

E-Applications

Introduction to JSP

Michail Lampis
michail.lampis@dauphine.fr

Outline

● Server-side programming
● JSP – Servlets
● Using Tomcat
● Examples

Server-Side Programming

● So far, we have been using javascript to create
dynamic pages
– We were programming the client (browser)

– There are limits to what can be done this way
● (Persistency, Consistency, …)

● For more complicated applications, we need to
also program the web server

Reminder: Client-Server Web

● Recall how the web works
– All the data for a web site is stored on a web server

– Clients (browsers) communicate with this server
using the http protocol, requesting pages

– The server returns the requested information (HTML)

● Client-side programming
– The server returns a page that contains a program

with instructions for the browser.

Server-Side programming

● Depending on the client's request the server
may
– Return a static HTML page (perhaps with js inside)

– Perform some computations, return a page that is
their result

● Typical example: look up information in a local (server-
side) database

● Server-side programming is about the 2nd of
these cases

Client queries

● Typically, server responds to queries
(questions) by the clients
– In static cases the client just requests a URL

– In our case the client gives some extra parameters

– The HTTP protocol allows two main methods for
doing this: GET and POST requests

GET and POST

● In both cases, the client requests a URL and
additionally sends some more info
– In GET requests this extra info is encoded in the

URL as follows:

https://www.google.fr/?q=good+pizza+in+paris

– Rules: parameters follow a ?

– They come in <name>=<value> pairs

– If many pairs are given, they are separated by &

https://www.google.fr/?q=good+pizza+in+paris

GET and POST

● In both cases, the client requests a URL and
additionally sends some more info
– In GET requests this extra info is encoded in the

URL

– In POST requests the extra info is sent separately

– Advantage of GET: simpler, easier to debug

– Advantage of POST: safer, allows to send non-text,
more complicated data

A small example

<html>

<body>

<form method="get">

Name: <input type="text" name="username" />

Password: <input type="password" name="pw" />

<input type="submit" value="Go" />

</form>

</body>

</html>

Explanation

● The form allows the user to prepare (with the help
of the browser) a GET or POST request
– It also takes an action attribute, indicating the URL to

be requested. If this is empty, the current page is used.

● When the user clicks the submit button, a GET
request is sent, with the values of the inputs that
have names.
– Example:

file:///home/mlampis/Downloads/test.html?username=a&pw=b

Responding to requests

● So far we have explained how to send simple
requests to the server

● How can the server respond intelligently to
such requests?
– It will generally run a program that reads the

parameters and does something with them

● What kind of program?
– Here, there are many choices...

CGI

● Common Gateway Interface
● The classical approach to this problem

– Write a program (in any language you like!) that
takes text input representing the parameters

– The program outputs the HTML that is the proper
response

– The web server is simply the intermediary, calling
this program

Why not CGI?

● CGI is the most straightforward (and oldest)
solution for client-side programming

● Its main problem is performance
– Each time a client request arrives, the server must

run a new instance of the program

– In most operating systems this has a considerable
cost (context switch)

– → CGI does not scale well...

Server-based solutions

● Another approach is to have the server do all
the work itself

● Instead of a new process, we start a new
thread inside the server (faster!)

● But, the server must be programmable
– This means that we can only use one of a “limited”

number of languages.

Server-Based Solutions

● PHP
– Basis of the LAMP architecture (Linux-Apache-MySQL-PHP)

● ASP
– Active Server Pages (Microsoft)

● Node.js
– Allows server-side programming in javascript

● JSP
– Java Server Pages

JSP

● In this class we will mostly focus on a JSP
solution

● General idea:
– We write a program in Java that can handle

GET/POST requests and produce HTML output

– Such programs are called servlets

– The program is stored inside the web server
(container)

– Platform we will use: Tomcat

My first JSP program

<html>

<body>

Hello!

I can do math: 2 + 2 = <%= 2+2 %>

</body>

</html>

Explanation

● The new part of this program is the <%= … %>
“tag”.

● This delimits a Java expression, that will be
computed. Its value will be placed in the HTML
instead of the expression.
– So, upon loading the page the user will see:

2 + 2 = 4

How does this work?

● We store this file with a jsp extension and put it
in our server (details later)

● The first time a client requests the file, the
server compiles it and produces a servlet

● The output of the servlet is then given to the
client, and for any future clients the servlet is
re-executed (without re-compiling, unless the
code is changed).

