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Server-Side Programming

● So far, we have been using javascript to create 
dynamic pages
– We were programming the client (browser)

– There are limits to what can be done this way
● (Persistency, Consistency, …)

● For more complicated applications, we need to 
also program the web server



  

Reminder: Client-Server Web

● Recall how the web works
– All the data for a web site is stored on a web server

– Clients (browsers) communicate with this server 
using the http protocol, requesting pages

– The server returns the requested information (HTML)

● Client-side programming
– The server returns a page that contains a program 

with instructions for the browser.



  

Server-Side programming

● Depending on the client's request the server 
may
– Return a static HTML page (perhaps with js inside)

– Perform some computations, return a page that is 
their result

● Typical example: look up information in a local (server-
side) database

● Server-side programming is about the 2nd of 
these cases



  

Client queries

● Typically, server responds to queries 
(questions) by the clients
– In static cases the client just requests a URL

– In our case the client gives some extra parameters

– The HTTP protocol allows two main methods for 
doing this: GET and POST requests



  

GET and POST

● In both cases, the client requests a URL and 
additionally sends some more info
– In GET requests this extra info is encoded in the 

URL as follows:

https://www.google.fr/?q=good+pizza+in+paris

– Rules: parameters follow a ?

– They come in <name>=<value> pairs

– If many pairs are given, they are separated by &

https://www.google.fr/?q=good+pizza+in+paris


  

GET and POST

● In both cases, the client requests a URL and 
additionally sends some more info
– In GET requests this extra info is encoded in the 

URL

– In POST requests the extra info is sent separately

– Advantage of GET: simpler, easier to debug

– Advantage of POST: safer, allows to send non-text, 
more complicated data



  

A small example

<html>

<body>

<form method="get">

Name: <input type="text" name="username" /> <br />

Password: <input type="password" name="pw" /> <br />

<input type="submit" value="Go" />

</form>

</body>

</html>



  

Explanation

● The form allows the user to prepare (with the help 
of the browser) a GET or POST request
– It also takes an action attribute, indicating the URL to 

be requested. If this is empty, the current page is used.

● When the user clicks the submit button, a GET 
request is sent, with the values of the inputs that 
have names.
– Example: 

file:///home/mlampis/Downloads/test.html?username=a&pw=b



  

Responding to requests

● So far we have explained how to send simple 
requests to the server

● How can the server respond intelligently to 
such requests?
– It will generally run a program that reads the 

parameters and does something with them

● What kind of program?
– Here, there are many choices...



  

CGI

● Common Gateway Interface
● The classical approach to this problem

– Write a program (in any language you like!) that 
takes text input representing the parameters

– The program outputs the HTML that is the proper 
response

– The web server is simply the intermediary, calling 
this program



  

Why not CGI?

● CGI is the most straightforward (and oldest) 
solution for client-side programming

● Its main problem is performance
– Each time a client request arrives, the server must 

run a new instance of the program

– In most operating systems this has a considerable 
cost (context switch)

– → CGI does not scale well...



  

Server-based solutions

● Another approach is to have the server do all 
the work itself

● Instead of a new process, we start a new 
thread inside the server (faster!)

● But, the server must be programmable
– This means that we can only use one of a “limited” 

number of languages.



  

Server-Based Solutions

● PHP
– Basis of the LAMP architecture (Linux-Apache-MySQL-PHP)

● ASP
– Active Server Pages (Microsoft)

● Node.js
– Allows server-side programming in javascript

● JSP
– Java Server Pages



  

JSP

● In this class we will mostly focus on a JSP 
solution

● General idea:
– We write a program in Java that can handle 

GET/POST requests and produce HTML output

– Such programs are called servlets

– The program is stored inside the web server 
(container)

– Platform we will use: Tomcat



  

My first JSP program

<html>

<body>

Hello! <br />

I can do math: 2 + 2 = <%= 2+2 %>

</body>

</html>



  

Explanation

● The new part of this program is the <%= … %> 
“tag”.

● This delimits a Java expression, that will be 
computed. Its value will be placed in the HTML 
instead of the expression.
– So, upon loading the page the user will see:

2 + 2 = 4



  

How does this work?

● We store this file with a jsp extension and put it 
in our server (details later)

● The first time a client requests the file, the 
server compiles it and produces a servlet

● The output of the servlet is then given to the 
client, and for any future clients the servlet is 
re-executed (without re-compiling, unless the 
code is changed).



  

Not javascript!

