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Classes

● These slides demonstrate a number of C++ features 
related to classes:
– Data encapsulation

– Operator overloading

– Constructors/Destructors and memory management

● We will use two running examples:
– The Complex class (continued from last slide set)

– The Vector class (on next slide set)

– See also sections 3.2.3 and 4.1 of notes for alternative 

versions



  

A complex class

● Recall that a complex number is a + ib

class Complex {

private: //not needed – private is default

double a,b;

public: //list of methods to manipulate complex nums

double abs( );

...

}



  

Using complex numbers

…

Complex z1, z2; //OK

z1.a = 2.2; z1.b = 3.4; //meaning z1 = 2.2 + 3.4i

//ERROR!!
● Remember: a,b are private fields of the 

Complex class. They cannot be read/written 
from outside the methods of the class



  

Getter/Setter functions

● Solution: define an interface (== collection of methods) to 
read/write the private fields of a class

class Complex {

double a,b;

public:

double read_a() { return a; }

double read_b() { return b; }

void set_a(double new_a) { a = new_a; }

void set_b(double new_b) { b = new_b; }

}



  

Using getter/setter functions

Complex z1,z2;

z1.set_a(2.3);

z1.set_b(3.7);

//Now z1 = 2.3 +3.7i

…

cout << “z1 = “ << z1.read_a() << “ + i “ << 
z1.read_b();



  

Getter/Setter functions

● Solution: define an interface (== collection of methods) to 
read/write the private fields of a class

class Complex {

double a,b;

public:

double read_a() { return a; } //What about { return this->a }; ??

double read_b() { return b; }

void set_a(double new_a) { a = new_a; }

void set_b(double new_b) { b = new_b; }

}



  

Why??

● It probably seems like this is a stupid solution
– Why not just make a,b public?

– Then we could simply read/write them when we want. 
More efficient and simpler

● Answer: in object-oriented programming we 
want the interface of a class to be independent of 
its implementation.

● This principle is called data encapsulation. This 
is the reason fields are by default private.



  

Data encapsulation

● Why is data encapsulation useful?
– Recall: there are two ways to represent a complex number: z = a + ib 

or z = r e^(iθ) (polar coordinates)

● Suppose that you have partly written a program that uses the 
current Complex class (with a,b)

● Then you decide that you prefer polar coordinates (perhaps they 
give smaller rounding errors for some operations)

● If z1.a = 2.3 is allowed, you have to rewrite your whole 
program!

● Otherwise, you may just need to rewrite the get/set functions 
and everything else will work.



  

Example

class Complex {

//double a,b; Changed my mind!

double r, theta;

public:

double read_a() { return a; } //This doesn't work any more!!!

double read_b() { return b; }

void set_a(double new_a) { a = new_a; }

void set_b(double new_b) { b = new_b; }

}



  

Example

class Complex {

//double a,b; Changed my mind!

double r, theta;

public:

double read_a() { return r*cos(theta); }

double read_b() { return r*sin(theta); }

void set_a(double new_a) { ... }

void set_b(double new_b) { ... }

}



  

Operator overloading

● We now know enough to make a reasonable 
implementation of a Complex class

● We would probably like to have an add function

Complex add(Complex z1,Complex z2)
● Wouldn't it be a lot easier if we could just write z3 

= z1+z2?
● Problem: + is generally not defined for classes
● But we can define it!



  

Overloading

● Overloading is when we use the same function 
name/symbol to refer to several different 
operations.

● C++ understands what we mean by the type of 
the parameters used.

● This can be done also for standard C++ 
operators, such as +,-,=,[ ],...

● We have already seen this: cout << x , vs. 5 << 2



  

A simple Complex class

class Complex {

        double a,b;

   public:

        Complex(double, double);

        Complex();

        ~Complex();

        Complex operator+(Complex );

        friend ostream& operator<<(ostream &, Complex );

};



  

Explanation

● One thing to notice in the definition of the 
previous class

Complex operator+(Complex );
● This is the line that allows us to redefine the + 

operator and replace with our own method
● Another thing to notice: We defined two 

methods named Complex (overloading!) and 
one named ~Complex. What do these do?



