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Classes

● These (and the previous) slides demonstrate a 
number of C++ features related to classes:
– Data encapsulation

– Operator overloading

– Constructors/Destructors and memory management

● In this set of slides we continue on the same 
set of topics with another example: a vector 
class.



  

A vector class

● In mathematics, a vector is just an ordered 
collection of numbers
– A vector in R^2 is a point on the plane

– A vector in R^3 is a point in space

– …

– We can also consider vectors in R^n

● The closest thing to vectors in C/C++ is arrays



  

A vector class

● Let's try to design a vector class that works 
similar to arrays but with some improved 
features:
– Bounds-checking

– Resizing

– Assignment (v1 = v2)

– Mathematical operations

– ...



  

Prototype

#include <iostream>       

using namespace std;        

class Vector {

        int size;

        double *data;

public: 

        Vector(int); //must supply a size

        ~Vector();

        int get_size();

        void set_size(int);

        double read_element(int);

        void write_element(int,double);

        friend ostream& operator<<(ostream &, Vector &);

};



  

About the prototype

● How are we planning to implement Vector?
– Essentially, with an array (allocated dynamically)

– For this, we need a pointer to the data

● This choice should be irrelevant to a programmer 
using Vector
– We could change our minds later

– In fact, we will!

● Therefore, we need to provide an interface for the data
– read_element( ), write_element( ), ...



  

Constructor

● In this class a constructor method becomes 
very important
– Our plan is to allocate some memory when a Vector 

object is created, in order to store the data

– The constructor should know the size of the Vector 
being created

– In this case, we make no default constructor (why?)

– As we will see, it's generally better to have one...



  

Constructor

Vector::Vector(int size)

{

        this -> size = size;

        this -> data = new double[size];

}



  

Using the constructor

//in main program...

int main( ){

Vector v1(5);

Vector v2; //This does not compile!!

}
● Why not add a default (parameter-less) constructor?
● Something else is missing here!

– Every new must be followed by a delete somewhere...



  

Default parameters

● One way to make a default constructor: write another function
● Better way: use default parameters on the constructor we 

have

(in vector.h)

public: 

        Vector(int size=0);
● In case no parameter supplied: size=0
● A default constructor is important! We may need to say

new Vector[5]; //create 5 Vectors using the default constructor!



  

Destructor

Back to the other thing that was missing...
● Vector::~Vector()

{       

        /* For debugging

        cout << "Destructor called" << endl;

        cout << *this; */

        delete [ ] data;

}



  

Why do I need a destructor?

● Every time we call the constructor (e.g. by 
declaring a Vector object) a new is executed.

● When the object goes out of scope, its memory 
is released (good!)
– But not the memory allocated inside the constructor

– It is our responsibility to clean this up!!

● To help us, C++ allows us to define a destructor 
function that will be automatically called.



  

When is the destructor called?

● When a local object goes out of scope:

void f( )

{

Vector v1(5);

…

return; //this will call v1.~Vector() before returning

}
● Note: You cannot call ~Vector() directly...



  

Destructors and pointers

● Consider the following:

Vector *vp = new Vector (5);

…

delete vp;
● The last line will call the destructor on *vp and 

afterwards delete vp
● What does the last line do if we don't define a 

destructor?
– Destructor is called only if it exists...



  

Destructors and pointers

● Consider the following:

Vector *vp = new Vector [5];

…

delete vp;
● What is the difference with previous slide?
● What is wrong?



  

Destructors and pointers

● Consider the following:

Vector *vp = new Vector [5];

…

delete [ ] vp;
● The first line allocates memory for 5 Vectors

– The default constructor is called for each one

– This will not compile without a default constructor!

● The last line calls the destructor for each of the 5 Vectors
– Destructors are called in reverse order! (vp[4], then vp[3],...)



  

Summary

● Memory management is a non-trivial task that must 
be handled in the constructor/destructor
– Be careful! This can easily be done wrong!

● Usually, constructor allocates needed memory 
(new) and destructor frees all used memory 
(delete)

● We are not done! These tasks appear in many 
other places
– Copy constructor, operator=, ...



