

C++ Programming

Inheritance

M1 Math
Michail Lampis

Michail.lampis@dauphine.fr

In these slides

● Inheritance (héritage)
– The ability to define classes that “derive” from other

classes

● Basics
● Virtual functions, abstract classes
● Examples

Basic idea

● Inheritance: the ability to define a class that
extends an already defined class
– Motivation: we want to describe an “is special case

of” relation for our objects

– Examples:
● A teacher is a special case of an employee
● A square is a special case of a rectangle
● A cat is a case of a mammal which is a special case of an

animal

Basic idea

● Why do we need this? Typical scenario:
● We have already programmed the general class

– The special case is almost the same...

– → It could have some extra fields

– → It could have some extra methods

– → It could change some methods

● But the differences are so small that it doesn't
make sense to re-program everything...

Example (from notes)

class Agent {

int _x, _y;

public:

Agent (int x = 0, int y = 0);

void set (int x, int y);

void affiche();

};
● A class that implements an agent (e.g. in a game)

– Data: x,y coordinates

– Methods: set, print (affiche), implemented in the obvious way

Example (from notes)

● A special case: a mobile agent

class AgentMobile : public Agent {

int _xBut, _yBut;

public:

AgentMobile (int x, int y, int xBut, int yBut) {

set (x, y);

_xBut = xBut;

_yBut = yBut;

}

};

Example explained

● Key line:

class AgentMobile : public Agent
● Meaning: the AgentMobile class extends the

Agent class
– → All members (fields and methods) of Agent are

automatically “inherited” into AgentMobile

– But the AgentMobile class adds some new fields
(_xBut, _yBut) as well as new methods (in this
example only a constructor)

Example use:

Agent a1(2,3);

a1.affiche();

AgentMobile a2(2,3,4,5);

a2.affiche();
● This prints (2,3) twice

– Why?

– How does this work?

How it works

● Because AgentMobile inherits Agent, each time an
AgentMobile object is created:
– We allocate enough memory for an Agent object plus

the extra fields of AgentMobile

– The (default) constructor for Agent is called

● This is similar to an object that contains another
object, but conceptually different (why?)

● AgentMobile objects also contain the same
methods as Agent objects.

Demonstration

● Consider this version of the Agent constructor

Agent::Agent(int x, int y){

 cout << "x=" << x << " y=" << y << endl;

 _x = x;

 _y = y;

}
● Recall the constructor declaration inside the class

Agent (int x = 0, int y = 0);
● What is the result of the following code?

Agent a1(2,3);

AgentMobile a2(2,3,4,5);

Demonstration

● Output:

x=2 y=3

x=0 y=0
● Why?

– First line is easy (constructor for Agent)

– Second line: before constructor for AgentMobile, the
default constructor for Agent is called.

Calling another constructor

● We can define the AgentMobile constructor to
call the Agent constructor appropriately (with
parameters)
AgentMobile::AgentMobile(int x, int y, int xBut, int yBut) :Agent(x,y) {

 _xBut = xBut;

 _yBut = yBut;

}

What we know so far

● We can define classes that “extend” previous
classes.
– These “child” classes inherit all fields and methods of

their “parents”.

● Constructors/Destructors will be automatically
called, in the order of inheritance to build new
objects.

● Why do these things exist/make our life easier?
– Main reason: polymorphism

Ignoring details

● The main advantage of using inheritance is that
we can deal with child class object while
ignoring their type.
– We simple see them as objects of the more general

class

– This is the most basic example of polymorphism,
the idea that an object can have “many forms”.

Example

● Consider this function

void test(Agent a){ a.affiche(); }
● This function takes an Agent parameter. However, the

following is legal.

 Agent a1(2,3);

 AgentMobile a2(2,3,4,5);

 test(a1);

 test(a2); //Here we treat a2 as an Agent

Example

● This is more commonly used with pointers

 Agent *p;

 Agent a1(2,3);

 AgentMobile a2(2,3,4,5);

 p = &a1;

 p->affiche();

 p = &a2; //This is OK!!

 p->affiche();

Overriding functions

● There is one serious problem with what we
have done so far
– AgentMobile inherits the affiche() method

– But it doesn't work as we would like!