  

Constructors

● A method that has the same name as the class 
is a constructor. Such a method will be called 
every time a new object of the class is created
– Automatically on the stack (via declaration)

– With new

● If more than one exist, the appropriate one is 
called by looking at the number/type of 
parameters given



  

Defining a constructor

Complex::Complex(double a, double b)

{

        this -> a = a;

        this -> b = b;

}

…

Complex z1(2.2, 3.3); //Calls the constructor!



  

Default constructor

● If we don't define any constructor, C++ gives 
one for free
– The default constructor takes no parameters and 

does nothing!

● If we define one constructor then the default 
constructor (that takes no parameters) is not 
defined
– We have to write it ourselves, if we want it...



  

Default constructor

Complex::Complex()

{

        this - > a = 0.0;

        this - > b = 0.0; 

}



  

Destructor

● A class method whose name is ~(class name) is a 
destructor.

● There is only one destructor
● It takes no parameters
● You cannot call it directly!
● Will be called automatically when an object is 

destroyed:
– By going out of scope (end of function)

– With delete operator



  

Example

● For this class we don't really need a destructor
– Main use: cleaning up memory management. Do a delete for 

every new, etc.

● For debugging purposes, let's see how often a destructor 
is called.

Complex::~Complex()

{

        cout << "Destructor!" << a << "+i" << b <<  endl;

}



  

A simpler Complex class

lass Complex {

        double a,b;

   public:

        Complex(double, double);

        Complex();

        ~Complex();

        Complex add(Complex ); //Addition

        friend ostream& operator<<(ostream &, Complex );

};



  

Exercise

● Implement the add method of the previous slide
– The result should be the sum of the current 

complex number (this) and the complex number 
given as parameter



  

Solution

Complex Complex::add(Complex z2)

{

        Complex res(this->a+z2.a, this->b+z2.b);

        return res;

}

…

Complex z1(2.2,3.3);

Complex z2(4.4,5.5);

z1.add(z2); //This computes the Complex 6.6,8.8



  

Solution with overloading

Complex Complex::operator+(Complex& z2)

{

        Complex res(this->a+z2.a, this->b+z2.b);

        return res;

}



  

Friends

● What about this?

friend ostream& operator<<(ostream &, Complex );
● A friend method is a method that does not belong 

to the class but can still access its private 
elements.

● In this case, we define a friend method to be able to 
print complex numbers.

● We are also overloading the << operator!



  

Friend implementation

ostream& operator<<(ostream &out, Complex z)

{

        return out << z.a << " +i" << z.b;

}



  

A program that uses Complex

int main()

{

        Complex z1(2.2,3.3);

        cout << z1 << endl;

        Complex z2(4.4,5.5);;

        cout << z2 << endl;

        Complex z3(0,0);

        z3 = z1 + z2;

        cout << z3 << endl;

}



  

Question

● What is the output of the previous program?
– In particular, remember that we set the destructor to 

print a message.

– How many times was the destructor called?



  

Output

2.2 +i3.3

Destructor!2.2+i3.3

4.4 +i5.5

Destructor!4.4+i5.5

Destructor!0+i0

Destructor!6.6+i8.8

Destructor!4.4+i5.5

6.6 +i8.8

Destructor!6.6+i8.8

Destructor!6.6+i8.8

Destructor!4.4+i5.5

Destructor!2.2+i3.3



  

Avoiding overhead

● The reason that the destructor is called so many 
times is that temporary copies of Complex numbers 
are made when they are passed as parameters or 
returned.

● This is bad! (OK for such a simple class)
● One way to avoid: use more pointers

– Need to change code a lot, harder to read

● Alternative: use references
– References are pointers without the *



  

Complex with Refs

class Complex {

        double a,b;

        public:

        Complex(double, double);

        Complex();

        ~Complex();

        Complex operator+(Complex& );

        friend ostream& operator<<(ostream &, Complex& );

};



  

Improved?

● Previous program now only calls ~Complex 4 
times
– Good!

● Consider this piece of code:

z3 = z1 + z2;

● Will this work?
– z4 = z1 + z2 + z3;

– z4 = z1 + (z2 + z3); //Is this the same??
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