

C++ Programming

Input/Output and Files

M1 Math
Michail Lampis

michail.lampis@dauphine.fr

Basic C++ I/O

● We have already seen how we can read/write basic things

#include <iostream>

using namespace std;

...

int x;

cout << “Give me a number” << endl;

cin >> x;

cout << “You gave me “ << x << endl;

Streams

● In the previous slide we were using the cout
and cin objects

● These objects belong in the general category of
streams, which is the class C++ uses for I/O

● Basic stream objects
– cout : ostream

– cin : istream

– cerr : ostream

Using streams

● Include the header file <iostream> (this is where
all the definitions are contained)

● Main operators are << and >>
● << “sends” something to an ostream and

returns the stream again

cout << x1 << x2 << x3 << …

● >> “gets” something from an istream

cin >> x1 >> x2 >> x3 >> ...

Reminder: << and >>

● Recall that << and >> have a standard meaning
in C/C++: binary shift

(23 << 2) == 92

(23 >> 2) == 5
● However, when applied to stream objects,

these operators have a different meaning
– This is called operator overloading. We will see

more of it later...

Strings in C/C++

● Recall that for C strings of characters are stored as arrays
of type char

char *myword = “Hello”;

//myword[1] == 'e'
● Normally, C-type strings are terminated with a special '\0'

character. Thus, their size can be figured out by looking for
this character

● THIS IS A PROBLEM!
– No.1 cause of security bugs in C programs: user is allowed to

supply a string, and we trust them to give reasonable length...

Strings in C++

● In C++ it is strongly preferred to use the special type (class)
string to store strings.

string x = “Hello”;
● Advantage: memory management more robust
● Also: many high-level operations easy

string y = “ World”;

cout << (x+y) << endl; //OK

cout << (x<y) << endl; //Alphabetic ordering
● Array-like access still works: x[1] == 'e';

Strings and cin

● Normally cin tries to “parse” the input into the
appropriate type

int x;

string y;

cin >> x;

cin >> y;
● An input like “5 15” would set x=5 and y=”15”
● What if the user does not enter a number for x?

Strings and cin

● cin also tries to parse the input when reading a
string

string x;

cin >> x;
● If input is “Hello world” x will be set to “Hello” →

strings are broken at whitespaces

Strings and cin

● A solution to this is the getline() function, which
reads a whole line up to the enter key

string x;

getline(cin, x); //Sets x to be equal to a full line

Reading/Writing in files

● Files (stored on the OS filesystem) can also be
used as streams

● Include the header <fstream>
● Use one of the following classes:

– ofstream: output file stream (for writing only)

– ifstream: input file stream (for reading)

– fstream: file stream (for both)

File streams

● Example:

 ofstream myfile;

 myfile.open("testfile.txt");

 myfile << "Hello file!" << endl;

 myfile.close();
● You must first open a (text) file
● Then write on it as with cout
● When done, you must close it

Opening a file

● The first step to start our I/O stream on a file is to
open it, with the open method

● Syntax: myfile.open(NAME, MODE)
● MODE specifies options on how the file is opened

– ios::in → for input

– ios::out → for output

– ios::ate → start (reading) at the end

– ios::app → append (start writing at the end)

– ios::binary → not a text file

Opening a file

● More than one options can be used with the | (bitwise
OR) operator

ofstream myfile;

myfile.open(“test.txt”, ios::app | ios::out)
● The file can be opened at declaration (useful)

ofstream myfile(“test.txt”, ios::app); //equivalent
● Check for errors!

if(myfile.is_open()) { … OK … }

Reading a text file

● An ifstream can be read in the same way as cin
(with the >> operator)

● You can also use the .eof() function to check if
you have reached the end of the file

● Typical pattern

while(!myfile.eof()) { … read more … }

Exercise

● Write a program that reads a text file made up
of integers (one in each line)

● The size of the file is not known beforehand
● Your program must find and print the largest

integer in the file

Solution

ifstream myfile;

myfile.open("testfile.txt");

int max;

myfile >> max;

while(!myfile.eof()){

 int x;

 myfile >> x;

 if(x>max) max = x;

}

myfile.close();

cout << "The max was " << max << endl;

Binary files

● For files that do not contain text we cannot use the <<
and >> operators

● We can however use .read and .write
● Syntax:

myfile.read(position,size);
● Def: position is a char *. It is a generic pointer to the

place in memory where data will be stored. You need
to allocate this!

● Size is the number of bytes to read from the file

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

