

C++ Programming

M1 Math
Michail Lampis

michail.lampis@dauphine.fr

Administration

● Class website
http://www.lamsade.dauphine.fr/~mlampis/Cpp/

● Cours: Mondays 8:30-10:00

● TDs: Mondays 10:15-11:45 or Wednesdays 17:15-18:45

● Check schedule and announcements on web page

● Final exam: in May/June

● No mid-term exam! (partiel)

● TDs will include programming exercises

● Grade = 70% Final Exam + 30% TDs

C++ overview

● Who cares?
– One of the most popular programming languages
– Widely available, multi-platform, standardized
– Powerful, lots of features, great for “low-level”

system development
● Why not C++?

– Less “programmer-friendly” → bugs
– Too complicated??

C++ vs C

● History: C++ == C with added features
– Objects (!!!)
– References
– Templates
– Exceptions
– …

● Lots of C++ code is basically C code with some
“extra sauce”

● Important: memory management, pointers, etc.

C++ vs Java

● Java was designed after C++
– Java == (C++) - -
– Meaning: Java tries to keep the “good parts” of C++
– Basic syntax is same
– “Confusing” parts are simplified
– Important: Garbage collection in Java vs C++

My first C++ program

#include <iostream>

using namespace std;

int main()

{

 cout << "Hello world!" << endl;

 return 0;

}

How to run this

In a Unix/Linux terminal
$ g++ hello.cpp -o hello
$./hello

● Generally:

– Programs are compiled from source files (.cpp) to
executables. g++ is the compiler.

– A program may be broken into multiple .cpp files, which are
compiled separately and linked (more later)

– Part of a program may be in a header file (.h) (more later)

My first C++ program explained

#include <iostream> //Preprocessor directive for cout

using namespace std; //std::cout, std::endl otherwise

int main() //Always the main function in C++

{

 cout << "Hello world!" << endl;

 return 0; //Tell the OS that all is OK

}

Program Structure (in C)

● A program is a collection of functions
● A function is a sequence of statements,

terminated by semi-colons (;)

int main()
{

stmt1; stmt2; stmt3; .
}

Program Structure (cont'd)

● Whitespace is ignored
● Statements can be grouped into blocks

denoted with curly braces { }

int main()
{

{stmt1;} {stmt2;} {stmt3;} .
}

Variables

● Data in C/C++ is stored into variables
● Variables must be declared, along with type

int x = 5; //integer
double y; //floating point number, e.g. y=0.8
char c; //character, e.g. c='a'
bool b; //true or false

Variable Scope/Memory

● Variables must be declared before use
● Their scope is the block in which they are

declared (usually a function)
● They can be global (bad idea)
● Declaring a variable → The computer allocated

some space in memory to store the appropriate
value (depends on type)

Dealing with simple variable types

● The = operator means “assign” the right-hand-
side to the left-hand-side (which should be
usually a variable)

int x,y;
x = 5; //The value 5 is stored in x
y = x; //The value 5 is also stored in y
x = 3; //Now 3 is stored in x but 5 is still in y

Other operators

● +,-,/,*,% have standard meaning (but int/int returns int, rounded)
● ==, != → checks if x==y, returns true or false

– (differs from x=y)
● >, <, >=, <= as usual
● ++, - - increase/decrease a variable by 1
● ||, &&, ! → logical OR, AND, NOT

– All non-zero variables are considered TRUE
● <<, >> → bit-wise shift operators
● A?B:C

Control Flow

● C++ (and C and Java) offers statements to
control code flow
– if(<condition>) stmt1; else stmt2;

<condition> is evaluated (as boolean) and if true,
stmt1 is executed, otherwise stmt2;

– x = 5;
if(x) cout << “Yes”; else cout << “No”;

– if(x=5) vs if(x==5)!!!

Dangling else

● What is the result of the following piece of
code?

int x = 4;
if (x > 5)
if (x < 8) cout << “Case 1”;
else cout << “Case 2”;

Dangling else

● What is the result of the following piece of code?

int x = 4;
if (x > 5)
if (x < 8) cout << “Case 1”;
else cout << “Case 2”;

● else is always “attached” to closest if
● Use {} to make code clear!!

For loops

for(i=0; i<5; i++){
cout << “Iteration “ << i << endl;

}
● Three expressions given

– Initialize, check, repeat
– Each can be empty

● for(; ;) ; //infinite loop!!
● Use , expression to make complicated inits

– for(i=0, j=5; i+j<7; i+=2, j--)

While loops

while(<condition>) stmt;
● Equivalent to

for(; <condition> ;) stmt;
● Vice-versa

for(expr1 ; expr2 ; expr3) stmt;
//same as
expr1; while(expr2) { stmt; expr3; }

Do while loops

● This is actually slightly different

do{
stmt;

}while(expr);
//same as
stmt; while(expr) stmt;

Other flow commands

● Break
● Continue
● Switch – Case
● Goto (please don't!)

