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Structures

● Structures are a general way to store more 
complicated objects in C/C++

● General syntax:

struct generalName {

declare member1;

declare member2;...

};

struct generalName obj1, obj2;



  

An example

● C does not have a type for complex numbers
● Recall: a complex number is z = a + ib

struct complex {

double a;

double b;

};

struct complex z1,z2;



  

Struct = a new type

● The idea here is that when we define a 
structure we define a new type of object

● Hence, we can define variables that have this 
type

● At declaration, enough memory is allocated to 
store all member properties of the structure 
object



  

Accessing inside members

● Data stored inside a struct can be accessed 
using the . operator

struct Complex z1;

z1.a = 7.2;

z1.b = 5;

...



  

The = operator

● The = operator is automatically defined for all 
structures

struct Complex z1,z2;

z1.a = 7.2;

z1.b = 5.3;

z2 = z1; //This is OK, will copy value-by-value 



  

The = operator

● Be careful!
– The meaning of the = operator when applied to 

structures/objects is different in C++ and Java

– Recall: in Java = copies a reference when dealing 
with objects

– In C++, = copies field-by-field

– This may or may not be what you want...



  

Hidden =s

● Consider the following program

struct Complex add(struct Complex z1, struct Complex a2)

{

struct Complex res;

res.a = z1.a + z2.a;

res.b = z1.b + z2.b;

return res;

}



  

Hidden =s

● The previous program is correct
● However, it performs a number of = operations

– For each parameter, a new copy is allocated and 
data copied field-by-field

– For the return value, a new copy is allocated and 
res is copied to it

– Note: This is desirable, since res is deleted when 
the function terminates!



  

Performance

● The fact that so many copies are generally 
performed means that performance degrades 
when passing/returning structs

● Generally: we NEVER  pass/return a struct
– We prefer to pass/return a pointer/reference to a 

struct

– This is better because only a pointer (~8bytes) must 
be copied, independent of the complexity of the 
struct



  

Passing pointers

● Consider the following program

struct Complex* add(struct Complex* z1, struct Complex* a2)

{

struct Complex res;

res.a = (*z1).a + (*z2).a;

res.b = (*z1).b + (*z2).b;

return &res;

}



  

Wait a minute

● The previous program contains a serious 
mistake...

● What is the problem with the previous 
program?



  

Pointers to struct

● The mistake was the res will be deleted, so its 
address should not be returned...

● But the syntax is correct:
– (*z1) is an expression that dereferences the pointer 

z1

– Its type is struct Complex

– Therefore, we can apply . to it.



  

Fixed (?)

● Consider the following program

struct Complex add(struct Complex z1, struct Complex a2)

{

struct Complex *res = new struct Complex;

(*res).a = (*z1).a + (*z2).a;

(*res).b = (*z1).b + (*z2).b;

return res;

}

● This is correct, but someone has to eventually delete the new struct



  

Pointers to structures

● Because pointer are used heavily when 
dealing with structures, we avoid the (*p).field 
notation

● Instead we can use the - > operator

struct Complex *z1 = new struct Complex;

(*z1).a = 2.2;

z1->a = 2.2; //These two are equivalent!



  

Declaring a structure

● The declaration struct Complex { … }; describes the 
general form of the objects of type Complex, that is, 
their class.

● C allows variables to be declared in the same line:

struct Complex {double a; double b;} z1,z2;
● C also allows anonymous structs!

struct {double a; double b;} z3,z4;
● Careful! z1,z3 don't have the same type (z1=z3 fails)



  

Inside a structure

● We can declare as many fields as we like, using 
standard conventions for variable names.

● Members can be arrays (of predetermined size)
– The = operator will also copy array fields!

● Members can be structures

struct C2 { struct Complex z; } zz;

zz.z.a = 5.2;

● Members can be pointers



  

Structure inside a structure

● Consider the following declaration

struct myStruct {

int a;

struct myStruct s;

} obj1;
● How much memory does such an object need?

– Infinite!!!



  

Structure inside a structure

● Thankfully, the previous example does not compile
– MyStruct has not been defined yet!

● But this does:

struct myStruct {

int a;

struct myStruct *s;

} obj1;
● This is strange, but is used A LOT!



  

A linked list of structures

● Consider the following declaration

struct Node {

int data;

struct Node * next;

};
● Each object contains a number and a pointer to the next 

object
● We can build a list of ints!
● Its size is unlimited!



  

A simple linked list

struct Node *cur,*prev;

cur = prev = NULL;

for(int i=0; i<20; i++){

cur = new struct Node;

cur - > data = i;

cur - > next = prev;

prev = cur;

}



  

A simple linked list

● At the end of the previous program
– What is cur pointing to?

– What is cur->data?

– What is cur->next?

– What is cur->next->next->next->data?

