

C++ Programming

Pointers and Memory Management

M1 Math
Michail Lampis

michail.lampis@dauphine.fr

Dynamic Memory Allocation

● Data in your program lives (mostly) in two areas
– The stack

– The heap

● So far, we have been using only the stack

The stack

● The stack contains local variables of each
block/function call

● The reason it is called a stack is that it
grows/shrinks in one direction (up/down)

● The stack follows the execution path/function
calls

The stack and recursive functions

● Recall the factorial function

int fact(int n){

if(n<2) return 1;

return n*fact(n-1);

}
● This function will allocate n different integers

before it calculates anything...

The stack

● Good about the stack
– Fast

– Clean

● Bad about the stack
– Data is “lost” when a function terminates (except

things we return)

– Often, memory needs and execution flow do not go
in parallel

The heap

● The heap allows us to store data in arbitrary
places in memory

● Idea: a function f can start building some object
– The caller function/main program should have

access to this object when f terminates

● Heap manipulation in C++ is done with
– new

– delete

An example program

● You have a function that calculates two magic
numbers

● How to return them both to main?

int magic(){

int n1 = 42; int n2 = 2112;

return n1; //???

}

Solution: first attempt

● Why not return an array?

int [] magic(){

int n[2] = {42 , 2112};

return n;

}

Solution: first attempt

● Why not return an array?

int * magic(){

int n[2] = {42 , 2112};

return n;

}

Solution: first attempt

● Why not return an array?

int * magic(){

int n[2] = {42 , 2112};

return n;

}

…

int *p = magic();

cout << p[0] << p[1] << endl;

How about this?

//All in one function!

int n[2] = {42 , 2112};

return n;

int *p = n;

cout << p[0] << p[1] << endl;

Shrinking stack

● The problem with the first solution is that the
memory for n is lost when the function
terminates

● The return statement (correctly) return the
address of n[0]

● But this address points to a place in memory
which may not hold the value 42 any more!

new

● We can allocate heap memory using new
● Syntax: new T, returns a pointer to a (new) place in

memory that can hold data of type T.
– This is why you NEED to understand pointers

int * p = new int; //p is pointing to a new int
● Syntax: new T[size], returns a pointer to a (new)

array of size elements of type T

int * p = new int[2]; //p is pointing to a new array

Back to our problem

int * magic(){

//int n[2] = {42 , 2112};

int * n = new int[2];

n[0] = 42; n[1] = 2112;

return n;

}

…

int *p = magic();

cout << p[0] << p[1] << endl;

Managing the heap

● The new operator gives us great power!
– We can allocate memory whenever we need it

– The memory stays around as long as we need it

● With great power comes great responsibility!
– Stack memory is cleaned up automatically, but we

must take care of cleaning up heap memory we don't
need!

– We also need to make sure we don't “lose” memory
we have

What is the problem?

int * magic1(){...}

int * magic2(){...}

int * magic3(){...}

…

int *p = magic1();

cout << p[0] << p[1] << endl;

p = magic2();

p = magic3();

Memory leak

● The program of the previous slide is a classic
example of a “Memory Leak”

● We allocate some memory with new, but then LOSE
its address (by overwriting p)

● This makes this memory UNREACHABLE
● However, the memory is still allocated for our

program...
● Do this enough, and your program will crash/slow

down the computer (see eg Firefox!)

delete

● When we no longer need some memory we have
allocated in the heap we can “free” it with the delete
operator

● Syntax: delete p; where p is a pointer returned by new.

int * p = new int; … ; delete p;
● Syntax: delete [] p; where p is a pointer returned by

new []

int * p = new int[5]; … ; delete [] p;

Guess the output

int *p1, *p2; //Note: not int *p1, p2; why?

p1 = new int;

p2 = new int;

*p1 = 100;

*p2 = 200;

cout << *p1 << *p2 << endl;

Guess the output

int *p1, *p2; //Note: not int *p1, p2; why?

p1 = new int;

p2 = new int;

*p1 = 100;

*p2 = 200;

cout << *p1 << *p2 << endl;

delete p1;

p1 = p2;

cout << *p1 << *p2 << endl;

Guess the output

int *p1, *p2; //Note: not int *p1, p2; why?

p1 = new int;

p2 = new int;

*p1 = 100;

*p2 = 200;

cout << *p1 << *p2 << endl;

delete p1;

p1 = p2;

cout << *p1 << *p2 << endl;

*p2 = 300;

cout << *p1 << *p2 << endl;

//What's missing?

