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Dynamic Memory Allocation

● Data in your program lives (mostly) in two areas
– The stack

– The heap

● So far, we have been using only the stack



  

The stack

● The stack contains local variables of each 
block/function call

● The reason it is called a stack is that it 
grows/shrinks in one direction (up/down)

● The stack follows the execution path/function 
calls



  

The stack and recursive functions

● Recall the factorial function

int fact(int n){

if(n<2) return 1;

return n*fact(n-1);

}
● This function will allocate n different integers 

before it calculates anything...



  

The stack

● Good about the stack
– Fast

– Clean

● Bad about the stack
– Data is “lost” when a function terminates (except 

things we return)

– Often, memory needs and execution flow do not go 
in parallel



  

The heap

● The heap allows us to store data in arbitrary 
places in memory

● Idea: a function f can start building some object
– The caller function/main program should have 

access to this object when f terminates

● Heap manipulation in C++ is done with
– new 

– delete



  

An example program

● You have a function that calculates two magic 
numbers

● How to return them both to main?

int magic(){

int n1 = 42; int n2 = 2112;

return n1; //???

}



  

Solution: first attempt

● Why not return an array?

int [ ] magic(){

int n[2] = {42 , 2112};

return n;

}



  

Solution: first attempt

● Why not return an array?

int * magic(){

int n[2] = {42 , 2112};

return n;

}



  

Solution: first attempt

● Why not return an array?

int * magic(){

int n[2] = {42 , 2112};

return n;

}

…

int *p = magic();

cout << p[0] << p[1] << endl;



  

How about this?

//All in one function!

int n[2] = {42 , 2112};

return n;

int *p = n;

cout << p[0] << p[1] << endl;



  

Shrinking stack

● The problem with the first solution is that the 
memory for n is lost when the function 
terminates

● The return statement (correctly) return the 
address of n[0]

● But this address points to a place in memory 
which may not hold the value 42 any more!



  

new

● We can allocate heap memory using new
● Syntax: new T, returns a pointer to a (new) place in 

memory that can hold data of type T.
– This is why you NEED to understand pointers

int * p = new int; //p is pointing to a new int
● Syntax: new T[size], returns a pointer to a (new) 

array of size elements of type T

int * p = new int[2]; //p is pointing to a new array



  

Back to our problem

int * magic(){

//int n[2] = {42 , 2112};

int * n = new int[2];

n[0] = 42; n[1] = 2112;

return n;

}

…

int *p = magic();

cout << p[0] << p[1] << endl;



  

Managing the heap

● The new operator gives us great power!
– We can allocate memory whenever we need it

– The memory stays around as long as we need it

● With great power comes great responsibility!
– Stack memory is cleaned up automatically, but we 

must take care of cleaning up heap memory we don't 
need!

– We also need to make sure we don't “lose” memory 
we have



  

What is the problem?

int * magic1(){...}

int * magic2(){...}

int * magic3(){...}

…

int *p = magic1();

cout << p[0] << p[1] << endl;

p = magic2();

p = magic3();



  

Memory leak

● The program of the previous slide is a classic 
example of a “Memory Leak”

● We allocate some memory with new, but then LOSE 
its address (by overwriting p)

● This makes this memory UNREACHABLE
● However, the memory is still allocated for our 

program...
● Do this enough, and your program will crash/slow 

down the computer (see eg Firefox!)



  

delete

● When we no longer need some memory we have 
allocated in the heap we can “free” it with the delete 
operator

● Syntax: delete p; where p is a pointer returned  by new.

int * p = new int; … ; delete p;
● Syntax: delete [ ] p; where p is a pointer returned by 

new [ ]

int * p = new int[5]; … ; delete [ ] p;



  

Guess the output

int *p1, *p2; //Note: not int *p1, p2; why?

p1 = new int;

p2 = new int;

*p1 = 100;

*p2 = 200;

cout << *p1 << *p2 << endl;



  

Guess the output

int *p1, *p2; //Note: not int *p1, p2; why?

p1 = new int;

p2 = new int;

*p1 = 100;

*p2 = 200;

cout << *p1 << *p2 << endl;

delete p1;

p1 = p2;

cout << *p1 << *p2 << endl;



  

Guess the output

int *p1, *p2; //Note: not int *p1, p2; why?

p1 = new int;

p2 = new int;

*p1 = 100;

*p2 = 200;

cout << *p1 << *p2 << endl;

delete p1;

p1 = p2;

cout << *p1 << *p2 << endl;

*p2 = 300;

cout << *p1 << *p2 << endl;

//What's missing?



