

Javascript Notes

E-Applications Spring 2015

M. Lampis

Acknowledgment

● The material on these slides follows the
excellent book “Speaking JavaScript” by Axel
Rauschmayer

● http://speakingjs.com/es5/

Introduction

● Javascript is a scripting language (doh!)
● Dominant for client-side web programming
● We will be using it inside a modern browser

(e.g. Firefox)
● All modern browsers come with a javascript

engine
● Javascript is (generally) an interpreted

language: the user is given the source code

Relationship with other languages

● Javascript is not really related to Java.
– There are some common points between the two

– Syntax is similar to C-family languages (C++/Java)

● Javascript is more functional
– Similar to Lisp/Scheme in some respects

● Javascript is relaxed with types
● Javascript is relaxed with objects

Up and running

● Basic way to run a javascript program
– Include in an HTML file, between <script> </script>

tags.

<script>
alert(“Hello world”);
</script>

● Can also use the js console of a browser
– In Firefox Ctrl+Shift+K

Basic Structure

● A js program is a series of statements
– Statements should be separated by ;

– This is (tried to be) done automatically! (more later)

● Statements resemble Java:
– if (condition) { statement } else {statement}

– for (var i=0 ; i<5; i++) { statement }

– while() { }, do { } while();

– switch() { }

Basic Structure

● Variables must (should) be declared with the
var keyword

var x=5;
● Observe that no type is specified, this is found

in run-time and can change.

x = 'abc'; // no problem

Basic Structure

● Arrays use C-like notation

var arr = ['a', 2 , 'c']; //different types OK
arr.length == 3
arr[2] == 'c'

● Elements are indexed from 0 up to arr.length-1
● OK to add elements!

arr[3] = 'd'; // arr == ['a', 2, 'c', 'd']

Basic Structure

● Objects in js are more like maps/dictionaries than Java objects
● Again the . (dot) operator is used to access

methods/properties

var myobj = { }; // empty object
var obj2 = { key1: 'val1', key2: 15 };
obj2.key2 == 15 //true
obj2.key3 = 'hello'; //OK to add fields!

● Object/Array variables are references (Java-like?)
● Arrays are objects! (verify with typeof)

Basic Structure

● Functions are declared using the function
keyword

function fact(n){
if(n<1) return 1;
return n * fact(n-1);

}
● Argument types are not specified

Basic Web Page Interaction

● JS programs have a “global” object
– For programs running in a browser → window

● Inside window object one finds the document object
– This gives methods to access HTML elements

– More details to be discussed later (DOM)

– Important to know:

document.getElementById(“..”)

method that returns a reference to an HTML element

Basic Web Page Interaction

● Annoying input output
– alert(“msg”); (no return value)

– confirm(“msg”); (boolean return)

– prompt(“msg”,”default”); (string return)

● Less annoying
– Give an id to an input textbox

– Access via document.getElementById().value

Basic Web Interaction

● Event-driven programming
– Basic idea: the web page waits for the user to do

something (generate an event) and respond

● Events:
– Mouse click, mouse movement, window resizing, …

● Events can be caught by adding appropriate
attributes to the relevant HTML tags

<input type=”button” onclick=”some js...” />

More Javascript

● In the remainder we give some more details on
various useful features of javascript

● Emphasis on points of difference with other,
more familiar languages (Java)

Strings

● One of the primitive data types in js

var x = “abcd”;
● Can use either kind of quotes (“ or ')

– Be consistent!

● \ is an escape character
– ex. x='He\'s using quotes!';

● No “char” type for single characters (everything is
a string)

String functionality

● Strings are not references
● String literals are immutable

a = "abc"; // ->"abc"
a[2] = 'd'; // “ignored”, a == “abc”;

● Expressions that produce a new string are OK

a += 'd'; // a == “abcd”;
● Note the array-like access

– This can be done with .charAt(i) method also

String Conversions

● Other values can be converted to strings,
usually easily

● Manual way: String(expr);
– ' ' + expr; // Dirty!

