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Before we begin

Before we begin

This is a Theoretical Computer Science course. . .

Focus will be on algorithms and their theoretical analysis.
We will discuss algorithms that solve problems on graphs.
Proofs will be important (just like in a math course).

. . . with a bit of an applied side

The course includes a (small) programming component.
We will be (somewhat) interested in real-world relevance (applications).
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Before we begin

Administrative Stuff

Course Instructor: Michael Lampis (michail.lampis AT dauphine.fr)

Course Web page:
https://www.lamsade.dauphine.fr/~mlampis/GraphAlgs/

Grade Calculation:

Midterm Exam: 30% of grade (date: TBD)
Final Exam: 70% of grade

Material to Study:

Slides (posted on web page)
TD exercises and solutions (posted on web page)
Further reading material linked on web page

Please come to class and participate actively!

NB: Programming component is NOT graded.
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Motivation

Graphs

Definition

(Informal) A graph is a mathematical object that models identical
pair-wise symmetric relations between objects.
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Definition

(Informal) A graph is a mathematical object that models identical
pair-wise symmetric relations between objects.

Application Examples:
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Motivation

Graphs

Definition

(Informal) A graph is a mathematical object that models identical
pair-wise symmetric relations between objects.

Application Examples:

Protein-Protein Interactions
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Motivation

Graphs

Definition

(Informal) A graph is a mathematical object that models identical
pair-wise symmetric relations between objects.

Definition

A simple graph G = (V ,E ) is a pair of a set of vertices and edges, with
E ⊆

(V
2

)
.

Pair-wise. e = {u, v}, for e ∈ E , u, v ∈ V . We write simply e = uv .

Otherwise: hypergraph

Identical.

Otherwise: weighted graph, multi-graph

Symmetric.

Otherwise: directed graph
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Motivation

Wolf-Goat-Cabbage

w

g

c

f

h

d

g

w

cf

h

d

Mathematical definition:

V = {f ,w , g , h, d , c}
E = {wg , gc ,wh, fg , fh, hd}
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Other graphs

Matching Problems
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Motivation

Other graphs
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Configuration graph
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Directed graph example

Angela
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Motivation

Directed graph example
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Basic Definitions

Graph Representations – Isomorphism

Adjacency Matrix:
a b c d e f

a 0 1 0 0 1 0

b 1 0 1 0 0 1

c 0 1 0 0 0 0

d 0 0 0 0 1 0

e 1 0 0 1 0 1

f 0 1 0 0 1 0

Graph:
f

e

d

a

b

c

n × n symmetric matrix

0 diagonal

Number of 1’s = 2m
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Basic Definitions

Graph Representations – Isomorphism

Incidence Matrix:
ab ae bf bc de ef

a 1 1 0 0 0 0

b 1 0 1 1 0 0

c 0 0 0 1 0 0

d 0 0 0 0 1 0

e 0 1 0 0 1 1

f 0 0 1 0 0 1

Graph:
f

e

d

a

b

c

n ×m matrix

Two 1’s per column

Number of 1’s = 2m
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Basic Definitions

Graph Representations – Isomorphism

Adjacency Matrix:
a b c d e f

a 0 1 0 0 1 0

b 1 0 1 0 0 1

c 0 1 0 0 0 0

d 0 0 0 0 1 0

e 1 0 0 1 0 1

f 0 1 0 0 1 0

Graph:
f

e

d

a

b

c

Several different matrices could represent the same graph!

Permuting rows/columns does not change the graph.
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Basic Definitions

Graph Representations – Isomorphism

Adjacency lists:
a b,e
b a,c,f
c b
d e
e a,d,f
f b,e

Graph:
f

e

d

a

b

c

A graph may also be represented by:

n lists of neighbors

. . . or even a list of edges

Which representation is “better”?
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Algorithmic Background

Polynomial Time

Algorithmic Efficiency: we care about

Time/Space Complexity

In the worst case

As function of input size (n)

Polynomial in n is good!

