

C++ Programming

Classes, Constructors, Operator overloading

M1 Math
Michail Lampis

michail.lampis@dauphine.fr

Classes

● These slides demonstrate a number of C++ features
related to classes:
– Data encapsulation

– Operator overloading

– Constructors/Destructors and memory management

● We will use two running examples:
– The Complex class (continued from last slide set)

– The Vector class (on next slide set)

– See also sections 3.2.3 and 4.1 of notes for alternative

versions

A complex class

● Recall that a complex number is a + ib

class Complex {

private: //not needed – private is default

double a,b;

public: //list of methods to manipulate complex nums

double abs();

...

}

Using complex numbers

…

Complex z1, z2; //OK

z1.a = 2.2; z1.b = 3.4; //meaning z1 = 2.2 + 3.4i

//ERROR!!
● Remember: a,b are private fields of the

Complex class. They cannot be read/written
from outside the methods of the class

Getter/Setter functions

● Solution: define an interface (== collection of methods) to
read/write the private fields of a class

class Complex {

double a,b;

public:

double read_a() { return a; }

double read_b() { return b; }

void set_a(double new_a) { a = new_a; }

void set_b(double new_b) { b = new_b; }

}

Using getter/setter functions

Complex z1,z2;

z1.set_a(2.3);

z1.set_b(3.7);

//Now z1 = 2.3 +3.7i

…

cout << “z1 = “ << z1.read_a() << “ + i “ <<
z1.read_b();

Getter/Setter functions

● Solution: define an interface (== collection of methods) to
read/write the private fields of a class

class Complex {

double a,b;

public:

double read_a() { return a; } //What about { return this->a }; ??

double read_b() { return b; }

void set_a(double new_a) { a = new_a; }

void set_b(double new_b) { b = new_b; }

}

Why??

● It probably seems like this is a stupid solution
– Why not just make a,b public?

– Then we could simply read/write them when we want.
More efficient and simpler

● Answer: in object-oriented programming we
want the interface of a class to be independent of
its implementation.

● This principle is called data encapsulation. This
is the reason fields are by default private.

Data encapsulation

● Why is data encapsulation useful?
– Recall: there are two ways to represent a complex number: z = a + ib

or z = r e^(iθ) (polar coordinates)

● Suppose that you have partly written a program that uses the
current Complex class (with a,b)

● Then you decide that you prefer polar coordinates (perhaps they
give smaller rounding errors for some operations)

● If z1.a = 2.3 is allowed, you have to rewrite your whole
program!

● Otherwise, you may just need to rewrite the get/set functions
and everything else will work.

Example

class Complex {

//double a,b; Changed my mind!

double r, theta;

public:

double read_a() { return a; } //This doesn't work any more!!!

double read_b() { return b; }

void set_a(double new_a) { a = new_a; }

void set_b(double new_b) { b = new_b; }

}

Example

class Complex {

//double a,b; Changed my mind!

double r, theta;

public:

double read_a() { return r*cos(theta); }

double read_b() { return r*sin(theta); }

void set_a(double new_a) { ... }

void set_b(double new_b) { ... }

}

Operator overloading

● We now know enough to make a reasonable
implementation of a Complex class

● We would probably like to have an add function

Complex add(Complex z1,Complex z2)
● Wouldn't it be a lot easier if we could just write z3

= z1+z2?
● Problem: + is generally not defined for classes
● But we can define it!

Overloading

● Overloading is when we use the same function
name/symbol to refer to several different
operations.

● C++ understands what we mean by the type of
the parameters used.

● This can be done also for standard C++
operators, such as +,-,=,[],...

● We have already seen this: cout << x , vs. 5 << 2

A simple Complex class

class Complex {

 double a,b;

 public:

 Complex(double, double);

 Complex();

 ~Complex();

 Complex operator+(Complex);

 friend ostream& operator<<(ostream &, Complex);

};

Explanation

● One thing to notice in the definition of the
previous class

Complex operator+(Complex);
● This is the line that allows us to redefine the +

operator and replace with our own method
● Another thing to notice: We defined two

methods named Complex (overloading!) and
one named ~Complex. What do these do?

