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In these slides

● Inheritance (héritage)
– The ability to define classes that “derive” from other 

classes

● Basics
● Virtual functions, abstract classes
● Examples



  

Basic idea

● Inheritance: the ability to define a class that 
extends an already defined class
– Motivation: we want to describe an “is special case 

of” relation for our objects

– Examples:
● A teacher is a special case of an employee
● A square is a special case of a rectangle
● A cat is a case of a mammal which is a special case of an 

animal



  

Basic idea

● Why do we need this? Typical scenario:
● We have already programmed the general class

– The special case is almost the same...

– → It could have some extra fields

– → It could have some extra methods

– → It could change some methods

● But the differences are so small that it doesn't 
make sense to re-program everything...



  

Example (from notes)

class Agent {

int _x, _y;

public:

Agent (int x = 0, int y = 0);

void set (int x, int y);

void affiche( );

};
● A class that implements an agent (e.g. in a game)

– Data: x,y coordinates

– Methods: set, print (affiche), implemented in the obvious way



  

Example (from notes)

● A special case: a mobile agent

class AgentMobile : public Agent {

int _xBut, _yBut;

public:

AgentMobile (int x, int y, int xBut, int yBut) {

set (x, y);

_xBut = xBut;

_yBut = yBut;

}

};



  

Example explained

● Key line:

class AgentMobile : public Agent
● Meaning: the AgentMobile class extends the 

Agent class
– → All members (fields and methods) of Agent are 

automatically “inherited” into AgentMobile

– But the AgentMobile class adds some new fields 
(_xBut, _yBut) as well as new methods (in this 
example only a constructor)



  

Example use:

Agent a1(2,3);

a1.affiche();

AgentMobile a2(2,3,4,5);

a2.affiche();
● This prints (2,3) twice

– Why?

– How does this work?



  

How it works

● Because AgentMobile inherits Agent, each time an 
AgentMobile object is created:
– We allocate enough memory for an Agent object plus 

the extra fields of AgentMobile

– The (default) constructor for Agent is called

● This is similar to an object that contains another 
object, but conceptually different (why?)

● AgentMobile objects also contain the same 
methods as Agent objects.



  

Demonstration

● Consider this version of the Agent constructor

Agent::Agent(int x, int y){

   cout << "x=" << x << " y=" << y << endl;

   _x = x;

   _y = y;

}
● Recall the constructor declaration inside the class

Agent (int x = 0, int y = 0);
● What is the result of the following code?

Agent a1(2,3);

AgentMobile a2(2,3,4,5);



  

Demonstration

● Output:

x=2 y=3

x=0 y=0
● Why?

– First line is easy (constructor for Agent)

– Second line: before constructor for AgentMobile, the 
default constructor for Agent is called.



  

Calling another constructor

● We can define the AgentMobile constructor to 
call the Agent constructor appropriately (with 
parameters)
AgentMobile::AgentMobile(int x, int y, int xBut, int yBut) :Agent(x,y) {

                _xBut = xBut;

                _yBut = yBut;

}



  

What we know so far

● We can define classes that “extend” previous 
classes.
– These “child” classes inherit all fields and methods of 

their “parents”.

● Constructors/Destructors will be automatically 
called, in the order of inheritance to build new 
objects.

● Why do these things exist/make our life easier?
– Main reason: polymorphism



  

Ignoring details

● The main advantage of using inheritance is that 
we can deal with child class object while 
ignoring their type.
– We simple see them as objects of the more general 

class

– This is the most basic example of polymorphism, 
the idea that an object can have “many forms”.



  

Example

● Consider this function

void test(Agent a){  a.affiche(); }
● This function takes an Agent parameter. However, the 

following is legal.

    Agent a1(2,3);

    AgentMobile a2(2,3,4,5);

    test(a1);

    test(a2); //Here we treat a2 as an Agent



  

Example

● This is more commonly used with pointers

        Agent *p;

        Agent a1(2,3);

        AgentMobile a2(2,3,4,5);

        p = &a1;

        p->affiche();

        p = &a2; //This is OK!!

        p->affiche();



  

Overriding functions

● There is one serious problem with what we 
have done so far
– AgentMobile inherits the affiche( ) method

– But it doesn't work as we would like!