● Note that conversions are inconsistent
sometimes

Boolean(String(false)) != false // ???

String Operators

● Comparisons (<, >, <=, >=, ===)
– Work OK (alphabetically)

– Not reliable for international characters (accents
etc.), use localeCompare

'é'.localeCompare('f') // gives -1
● + performs concatenation
● .length gives the length of a string

String Operations

● The .split method splits a string into an array of
strings, using the given separator

'a b c'.split(' '); // → Array ["a", "b", "c"]
● The separator can also be a regular expression

(very useful, see later)
● .toUpperCase, toLowerCase (self-explanatory)
● .indexOf(sth) finds the index where sth appears

in a string (could be -1, sth could be reg ex)

Booleans

● true or false values
● Operators &&, ||, !
● Careful with conversions:

Boolean(0) == false, Boolean(123) == true
Boolean('') == false, Boolean('a') == true
Boolean([]) == true (!) //all arrays
Boolean({ }) == true (!) //all objects

Booleans

● Logical operators are short-circuited
– false || x === x; true && x === x;

● Application: setting default value to a parameter

function f(x,y,z){ y = y || some_value; ... }
● Uses the fact that undefined is converted to false
● NOTE: This may not be what you want!

(ex. If y = 0)
● Recall also ternary operator x ? y : z

Numbers

● No distinction between ints and floats
● Standard operators +, -, *, /, %
● Standard function Math.abs(), Math.floor(),

Math.round()
● Number(expr) → convert expr to number
● parseInt (expr) → convert expr to STRING then

integer
● Specials: NaN (never equal to anything!), Infinity

Non-primitive types

● We have seen the primitive types
– String

– Boolean

– Number

● Everything else is non-primitive
– Object (also arrays and reg exps)

– Function

– Undefined (this is a special type!)

Arrays

● Arrays are objects! (see with typeof)
● ...with many useful properties pre-defined

– arr.length gives the length of an array

– Can be used to shorten/lengthen array!

– We can also use .push() to add an element to the
end of an array and .pop() to remove it.

Arrays with holes and more

● It's allowed to have some “missing” (undefined)
positions in an array.

● These are called holes.
● → Arrays are maps
● Usually, arrays without holes are optimized →

faster
● Arrays are also allowed to have arbitrary

properties (they are objects)

2-d Arrays

● 2dimensional arrays can be defined indirectly:
● Construct an array rows

– Each element of this array should be an array

– Now possible to say rows[2][3] = 5;

● Exercise: construct and print a 2-d array of size
3x3 with the numbers 0,1,...,8

Array operators

● The in operator checks if a given index exists/is not a
hole
– This will also return true for non-index properties (can be

used for objects)

● Can be used to iterate through an array
– for(var key in arr) { do sth with arr[key]; }

● Bad idea!
– Skips holes (maybe not bad?)

– Iterates through other keys (?)

Array Iterations

● Standard (C/C++/Java) way
– for (var i = 0; i<arr.length; i++) { ... };

● Use the forEach method (only available for
arrays, not array-like objects such as strings)
– arr.forEach(alert); //NOT arr.forEach(alert());
– Argument is a function that is to be applied to each

element of the array

– Skips holes

Array methods

● .sort() will sort the array (doh!)
– Caution! Sorting will first convert elements to strings

→ lexicographic sorting

– Can give an optional function argument that
decides the order of two elements

– [1,2,3,20].sort((function(x,y){ x<y? -1: (x>y?1:0)}));
//gives [1,2,3,20]

– [1,2,3,20].sort(); //gives [1,2,20,3]

Searching

● .indexOf(elem) returns the first index where
elem occurs, or -1

● .lastIndexOf(elem) returns the last index
● Interesting: can never find NaN (since it is not

equal to anything)
● Uses strict equality === (more later)

Arrays exercise

● Write a function that counts the elements of an
array

● .length will also count the holes...
– Hint: easier with a “temporary” function

Functions

● Three roles of functions in javascript
– Normal functions

● function f(args) {..}; … f(expr);

– Constructors
● new Object(...);

– Methods
● myObj.doSomething(...);

Function definitions

● The usual

function add(x,y){
return x+y;
//other things ignored... (?)