● Caution:
– The HTML page that the user will receive does not 

contain any code! The Java expression has been 
replaced by its result.

● This is very different from programming in 
javascript (though superficially similar)
– We are writing a program, not HTML

– Think of all HTML as being inside an out.println( ) 
call...



  

JSP syntax

● Scriptlets: pieces of code delimited by <%... %>
● Example:

<body>

Hello World!<br/>

<%

out.println("Your IP address is " + 
request.getRemoteAddr());

%>

</body>



  

JSP syntax

● Inside scriptlets you can write regular Java, also using some predefined 
objects (e.g. out)

● Unlike javascript you can mix and match scriptlets with HTML!

<body>

<% if (day == 1 | day == 7) { %>

      <p> Today is weekend</p>

<% } else { %>

      <p> Today is not weekend</p>

<% } %>

</body> 
● (we assume that day is a previously declared variable...)



  

JSP expressions

● Instead of scriptlets, we can simply evaluate an 
expression with <%= … %>
– This is essentially the same as

<% out.println(...) %>



  

JSP syntax

● Another mix-match example:

<%for (int fontSize = 1; fontSize <= 3; fontSize++){ %>

   <font color="green" size="<%= fontSize %>">

    JSP Tutorial

   </font><br />

<%}%>



  

JSP declarations

● When the JSP is compiled into a servlet, it will 
turn into a class.

● All scriptlet code, as well as all HTML will 
become part of one of the methods of this class
– Scriptlet variables are local...

● We can define other properties of this class, 
methods, or even other helper classes.



  

JSP declarations

● Declarations are done with <%! … %>
● Example: <%! int counter = 0; %>
● These are like global variables for our jsp 

program
– They are also shared between all threads!

– This can help us communicate between threads 
(clients)

– It can also lead to problems/not scale too well...



  

JSP directives

● JSP directives give general commands that 
affect the whole program
– Most common: importing other Java classes

● Syntax: <%@ … %>
– Example: <%@ page import="java.util.*" %>



  

Standard objects

● JSP gives us some pre-defined objects to use 
in our program. These include:
– The request object: contains info about request 

parameters

– The session object

– The out object: allows us to write on the HTML page 
directly



  

The request object

● Contains the parameters of the GET/POST 
request
– Main method:

String getParameter(String name)

– Returns the value of the given (named) parameter, 
or null if the parameter is not set in the request.

● General class: HttpServletRequest



  

The session object

● Keeps track of information related to a user's 
visit to the site
– Remains consistent upon repeated visits from the 

same client (unless time-out occurs)

● To disable sessions:

<%@ page session="false" %>



  

Using sessions

● Main methods:

public Object getAttribute(String name);

public void removeAttribute(String name);

public void setAttribute(String name, Object value); 

● Allows to read/remove/write attributes on a session object.

● How to end a session?

– Either remove the attributes you care about

– Or session.invalidate( ); (completely destroys session)



  

Getting started

● We now know enough to be able to write a small 
application

● But, how are we supposed to compile/run it?
● We will be using Tomcat

– The reference implementation for JSP

● General idea:
– You will run a local instance of Tomcat

– You will place your code there

– You will connect to it with a browser to test your code



  

Running Tomcat

● Step 1: download Tomcat 7 (or another version)

https://tomcat.apache.org/download-70.cgi
● Step 2: unpack it in your home directory:

– tar xvzf apache-tomcat-7.0.77.tar.gz

– mv apache-tomcat-7.0.77 Tomcat/

● Step 3: start it
– Tomcat/bin/startup.sh

● Check if everything works by opening a browser at 
http://localhost:8080



  

The Tomcat directory structure

● Inside your Tomcat directory you find:
– bin: contains start/stop scripts

– conf: configuration files (defaults should be OK)

– webapps: places your jsp files here, with a different 
folder for each application

– work: compiled servlets are placed here...



  

Getting started

● Recall the following program:
<html> <body>

Hello! <br />

I can do math: 2 + 2 = <%= 2+2 %>

</body> </html>

● Store it as test.jsp. Save it in the directory 
webapps/test/

● Open with your browser: 
http://localhost:8080/test/test.jsp



  

Getting started

● If all goes well, the file will be compiled by 
Tomcat automatically the first time you request 
the page.
– The next time the jsp is already compiled, so 

everything goes faster

● You can find your IP address with /sbin/ifconfig
– Ask a friend to check if your server works by going 

to http://192.168.*.*:8080/test/test.jsp (use your 
address instead of *)
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