  

Accessing elements

● Let's write a couple of easy methods:

double Vector::read_element(int index)

{

        return data[index];

}

void Vector::write_element(int index, double e)

{

        data[index] = e;

}
● Can we add bounds checking to these? (Check if index<size)



  

Printing a Vector

● Let's overload the << operator

ostream& operator<<(ostream & o, Vector &v)

{

        for(int i=0; i<v.size; i++)

                o << v.read_element(i) << ", ";

        o << endl;

}
● Recall: this function is a friend
● We are passing v as a ref, so the copy constructor is not needed

– This is a good idea...

● Note: we are using v.read_element(i), not v.data[i]. Why?



  

A simple program

int main()

{       

        Vector v1(5);

        v1.write_element(0,1.1);

        v1.write_element(1,2.1);

        cout << v1;

}
● Output?



  

Resizing

● Time to write a non-trivial method for our 
Vectors (Exercise!)

void set_size(int newsize)
● This function should resize the vector

– If the new size is larger, we keep all the data

– Otherwise some data is thrown out

● We need to allocate appropriate new space and 
free the old data space



  

Resizing

void Vector::set_size(int newsize)

{

        double *newdata = new double[newsize];

        for(int i=0; i<size && i<newsize ; i++)

                newdata[i] = data[i];

        delete [ ] data; //Clean up!!

        data = newdata;

        size = newsize;

        return;

}



  

Functions that use vectors

● Suppose that I want to find a function that 
calculates the sum of all elements of a vector

double find_sum(Vector v)
● 1-minute exercise: write this function

– Note: I don't need to pass the vector size as a 
parameter (unlike arrays)



  

Find Sum function

double find_sum(Vector v)

{

        int i;

        double sum=0.0;

        for(i=0; i<v.get_size(); i++)

                sum += v.read_element(i);

        return sum;

}
● Everyone happy?



  

A nasty bug

● The previous function contains a serious problem

        Vector v(3);

        v.write_element(0,1);

        v.write_element(1,2);

        v.write_element(2,3);

        cout << find_sum(v) << endl;

        cout << find_sum(v) << endl;
● The previous program crashes! Why??
● Careful: a copy constructor is implicitly called



  

Another nasty bug

● Consider the following program:

int main()

{

        Vector v1(5);

        Vector v2(5);

        v2 = v1;

}
● This program also crashes with the same error (double free)
● Why??



  

Explain the bugs

● What does v2 = v1 mean?
– Why does it even compile?

● Reminder: = means copy everything field-by-field
– The data field is copied

– This copies the pointer, not the data

● v2 and v1 are pointing to the same data
– Which is then freed twice at the end of scope!

● Added problem: memory leak on v2.data
● Same problem with parameter passing...



  

Overloading =

● Add the following to the class definition 
(vector.h)

Vector & operator=(Vector &);
● Explanation: we overload the = operator, so 

that it does something more sensible
● Parameter is ref to Vector (so that we don't 

have the same problem as in previous slides)



  

Overloading =

Vector & Vector::operator=(Vector &v2)

{

        int i;

        delete [ ] data;

        size = v2.size;

        data = new double[size];

        for(i=0; i<size; i++)

                data[i] = v2.data[i];

}



  

Copy constructors

● One way to get around the problem with using 
Vector parameters is to use Vector & params.

● Another (less efficient) is to define a copy 
constructor:

● Add to vector.h

Vector(Vector &);
● This method is automatically called when a 

vector is passed as a parameter



  

Copy constructor

Vector::Vector(Vector &v2)

{       

        size = v2.size;

        data = new double[size];

        int i;

        for(i=0; i<size; i++)

                data[i] = v2.data[i];

}
● Note: this is initially an empty object → no delete



  

Using vectors more naturally

● One problem with read_element, write_element
– Too much typing!

● How about the following:

Vector v1(5);

v1[2] = 3.2;

v1[3] = 4.5;

● Unfortunately, this does not compile!
– But we can fix it! Overload the [ ] operator!



  

Overloading [ ]

● What is the right prototype?
– What should we return?

– v[i] should be a double

– It should be able to appear on left-hand-side of =

– → double &

● Add to vector.h

double &operator[ ](int);



  

Overloading [ ]

● The implementation is very easy!

double & Vector::operator[ ](int index)

{

        return data[index];

}



  

An alternative implementation

● Why should we implement vector with an 
array?

