

C++ Programming

Classes, Constructors, Operator overloading
(Continued)

M1 Math
Michail Lampis

michail.lampis@dauphine.fr

Classes

● These (and the previous) slides demonstrate a
number of C++ features related to classes:
– Data encapsulation

– Operator overloading

– Constructors/Destructors and memory management

● In this set of slides we continue on the same
set of topics with another example: a vector
class.

A vector class

● In mathematics, a vector is just an ordered
collection of numbers
– A vector in R^2 is a point on the plane

– A vector in R^3 is a point in space

– …

– We can also consider vectors in R^n

● The closest thing to vectors in C/C++ is arrays

A vector class

● Let's try to design a vector class that works
similar to arrays but with some improved
features:
– Bounds-checking

– Resizing

– Assignment (v1 = v2)

– Mathematical operations

– ...

Prototype

#include <iostream>

using namespace std;

class Vector {

 int size;

 double *data;

public:

 Vector(int); //must supply a size

 ~Vector();

 int get_size();

 void set_size(int);

 double read_element(int);

 void write_element(int,double);

 friend ostream& operator<<(ostream &, Vector &);

};

About the prototype

● How are we planning to implement Vector?
– Essentially, with an array (allocated dynamically)

– For this, we need a pointer to the data

● This choice should be irrelevant to a programmer
using Vector
– We could change our minds later

– In fact, we will!

● Therefore, we need to provide an interface for the data
– read_element(), write_element(), ...

Constructor

● In this class a constructor method becomes
very important
– Our plan is to allocate some memory when a Vector

object is created, in order to store the data

– The constructor should know the size of the Vector
being created

– In this case, we make no default constructor (why?)

– As we will see, it's generally better to have one...

Constructor

Vector::Vector(int size)

{

 this -> size = size;

 this -> data = new double[size];

}

Using the constructor

//in main program...

int main(){

Vector v1(5);

Vector v2; //This does not compile!!

}
● Why not add a default (parameter-less) constructor?
● Something else is missing here!

– Every new must be followed by a delete somewhere...

Default parameters

● One way to make a default constructor: write another function
● Better way: use default parameters on the constructor we

have

(in vector.h)

public:

 Vector(int size=0);
● In case no parameter supplied: size=0
● A default constructor is important! We may need to say

new Vector[5]; //create 5 Vectors using the default constructor!

Destructor

Back to the other thing that was missing...
● Vector::~Vector()

{

 /* For debugging

 cout << "Destructor called" << endl;

 cout << *this; */

 delete [] data;

}

Why do I need a destructor?

● Every time we call the constructor (e.g. by
declaring a Vector object) a new is executed.

● When the object goes out of scope, its memory
is released (good!)
– But not the memory allocated inside the constructor

– It is our responsibility to clean this up!!

● To help us, C++ allows us to define a destructor
function that will be automatically called.

When is the destructor called?

● When a local object goes out of scope:

void f()

{

Vector v1(5);

…

return; //this will call v1.~Vector() before returning

}
● Note: You cannot call ~Vector() directly...

Destructors and pointers

● Consider the following:

Vector *vp = new Vector (5);

…

delete vp;
● The last line will call the destructor on *vp and

afterwards delete vp
● What does the last line do if we don't define a

destructor?
– Destructor is called only if it exists...

Destructors and pointers

● Consider the following:

Vector *vp = new Vector [5];

…

delete vp;
● What is the difference with previous slide?
● What is wrong?

Destructors and pointers

● Consider the following:

Vector *vp = new Vector [5];

…

delete [] vp;
● The first line allocates memory for 5 Vectors

– The default constructor is called for each one

– This will not compile without a default constructor!

● The last line calls the destructor for each of the 5 Vectors
– Destructors are called in reverse order! (vp[4], then vp[3],...)

Summary

● Memory management is a non-trivial task that must
be handled in the constructor/destructor
– Be careful! This can easily be done wrong!

● Usually, constructor allocates needed memory
(new) and destructor frees all used memory
(delete)

● We are not done! These tasks appear in many
other places
– Copy constructor, operator=, ...

