
  

Javascript Notes - Objects

E-Applications Spring 2015

M. Lampis



  

Objects in javascript

● Roughly: Objects are maps
● Keys are strings (not necessarily valid identifiers)
● Each key is mapped to a property

● What about methods?
● Methods are simply properties whose value 

happens to be a function.



  

Object literals

● Simplest way to initialize an object

var myobj = {
key1: "value1",
key2: 23,
method1: function() { alert("Hello!"); },

}
● Note trailing comma (not necessary)



  

Accessing properties

● Properties can be read/written using the . 
operator 

myobj.key2 // == 23
myobj.key1 = [1,2,3]; //OK, "value1" is deleted
myobj.method1(); //call the method
myobj.method1 = function() {alert("Bye");}; //OK!



  

Accessing Properties

● Properties can be written even if the key does 
not exist

myobj.key3 = "newkey"; //OK!
● Result -> Often we just start with empty object 

and then add properties at will, instead of using 
object literals.



  

Deleting Properties

● A property can be deleted using delete
delete myobj.key1; //now myobj.key1==undefined

● Not the same as setting a property to undefined
● Use sparingly...

● Low efficiency in most implementations



  

The [ ] operator

● Object properties can also be accessed using []

myobj["key1"] === myobj.key1; //TRUE!
● Why use this instead of . ?

● Allows any string as key

myobj["a key with spaces"] = 74; //OK
● Allows computed keys

myobj["key"+i] = 75; //myobj.key1? myobj.key2?.
myobj["method"+1](); //what will this do?



  

this

● A special variable this is "always" defined
● Idea: when we call a method, this refers to the 

object to which the method belongs

var myobj = {key1: 23, method1: function() {
alert(this.key1); }, };

● (In sloppy mode) this is defined also for normal 
functions. It is equal to the global object 
(window)



  

Setting this

● Consider the following example

var myobj = {key1: 23, method1: function() {
alert(this.key1); }, };

var myfunc = myobj.method1; //is this OK?
myfunc(); //result?



  

Setting this

● The problem in the previous example is that 
"this" is undefined (or ==window) for myfunc

● Javascript offers some mechanisms to fix this
● call, apply and bind

 



  

Call

● The method call is applied to objects of type 
Function. Its syntax is:

 <function>.call(thisvalue,arg1,arg2,...)
● Except for changing the value of this, this is the 

same as just calling the function

alert("Hi"); === alert.call(this,"Hi");



  

Apply

● The apply method can be applied to function 
expressions

<function>.apply(thisvalue,[args]);
● Idea: in addition to setting this, breaks down 

array into parameters
● Ex: Math.max(1,2,3,2,1) == 3

Math.max([1,2,3,2,1]) == NaN
Math.max.apply(null,[1,2,3,2,1]) == 3



  

Bind

● Returns a function, which has already been 
supplied some arguments

Syntax: <function>.bind(thisvalue,arg1,arg2,.)
● Example:

function add(x,y) { return x+y; }
var plus2 = add.bind(null,2);



  

Losing "this"

● What's the deal with supplying "this" to these 
functions?

● "this" can easily get lost. Example:

 var counter = {
count : 0,
inc: function () { this.count++; }
}



  

Losing "this"

● Why this.count++ and not count++?
● This works. What is the problem?

var myfunc = counter.inc; //Valid?
counter.inc(); //increases counter
myfunc(); //should be the same, but isn't.



  

Finding "this"

● The previous is a common problem when giving 
a "callback function" to another function

● Solution: bind

var myfunc = counter.inc.bind(counter);
● Useful with (among others)

● setInterval(func, time); //call func every time ms
● setTimeout(func, time); //call func after time ms



  

Recap
● Consider the following example: (source: http://www.sitepoint.com/)

var name = "John";

var obj = {

name: "Colin",
prop: {

name = "Aurelio",
getName: function() { return this.name; }
}

}
alert(obj.prop.getName());

var test = obj.prop.getName();

alert(test.getName());



  

Inheritance

● So far, objects are little more than maps
● We would like to emulate the OOP feature of 

inheritance
● Make an object a "special case" of another, more 

general object, sharing the same 
methods/properties

● In javascript this is achieved with prototypes



  

Prototypes

● How do things work?
● Each object has a "hidden" property, called 

[[Prototype]]
● This cannot be manipulated directly!
● The value of this property is another "parent" object
● When we try to access a property/method that does 

not exist, the search automatically contains up the 
prototype chain.



