
  

Servlets and AJAX

E-Applications Spring 2015

M. Lampis
Michail.lampis@dauphine.fr



  

Summary

● What we know so far:
● Running Tomcat
● Simple JSP applications (one file)

● Today
● Servlets
● AJAX (basics)



  

Servlets

● Basic architecture:
● Tomcat is a servlet container
● Servlet = server-side application
● When Tomcat receives HTTP requests it forwards 

them to an appropriate servlet

● What about JSP?
● .jsp pages are automatically compiled into servlets 

by Tomcat the first file they are loaded
● Checke the work directory!



  

Servlets

● In addition to jsp, we can compile and install in 
Tomcat our own servlets
● Advantage: separation of program logic from 

presentation!
– A servlet is just a Java program. It does not look like an 

HTML page...
● Disadvantage: separation of program logic from 

presentation...
– Use the most appropriate tool for what you want to do...



  

Running servlets

● Development cycle
● Write a Java program (.java file)

– Your main class must extend HttpServlet
● Compile it into a class file
● Place it in an appropriate place in Tomcat, along 

with necessary libraries
● Run Tomcat



  

Writing a servlet

● Simplest possible servlet
import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

public class Pong extends HttpServlet{

public void doGet(HttpServletRequest req,HttpServletResponse res) 
throws ServletException,IOException

        { ... } //This is where the main body is...

}



  

doGet

● The main work goes in doGet
● This is the method Tomcat calls

● Takes two parameters: request and response
● request: similar to jsp, use request.getParameter()

– Also, request.getSession() gives a session object
● response: for producing a response

– response.getWriter() produces an object on which we can 
.println() the response to the request

● doPost usually just calls doGet (or vice-versa)



  

Compiling the servlet

● Like any Java program!
● Except that the servlet-api.jar file must be in the 

classpath (defines HttpServlet etc.)

● Quick and dirty way:
● Copy servlet-api.jar to same directory
● Javac myClass.jave –classpath=servlet-api.jar



  

Deployment

● Now that I have a .class with my servlet what 
do I do?

● There is a standard directory structure that 
Tomcat follows

● Inside webapps create a directory for your app, 
say, "myapp".



  

Deployment

● Inside the "myapp" folder
● Index.html (and other "static" html, css, etc.)
● A WEB-INF folder containing

– A web.xml file
– A classes directory
– A lib directory

● We place the class file in the classes directory and 
any library files we need in lib



  

Deployment

● We are not done yet!
● We need to tell Tomcat which request to map to 

which servlet (we could have several servlets)
● Edit the web.xml file for this



  

web.xml

<web-app>

<servlet>

<servlet-name>myservlet</servlet-name>

<servlet-class>myClass</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>myservlet</servlet-name>

<url-pattern>/service</url-pattern>  Note:This can be a regex

</servlet-mapping>

</web-app>



  

This is too much work?

● Convenient way to deploy apps: WAR files
● Web Archives, similar to jar files
● To create a war file

● Enter directory of deployed app
● jar cvf myapp.war *

● To deploy an app stored in a war
● Just copy the war file in the webapps directory!
● jar tvf file.war list the files
● jar xvf file.war extracts the files



  

Running a servlet

● What if I have a new version of a class?
● Recall: Tomcat automatically re-compiles and re-

deploys jsp files when changed
● Not so with servlets. Once a servlet starts to run, 

even replacing its class file has no effect
● We must tell Tomcat to reload it
● Easiest way: restart Tomcat!!
● bin/shutdown.sh ; bin/startup.sh



  

Servlets vs jsp

● Why use servlets instead of jsp?
● "Cleaner" work environment, writing Java instead of 

Java+HTML
● Slightly more cumbersome for small/simple things
● Basic idea more or less the same

– Recall: in a JSP we are basically just programming the 
doGet method. Check out work directory for examples!

● Use whichever you like!
● jsp apps can also be packed into war files (in same 

way)



  

AJAX

● Asynchronous Javascript And XML
● So far, we have seen web apps where a user 

has to refresh the page to get new information
● Not nice!

● In more modern applications we program the 
client (with javascript) to interact with the server 
in the background, updating the display as new 
info arrives
● No refresh needed!



  

AJAX methodology

● Create an index.html file with the basic page + 
javascript

● Create a jsp/servlet that will handle get 
requests from that page and return an XML file

● The js program periodically (setInterval) sends 
requests to the servlet and updates the page.



  

GET requests from javascript

var req = new window.XMLHttpRequest();

req.open("GET","servletURL",true);

req.send();

req.onload = refreshState;
● Can add parameters to request by encoding 

them in URL (GET)
● Last parameter of open -> asychronous request
● req.onload = Function that will be executed



  

HTTP requests

● Can also do POST requests
● Then parameters are not encoded in URL

(not today)

● Check for network errors/state
● req.onreadystatechange

(not today)
● Assume network is perfect!



  

Server side

● The doGet method will receive these requests.
● We must produce an XML response and write it 

into the response parameter
● Quick and dirty way:

● Produce a string that contains the XML file
● println the string

(good enough for today!)



  

Example

Public void doGet(HttpServletRequest req,HttpServletResponse 
res){

res.setContentType("text/xml");

PrintWriter pw=res.getWriter();

pw.println("<replay><t1>blabla</t1> <t2> </t2></reply>");

pw.close();

}



  

Inside the servlet

● The first time a request comes Tomcat creates 
one instance of your class (which extends 
HttpServlet)

● The init() method is called
● Then, doGet()/doPost() is called for each 

request
● For information shared across request, we can add 

fields to our class. These will be shared.
● For information relevant to one client use 

req.getSession() in doGet().


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

