

Javascript Notes - Objects

E-Applications Spring 2015

M. Lampis

Objects in javascript

● Roughly: Objects are maps
● Keys are strings (not necessarily valid identifiers)
● Each key is mapped to a property

● What about methods?
● Methods are simply properties whose value

happens to be a function.

Object literals

● Simplest way to initialize an object

var myobj = {
key1: "value1",
key2: 23,
method1: function() { alert("Hello!"); },

}
● Note trailing comma (not necessary)

Accessing properties

● Properties can be read/written using the .
operator

myobj.key2 // == 23
myobj.key1 = [1,2,3]; //OK, "value1" is deleted
myobj.method1(); //call the method
myobj.method1 = function() {alert("Bye");}; //OK!

Accessing Properties

● Properties can be written even if the key does
not exist

myobj.key3 = "newkey"; //OK!
● Result -> Often we just start with empty object

and then add properties at will, instead of using
object literals.

Deleting Properties

● A property can be deleted using delete
delete myobj.key1; //now myobj.key1==undefined

● Not the same as setting a property to undefined
● Use sparingly...

● Low efficiency in most implementations

The [] operator

● Object properties can also be accessed using []

myobj["key1"] === myobj.key1; //TRUE!
● Why use this instead of . ?

● Allows any string as key

myobj["a key with spaces"] = 74; //OK
● Allows computed keys

myobj["key"+i] = 75; //myobj.key1? myobj.key2?.
myobj["method"+1](); //what will this do?

this

● A special variable this is "always" defined
● Idea: when we call a method, this refers to the

object to which the method belongs

var myobj = {key1: 23, method1: function() {
alert(this.key1); }, };

● (In sloppy mode) this is defined also for normal
functions. It is equal to the global object
(window)

Setting this

● Consider the following example

var myobj = {key1: 23, method1: function() {
alert(this.key1); }, };

var myfunc = myobj.method1; //is this OK?
myfunc(); //result?

Setting this

● The problem in the previous example is that
"this" is undefined (or ==window) for myfunc

● Javascript offers some mechanisms to fix this
● call, apply and bind

Call

● The method call is applied to objects of type
Function. Its syntax is:

 <function>.call(thisvalue,arg1,arg2,...)
● Except for changing the value of this, this is the

same as just calling the function

alert("Hi"); === alert.call(this,"Hi");

Apply

● The apply method can be applied to function
expressions

<function>.apply(thisvalue,[args]);
● Idea: in addition to setting this, breaks down

array into parameters
● Ex: Math.max(1,2,3,2,1) == 3

Math.max([1,2,3,2,1]) == NaN
Math.max.apply(null,[1,2,3,2,1]) == 3

Bind

● Returns a function, which has already been
supplied some arguments

Syntax: <function>.bind(thisvalue,arg1,arg2,.)
● Example:

function add(x,y) { return x+y; }
var plus2 = add.bind(null,2);

Losing "this"

● What's the deal with supplying "this" to these
functions?

● "this" can easily get lost. Example:

 var counter = {
count : 0,
inc: function () { this.count++; }
}

Losing "this"

● Why this.count++ and not count++?
● This works. What is the problem?

var myfunc = counter.inc; //Valid?
counter.inc(); //increases counter
myfunc(); //should be the same, but isn't.

Finding "this"

● The previous is a common problem when giving
a "callback function" to another function

● Solution: bind

var myfunc = counter.inc.bind(counter);
● Useful with (among others)

● setInterval(func, time); //call func every time ms
● setTimeout(func, time); //call func after time ms

Recap
● Consider the following example: (source: http://www.sitepoint.com/)

var name = "John";

var obj = {

name: "Colin",
prop: {

name = "Aurelio",
getName: function() { return this.name; }
}

}
alert(obj.prop.getName());

var test = obj.prop.getName();

alert(test.getName());

Inheritance

● So far, objects are little more than maps
● We would like to emulate the OOP feature of

inheritance
● Make an object a "special case" of another, more

general object, sharing the same
methods/properties

● In javascript this is achieved with prototypes

Prototypes

● How do things work?
● Each object has a "hidden" property, called

[[Prototype]]
● This cannot be manipulated directly!
● The value of this property is another "parent" object
● When we try to access a property/method that does

not exist, the search automatically contains up the
prototype chain.