  

Find the bug

int *p1, *p2; //Note: not int *p1, p2; why?

p1 = new int;

p2 = new int;

*p1 = 100;

*p2 = 200;

cout << *p1 << *p2 << endl;

p1 = p2;

cout << *p1 << *p2 << endl;

*p1 = 300;

cout << *p1 << *p2 << endl;



  

Find the bug

int *p1, *p2, *p3;

p1 = new int;

p2 = new int;

p3 = p1;

*p1 = 100;

*p2 = 200;

cout << *p1 << *p2 << endl;

delete p1;

p1 = p2;

cout << *p1 << *p2 << endl;

*p1 = 300;

cout << *p1 << *p2 << endl;

delete p2;



  

Dangling pointers

● The last situation is a disaster waiting to happen 
(mild exaggeration)

● Problem: p3 is still pointing to the same area in 
memory as p1

● But this area in memory has now been deleted!
● Though p1 has changed value, you may still 

(accidentally try to access it through p3)



  

Find the bug

int *p1, *p2, *p3;

p1 = new int;

p2 = new int;

p3 = p1;

*p1 = 100;

*p2 = 200;

cout << *p1 << *p2 << endl;

//Clean everything up

delete p1;

delete p2;

delete p3;



  

No double-deletes!

● The previous program makes the dangling 
pointer problem worse

● Through p3, we try to delete the same area of 
memory twice!

● This is not allowed and will probably crash you 
program immediately



  

Heap operations summary

● Allocate memory with 
– new T; //returns T*

– new T[ ]; //return T*

● Free memory with delete / delete [ ]
● Don't forget to delete what you allocate!
● Don't lose references to what you allocate!
● Don't keep pointing to what you deleted!
● No double deletes!



  

Back to Pointers/Arrays

● Warm-up exercise: write a function that checks if 
two positive int arrays are permutations of each 
other (they contain the same elements in perhaps 
different order)

● Task 1: define function prototype
● Task 2: algorithm?
● Task 3: program...
● (Spec: function should not change the two arrays)



  

One solution

bool isPerm(int a[ ], int b[ ], int size)

//Assume a,b have size size, only positive ints

{

        int i,j;

        for(i=0; i<size; i++){

                for(j=0;j<size;j++){

                        if(a[i] == b[j]){

                                b[j] = -1;

                                break; //Only exits the inner loop

                        }

                }

        }

        for(i=0; i<size; i++){

                if(b[i]!=-1) return false;

        }

        return true;

}



  

Make a copy of an array

● Given an array b of size size, construct an array 
c of the same size and the same elements (a 
copy)

● Recall, c = b does not work for arrays



  

Array copy

//Given int b[size]

int *c = new int [size]; //Allocate memory

for(int i=0; i<size; i++){

c[i] = b[i];

}

… //do something with c

delete [ ] c; //Don't forget!



  

Array copy (old-fashioned)

//Given int *b, int size

int *c = new int [size]; //Allocate memory

while(size--){

*c++ = *b++;

}

● Why does this work?? Pointer arithmetic
– Note that this ruins the variable “size”

● This kind of copy is common in C code...



  

2-d Arrays

● C++ allows us to allocate 2-d arrays (or even 
higher dimensions) naturally:

int a[5][5];

int i;

a[2][3] = 7; //OK!

for(i=0; i<5; i++) cout << a[i] << endl; 

//What does this mean?