Find the bug

int *p1, *p2; //Note: not int *p1, p2; why?

p1 = new int;

p2 = new int;

*p1 = 100;

*p2 = 200;

cout << *p1 << *p2 << endl;

p1 = p2;

cout << *p1 << *p2 << endl;

*p1 = 300;

cout << *p1 << *p2 << endl;

Find the bug

int *p1, *p2, *p3;

p1 = new int;

p2 = new int;

p3 = p1;

*p1 = 100;

*p2 = 200;

cout << *p1 << *p2 << endl;

delete p1;

p1 = p2;

cout << *p1 << *p2 << endl;

*p1 = 300;

cout << *p1 << *p2 << endl;

delete p2;

Dangling pointers

● The last situation is a disaster waiting to happen
(mild exaggeration)

● Problem: p3 is still pointing to the same area in
memory as p1

● But this area in memory has now been deleted!
● Though p1 has changed value, you may still

(accidentally try to access it through p3)

Find the bug

int *p1, *p2, *p3;

p1 = new int;

p2 = new int;

p3 = p1;

*p1 = 100;

*p2 = 200;

cout << *p1 << *p2 << endl;

//Clean everything up

delete p1;

delete p2;

delete p3;

No double-deletes!

● The previous program makes the dangling
pointer problem worse

● Through p3, we try to delete the same area of
memory twice!

● This is not allowed and will probably crash you
program immediately

Heap operations summary

● Allocate memory with
– new T; //returns T*

– new T[]; //return T*

● Free memory with delete / delete []
● Don't forget to delete what you allocate!
● Don't lose references to what you allocate!
● Don't keep pointing to what you deleted!
● No double deletes!

Back to Pointers/Arrays

● Warm-up exercise: write a function that checks if
two positive int arrays are permutations of each
other (they contain the same elements in perhaps
different order)

● Task 1: define function prototype
● Task 2: algorithm?
● Task 3: program...
● (Spec: function should not change the two arrays)

One solution

bool isPerm(int a[], int b[], int size)

//Assume a,b have size size, only positive ints

{

 int i,j;

 for(i=0; i<size; i++){

 for(j=0;j<size;j++){

 if(a[i] == b[j]){

 b[j] = -1;

 break; //Only exits the inner loop

 }

 }

 }

 for(i=0; i<size; i++){

 if(b[i]!=-1) return false;

 }

 return true;

}

Make a copy of an array

● Given an array b of size size, construct an array
c of the same size and the same elements (a
copy)

● Recall, c = b does not work for arrays

Array copy

//Given int b[size]

int *c = new int [size]; //Allocate memory

for(int i=0; i<size; i++){

c[i] = b[i];

}

… //do something with c

delete [] c; //Don't forget!

Array copy (old-fashioned)

//Given int *b, int size

int *c = new int [size]; //Allocate memory

while(size--){

*c++ = *b++;

}

● Why does this work?? Pointer arithmetic
– Note that this ruins the variable “size”

● This kind of copy is common in C code...

2-d Arrays

● C++ allows us to allocate 2-d arrays (or even
higher dimensions) naturally:

int a[5][5];

int i;

a[2][3] = 7; //OK!

for(i=0; i<5; i++) cout << a[i] << endl;

//What does this mean?