Functions

● A function is an independent piece of code
meant to achieve a certain task

● Functions are given parameters as input
● They return a value of a certain type (unless

the type is void)

Function example

int max(int x, int y) //define return, param types
{

if(x>y) return x;
return y;
cout << “This will never happen!”;

}
// later, in another function.
cout << max(3,5); // prints 5

Function declarations

● It is possible to just declare a function that will be defined
later.

void f1(int);
void f2(){
//bla bla
f1(5); //OK because f1 declared
}
//later.
void f1(int x){ stmt; stmt; . }

Function exercise

● Write a function isSqRt(x,y) which is given two
integers and returns true if x is the rounded-
down value of the square root of y.

● What is the function prototype?
● isSqrt(5,25) = ?
● isSqrt(5,26) = ?
● isSqrt(5,24) = ?

Solution

bool isSqRt(int x, int y)
{
 if (x*x <= y && (x+1)*(x+1)>y)
 return true;
 return false;
} //Can you make this code shorter?

Call-by-value

● A parameter is passed to a function by value
– A copy of the value is made and given to the

function
– The function does not “touch” the original value

void f(int x) { x++; }
int main() { int y=5; f(y); cout << y; }
//Output?

Call-by-Value

● Call-by-Value allows us to pass complicated
values to a function (not lvalues)

void f(int x) { x++; }
int main() { int y=5; f(3*y+2); cout << y; }
//Output?

Call-by-Reference

● How can a function change the parameter?

void f(int &x) { x++; } //Notice the &
int main() { int y=5; f(y); cout << y; }
//Output?

● Now, code of previous slide does not compile!

Why call-by-ref?

● Allows function to change parameter values
● More efficient!

– No copies are made
– A “real” variable must be given...

● If I only care about efficiency...
– void f(const int &x) { . }

● Code that attempts to change x will not compile

References in general

 int x = 5;
 int &y = x;
 x++;
 cout << y << endl;
//Output? Without the &?
//Compare with Java for objects.

Another exercise

● Implement gcd(a,b) function which returns
greatest common divisor of (ints) a,b

● Check that a,b>0
● Use the == operator to check if a == b
● Use the fact that for a>b,

gcd(a,b) == gcd(a-b,b)
– Recursive function!

Solution

int gcd(int a, int b)
{
 if(a<=0 || b<=0)
 return -1; //Error!
 if(a<b)
 return gcd(b,a); //Now a>b
 if(a==b)
 return a;
 return gcd(a-b,b);

}

Efficiency?

● How much space does this function use?
– Think of stack of function calls...

● Can we implement this with a loop?

Solution 2

int gcd(int a, int b)
{
 if(a<=0 || b<=0)
 return -1; //Error!
 while(a!=b){
 if(a>b) a-=b;
 else b-=a;
 }
 return a;
}

Fibonacci

● The Fibonacci sequence is F(n+2)=F(n+1)+F(n)
● 1,1,2,3,5,8,13,21,34,...
● Write a recursive function that computes the

F(n)
● Write a loop-y function that computes F(n)
● Which is better?

Solution 1

int Fib(int n)
{
 if(n<=0) return -1; //Error
 if(n<=2) return 1; //Base case
 return Fib(n-1)+Fib(n-2);
}

Solution 2

int Fib(int n)
{
 if(n<=0) return -1; //Error
 if(n<=2) return 1; //Base case
 int nm1=1, nm2=1;
 int nm;
 while(n-->2){
 nm = nm1 + nm2;
 nm2 = nm1;
 nm1 = nm;
 }
 return nm;
}

The preprocessor

● Recall the command #include <iostream>
● Generally, commands that begin with # are

preprocessor directives
● The preprocessor is called on your program

before the compiler, and changes the program
in basic ways

Preprocessor commands

● #include <header.h>
● Most common preprocessor command
● Equivalent to “copy-paste”-ing all of the file

header.h in the line where the command appears
● Most common use:

– Declare classes, functions, global vars in a header file
– Separate implementation (cpp) from declaration
– Programming by contract

Preprocessor Commands

● #define MYPI 3.14
● Allows to define constants
● Meaning: replace MYPI with 3.14 everywhere

before compilation
● Can also define “functions”

 #define ABS(x) (x>0?x:-x)
● Careful! Not the same as function! (if called with

parameter with side-effects)

Preprocessor Commands

● Main use for #define → make sure files are
included only once

#ifndef MYCONST
#define MYCONST
.
#endif

● Above ensures that … will only happen once, no
matter how many times file is included...

More exercises

● Function int findSqRt(int x); //return rounded-
down sqrt(x)

● Implement with a loop
● Implement with binary search and function

overloading(?)

Solution 1

int findSqRt(int x)
{
 if(x<0) return -1;
 for(int i=0; i<x; i++){
 if(i*i<=x && (i+1)*(i+1)>x)
 return i;
 }
}

Solution 2

int findSqRt(int x, int l, int h);
int findSqRt(int x)
{
 if(x<0) return -1;
 return findSqRt(x,0,x);
}

Solution 2 cont'd

int findSqRt(int x, int l, int h)
{
 int t = (l+h)/2;
 if(t*t <= x && (t+1)*(t+1) > x) return t;
 if(t*t < x)
 return findSqRt(x,t+1,h);
 else
 return findSqRt(x,l,t);
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