Accessing elements

● Let's write a couple of easy methods:

double Vector::read_element(int index)

{

 return data[index];

}

void Vector::write_element(int index, double e)

{

 data[index] = e;

}
● Can we add bounds checking to these? (Check if index<size)

Printing a Vector

● Let's overload the << operator

ostream& operator<<(ostream & o, Vector &v)

{

 for(int i=0; i<v.size; i++)

 o << v.read_element(i) << ", ";

 o << endl;

}
● Recall: this function is a friend
● We are passing v as a ref, so the copy constructor is not needed

– This is a good idea...

● Note: we are using v.read_element(i), not v.data[i]. Why?

A simple program

int main()

{

 Vector v1(5);

 v1.write_element(0,1.1);

 v1.write_element(1,2.1);

 cout << v1;

}
● Output?

Resizing

● Time to write a non-trivial method for our
Vectors (Exercise!)

void set_size(int newsize)
● This function should resize the vector

– If the new size is larger, we keep all the data

– Otherwise some data is thrown out

● We need to allocate appropriate new space and
free the old data space

Resizing

void Vector::set_size(int newsize)

{

 double *newdata = new double[newsize];

 for(int i=0; i<size && i<newsize ; i++)

 newdata[i] = data[i];

 delete [] data; //Clean up!!

 data = newdata;

 size = newsize;

 return;

}

Functions that use vectors

● Suppose that I want to find a function that
calculates the sum of all elements of a vector

double find_sum(Vector v)
● 1-minute exercise: write this function

– Note: I don't need to pass the vector size as a
parameter (unlike arrays)

Find Sum function

double find_sum(Vector v)

{

 int i;

 double sum=0.0;

 for(i=0; i<v.get_size(); i++)

 sum += v.read_element(i);

 return sum;

}
● Everyone happy?

A nasty bug

● The previous function contains a serious problem

 Vector v(3);

 v.write_element(0,1);

 v.write_element(1,2);

 v.write_element(2,3);

 cout << find_sum(v) << endl;

 cout << find_sum(v) << endl;
● The previous program crashes! Why??
● Careful: a copy constructor is implicitly called

Another nasty bug

● Consider the following program:

int main()

{

 Vector v1(5);

 Vector v2(5);

 v2 = v1;

}
● This program also crashes with the same error (double free)
● Why??

Explain the bugs

● What does v2 = v1 mean?
– Why does it even compile?

● Reminder: = means copy everything field-by-field
– The data field is copied

– This copies the pointer, not the data

● v2 and v1 are pointing to the same data
– Which is then freed twice at the end of scope!

● Added problem: memory leak on v2.data
● Same problem with parameter passing...

Overloading =

● Add the following to the class definition
(vector.h)

Vector & operator=(Vector &);
● Explanation: we overload the = operator, so

that it does something more sensible
● Parameter is ref to Vector (so that we don't

have the same problem as in previous slides)

Overloading =

Vector & Vector::operator=(Vector &v2)

{

 int i;

 delete [] data;

 size = v2.size;

 data = new double[size];

 for(i=0; i<size; i++)

 data[i] = v2.data[i];

}

Copy constructors

● One way to get around the problem with using
Vector parameters is to use Vector & params.

● Another (less efficient) is to define a copy
constructor:

● Add to vector.h

Vector(Vector &);
● This method is automatically called when a

vector is passed as a parameter

Copy constructor

Vector::Vector(Vector &v2)

{

 size = v2.size;

 data = new double[size];

 int i;

 for(i=0; i<size; i++)

 data[i] = v2.data[i];

}
● Note: this is initially an empty object → no delete

Using vectors more naturally

● One problem with read_element, write_element
– Too much typing!

● How about the following:

Vector v1(5);

v1[2] = 3.2;

v1[3] = 4.5;

● Unfortunately, this does not compile!
– But we can fix it! Overload the [] operator!

Overloading []

● What is the right prototype?
– What should we return?