And we care about which polynomial!
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Algorithmic Background

Reminder: O-notation

Definitions:

f (n) = O(g(n)) ⇔ ∃C , n0∀n > n0 : f (n) ≤ Cg(n)

f (n) = Ω(g(n)) ⇔ ∃C , n0∀n > n0 : f (n) ≥ Cg(n)

f (n) = Θ(g(n)) ⇔ f (n) = O(g(n)) ∧ f (n) = Ω(g(n))

f (n) = o(g(n)) ⇔ limn→∞
f (n)
g(n) = 0

f (n) = ω(g(n)) ⇔ limn→∞
f (n)
g(n) = ∞
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Algorithmic Background

Reminder: O-notation

(Slightly Inaccurate) Definitions:

f (n) = O(g(n)) ⇔ f (n) ≤ g(n)

f (n) = Ω(g(n)) ⇔ f (n) ≥ g(n)

f (n) = Θ(g(n)) ⇔ f (n) ≈ g(n)

f (n) = o(g(n)) ⇔ f (n) << g(n)

f (n) = ω(g(n)) ⇔ f (n) >> g(n)
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Algorithmic Background

Reminder: O-notation

Intuition:

We care what happens when n is huge (→ asymptotically):

n2 and 3n2 + 25n are “roughly” the same

500n2 is “much less” than n3

10

log n is negligible compared to n which is negligible compared to 2n

(We do care about the distinction between n and n log n)
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Algorithmic Background

Reminder: Basic data structures

Array/Matrix

O(1) time to access/modify an arbitrary element
O(n) time to add/remove an element

Linked List

O(1) time to access first or last element
O(n) time to access arbitrary element
O(1) time to add/remove first/last element

Other data structures: Stack, Queue, Priority Queue. . .
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Algorithmic Background

Graph Representations

Which graph representation is more efficient?

In graph G with n vertices and m edges:

m = O(n2)
m = Ω(n) (unless we have many isolated vertices, which is silly)

Adjacency matrix size: Θ(n2)

Incidence matrix size: Θ(nm)

Adjacency lists: Θ(n +m)

Adjacency lists are always best!
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Algorithmic Background

Log n is a constant?!

Total size of an adjacency list representation is O(m). . .

. . . if we assume that storing the index of a vertex takes O(1) space.

If the index of a vertex takes k bits, then there are at most 2k vertices

If k = O(1), then 2k = O(1), so n is a constant!?!?

Actually, adjacency lists take space O(m log n), because we need log n
bits to give the index of a vertex.

But, for any reasonable input n < 2100, so log n is basically a
constant.

Take home message: this is why we don’t worry too much about log n
factors. n factors are another story. . .
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Notation Basics

Conventions and Interesting Graphs

n = |V |, m = |E |
uv ∈ E ⇒ u, v are adjacent or
neighbors

N(v): set of neighbors of v

e = uv ∈ E ⇒ e is incident on u

Degree d(v): number of edges
incident on v

∆: maximum degree

Clique Kn: all n vertices
adjacent

Path Pn: path on n vertices

Cycle Cn: cycle on n vertices

Wheel Wn: Cn plus a universal
vertex

Q: Is there a polynomial-time algorithm to decide if a graph belongs in one
of these classes?
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Notation Basics

Simple facts about Degrees

Theorem

For all G = (V ,E ) we have
∑

v∈V deg(v) = 2|E |.

Theorem

For all G = (V ,E ) the number of vertices of odd degree in G is even.

Theorem

Every graph G has two vertices with the same degree.
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Notation Basics

Degrees and Digraphs

In directed graphs:

e = uv is an arc from u to v .

The outdegree of u, deg+(u), is the number of arcs going out of u.

The indegree of u, deg−(u), is the number of arcs going into u.

Theorem

For all digraphs G = (V ,A) we have∑
v∈V deg+(v) = |A| =

∑
v∈V deg−(v).

Theorem

In all digraphs, there exist two vertices with the same outdegree.
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Notation Basics

Paths and Connectivity

Definition

A path is an ordered sequence of distinct vertices v1, v2, . . . , vk such that
for all i ∈ [k − 1] we have vivi+1 ∈ E .

Definition

A graph is connected if there is a path between any two of its vertices.

Can we decide in polynomial time if there is a path from s to t? → Graph
traversal algorithms (in a bit. . . )
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Basic Questions

Basic Questions
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Basic Questions

Basic Questions

Subgraph Containment

Short-Long Paths

Interesting Sets

Coloring

G1 is a subgraph of G2 if it can
be obtained from G2 by deleting
vertices and edges.

G1 is an induced subgraph of
G2 if we only delete vertices.

G1 is a spanning subgraph of
G2 if we only delete edges.