Not javascript!

● Caution:
– The HTML page that the user will receive does not

contain any code! The Java expression has been
replaced by its result.

● This is very different from programming in
javascript (though superficially similar)
– We are writing a program, not HTML

– Think of all HTML as being inside an out.println()
call...

JSP syntax

● Scriptlets: pieces of code delimited by <%... %>
● Example:

<body>

Hello World!

<%

out.println("Your IP address is " +
request.getRemoteAddr());

%>

</body>

JSP syntax

● Inside scriptlets you can write regular Java, also using some predefined
objects (e.g. out)

● Unlike javascript you can mix and match scriptlets with HTML!

<body>

<% if (day == 1 | day == 7) { %>

 <p> Today is weekend</p>

<% } else { %>

 <p> Today is not weekend</p>

<% } %>

</body>
● (we assume that day is a previously declared variable...)

JSP expressions

● Instead of scriptlets, we can simply evaluate an
expression with <%= … %>
– This is essentially the same as

<% out.println(...) %>

JSP syntax

● Another mix-match example:

<%for (int fontSize = 1; fontSize <= 3; fontSize++){ %>

 <font color="green" size="<%= fontSize %>">

 JSP Tutorial

<%}%>

JSP declarations

● When the JSP is compiled into a servlet, it will
turn into a class.

● All scriptlet code, as well as all HTML will
become part of one of the methods of this class
– Scriptlet variables are local...

● We can define other properties of this class,
methods, or even other helper classes.

JSP declarations

● Declarations are done with <%! … %>
● Example: <%! int counter = 0; %>
● These are like global variables for our jsp

program
– They are also shared between all threads!

– This can help us communicate between threads
(clients)

– It can also lead to problems/not scale too well...

JSP directives

● JSP directives give general commands that
affect the whole program
– Most common: importing other Java classes

● Syntax: <%@ … %>
– Example: <%@ page import="java.util.*" %>

Standard objects

● JSP gives us some pre-defined objects to use
in our program. These include:
– The request object: contains info about request

parameters

– The session object

– The out object: allows us to write on the HTML page
directly

The request object

● Contains the parameters of the GET/POST
request
– Main method:

String getParameter(String name)

– Returns the value of the given (named) parameter,
or null if the parameter is not set in the request.

● General class: HttpServletRequest

The session object

● Keeps track of information related to a user's
visit to the site
– Remains consistent upon repeated visits from the

same client (unless time-out occurs)

● To disable sessions:

<%@ page session="false" %>

Using sessions

● Main methods:

public Object getAttribute(String name);

public void removeAttribute(String name);

public void setAttribute(String name, Object value);

● Allows to read/remove/write attributes on a session object.

● How to end a session?

– Either remove the attributes you care about

– Or session.invalidate(); (completely destroys session)

Getting started

● We now know enough to be able to write a small
application

● But, how are we supposed to compile/run it?
● We will be using Tomcat

– The reference implementation for JSP

● General idea:
– You will run a local instance of Tomcat

– You will place your code there

– You will connect to it with a browser to test your code

Running Tomcat

● Step 1: download Tomcat 7 (or another version)

https://tomcat.apache.org/download-70.cgi
● Step 2: unpack it in your home directory:

– tar xvzf apache-tomcat-7.0.77.tar.gz

– mv apache-tomcat-7.0.77 Tomcat/

● Step 3: start it
– Tomcat/bin/startup.sh

● Check if everything works by opening a browser at
http://localhost:8080

The Tomcat directory structure

● Inside your Tomcat directory you find:
– bin: contains start/stop scripts

– conf: configuration files (defaults should be OK)

– webapps: places your jsp files here, with a different
folder for each application

– work: compiled servlets are placed here...

Getting started

● Recall the following program:
<html> <body>

Hello!

I can do math: 2 + 2 = <%= 2+2 %>

</body> </html>

● Store it as test.jsp. Save it in the directory
webapps/test/

● Open with your browser:
http://localhost:8080/test/test.jsp

Getting started

● If all goes well, the file will be compiled by
Tomcat automatically the first time you request
the page.
– The next time the jsp is already compiled, so

everything goes faster

● You can find your IP address with /sbin/ifconfig
– Ask a friend to check if your server works by going

to http://192.168.*.*:8080/test/test.jsp (use your
address instead of *)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

