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Introduction

● Javascript is a scripting language (doh!)
● Dominant for client-side web programming
● We will be using it inside a modern browser 

(e.g. Firefox)
● All modern browsers come with a javascript 

engine
● Javascript is (generally) an interpreted 

language: the user is given the source code



  

Relationship with other languages

● Javascript is not really related to Java.
– There are some common points between the two

– Syntax is similar to C-family languages (C++/Java)

● Javascript is more functional
– Similar to Lisp/Scheme in some respects

● Javascript is relaxed with types
● Javascript is relaxed with objects



  

Up and running

● Basic way to run a javascript program
– Include in an HTML file, between <script> </script> 

tags.

<script>
alert(“Hello world”);
</script>

● Can also use the js console of a browser
– In Firefox Ctrl+Shift+K



  

Basic Structure

● A js program is a series of statements
– Statements should be separated by ;

– This is (tried to be) done automatically! (more later)

● Statements resemble Java:
– if  ( condition ) { statement } else {statement}

– for ( var i=0 ; i<5; i++) { statement }

– while() { }, do { } while();

– switch() { } 



  

Basic Structure

● Variables must (should) be declared with the 
var keyword

var x=5;
● Observe that no type is specified, this is found 

in run-time and can change.

x = 'abc'; // no problem



  

Basic Structure

● Arrays use C-like notation

var arr = [ 'a', 2 , 'c' ];  //different types OK
arr.length == 3
arr[2] == 'c'

● Elements are indexed from 0 up to arr.length-1
● OK to add elements!

arr[3] = 'd'; // arr == [ 'a', 2, 'c', 'd']



  

Basic Structure

● Objects in js are more like maps/dictionaries than Java objects
● Again the . (dot) operator is used to access 

methods/properties

var myobj = { }; // empty object
var obj2 = { key1: 'val1', key2: 15 };
obj2.key2 == 15 //true
obj2.key3 = 'hello'; //OK to add fields!

● Object/Array variables are references (Java-like?)
● Arrays are objects! (verify with typeof)



  

Basic Structure

● Functions are declared using the function 
keyword

function fact(n){
if(n<1) return 1;
return n * fact(n-1);

}
● Argument types are not specified



  

Basic Web Page Interaction

● JS programs have a “global” object
– For programs running in a browser → window

● Inside window object one finds the document object
– This gives methods to access HTML elements

– More details to be discussed later (DOM)

– Important to know:

document.getElementById(“..”)

method that returns a reference to an HTML element



  

Basic Web Page Interaction

● Annoying input output
– alert(“msg”); (no return value)

– confirm(“msg”); (boolean return)

– prompt(“msg”,”default”); (string return)

● Less annoying
– Give an id to an input textbox

– Access via document.getElementById().value



  

Basic Web Interaction

● Event-driven programming
– Basic idea: the web page waits for the user to do 

something (generate an event) and respond

● Events:
– Mouse click, mouse movement, window resizing, …

● Events can be caught by adding appropriate 
attributes to the relevant HTML tags

<input type=”button” onclick=”some js...” />



  

More Javascript

● In the remainder we give some more details on 
various useful features of javascript

● Emphasis on points of difference with other, 
more familiar languages (Java)



  

Strings

● One of the primitive data types in js

var x = “abcd”;
● Can use either kind of quotes (“ or ')

– Be consistent!

● \ is an escape character
– ex. x='He\'s using quotes!';

● No “char” type for single characters (everything is 
a string)



  

String functionality

● Strings are not references
● String literals are immutable

a = "abc";  // ->"abc"
a[2] = 'd';  // “ignored”, a == “abc”;

● Expressions that produce a new string are OK

a += 'd'; // a == “abcd”;
● Note the array-like access

– This can be done with .charAt(i) method also



  

String Conversions

● Other values can be converted to strings, 
usually easily

● Manual way: String( expr );
– ' ' + expr; // Dirty!

● Note that conversions are inconsistent 
sometimes

Boolean(String(false)) != false // ???