Typical question: does G
contain a given graph H?
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Basic Questions

Basic Questions

Subgraph Containment

Short-Long Paths

Interesting Sets

Coloring

A Hamiltonian Path is a path
that visits every vertex exactly
once.

An Eulerian Walk is a walk
(path that may repeat vertices)
that visits every edge exactly
once.

Typical question: find the
shortest/longest path between
two vertices.

Related: Is G Hamiltonian?
Eulerian?
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Basic Questions

Basic Questions

Subgraph Containment

Short-Long Paths

Interesting Sets

Coloring

An independent set is a set of
vertices inducing no edges.

A vertex cover is a set of
vertices that intersects all edges.

A dominating set is a set of
vertices that is adjacent to all
vertices.

. . .

Typical question: Find the
smallest/largest set of vertices
satisfying some property.
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Basic Questions

Basic Questions

Subgraph Containment

Short-Long Paths

Interesting Sets

Coloring

A coloring is a partitioning of a
graph into independent sets.

Typical question: How many
colors do we need to color the
vertices of this graph?
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Basic Questions

Basic Questions

Subgraph Containment

Short-Long Paths

Interesting Sets

Coloring

A coloring is a partitioning of a
graph into independent sets.

Typical question: How many
colors do we need to color the
vertices of this graph?

Many of these questions are Hard! Which are easy and for which classes
of graphs? This is something we will discuss. . .
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Examples
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Examples

Find same degree vertices

Problem

Given graph G as an adjacency matrix, design an algorithm that finds two
vertices of G with the same degree.
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Examples

Find same degree vertices

Problem

Given graph G as an adjacency matrix, design an algorithm that finds two
vertices of G with the same degree.

Solution:

For i ∈ {1, . . . , n}
For j ∈ {i + 1, . . . , n}

Check if deg(i) = deg(j). If yes, output (i , j).

Complexity?
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Examples

Find same degree vertices

Problem

Given graph G as an adjacency matrix, design an algorithm that finds two
vertices of G with the same degree.

Solution:

For i ∈ {1, . . . , n}
For j ∈ {i + 1, . . . , n}

Check if deg(i) = deg(j). If yes, output (i , j).

Complexity? O(n3), because computing deg(i) takes time O(n)
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Examples

Find same degree vertices

Problem

Given graph G as an adjacency matrix, design an algorithm that finds two
vertices of G with the same degree.

Solution:

For i ∈ {1, . . . , n}
Compute deg(i)

Sort array of degrees D

For i ∈ {1, . . . , n} check if D[i ] = D[i + 1]

Complexity? O(n2) time.
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Examples

Find same degree vertices

Problem

Given graph G as an adjacency matrix, design an algorithm that finds two
vertices of G with the same degree.

Solution:

For i ∈ {1, . . . , n}
Compute deg(i)

Sort array of degrees D

For i ∈ {1, . . . , n} check if D[i ] = D[i + 1]

Complexity? O(n2) time.
O(n2) time is optimal (why?). However, we are now using O(n) space,
whereas previously we were using O(1). . .
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Examples

Find vertices at distance at least 3

Problem

Given graph G as an adjacency matrix, find two vertices u, v (if they exist)
which are at distance at least 3.
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Examples

Find vertices at distance at least 3

Problem

Given graph G as an adjacency matrix, find two vertices u, v (if they exist)
which are at distance at least 3.

Solution:

For i ∈ {1, . . . , n}
For j ∈ {i + 1, . . . , n}

if ij ̸∈ E and N(i) ∩ N(j) = ∅ then output (i , j)

Otherwise, Output Not Found!

Complexity?
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Examples

Find vertices at distance at least 3

Problem

Given graph G as an adjacency matrix, find two vertices u, v (if they exist)
which are at distance at least 3.

Solution:

For i ∈ {1, . . . , n}
For j ∈ {i + 1, . . . , n}

if ij ̸∈ E and N(i) ∩ N(j) = ∅ then output (i , j)

Otherwise, Output Not Found!

Complexity? O(n3) assuming N(i) ∩ N(j) = ∅ can be checked in O(n)
(how?)
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Examples

Find vertices at distance at least 3

Problem

Given graph G as an adjacency matrix, find two vertices u, v (if they exist)
which are at distance at least 3.

