

C++ Programming

Pointers

M1 Math
Michail Lampis

michail.lampis@dauphine.fr

Pointers: General idea

● C++ includes many data types (int, char,
double, ...)

● One special class of data types are pointers
● A variable x can be of type pointer to T, where

T is another C++ data type
● This means that the value of x is the address in

memory of some piece of data of type T

(think T == int for a concrete example)

The computer's memory

● For the purposes of C++ programming, think of
the computer's memory as a long tape, made
up of blocks

● Each block in the tape can hold one byte (8
bits) of data

● Every block has an address
● Think of the blocks in memory as being

consecutively numbered from 1 to ...

Simple memory allocation

● So far, your C++ programs contain variable
declarations

int x;

int a[5];
● The first line means "allocate 4 bytes of space,

call this area in memory x"
● The second line means "allocate 20 bytes of

space, call this area a"

Simple memory allocation

● So far, your C++ programs contain variable
declarations

int x;

int a[5];
● Where will your program's memory be?

● This depends on many runtime factors
● In any case, the blocks corresponding to x, a, have

some address

Pointer

● A pointer variable is a variable that is allowed to
store such an address

● Pointer variables are declared using the *
operator. Example:

int * p; // p is a variable with type "Pointer to int"
● Generally <Type> * x; declares x to be a pointer

to data of type <Type>.

Giving values to pointers

● Pointer values can be initialized to "point" to
other variables

int x = 5;

int *p = &x;
● This means "p is a pointer to int. Its value is the

address where x is stored"

Pointer values

● But what value does that give to a pointer?

int x = 5;

int *p = &x;

cout << x << endl;

cout << p << endl;
● The first line prints 5
● The second line prints something unpredictable

● It is the address where x (5) is stored when the
program runs

How to read a pointer

● Reading an address directly is usually useless
● What we want to do is tell the program to

"dereference" a pointer, that is, read the data
the pointer "points to".

cout << p << endl;

cout << *p << endl;
● The second line means "the value written in the

address stored in p"

Dereferencing

● Generally, the * operator can be applied to a
pointer to type T

● The result is an expression of type T
● It is also an lvalue. Example:

int x = 5;

int *p = &x;

*p = 6;

cout << x << endl; //Will print 6

Why do we need this?

● Pointers are useful in C++ for several reasons
● To make your life miserable (No. 1 source of bugs)
● To allow pass-by-ref semantics (can also be done

with references)
● To allow dynamic memory management

● The last is by far the most important. We will
see more later...

Pass-by-ref with pointers

● Recall:

void f(int x){ x++; }

int main() {

int y = 5;

f(y);

cout << y << endl; //Prints 5, f has no effect

}

Pass-by-ref with pointers

● Recall:

void f(int *x){ *x++; }

int main() {

int y = 5;

f(&y); //Parameter must match declared type!

cout << y << endl; //Prints 6

}

Pointers vs. Arrays

● In C/C++ pointers and arrays are basically the
same thing

int a[5];

int *p;

p = &a[0];

p = a; //These two are THE SAME

Pointers vs. Arrays

● Generally, a variable of type "Array of T" is of
the same type as a variable of type "(const)
pointer to T"

● Only difference

int a[5];

int x;

a = &x; //Error! (though types are OK)

Consequence: pointer arithmetic

● We can pretend that a pointer is an array and
vice-versa

int x=5;

int *p = &x;

p[0] = 6; //This writes on x

Consequence: pointer arithmetic

● We can pretend that a pointer is an array and
vice-versa

int a[5];

int *p = a;

p[2] = 6; //This writes on a[2]

*(p+2) = 7; //This also writes on a[2]

The [] operator

● The semantics of the [] operator are:
● It is applied on an expression p of type "pointer to

T" and an integer i
● It evaluates to

*(e+i)

● This interpretation works for both arrays and
pointers

Arrays/Pointers and functions

● Recall that functions can take arrays as
parameters
● But size cannot be declared!
● Reason: in reality the parameter is a pointer

int f(int a[]);

int f(int *a); //These are the same!!

Complicated Pointers

● We can declare a variable to be of type "pointer
to T", where T is a type

● This is also a type
● -> We can declare a variable to be a pointer to

a pointer to int

int **pp; int *p; int x = 5;

p = &x;

pp = &p;

**pp = 6; //This writes on x!

Returning pointers

● Recall that functions cannot return arrays
● But they can return pointers, which is the same

thing!

int *f(int x); //OK!

Bad Example

int *create_array(int size)

{

int myarray[size];

int *p = myarray;

return p;

}
● This compiles OK, but is a BAD IDEA
● Reason: p is pointing to freed memory
● Solution: dynamic memory allocation

Dynamic memory allocation

● The main reason for using pointers
● Two operators

● new T, returns a pointer to T. Allocates new memory
to store data of type T

● Delete p, frees the memory pointed to by pointer p

● These allow us to handle memory outside the
"stack"

● More in next class...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

