

C++ Programming

Structures, Classes, Linked Lists

M1 Math
Michail Lampis

michail.lampis@dauphine.fr

Structures

● Structures are a general way to store more
complicated objects in C/C++

● General syntax:

struct generalName {

declare member1;

declare member2;...

};

struct generalName obj1, obj2;

An example

● C does not have a type for complex numbers
● Recall: a complex number is z = a + ib

struct complex {

double a;

double b;

};

struct complex z1,z2;

Struct = a new type

● The idea here is that when we define a
structure we define a new type of object

● Hence, we can define variables that have this
type

● At declaration, enough memory is allocated to
store all member properties of the structure
object

Accessing inside members

● Data stored inside a struct can be accessed
using the . operator

struct Complex z1;

z1.a = 7.2;

z1.b = 5;

...

The = operator

● The = operator is automatically defined for all
structures

struct Complex z1,z2;

z1.a = 7.2;

z1.b = 5.3;

z2 = z1; //This is OK, will copy value-by-value

The = operator

● Be careful!
– The meaning of the = operator when applied to

structures/objects is different in C++ and Java

– Recall: in Java = copies a reference when dealing
with objects

– In C++, = copies field-by-field

– This may or may not be what you want...

Hidden =s

● Consider the following program

struct Complex add(struct Complex z1, struct Complex a2)

{

struct Complex res;

res.a = z1.a + z2.a;

res.b = z1.b + z2.b;

return res;

}

Hidden =s

● The previous program is correct
● However, it performs a number of = operations

– For each parameter, a new copy is allocated and
data copied field-by-field

– For the return value, a new copy is allocated and
res is copied to it

– Note: This is desirable, since res is deleted when
the function terminates!

Performance

● The fact that so many copies are generally
performed means that performance degrades
when passing/returning structs

● Generally: we NEVER pass/return a struct
– We prefer to pass/return a pointer/reference to a

struct

– This is better because only a pointer (~8bytes) must
be copied, independent of the complexity of the
struct

Passing pointers

● Consider the following program

struct Complex* add(struct Complex* z1, struct Complex* a2)

{

struct Complex res;

res.a = (*z1).a + (*z2).a;

res.b = (*z1).b + (*z2).b;

return &res;

}

Wait a minute

● The previous program contains a serious
mistake...

● What is the problem with the previous
program?

Pointers to struct

● The mistake was the res will be deleted, so its
address should not be returned...

● But the syntax is correct:
– (*z1) is an expression that dereferences the pointer

z1

– Its type is struct Complex

– Therefore, we can apply . to it.

Fixed (?)

● Consider the following program

struct Complex add(struct Complex z1, struct Complex a2)

{

struct Complex *res = new struct Complex;

(*res).a = (*z1).a + (*z2).a;

(*res).b = (*z1).b + (*z2).b;

return res;

}

● This is correct, but someone has to eventually delete the new struct

Pointers to structures

● Because pointer are used heavily when
dealing with structures, we avoid the (*p).field
notation

● Instead we can use the - > operator

struct Complex *z1 = new struct Complex;

(*z1).a = 2.2;

z1->a = 2.2; //These two are equivalent!

Declaring a structure

● The declaration struct Complex { … }; describes the
general form of the objects of type Complex, that is,
their class.

● C allows variables to be declared in the same line:

struct Complex {double a; double b;} z1,z2;
● C also allows anonymous structs!

struct {double a; double b;} z3,z4;
● Careful! z1,z3 don't have the same type (z1=z3 fails)

Inside a structure

● We can declare as many fields as we like, using
standard conventions for variable names.

● Members can be arrays (of predetermined size)
– The = operator will also copy array fields!

● Members can be structures

struct C2 { struct Complex z; } zz;

zz.z.a = 5.2;

● Members can be pointers

Structure inside a structure

● Consider the following declaration

struct myStruct {

int a;

struct myStruct s;

} obj1;
● How much memory does such an object need?

– Infinite!!!

Structure inside a structure

● Thankfully, the previous example does not compile
– MyStruct has not been defined yet!

● But this does:

struct myStruct {

int a;

struct myStruct *s;

} obj1;
● This is strange, but is used A LOT!

A linked list of structures

● Consider the following declaration

struct Node {

int data;

struct Node * next;

};
● Each object contains a number and a pointer to the next

object
● We can build a list of ints!
● Its size is unlimited!

A simple linked list

struct Node *cur,*prev;

cur = prev = NULL;

for(int i=0; i<20; i++){

cur = new struct Node;

cur - > data = i;

cur - > next = prev;

prev = cur;

}

A simple linked list

● At the end of the previous program
– What is cur pointing to?

– What is cur->data?