Prototypes

var PersonProto = {

 describe: function () {

 return 'Person named '+this.name;

 }

};

var jane = {

 [[Prototype]]: PersonProto, //ILLEGAL syntax!

 name: 'Jane'

};

var tarzan = {

 [[Prototype]]: PersonProto, //ILLEGAL syntax!

 name: 'Tarzan'

};

Prototypes

Creating child objects

● Here is the valid syntax to set [[Prototype]]

var PersonProto = {

 describe: function () {

 return 'Person named '+this.name;

 }

};

var jane = Object.create(PersonProto);

jane.name = "Jane"; //Now we can add the non-inherited stuff...

Checking inheritance relations

● The Object.getPrototypeOf(myobj) function
returns the prototype of an object

Object.getPrototypeOf(jane) === PersonProto
● The Object.isPrototypeOf(myobj) method

checks if the target object (this) is the prototype
of myobj

PersonProto.isPrototypeOf(jane) //true

Setting and deleting

● Setting a property over-rides prototype
properties

var proto = { method1: function () {alert("Hi");} };
var obj = Object.create(proto);
obj.method1(); //Result?
obj.method1() = function () {alert("Bye");};
obj.method1(); //Result?
proto.method1(); //Result?

Reference Semantics

● Guess the result of the following

var x = 5;
var y = x;
x++;
alert(y); // 5 or 6?

Reference Semantics

● Guess the result of the following

var x = {val: 5};
var y = x;
x.val++;
alert(y.val); // 5 or 6?

Reference semantics

● All object variables are to be treated as
references.

● The = operator does not create a new copy of
the value (as it does for numbers)

● Same is true for Arrays (Arrays are Objects)

Reference Semantics

● Guess the result of the following

var x = [5];
var y = x;
x[0]++;
alert(y[0]); // 5 or 6?

Getting around ref semantics

● Exercise: write some code that copies object a
into object b

● Step 1: make sure new object has same
prototype

● Step 2: copy over all local properties
(recursively?)

One solution

//copy a to b
b = Object.reate(Object.getPrototype(a)); //Step1
for(i in a) b.i = a.i; //Step 2
//Naive for two reasons
//1. Also iterates over inherited properties
//2. = does not create a copy (is this what we want?)

Constructors

● A cleaner way to do OOP
● Recall, so far we know how to use Object.create()

● In javascript any function can be used as a
constructor for objects
● Convention: functions meant as constructors start

with capital letters

● Applying the new operator to a constructor
creates an object, to which the constructor is
applied immediately.

Constructors example

function Person(name){
this.name = name;

}
var jane = new Person("Jane Doe");
//Now jane === { name: "Jane Doe" }
jane instanceof Person //true
jane.constructor === Person //true

Constructors and Prototypes

● Recall that all objects have a [[Prototype]]
property

● All functions (also) have a prototype property
● Confused?
● Meaning: if the function f is used as a constructor

(with new), f.prototype is the prototype used for the
new object

Constructors and Prototypes

function Person(name){
this.name = name;

}
Person.prototype.describe = function () {

return "My name is "+this.name; }
var jane = new Person("Jane Doe");
jane.describe() //returns "My name is Jane Doe"

General idea

● Inside the prototype of the constructor we place
methods that are to be shared by all the objects
of this "class"

● Note that we are trying to simulate a behavior
that happens automatically in Java, C++,...

More material

● Constructor Inheritance, Polymorphism...
● Data Protection

● Everything is public

● ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