  

Prototypes

var PersonProto = {

    describe: function () {

        return 'Person named '+this.name;

    }

};

var jane = {

    [[Prototype]]: PersonProto,  //ILLEGAL syntax!

    name: 'Jane'

};

var tarzan = {

    [[Prototype]]: PersonProto, //ILLEGAL syntax!

    name: 'Tarzan'

};



  

Prototypes



  

Creating child objects

● Here is the valid syntax to set [[Prototype]]

var PersonProto = {

    describe: function () {

        return 'Person named '+this.name;

    }

};

var jane = Object.create(PersonProto);

jane.name = "Jane"; //Now we can add the non-inherited stuff...



  

Checking inheritance relations

● The Object.getPrototypeOf(myobj) function 
returns the prototype of an object

Object.getPrototypeOf(jane) === PersonProto
● The Object.isPrototypeOf(myobj) method 

checks if the target object (this) is the prototype 
of myobj

PersonProto.isPrototypeOf(jane) //true



  

Setting and deleting

● Setting a property over-rides prototype 
properties

var proto = { method1: function () {alert("Hi");} };
var obj = Object.create(proto);
obj.method1(); //Result?
obj.method1() = function () {alert("Bye");};
obj.method1(); //Result?
proto.method1(); //Result?



  

Reference Semantics

● Guess the result of the following

var x = 5;
var y = x;
x++;
alert(y); // 5 or 6?



  

Reference Semantics

● Guess the result of the following

var x = {val: 5};
var y = x;
x.val++;
alert(y.val); // 5 or 6?



  

Reference semantics

● All object variables are to be treated as 
references.

● The = operator does not create a new copy of 
the value (as it does for numbers)

● Same is true for Arrays (Arrays are Objects)



  

Reference Semantics

● Guess the result of the following

var x = [5];
var y = x;
x[0]++;
alert(y[0]); // 5 or 6?



  

Getting around ref semantics

● Exercise: write some code that copies object a 
into object b

● Step 1: make sure new object has same 
prototype

● Step 2: copy over all local properties 
(recursively?)



  

One solution

//copy a to b
b = Object.reate(Object.getPrototype(a)); //Step1
for(i in a) b.i = a.i; //Step 2
//Naive for two reasons
//1. Also iterates over inherited properties
//2. = does not create a copy (is this what we want?)



  

Constructors

● A cleaner way to do OOP
● Recall, so far we know how to use Object.create()

● In javascript any function can be used as a 
constructor for objects
● Convention: functions meant as constructors start 

with capital letters

● Applying the new operator to a constructor 
creates an object, to which the constructor is 
applied immediately.



  

Constructors example

function Person(name){
this.name = name;

}
var jane = new Person("Jane Doe");
//Now jane === { name: "Jane Doe" }
jane instanceof Person //true
jane.constructor === Person //true



  

Constructors and Prototypes

● Recall that all objects have a [[Prototype]] 
property

● All functions (also) have a prototype property
● Confused?
● Meaning: if the function f is used as a constructor 

(with new), f.prototype is the prototype used for the 
new object



  

Constructors and Prototypes

function Person(name){
this.name = name;

}
Person.prototype.describe = function () {

return "My name is "+this.name; }
var jane = new Person("Jane Doe");
jane.describe() //returns "My name is Jane Doe"



  

General idea

● Inside the prototype of the constructor we place 
methods that are to be shared by all the objects 
of this "class"

● Note that we are trying to simulate a behavior 
that happens automatically in Java, C++,...



  

More material

● Constructor Inheritance, Polymorphism...
● Data Protection

● Everything is public

● ...
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