● Let's do the same exercise again but with a 
linked list!
– Why? Practice.

– Also, this can be more efficient for some things (and 
less efficient for others)



  

A new class definition
struct Node {

        int index;

        double data;

        struct Node * next;

};

class Vector {

        int size;

        Node *head;

public:

        Vector(int size=0); 

        Vector(Vector &); 

        ~Vector();

        int get_size();

        void set_size(int);

        double read_element(int);

        void write_element(int,double);

        double &operator[](int);

        Vector & operator=(Vector &);

        friend ostream& operator<<(ostream &, Vector &);

};



  

Outline

● Basic idea: store the data in a linked list
– Each node of the list contains an index,data pair

– Meaning: if the user tries to read an element not in the 
list, we return 0.0

– → save space for sparse vectors (with many 0s)

● Note: rest of interface is unchanged!
– User should be able to use this class in the same 

programs (ideally) without change

● Note2: size field is now not so important...



  

Constructor

● The constructor now doesn't need to do much
– … but other methods will be more complicated

Vector::Vector(int size)

{

        this -> size = size;

        this -> head = 0; //No memory allocated

}



  

Destructor

● The data is stored in a linked list (pointed to by 
head)

● When a vector is deleted, we need to delete the 
list

● Exercise: write a destructor that does this



  

Destructor:

Vector::~Vector()

{

        Node *tmp = head;

        while(tmp){

                head = tmp->next;

                delete(tmp);

                tmp = head;

        }

}



  

Copy constructor

● We want to create a new object with the same 
data as the old one

● → We must copy the elements of the linked list 
one-by-one

● To make things easier, we don't care about the 
order of the list, just that all elements are 
copied

● Exercise: program the copy constructor



  

Copy constructor

Vector::Vector(Vector &v2)

{

        size = v2.size;

        head = 0;

        Node *tmp = v2.head;

        Node *tmp2;

        while(tmp){ //Data added in opposite order

                tmp2 = new Node;

                tmp2->index = tmp->index;

                tmp2->data = tmp->data;

                tmp2->next = head;

                head = tmp2;

                tmp = tmp->next;

        }

}



  

Read/Write Element

● We want two methods that allow us to find a 
node of the linked list with a specific index (if it 
exists)
– The we read the data

– Or we change it

● If the node does not exist
– We return 0

– Or we create it



  

Find Element

● To make the previous functions easier, write a 
helper function

Node *find_element(int index, Node *head)

● Meaning: given a linked list (head) return the 
first node with the requested index. If none 
exists, return NULL (0)

● Exercise: program this



  

Find Element

Node *find_element(int index, Node *head)

{

        while(head){

                if(head->index == index) return head;

                head = head->next;

        }

        return 0;

}



  

Read Element

● Now read_element is easy

double Vector::read_element(int index)

{

        struct Node* tmp = find_element(index,head);

        if(tmp) return tmp->data;

        return 0;

}



  

Write Element

● For write_element we have to add non-existing elements

void Vector::write_element(int index, double e)

{

        struct Node* tmp = find_element(index,head);

        if(tmp) tmp->data = e;

        else{

                tmp = new Node;

                tmp -> index = index;

                tmp -> data = e;

                tmp -> next = head;

                head = tmp;

        }

}



  

Easy parts

● The << operator still works!
– Because we wrote it using read_element()

– Could be optimized to run faster

● The = operator is almost identical to copy 
constructor!



  

The [ ] operator

● A design decision must be made for the [ ] 
operator
– What does it do if we try to access a non-existing 

index?

– Does it add it to the list?

– Does it simply return 0?
● But then, how can it return a double &?
● How will we be able to write on the returned element?



  

The [ ] operator

This implementation adds to the list non-existing requested indices

double & Vector::operator[ ](int index)

{

        Node *tmp = find_element(index,head);

        if(tmp) return tmp->data;

        tmp = new Node;

        tmp -> index = index;

        tmp -> data = 0;

        tmp -> next = head;

        head=tmp;

        return tmp->data;

}
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