– What is cur->next?

– What is cur->next->next->next->data?

● NULL (or 0) is a special value that signifies that
a pointer points to NOTHING
– NULL ->data is a run-time error (seg fault)

Exercise

● Write a simple loop that prints all the numbers
stored in a linked list

● Given: a pointer to the first element

Solution

void print_list(struct Node *head)

{

while(head){

cout << head->data;

head = head->next;

}

}

Classes

● A class is a more sophisticated version of a
struct

● Allows us to define “objects”
– Initially, C++ was called “C with objects”

● Defining a class uses similar syntax and has a
similar logic to defining a struct

Example

class Complex {

double a;

double b;

};

class Complex z1,z2;

What's the difference?

● Let's start with some easy differences:
– In C++ you don't have to use the class keyword

when defining instances of an object (i.e. variables).
You only need it to define the general class;

– Complex z1; //this would be correct

– In fact, this is also true for struct, in C++. However,
it is not true in C.

– Using the struct/class keyword is allowed in C++

Access restrictions

● A second easy difference is that classes protect
inside data from being accessed.

class Complex {

double a;

double b;

};

Complex z1,z2;

z1.a = 5.2; //Error!

Public and Private

● The fields of a class are divided into public and private
● By default, all fields are private
● We can specify the public part using the public: label

class Complex {

public:

double a;

double b;

};

Complex z1,z2;

z1.a = 5.2; //OK

Methods

● The most important difference is that classes
may also contain methods, that is, functions
which are applied on the object.

● By default the methods of an object can access
all fields of the class, including private fields

Method example

class Complex {

double a,b;

public:

double abs();

};

Complex z1; …

cout << z1.abs(); //OK

Methods

● You can think of methods as fields of a class,
which happen to be functions

● Methods can be accessed as any other field
– With the . operator

– With the - > operator (if using a pointer)

● Can a structure contain a function field?
– In C?

– In C++?

Struct vs Class

● Consider the following C code

struct Complex {

 double a;

 double b;

 double (*abs)();

 } z1;

…

z1.abs();

Struct vs Class

● The code of the previous page is valid!
● Each item of type (struct) Complex contains a

function (abs) represented by a pointer
● Before calling it we need to set this function

pointer to something
● But if we do, it works in the usual C++/Java way
● So why invent a new language, if this worked in

C?

Class = Data + Methods

● Answer: in the previous example all instances of
the Complex structure contain a function (pointer)
abs

● But this function could be different for two different
instances!

● In a class we define the functions as part of the
general pattern of the class

● Think of it as setting abs to the same function each
time an instance is declared

Defining methods

● Inline

class Complex {

double a,b;

public:

double abs() { return a*a+b*b; };

};
● This is usually only done for very simple

functions

Defining methods

class Complex {

double a,b;

public:

double abs(); //only declaration

};

…

double Complex::abs()

{ return a*a + b*b; }

Objects in a Program

● Notice that we can completely separate the definition of
an object from the implementation of the functions.

● This is intentional!
● Typically C++ programs are written as follows:

– A header file (.h) contains the definition of the relevant class

– An implementation file (.cpp) contains the implementation

– Any program that needs to use a class needs to include only
the header file

– The .cpp files can be compiled separately

A tiny project

● Header file: complex.h

//This file defines the Complex class

#ifndef COMPLEX_H

#define COMPLEX_H

class Complex {

 double a;

 double b;

 public:

 void set(double,double);

 double abs();

};

#endif

A tiny project

● Implementation file

#include "complex.h"

void Complex::set(double newa,double newb)

{

 a = newa;

 b = newb;

}

double Complex::abs()

{

 return a*a+b*b;

}

A tiny project

● A program that uses the Complex class

#include <iostream>

#include "complex.h"

using namespace std;

int main()

{

 Complex z1;

 double a,b;

 cout << "Enter a,b" << endl;

 cin >> a >> b;

 z1.set(a,b);

 cout << z1.abs() << endl;

}

More about methods

● As we mentioned methods are functions associated
with an object

● When a method is called, it is applied on a specific
object instance

z1.abs();
● A method is allowed to refer to the private fields of a

class
– This means → we are referring to the private fields of

this particular instance.

More about methods

● A methods can also refer to the (whole of the)
instance on which it was called

● For this we can use the this keyword

void Complex::set(double newa,double newb)

{

 this - > a = newa;

 this - > b = newb;

}

The this keyword

● The keyword this returns a pointer to the
current object

● If there is no ambiguity, writing this->a and a are
equivalent
– But there may be ambiguity, since we are allowed to

reuse a as the name of a parameter or local variable

● Useful: when we want to return a ref to the
current object, or call other methods on it.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