● NULL (or 0) is a special value that signifies that 
a pointer points to NOTHING
– NULL ->data is a run-time error (seg fault)



  

Exercise

● Write a simple loop that prints all the numbers 
stored in a linked list

● Given: a pointer to the first element



  

Solution

void print_list(struct Node *head)

{

while(head){

cout << head->data;

head = head->next;

}

}



  

Classes

● A class is a more sophisticated version of a 
struct

● Allows us to define “objects”
– Initially, C++ was called “C with objects”

● Defining a class uses similar syntax and has a 
similar logic to defining a struct



  

Example

class Complex {

double a;

double b;

};

class Complex z1,z2;



  

What's the difference?

● Let's start with some easy differences:
– In C++ you don't have to use the class keyword 

when defining instances of an object (i.e. variables). 
You only need it to define the general class;

– Complex z1; //this would be correct

– In fact, this is also true for struct, in C++. However, 
it is not true in C.

– Using the struct/class keyword is allowed in C++



  

Access restrictions

● A second easy difference is that classes protect 
inside data from being accessed.

class Complex {

double a;

double b;

};

Complex z1,z2;

z1.a = 5.2; //Error!



  

Public and Private

● The fields of a class are divided into public and private
● By default, all fields are private
● We can specify the public part using the public: label

class Complex {

public:

double a;

double b;

};

Complex z1,z2;

z1.a = 5.2; //OK



  

Methods

● The most important difference is that classes 
may also contain methods, that is, functions 
which are applied on the object.

● By default the methods of an object can access 
all fields of the class, including private fields



  

Method example

class Complex {

double a,b;

public:

double abs();

};

Complex z1; …

cout << z1.abs( ); //OK



  

Methods

● You can think of methods as fields of a class, 
which happen to be functions

● Methods can be accessed as any other field
– With the . operator

– With the - > operator (if using a pointer)

● Can a structure contain a function field?
– In C?

– In C++?



  

Struct vs Class

● Consider the following C code

struct Complex {

                double a;

                double b;

                double (*abs)();

        } z1;

…

z1.abs( );



  

Struct vs Class

● The code of the previous page is valid!
● Each item of type (struct) Complex contains a 

function (abs) represented by a pointer
● Before calling it we need to set this function 

pointer to something
● But if we do, it works in the usual C++/Java way
● So why invent a new language, if this worked in 

C? 



  

Class = Data + Methods

● Answer: in the previous example all instances of 
the Complex structure contain a function (pointer) 
abs

● But this function could be different for two different 
instances!

● In a class we define the functions as part of the 
general pattern of the class

● Think of it as setting abs to the same function each 
time an instance is declared



  

Defining methods

● Inline

class Complex {

double a,b;

public:

double abs() { return a*a+b*b; };

};
● This is usually only done for very simple 

functions



  

Defining methods

class Complex {

double a,b;

public:

double abs(); //only declaration

};

…

double Complex::abs( )

{ return a*a + b*b; }



  

Objects in a Program

● Notice that we can completely separate the definition of 
an object from the implementation of the functions.

● This is intentional!
● Typically C++ programs are written as follows:

– A header file (.h) contains the definition of the relevant class

– An implementation file (.cpp) contains the implementation

– Any program that needs to use a class needs to include only 
the header file

– The .cpp files can be compiled separately



  

A tiny project

● Header file: complex.h

//This file defines the Complex class

#ifndef COMPLEX_H

#define COMPLEX_H

class Complex {

        double a;

        double b;

        public: 

        void set(double,double);

        double abs();

};             

#endif 



  

A tiny project

● Implementation file

#include "complex.h"

void Complex::set(double newa,double newb)

{

        a = newa;

        b = newb;

}       

double Complex::abs()

{       

        return a*a+b*b;

}   



  

A tiny project

● A program that uses the Complex class

#include <iostream>

#include "complex.h"

using namespace std;

int main()

{       

        Complex z1;

        double a,b;

        cout << "Enter a,b" << endl;

        cin >> a >> b;

        z1.set(a,b);

        cout << z1.abs() << endl;

}



  

More about methods

● As we mentioned methods are functions associated 
with an object

● When a method is called, it is applied on a specific 
object instance

z1.abs( );
● A method is allowed to refer to the private fields of a 

class
– This means → we are referring to the private fields of 

this particular instance.



  

More about methods

● A methods can also refer to the (whole of the) 
instance on which it was called

● For this we can use the this keyword

void Complex::set(double newa,double newb)

{

        this - > a = newa;

        this - > b = newb;

}       



  

The this keyword

● The keyword this returns a pointer to the 
current object

● If there is no ambiguity, writing this->a and a are 
equivalent
– But there may be ambiguity, since we are allowed to 

reuse a as the name of a parameter or local variable

● Useful: when we want to return a ref to the 
current object, or call other methods on it.
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