  

2-d Arrays

● Recall the semantics of the [ ] operator
– Is applied to expression of type “pointer to T”

– Returns type T

● The expression a[2][3] can be read as (a[2])[3]
– == apply [3] to the expression a[2]

– → a[2] is an int *

● The way to view 2-d arrays in C++ is as arrays 
of pointers



  

2-d Arrays (stack)

int a[5][5];

int i;

a[2][3] = 7; //OK!

for(i=0; i<5; i++) cout << a[i] << endl; 

//What does this mean?
● This prints (in hex):

0x7fff97c34040

0x7fff97c34054

0x7fff97c34068

0x7fff97c3407c

0x7fff97c34090
● → Array is stored row-by-row by default...



  

Pointers to Pointers

● Pointer/Array equivalence is essential for 2-d 
Arrays

● Recall: in int a[5][5] the expression a[2] has type 
int *
– What type does a have?

– When [2] is applied to it we get int *

– [ ] removes one *

– → Answer: int **  (!!)



  

Pointers to Pointers

● Recall: we can define pointers to any valid type, 
including pointer types

int x = 2;

int *p = &x;

int **pp = &p; //What about int **pp = p?

cout << **pp; //Output?



  

Pointers to Pointers

int x = 2, y=3;

int *p = &x;

int **pp = &p; 

*pp = &y; //?

cout << *p; //Output?



  

2-d Arrays on the heap

● We need ptrs to ptrs to dynamically allocate 2-d 
arrays

int **a = new int[5][5];

a[2][3] = 17; //OK
● Unfortunately, the first line doesn't work!

– The second line is OK!

– Recall ptr-array equivalence



  

2-d Arrays on the heap

● A dynamic 2-d arrays is an arrays of arrays
– → it is an array of pointers!

● Step 1: define a to have appropriate type

int **a;



  

2-d Arrays on the heap

● Step 2: allocate space for the pointers that will 
hold each row

int ** a = new int * [rows];
● Recall how the new operator works 

– (new Type [size])

– This means: an array of size rows, each element of 
which has type (int *)



  

2-d Arrays on the heap

● Step 3: allocate each row individually

int ** a = new int * [rows];

for (int i=0; i<rows; i++)

a[i] = new int [columns];

● Note: memory is not guaranteed to be allocated 
consecutively (as happens on stack)!

● When we are done, we need to delete all this...



  

2-d Arrays on the heap

● How to free a 2-d array allocated in this way
– Step 1: free each row

– Step 2: free arrays of row pointers

for(int i=0; i<rows; i++)

delete [ ] a[i];

delete [ ] a;



  

Irregular 2-d Arrays

● Create a triangular array of “rows” rows:
– Row r contains r+1 elements

– The numbers 0,1,...,r+1



  

Triangular array

int ** a = new int * [rows];

for(int i=0; i<rows; i++){

a[i] = new int [i+1];

for(int j=0; j<i+1; j++)

a[i][j] = j;

}



  

Const pointers

● We have seen the const keyword

const int x = 5;

x = 6; //Compiler error!
● Its semantics are a little complicated when 

pointers are involved



  

Const pointers

● We have seen the const keyword

const int x = 5;

x = 6; //Compiler error!
● Which of these is an error?

int i,j;

const int *p = &i;

p[0] = 2;

p = &j;



  

Const pointers

● p[0] = 2 is an error
– The definition of p means it is pointing to a constant 

int

● To make p a “constant pointer” that always 
points to the same place use

int * const p;
● More generally, semantics of * can be a little 

confusing with regards to precedence



  

Precedence of *

● The [ ] operator has higher priority

int *a[4];

int (*a)[4];

int *(*a)[4];



  

Precedence of *

● The [ ] operator has higher priority

int *a[4]; //Pointer to 4-int array (Type: int *)

int (*a)[4]; //Array of 4 int ptrs (Type: int **)

int *(*a)[4]; //Pointer to array of 4 int ptrs (Type: 
int ***)



  

Precedence of *

● Also, the () operator has higher priority
– Wait, is () an operator?

int * f (bool); //f is a function that takes bool 
returns int

int (* f) (bool); //f is pointer to function that...



  

Higher-order functions

● Usually associated with functional languages, can be used 
in C/C++

int add(int x, int y) { return x+y; }

int sub(int x, int y) { return x-y; }

int (*f)(int, int);

f = add;

cout << f(2,3) << endl;

f = sub;

cout << f(2,3) << endl;
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