  

String Operators

● Comparisons ( <, >, <=, >=, ===)
– Work OK (alphabetically)

– Not reliable for international characters (accents 
etc.), use localeCompare

'é'.localeCompare('f') // gives -1
● + performs concatenation
● .length gives the length of a string



  

String Operations

● The .split method splits a string into an array of 
strings, using the given separator

'a b c'.split(' '); // → Array [ "a", "b", "c" ]
● The separator can also be a regular expression 

(very useful, see later)
● .toUpperCase, toLowerCase (self-explanatory)
● .indexOf( sth ) finds the index where sth appears 

in a string (could be -1, sth could be reg ex)



  

Booleans

● true or false values
● Operators &&, ||, !
● Careful with conversions:

Boolean(0) == false, Boolean(123) == true
Boolean('') == false, Boolean('a') == true
Boolean([]) == true (!) //all arrays
Boolean({ }) == true (!) //all objects



  

Booleans

● Logical operators are short-circuited
– false || x === x;  true && x === x;

● Application: setting default value to a parameter

function f(x,y,z){ y = y || some_value; ... }
● Uses the fact that undefined is converted to false
● NOTE: This may not be what you want! 

(ex. If y = 0)
● Recall also ternary operator x ? y : z



  

Numbers

● No distinction between ints and floats
● Standard operators +, -, *, /, %
● Standard function Math.abs(), Math.floor(), 

Math.round()
● Number( expr ) → convert expr to number
● parseInt ( expr ) → convert expr to STRING then 

integer
● Specials: NaN (never equal to anything!), Infinity



  

Non-primitive types

● We have seen the primitive types
– String

– Boolean

– Number

● Everything else is non-primitive
– Object (also arrays and reg exps)

– Function

– Undefined (this is a special type!)



  

Arrays

● Arrays are objects! (see with typeof)
● ...with many useful properties pre-defined

– arr.length gives the length of an array

– Can be used to shorten/lengthen array!

– We can also use .push() to add an element to the 
end of an array and .pop() to remove it.



  

Arrays with holes and more

● It's allowed to have some “missing” (undefined) 
positions in an array.

● These are called holes.
● → Arrays are maps
● Usually, arrays without holes are optimized → 

faster
● Arrays are also allowed to have arbitrary 

properties (they are objects)



  

2-d Arrays

● 2dimensional arrays can be defined indirectly:
● Construct an array rows

– Each element of this array should be an array

– Now possible to say rows[2][3] = 5;

● Exercise: construct and print a 2-d array of size 
3x3 with the numbers 0,1,...,8



  

Array operators

● The in operator checks if a given index exists/is not a 
hole
– This will also return true for non-index properties (can be 

used for objects)

● Can be used to iterate through an array
– for(var key in arr) { do sth with arr[key]; }

● Bad idea!
– Skips holes (maybe not bad?)

– Iterates through other keys (?)



  

Array Iterations

● Standard (C/C++/Java) way
– for (var i = 0; i<arr.length; i++) { ... };

● Use the forEach method (only available for 
arrays, not array-like objects such as strings)
– arr.forEach(alert);  //NOT arr.forEach(alert());
– Argument is a function that is to be applied to each 

element of the array

– Skips holes



  

Array methods

● .sort() will sort the array (doh!)
– Caution! Sorting will first convert elements to strings 

→ lexicographic sorting

– Can give an optional function argument that 
decides the order of two elements

– [1,2,3,20].sort((function(x,y){ x<y? -1: (x>y?1:0)})); 
//gives [1,2,3,20]

– [1,2,3,20].sort(); //gives [1,2,20,3]



  

Searching

● .indexOf(elem) returns the first index where 
elem occurs, or -1

● .lastIndexOf(elem) returns the last index
● Interesting: can never find NaN (since it is not 

equal to anything)
● Uses strict equality === (more later) 



  

Arrays exercise

● Write a function that counts the elements of an 
array

● .length will also count the holes...
– Hint: easier with a “temporary” function



  

Functions

● Three roles of functions in javascript
– Normal functions

● function f(args) {..};   … f(expr);

– Constructors
● new Object(...);

– Methods
● myObj.doSomething(...);



  

Function definitions

● The usual

function add(x,y){
return x+y;
//other things ignored... (?)