}

Function variables

● We can use a function expression

var add = function (x,y){
return x+y;
//other things ignored... (?)

}
● Now the typeof add is function
● These two are almost(!) equivalent

Hoisting

● Functions are hoisted
– This means that no matter where in scope a

function is defined it is implicitly moved to the
beginning of the scope

● Variables are hoisted
– Their scope is the whole function (blocks are

ignored)

● But variable assignments are not hoisted!

Function expressions

● Function expressions can be named
– This can make them recursive

– var superf = function f(x) { return x<1? 1: x*f(x-1);};
– Here, f is only accessible within f.

– But superf is a variable that can be called from
outside

– The name “f” can be accessed with the property
superf.name

Checking passed parameters

● Functions can be called with more or less parameters
than defined
– JS will not complain (!)

● Useful to check the special arguments object
– Array-like (but not array)

– .length tells us the number of actual parameters

function alertArgs() {
for(var i=0;i< arguments.length; i++)

alert("arg "+i+" = "+arguments[i]);

}

Does a parameter exist

● Easy answer: check if it is undefined
– if (x===undefined) {...}

● Similar
– if (!x) {...}

● Recall how to set default values
– x = x || default;

Pass By Value

● All function calls are normally pass-by-value

function inc(x) { x++;};
var y=0;
inc(y); //no effect

● One workaround: Arrays (which are refs)

function inc(x) { x[0]++;};
var y=[0];
inc(y); //y[0]==1

Careful with function signatures

● Meet the .map() method of Arrays

[1,2,3].map(function(x){ return x+2;});
● How about the following?

[“1”,”2”,”3”].map(parseInt);
● This fails because map feeds the given function 3

parameters (element, index, array)
● The function in the first example ignores the other 2
● parseInt does not

One caveat for return

● Recall that ; are automatically inserted where
missing (!)

var x=5

var y=3 //no problem

● How does JS know when they are missing?
– New line starts unexpectedly

– Block ends unexpectedly

– ...

One caveat for return

● Consider the following:

return { foo: “bar” };
● Or

return
{

foo: “bar”
};

● Not equivalent!

The eval function

● The eval function takes as input a string
● The string is evaluated as js code

– Similar to writing something on the console

– Use case: evaluating arithmetic expressions given by
the user

– Careful: allowing the user to evaluate arbitrary things
may not be a good idea

– On the other hand, this code is running on the client...

Other problems: dangling else

● Dangling else problem (also in C/Java)
– if (test1) if(test2) {...} else {...}

● When is else executed?
– When test1 is false?

– When test1 is true and test2 is false?

● Answer: please use { } to make clear
● Answer: else is matched to closest if

Reminder: the switch statement

● Also present in C/C++

function useFruit(fruit) {
 switch (fruit) {
 case 'apple':
 makeCider();
 break;
 case 'grape':
 makeWine();
 break;
 }
}

Reminder: Exceptions

● Work similarly to Java/C++

try{
throw("OOPS!");

} catch(exception) {
alert(exception)

}

Regular expressions

● Can be given between / and /
– Special characters:

– ? match 0 or 1 time

– * match 0 or more times

– + match 1 or more times

– . any character

– [] range/group of characters

● Examples
– / *, */ → any amount of whitespace that includes a comma

– / *,? */ → any amount of whitespace that may include a comma

– /[1-9][0-9]*/ → a non-empty integernumber

An application: split

● The String split(sep) method splits a string into an array of
strings, using the separator sep

● sep can be a string or a reg exp
● Examples:

"1,2,3,4".split(",");
→ Array ["1", "2", "3", "4"]
"1 ,2 , 3 , 4".split(",").map(Number);
→ Array [1, 2, 3, 4]
"1 ,2 , 3 , 4".split(/ *, */);
→ Array ["1", "2", "3", "4"]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