2-d Arrays

● Recall the semantics of the [] operator
– Is applied to expression of type “pointer to T”

– Returns type T

● The expression a[2][3] can be read as (a[2])[3]
– == apply [3] to the expression a[2]

– → a[2] is an int *

● The way to view 2-d arrays in C++ is as arrays
of pointers

2-d Arrays (stack)

int a[5][5];

int i;

a[2][3] = 7; //OK!

for(i=0; i<5; i++) cout << a[i] << endl;

//What does this mean?
● This prints (in hex):

0x7fff97c34040

0x7fff97c34054

0x7fff97c34068

0x7fff97c3407c

0x7fff97c34090
● → Array is stored row-by-row by default...

Pointers to Pointers

● Pointer/Array equivalence is essential for 2-d
Arrays

● Recall: in int a[5][5] the expression a[2] has type
int *
– What type does a have?

– When [2] is applied to it we get int *

– [] removes one *

– → Answer: int ** (!!)

Pointers to Pointers

● Recall: we can define pointers to any valid type,
including pointer types

int x = 2;

int *p = &x;

int **pp = &p; //What about int **pp = p?

cout << **pp; //Output?

Pointers to Pointers

int x = 2, y=3;

int *p = &x;

int **pp = &p;

*pp = &y; //?

cout << *p; //Output?

2-d Arrays on the heap

● We need ptrs to ptrs to dynamically allocate 2-d
arrays

int **a = new int[5][5];

a[2][3] = 17; //OK
● Unfortunately, the first line doesn't work!

– The second line is OK!

– Recall ptr-array equivalence

2-d Arrays on the heap

● A dynamic 2-d arrays is an arrays of arrays
– → it is an array of pointers!

● Step 1: define a to have appropriate type

int **a;

2-d Arrays on the heap

● Step 2: allocate space for the pointers that will
hold each row

int ** a = new int * [rows];
● Recall how the new operator works

– (new Type [size])

– This means: an array of size rows, each element of
which has type (int *)

2-d Arrays on the heap

● Step 3: allocate each row individually

int ** a = new int * [rows];

for (int i=0; i<rows; i++)

a[i] = new int [columns];

● Note: memory is not guaranteed to be allocated
consecutively (as happens on stack)!

● When we are done, we need to delete all this...

2-d Arrays on the heap

● How to free a 2-d array allocated in this way
– Step 1: free each row

– Step 2: free arrays of row pointers

for(int i=0; i<rows; i++)

delete [] a[i];

delete [] a;

Irregular 2-d Arrays

● Create a triangular array of “rows” rows:
– Row r contains r+1 elements

– The numbers 0,1,...,r+1

Triangular array

int ** a = new int * [rows];

for(int i=0; i<rows; i++){

a[i] = new int [i+1];

for(int j=0; j<i+1; j++)

a[i][j] = j;

}

Const pointers

● We have seen the const keyword

const int x = 5;

x = 6; //Compiler error!
● Its semantics are a little complicated when

pointers are involved

Const pointers

● We have seen the const keyword

const int x = 5;

x = 6; //Compiler error!
● Which of these is an error?

int i,j;

const int *p = &i;

p[0] = 2;

p = &j;

Const pointers

● p[0] = 2 is an error
– The definition of p means it is pointing to a constant

int

● To make p a “constant pointer” that always
points to the same place use

int * const p;
● More generally, semantics of * can be a little

confusing with regards to precedence

Precedence of *

● The [] operator has higher priority

int *a[4];

int (*a)[4];

int *(*a)[4];

Precedence of *

● The [] operator has higher priority

int *a[4]; //Pointer to 4-int array (Type: int *)

int (*a)[4]; //Array of 4 int ptrs (Type: int **)

int *(*a)[4]; //Pointer to array of 4 int ptrs (Type:
int ***)

Precedence of *

● Also, the () operator has higher priority
– Wait, is () an operator?

int * f (bool); //f is a function that takes bool
returns int

int (* f) (bool); //f is pointer to function that...

Higher-order functions

● Usually associated with functional languages, can be used
in C/C++

int add(int x, int y) { return x+y; }

int sub(int x, int y) { return x-y; }

int (*f)(int, int);

f = add;

cout << f(2,3) << endl;

f = sub;

cout << f(2,3) << endl;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

