

C++ Programming

Arrays

M1 Math
Michail Lampis

michail.lampis@dauphine.fr

Arrays

● Correspond to notion of 1-dimensional vector
● Allow to store many items of same type
● Items are accessed with an int index

int a[5]; //Allocate an array of 5 integers
a[2] = 23; //Write the value at position 2
cout << (a[2] + 1) << endl;

Arrays

● Arrays should be declared only inside functions
● Their size must be given in declaration

int a[5]; //Array of five integers
int x;
x=...;
int b[2*x]; //Array whose size depends on x

// Note! Is x>0?

Accessing array elements

● Use the [] operators to access individual elements
● Numbering starts at 0 and goes up to size-1

int a[3];
a[0] = 17; a[1] = 23; a[2] = 75; // a = [17,23,75];

● Allowed to initialize array at declaration

int a[3] = {17,23,75}; //Same as before
● Note: a[i] is an lvalue (it can be referenced)

Out of bounds

● Careful with the following:

int a[5];
a[0] = 2; //OK
a[-2] = 5; //?
a[7] = 8; //?
a[a[0]] = 3; //OK

● No compiler or (predictable) run-time error!

Easy example

● The following loop finds the max in an int array

int data[size];
int max = data[0];
//The following loop follows a standard pattern
for (int i = 0; i<size; i++){

max = data[i] > max? data[i] : max ;
}

Example 2

● Write a loop that calculates the average value
of an int array

Example 2

● Write a loop that calculates the average value
of an int array

int data[size];

double avg;

for(int i=0; i<size; i++)

avg += data[i];

avg = avg/size;

Arrays and Functions

● It is possible to pass an array as a function
parameter

● Semantics are call-by-reference, not call-by-
value
– Reason: array is not copied

– Only reference to array is passed

find_max

int find_max(int data[], int size)
{
int max = data[0];
for (int i = 0; i<size; i++)

max = data[i] > max? data[i] : max ;
return max;
}

Arrays and Functions

● Note the prototype

int find_max(int data[], int size)
● The first parameter has type array, of

unspecified size
– The size cannot specified (it will be ignored)

● Imperative to supply the array size as parameter
– Impossible to recover otherwise inside the function

Why we need the size

int f(int c[])
{
 cout << sizeof(c) << endl;
}

int main()
{
 int a[10];
 cout << sizeof(a) << endl; //Prints 40
 f(a); //Prints what?
}

Array pitfalls

● Common operators may not compile, or not
work as expected

● Example 1

int a[3] = {3,4,5};
int b[3];
b = a; //?

Array pitfalls

● Common operators may not compile, or not
work as expected

● Example 2

int a[3] = {3,4,5};
int b[3] = {3,4,5};
if(a == b) cout << “The same”! << endl;
//Will this print anything?

Explanation

● The identifiers a,b in the previous programs are
allowed to be considered as variables
themselves (of type array) BUT
– They cannot be written on (const type)

– Their actual value is NOT the array, but the place in
memory where the array is stored

● This will become more familiar once we talk
about pointers

Returning arrays

● Suppose that I want to write a function that, given n, return
the array [1,2,3,...,n]

● First try

int [] myarray(int n) //WRONG!
{
int a[n];
for(int i=0;i<n;i++) a[i] = i+1;
return a;
}

Returning Arrays

● Arrays cannot be returned for two reasons
– Returning an array is forbidden by the C++ rules

(stupid reason)

– The memory where the array is stored is destroyed
when the function terminates!

– Recall: Normally, return copies its operand (with
the = operation). The = operation does not work on
arrays...

● Solution: pointers (next class)

An example

● The sieve of Eratosthenes
● Write a program that decides which of the

integers 1,2,...,n are primes
● For each i

– If i is prime mark all multiples of i as non-prime

Eratosthenes

Bool isPrime[n];
int i;
for(i=0;i<n;i++) isPrime[i]=true; //Initially all prime
for(i=2;i<n;i++)

if(isPrime[i]){
cout << i << “ is prime” << endl;
int j = 2*i;
while(j<n){ isPrime[j] = false; j+=i; }

}

Arrays and Strings

● Traditionally in C strings are just char arrays

char myword[] = “hello”;
if(myword[1] == 'e') { .. } //this will be executed

● myword[5] == 0 // note that this is not '0' but '\0'
● C++ has a string class

– Much nicer, more convenient, less buggy

– Avoid C-type strings if possible

Resizing Arrays?

● Once an array has been declared its value is
fixed

● What if I need more/less space?
● Two solutions:

– Vector class (to be seen later)

– Dynamic memory management (new, delete)

● Second solution is needed also to return arrays

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