}



  

Function variables

● We can use a function expression

var add = function (x,y){
return x+y;
//other things ignored... (?)

}
● Now the typeof add is function
● These two are almost(!) equivalent



  

Hoisting

● Functions are hoisted
– This means that no matter where in scope a 

function is defined it is implicitly moved to the 
beginning of the scope

● Variables are hoisted
– Their scope is the whole function (blocks are 

ignored)

● But variable assignments are not hoisted!



  

Function expressions

● Function expressions can be named
– This can make them recursive

– var superf = function f(x) { return x<1? 1: x*f(x-1);};
– Here, f is only accessible within f.

– But superf is a variable that can be called from 
outside

– The name “f” can be accessed with the property 
superf.name



  

Checking passed parameters

● Functions can be called with more or less parameters 
than defined
– JS will not complain (!)

● Useful to check the special arguments object
– Array-like (but not array)

– .length tells us the number of actual parameters

function alertArgs() { 
for(var i=0;i< arguments.length; i++) 

alert("arg "+i+" = "+arguments[i]); 

}



  

Does a parameter exist

● Easy answer: check if it is undefined
– if (x===undefined) {...}

● Similar
– if (!x) {...}

● Recall how to set default values
– x = x || default;



  

Pass By Value

● All function calls are normally pass-by-value

function inc(x) { x++;};
var y=0;
inc(y); //no effect

● One workaround: Arrays (which are refs)

function inc(x) { x[0]++;};
var y=[0];
inc(y); //y[0]==1



  

Careful with function signatures

● Meet the .map() method of Arrays

[1,2,3].map( function(x){ return x+2;} );
● How about the following?

[“1”,”2”,”3”].map( parseInt );
● This fails because map feeds the given function 3 

parameters (element, index, array)
● The function in the first example ignores the other 2
● parseInt does not



  

One caveat for return

● Recall that ; are automatically inserted where 
missing (!)

var x=5

var y=3 //no problem

● How does JS know when they are missing?
– New line starts unexpectedly

– Block ends unexpectedly

– ...



  

One caveat for return

● Consider the following:

return { foo: “bar” };
● Or

return
{ 

foo: “bar” 
};

● Not equivalent!



  

The eval function

● The eval function takes as input a string
● The string is evaluated as js code

– Similar to writing something on the console

– Use case: evaluating arithmetic expressions given by 
the user

– Careful: allowing the user to evaluate arbitrary things 
may not be a good idea

– On the other hand, this code is running on the client...



  

Other problems: dangling else

● Dangling else problem (also in C/Java)
– if (test1) if(test2) {...} else {...}

● When is else executed?
– When test1 is false?

– When test1 is true and test2 is false?

● Answer: please use { } to make clear
● Answer: else is matched to closest if



  

Reminder: the switch statement

● Also present in C/C++

function useFruit(fruit) {
    switch (fruit) {
        case 'apple':
            makeCider();
            break;
        case 'grape':
            makeWine();
            break;
    }
}



  

Reminder: Exceptions

● Work similarly to Java/C++

try{ 
throw("OOPS!"); 

} catch(exception) { 
alert(exception)

}



  

Regular expressions

● Can be given between / and /
– Special characters:

– ? match 0 or 1 time

– * match 0 or more times

– + match 1 or more times

– . any character

– [ ] range/group of characters

● Examples
– / *, */  → any amount of whitespace that includes a comma

– / *,? */ → any amount of whitespace that may include a comma

– /[1-9][0-9]*/ → a non-empty integernumber



  

An application: split

● The String split(sep) method splits a string into an array of 
strings, using the separator sep

● sep can be a string or a reg exp
● Examples:

"1,2,3,4".split(",");
→ Array [ "1", "2", "3", "4" ]
"1 ,2 , 3 , 4".split(",").map(Number);
→ Array [ 1, 2, 3, 4 ]
"1 ,2 , 3 , 4".split(/ *, */);
→ Array [ "1", "2", "3", "4" ]
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