– v[i] should be a double

– It should be able to appear on left-hand-side of =

– → double &

● Add to vector.h

double &operator[](int);

Overloading []

● The implementation is very easy!

double & Vector::operator[](int index)

{

 return data[index];

}

An alternative implementation

● Why should we implement vector with an
array?

● Let's do the same exercise again but with a
linked list!
– Why? Practice.

– Also, this can be more efficient for some things (and
less efficient for others)

A new class definition
struct Node {

 int index;

 double data;

 struct Node * next;

};

class Vector {

 int size;

 Node *head;

public:

 Vector(int size=0);

 Vector(Vector &);

 ~Vector();

 int get_size();

 void set_size(int);

 double read_element(int);

 void write_element(int,double);

 double &operator[](int);

 Vector & operator=(Vector &);

 friend ostream& operator<<(ostream &, Vector &);

};

Outline

● Basic idea: store the data in a linked list
– Each node of the list contains an index,data pair

– Meaning: if the user tries to read an element not in the
list, we return 0.0

– → save space for sparse vectors (with many 0s)

● Note: rest of interface is unchanged!
– User should be able to use this class in the same

programs (ideally) without change

● Note2: size field is now not so important...

Constructor

● The constructor now doesn't need to do much
– … but other methods will be more complicated

Vector::Vector(int size)

{

 this -> size = size;

 this -> head = 0; //No memory allocated

}

Destructor

● The data is stored in a linked list (pointed to by
head)

● When a vector is deleted, we need to delete the
list

● Exercise: write a destructor that does this

Destructor:

Vector::~Vector()

{

 Node *tmp = head;

 while(tmp){

 head = tmp->next;

 delete(tmp);

 tmp = head;

 }

}

Copy constructor

● We want to create a new object with the same
data as the old one

● → We must copy the elements of the linked list
one-by-one

● To make things easier, we don't care about the
order of the list, just that all elements are
copied

● Exercise: program the copy constructor

Copy constructor

Vector::Vector(Vector &v2)

{

 size = v2.size;

 head = 0;

 Node *tmp = v2.head;

 Node *tmp2;

 while(tmp){ //Data added in opposite order

 tmp2 = new Node;

 tmp2->index = tmp->index;

 tmp2->data = tmp->data;

 tmp2->next = head;

 head = tmp2;

 tmp = tmp->next;

 }

}

Read/Write Element

● We want two methods that allow us to find a
node of the linked list with a specific index (if it
exists)
– The we read the data

– Or we change it

● If the node does not exist
– We return 0

– Or we create it

Find Element

● To make the previous functions easier, write a
helper function

Node *find_element(int index, Node *head)

● Meaning: given a linked list (head) return the
first node with the requested index. If none
exists, return NULL (0)

● Exercise: program this

Find Element

Node *find_element(int index, Node *head)

{

 while(head){

 if(head->index == index) return head;

 head = head->next;

 }

 return 0;

}

Read Element

● Now read_element is easy

double Vector::read_element(int index)

{

 struct Node* tmp = find_element(index,head);

 if(tmp) return tmp->data;

 return 0;

}

Write Element

● For write_element we have to add non-existing elements

void Vector::write_element(int index, double e)

{

 struct Node* tmp = find_element(index,head);

 if(tmp) tmp->data = e;

 else{

 tmp = new Node;

 tmp -> index = index;

 tmp -> data = e;

 tmp -> next = head;

 head = tmp;

 }

}

Easy parts

● The << operator still works!
– Because we wrote it using read_element()

– Could be optimized to run faster

● The = operator is almost identical to copy
constructor!

The [] operator

● A design decision must be made for the []
operator
– What does it do if we try to access a non-existing

index?

– Does it add it to the list?

– Does it simply return 0?
● But then, how can it return a double &?
● How will we be able to write on the returned element?

The [] operator

This implementation adds to the list non-existing requested indices

double & Vector::operator[](int index)

{

 Node *tmp = find_element(index,head);

 if(tmp) return tmp->data;

 tmp = new Node;

 tmp -> index = index;

 tmp -> data = 0;

 tmp -> next = head;

 head=tmp;

 return tmp->data;

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