Constructors

● A method that has the same name as the class
is a constructor. Such a method will be called
every time a new object of the class is created
– Automatically on the stack (via declaration)

– With new

● If more than one exist, the appropriate one is
called by looking at the number/type of
parameters given

Defining a constructor

Complex::Complex(double a, double b)

{

 this -> a = a;

 this -> b = b;

}

…

Complex z1(2.2, 3.3); //Calls the constructor!

Default constructor

● If we don't define any constructor, C++ gives
one for free
– The default constructor takes no parameters and

does nothing!

● If we define one constructor then the default
constructor (that takes no parameters) is not
defined
– We have to write it ourselves, if we want it...

Default constructor

Complex::Complex()

{

 this - > a = 0.0;

 this - > b = 0.0;

}

Destructor

● A class method whose name is ~(class name) is a
destructor.

● There is only one destructor
● It takes no parameters
● You cannot call it directly!
● Will be called automatically when an object is

destroyed:
– By going out of scope (end of function)

– With delete operator

Example

● For this class we don't really need a destructor
– Main use: cleaning up memory management. Do a delete for

every new, etc.

● For debugging purposes, let's see how often a destructor
is called.

Complex::~Complex()

{

 cout << "Destructor!" << a << "+i" << b << endl;

}

A simpler Complex class

lass Complex {

 double a,b;

 public:

 Complex(double, double);

 Complex();

 ~Complex();

 Complex add(Complex); //Addition

 friend ostream& operator<<(ostream &, Complex);

};

Exercise

● Implement the add method of the previous slide
– The result should be the sum of the current

complex number (this) and the complex number
given as parameter

Solution

Complex Complex::add(Complex z2)

{

 Complex res(this->a+z2.a, this->b+z2.b);

 return res;

}

…

Complex z1(2.2,3.3);

Complex z2(4.4,5.5);

z1.add(z2); //This computes the Complex 6.6,8.8

Solution with overloading

Complex Complex::operator+(Complex& z2)

{

 Complex res(this->a+z2.a, this->b+z2.b);

 return res;

}

Friends

● What about this?

friend ostream& operator<<(ostream &, Complex);
● A friend method is a method that does not belong

to the class but can still access its private
elements.

● In this case, we define a friend method to be able to
print complex numbers.

● We are also overloading the << operator!

Friend implementation

ostream& operator<<(ostream &out, Complex z)

{

 return out << z.a << " +i" << z.b;

}

A program that uses Complex

int main()

{

 Complex z1(2.2,3.3);

 cout << z1 << endl;

 Complex z2(4.4,5.5);;

 cout << z2 << endl;

 Complex z3(0,0);

 z3 = z1 + z2;

 cout << z3 << endl;

}

Question

● What is the output of the previous program?
– In particular, remember that we set the destructor to

print a message.

– How many times was the destructor called?

Output

2.2 +i3.3

Destructor!2.2+i3.3

4.4 +i5.5

Destructor!4.4+i5.5

Destructor!0+i0

Destructor!6.6+i8.8

Destructor!4.4+i5.5

6.6 +i8.8

Destructor!6.6+i8.8

Destructor!6.6+i8.8

Destructor!4.4+i5.5

Destructor!2.2+i3.3

Avoiding overhead

● The reason that the destructor is called so many
times is that temporary copies of Complex numbers
are made when they are passed as parameters or
returned.

● This is bad! (OK for such a simple class)
● One way to avoid: use more pointers

– Need to change code a lot, harder to read

● Alternative: use references
– References are pointers without the *

Complex with Refs

class Complex {

 double a,b;

 public:

 Complex(double, double);

 Complex();

 ~Complex();

 Complex operator+(Complex&);

 friend ostream& operator<<(ostream &, Complex&);

};

Improved?

● Previous program now only calls ~Complex 4
times
– Good!

● Consider this piece of code:

z3 = z1 + z2;

● Will this work?
– z4 = z1 + z2 + z3;

– z4 = z1 + (z2 + z3); //Is this the same??

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