● Solution: override it! (that is, redefine it)



  

First attempt

● Add affiche( ) declaration to AgentMobile

class AgentMobile : public Agent {

…  public:

  void affiche(); … };
● Implement it

void AgentMobile::affiche() {

       cout << "(" << _x << "," << _y << ")"  << "->" ;

       cout << "(" << _xBut << "," << _yBut << ")"  << endl;

}



  

Access restrictions

● The previous program does not compile!
– A member of the AgentMobile class (affiche( ) ), 

cannot access a private member of the Agent class 
(x, y)

– Solution: declare fields which are mean to be 
accessed by child classes protected instead of 
private.



  

Second attempt

● Change Agent class

class Agent {

        protected:   int _x, _y; … };
● Add affiche( ) method to AgentMobile class

void AgentMobile::affiche() {

       cout << "(" << _x << "," << _y << ")"  << "->" ;

       cout << "(" << _xBut << "," << _yBut << ")"  << endl;

}



  

Using the overridden method

Agent a1(2,3);

AgentMobile a2(2,3,4,5);

a1.affiche();

a2.affiche();
● The first call is for Agent::affiche( )
● The second for AgentMobile::affiche( )
● How does the compiler know?

– From the type of a2



  

Override + Polymorphism

● Consider the following:

        Agent *p;

        AgentMobile a2(2,3,4,5);

        p = &a2;

        p -> affiche();
● What does this print?
● Which affiche( ) is called?



  

Static binding

● The compiler decides which method to call by 
looking at the declared type of the object, not the 
actual run-time type the object has.

● In the previous example:

p -> affiche();
● p has been declared as pointer to Agent

– → Agent::affiche( ) is called

– Even though p is actually pointing to an AgentMobile!



  

Virtual functions

● The previous behavior can be avoided by using 
virtual functions

● A virtual function is a function that will be 
resolved dynamically
– When the program runs, to execute the command 

p->affiche( ), the program first examines what type 
p really has

– Then, the most specific affiche( ) found is called



  

Example

● First, change the Agent class

class Agent { ...

virtual void affiche ( ); … }
● This means that we intend to dynamically 

override this method
● If a child class also defines it, call to affiche will 

be resolved at run-time



  

Example

● Now, we don't need to change anything in 
AgentMobile class
– Adding the virtual keyword there is recommended

      Agent *p;

      AgentMobile a2(2,3,4,5);

      p = &a2;

      p -> affiche();
● This code now calls AgentMobile::affiche( )



  

Virtual destructors

● Consider the following

class A { … };

class B : public A { … };

A *p = new B; //Is this OK? Which constructor?

delete p; //Is this OK? Which destructor?



  

Explanation

● The first line is OK
– We are allocating an object of type B. An A pointer 

can point to it (polymorphism). B's constructor is 
used.

● The second line is a problem
– Since p is pointing to A, this will call ~A( )

– This will not clean up the object properly!

– Solution: make A's destructor virtual



  

Pure virtual functions

● We can also define functions which must be 
overridden

● This is common when designing an interface
– An abstract base class which does not yet contain 

enough information to do useful things

– But its special cases do

– We want them all to have the same uniform 
methods



  

An example

class Polygon {

  protected:

    int width, height;

  public:

    Polygon (int a, int b) : width(a), height(b) { }

    virtual int area (void) =0; //CANNOT calculate this!!

    void printarea( )

      { cout << this->area() << '\n'; }

};



  

Example (continued)

class Rectangle: public Polygon {

  public:

    Rectangle(int a,int b) : Polygon(a,b) { }

    int area() //Override!

      { return width*height; }

};



  

Example (continued)

class Triangle: public Polygon {

  public:

    Triangle(int a,int b) : Polygon(a,b) {}

    int area() //Override!

      { return width*height/2; }

};



  

Example (continued)

● What will this print?

  Polygon * ppoly1 = new Rectangle (4,5);

  Polygon * ppoly2 = new Triangle (4,5);

  ppoly1->printarea();

  ppoly2->printarea();



  

Example (continued)

● This?

Polygon * ppoly1 = new Polygon (4,5);

ppoly1 → printarea( );
● Compiler error!



  

Summary

● Inheritance:
– Create derived classes which keep methods/fields

– Intended to model “is special case of”

● Polymorphism
– Write code for general objects, treat special ones

– Methods can be overridden to work correctly for the 
child classes

– This can be done dynamically on run-time
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