Other operators

● +,-,/,*,% have standard meaning (but int/int returns int, rounded)
● ==, != → checks if x==y, returns true or false 

– (differs from x=y)
● >, <, >=, <= as usual
● ++, - - increase/decrease a variable by 1
● ||, &&, ! → logical OR, AND, NOT

– All non-zero variables are considered TRUE
● <<, >> → bit-wise shift operators
● A?B:C



  

Control Flow

● C++ (and C and Java) offers statements to 
control code flow
– if( <condition> ) stmt1; else stmt2;

<condition> is evaluated (as boolean) and if true, 
stmt1 is executed, otherwise stmt2;

–  x = 5; 
if(x) cout << “Yes”; else cout << “No”;

– if(x=5) vs if(x==5)!!!



  

Dangling else

● What is the result of the following piece of 
code?

int x = 4;
if (x > 5) 
if (x < 8) cout << “Case 1”;
else cout << “Case 2”;



  

Dangling else

● What is the result of the following piece of code?

int x = 4;
if (x > 5) 
if (x < 8) cout << “Case 1”;
else cout << “Case 2”;

● else is always “attached” to closest if
● Use {} to make code clear!!



  

For loops

for( i=0; i<5; i++){
cout << “Iteration “ << i << endl;

}
● Three expressions given

– Initialize, check, repeat
– Each can be empty

● for( ; ; ) ; //infinite loop!!
● Use , expression to make complicated inits

– for(i=0, j=5; i+j<7; i+=2, j--) 



  

While loops

while(<condition>) stmt;
● Equivalent to

for( ; <condition> ; ) stmt;
● Vice-versa

for( expr1 ; expr2 ; expr3 ) stmt;
//same as
expr1; while(expr2) { stmt; expr3; }



  

Do while loops

● This is actually slightly different

do{ 
stmt;

}while(expr);
//same as
stmt; while(expr) stmt;



  

Other flow commands

● Break
● Continue
● Switch – Case
● Goto (please don't!)



  

Functions

● A function is an independent piece of code 
meant to achieve a certain task

● Functions are given parameters as input
● They return a value of a certain type (unless 

the type is void)



  

Function example

int max( int x, int y) //define return, param types
{

if( x>y) return x;
return y;
cout << “This will never happen!”;

}
// later, in another function.
cout << max(3,5); // prints 5



  

Function declarations

● It is possible to just declare a function that will be defined 
later.

void f1(int);
void f2(){
//bla bla
f1(5); //OK because f1 declared
}
//later.
void f1(int x){ stmt; stmt; . }



  

Function exercise

● Write a function isSqRt(x,y) which is given two 
integers and returns true if x is the rounded-
down value of the square root of y.

● What is the function prototype?
● isSqrt(5,25) = ? 
● isSqrt(5,26) = ? 
● isSqrt(5,24) = ?



  

Solution

bool isSqRt(int x, int y)
{
        if (x*x <= y && (x+1)*(x+1)>y)
                return true;
        return false;
} //Can you make this code shorter?



  

Call-by-value

● A parameter is passed to a function by value
– A copy of the value is made and given to the 

function
– The function does not “touch” the original value

void f(int x) { x++; }
int main() { int y=5; f(y); cout << y; }
//Output?



  

Call-by-Value

● Call-by-Value allows us to pass complicated 
values to a function (not lvalues)

void f(int x) { x++; }
int main() { int y=5; f(3*y+2); cout << y; }
//Output?



  

Call-by-Reference

● How can a function change the parameter?

void f(int &x) { x++; } //Notice the &
int main() { int y=5; f(y); cout << y; }
//Output?

● Now, code of previous slide does not compile!



  

Why call-by-ref?

● Allows function to change parameter values
● More efficient!

– No copies are made
– A “real” variable must be given...

● If I only care about efficiency...
– void f(const int &x) { . }

● Code that attempts to change x will not compile



  

References in general

        int x = 5;
        int &y = x;
        x++;
        cout << y << endl;
//Output? Without the &?
//Compare with Java for objects.



  

Another exercise

● Implement gcd(a,b) function which returns 
greatest common divisor of (ints) a,b

● Check that a,b>0
● Use the == operator to check if a == b
● Use the fact that for a>b, 

gcd(a,b) == gcd(a-b,b)
– Recursive function!



  

Solution

int gcd(int a, int b)
{
        if(a<=0 || b<=0)
                return -1; //Error!
        if(a<b)
                return gcd(b,a); //Now a>b
        if(a==b)
                return a;
        return gcd(a-b,b);

}



  

Efficiency?

● How much space does this function use?
– Think of stack of function calls...

● Can we implement this with a loop?



  

Solution 2

int gcd(int a, int b)
{
        if(a<=0 || b<=0)
                return -1; //Error!
        while(a!=b){
                if(a>b) a-=b;
                else b-=a;
        }
        return a;
}



  

Fibonacci

● The Fibonacci sequence is F(n+2)=F(n+1)+F(n)
● 1,1,2,3,5,8,13,21,34,...
● Write a recursive function that computes the 

F(n)
● Write a loop-y function that computes F(n)
● Which is better?



  

Solution 1

int Fib(int n)
{
        if(n<=0) return -1; //Error
        if(n<=2) return 1; //Base case
        return Fib(n-1)+Fib(n-2);
}



  

Solution 2

int Fib(int n)
{
        if(n<=0) return -1; //Error
        if(n<=2) return 1; //Base case
        int nm1=1, nm2=1;
        int nm;
        while(n-->2){
                nm = nm1 + nm2;
                nm2 = nm1;
                nm1 = nm;
        }
        return nm;
}



  

The preprocessor

● Recall the command #include <iostream>
● Generally, commands that begin with # are 

preprocessor directives
● The preprocessor is called on your program 

before the compiler, and changes the program 
in basic ways



  

Preprocessor commands

● #include <header.h>
● Most common preprocessor command
● Equivalent to “copy-paste”-ing all of the file 

header.h in the line where the command appears
● Most common use:

– Declare classes, functions, global vars in a header file
– Separate implementation (cpp) from declaration
– Programming by contract



  

Preprocessor Commands

● #define MYPI 3.14
● Allows to define constants
● Meaning: replace MYPI with 3.14 everywhere 

before compilation
● Can also define “functions”

 #define ABS(x) (x>0?x:-x)
● Careful! Not the same as function! (if called with 

parameter with side-effects)



  

Preprocessor Commands

● Main use for #define → make sure files are 
included only once

#ifndef MYCONST
#define MYCONST
.
#endif

● Above ensures that … will only happen once, no 
matter how many times file is included...



  

More exercises

● Function int findSqRt(int x); //return rounded-
down sqrt(x)

● Implement with a loop
● Implement with binary search and function 

overloading(?)



  

Solution 1

int findSqRt(int x)
{
        if(x<0) return -1;
        for(int i=0; i<x; i++){
                if(i*i<=x && (i+1)*(i+1)>x)
                        return i;
        }
}



  

Solution 2

int findSqRt(int x, int l, int h);
int findSqRt(int x)
{
        if(x<0) return -1;
        return findSqRt(x,0,x);
}



  

Solution 2 cont'd

int findSqRt(int x, int l, int h)
{
        int t = (l+h)/2;
        if( t*t <= x && (t+1)*(t+1) > x) return t;
        if( t*t < x)
                return findSqRt(x,t+1,h);
        else
                return findSqRt(x,l,t);
}
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