● Solution: override it! (that is, redefine it)

First attempt

● Add affiche() declaration to AgentMobile

class AgentMobile : public Agent {

… public:

 void affiche(); … };
● Implement it

void AgentMobile::affiche() {

 cout << "(" << _x << "," << _y << ")" << "->" ;

 cout << "(" << _xBut << "," << _yBut << ")" << endl;

}

Access restrictions

● The previous program does not compile!
– A member of the AgentMobile class (affiche()),

cannot access a private member of the Agent class
(x, y)

– Solution: declare fields which are mean to be
accessed by child classes protected instead of
private.

Second attempt

● Change Agent class

class Agent {

 protected: int _x, _y; … };
● Add affiche() method to AgentMobile class

void AgentMobile::affiche() {

 cout << "(" << _x << "," << _y << ")" << "->" ;

 cout << "(" << _xBut << "," << _yBut << ")" << endl;

}

Using the overridden method

Agent a1(2,3);

AgentMobile a2(2,3,4,5);

a1.affiche();

a2.affiche();
● The first call is for Agent::affiche()
● The second for AgentMobile::affiche()
● How does the compiler know?

– From the type of a2

Override + Polymorphism

● Consider the following:

 Agent *p;

 AgentMobile a2(2,3,4,5);

 p = &a2;

 p -> affiche();
● What does this print?
● Which affiche() is called?

Static binding

● The compiler decides which method to call by
looking at the declared type of the object, not the
actual run-time type the object has.

● In the previous example:

p -> affiche();
● p has been declared as pointer to Agent

– → Agent::affiche() is called

– Even though p is actually pointing to an AgentMobile!

Virtual functions

● The previous behavior can be avoided by using
virtual functions

● A virtual function is a function that will be
resolved dynamically
– When the program runs, to execute the command

p->affiche(), the program first examines what type
p really has

– Then, the most specific affiche() found is called

Example

● First, change the Agent class

class Agent { ...

virtual void affiche (); … }
● This means that we intend to dynamically

override this method
● If a child class also defines it, call to affiche will

be resolved at run-time

Example

● Now, we don't need to change anything in
AgentMobile class
– Adding the virtual keyword there is recommended

 Agent *p;

 AgentMobile a2(2,3,4,5);

 p = &a2;

 p -> affiche();
● This code now calls AgentMobile::affiche()

Virtual destructors

● Consider the following

class A { … };

class B : public A { … };

A *p = new B; //Is this OK? Which constructor?

delete p; //Is this OK? Which destructor?

Explanation

● The first line is OK
– We are allocating an object of type B. An A pointer

can point to it (polymorphism). B's constructor is
used.

● The second line is a problem
– Since p is pointing to A, this will call ~A()

– This will not clean up the object properly!

– Solution: make A's destructor virtual

Pure virtual functions

● We can also define functions which must be
overridden

● This is common when designing an interface
– An abstract base class which does not yet contain

enough information to do useful things

– But its special cases do

– We want them all to have the same uniform
methods

An example

class Polygon {

 protected:

 int width, height;

 public:

 Polygon (int a, int b) : width(a), height(b) { }

 virtual int area (void) =0; //CANNOT calculate this!!

 void printarea()

 { cout << this->area() << '\n'; }

};

Example (continued)

class Rectangle: public Polygon {

 public:

 Rectangle(int a,int b) : Polygon(a,b) { }

 int area() //Override!

 { return width*height; }

};

Example (continued)

class Triangle: public Polygon {

 public:

 Triangle(int a,int b) : Polygon(a,b) {}

 int area() //Override!

 { return width*height/2; }

};

Example (continued)

● What will this print?

 Polygon * ppoly1 = new Rectangle (4,5);

 Polygon * ppoly2 = new Triangle (4,5);

 ppoly1->printarea();

 ppoly2->printarea();

Example (continued)

● This?

Polygon * ppoly1 = new Polygon (4,5);

ppoly1 → printarea();
● Compiler error!

Summary

● Inheritance:
– Create derived classes which keep methods/fields

– Intended to model “is special case of”

● Polymorphism
– Write code for general objects, treat special ones

– Methods can be overridden to work correctly for the
child classes

– This can be done dynamically on run-time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