Solution:

For i ∈ {1, . . . , n}
For j ∈ {i + 1, . . . , n}

if ij ̸∈ E and N(i) ∩ N(j) = ∅ then output (i , j)

Otherwise, Output Not Found!

Complexity? O(n3) assuming N(i) ∩ N(j) = ∅ can be checked in O(n)
(how?)Can we do it in sub-cubic time???
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Examples

Find vertex cover of size 2

Problem

Given graph G as an adjacency matrix, find two vertices u, v (if they exist)
which touch all edges of G.
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Examples

Find vertex cover of size 2

Problem

Given graph G as an adjacency matrix, find two vertices u, v (if they exist)
which touch all edges of G.

Solution:

For i ∈ {1, . . . , n}
For j ∈ {1, . . . , n}

Check if there is an edge not incident on either i nor j .

Complexity?
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Examples

Find vertex cover of size 2

Problem

Given graph G as an adjacency matrix, find two vertices u, v (if they exist)
which touch all edges of G.

Solution:

For i ∈ {1, . . . , n}
For j ∈ {1, . . . , n}

Check if there is an edge not incident on either i nor j .

Complexity?

O(n4) in the obvious implementation. Better?
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Examples

Find vertex cover of size 2

Problem

Given graph G as an adjacency matrix, find two vertices u, v (if they exist)
which touch all edges of G.

First, let us find is G has vertex cover of size 1 in O(n2) (instead of O(n3))
Solution:

Find an edge ij

Check if {i} is a vertex cover. If yes, output i

If not, check if {j} is a vertex cover. If yes, output j

Otherwise, output No
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Examples

Find vertex cover of size 2

Problem

Given graph G as an adjacency matrix, find two vertices u, v (if they exist)
which touch all edges of G.

First, let us find is G has vertex cover of size 1 in O(n2) (instead of O(n3))
Solution:

Find an edge ij

Check if {i} is a vertex cover. If yes, output i

If not, check if {j} is a vertex cover. If yes, output j

Otherwise, output No

O(n2) time

Michael Lampis Graph Algorithms: Lecture 1 August 29, 2025 28 / 32



Examples

Find vertex cover of size 2

Problem

Given graph G as an adjacency matrix, find two vertices u, v (if they exist)
which touch all edges of G.

Now, work recursively:
Solution:

Find an edge ij .

Let G1 be the graph obtained from G if we remove i . Check if G1 has
a vertex cover of size 1. If yes, output {i} plus the vertex cover of G1.

If not, let G2 be the graph obtained from G if we remove j . If G2 has
a vertex cover of size 1, output {j} plus the vertex cover of G2.

Otherwise, output No

Complexity: O(n2)
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Examples

Digraph Transpose I

Problem

Given digraph G as an adjacency matrix, compute the adjacency matrix of
GT , which is the digraph where the direction of all arcs is reversed.
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Examples

Digraph Transpose I

Problem

Given digraph G as an adjacency matrix, compute the adjacency matrix of
GT , which is the digraph where the direction of all arcs is reversed.

Solution: (easy!)

For each i , j ∈ {1, . . . , n} set A′[i , j ] = A[j , i ], where A is the original
matrix.
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Examples

Digraph Transpose II

Problem

Given digraph G as adjacency lists, compute the adjacency list
representation of GT , which is the digraph where the direction of all arcs
is reversed.
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Examples

Digraph Transpose II

Problem

Given digraph G as adjacency lists, compute the adjacency list
representation of GT , which is the digraph where the direction of all arcs
is reversed.

Wait! What is the adjacency list representation of a digraph?

For each v ∈ V we have a list N+(v) with all the out-neighbors of v .
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Examples

Digraph Transpose II

Problem

Given digraph G as adjacency lists, compute the adjacency list
representation of GT , which is the digraph where the direction of all arcs
is reversed.

Initialize with empty lists for all v ∈ V

For each v ∈ V

For each u ∈ N+(v) in the original graph
. . . Add v to the list of outneighbors of u in the new graph.

Complexity: O(m + n) time, but NB adjacency lists are not sorted (we
never promised they were!)
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Examples

Digraph degree I

Problem

Given digraph G in adjacency list represenation and a vertex v, compute
the outdegree of v .
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Examples

Digraph degree I

Problem

Given digraph G in adjacency list represenation and a vertex v, compute
the outdegree of v .

Solution (easy):

Output |N+(v)|
Complexity: O(deg+(v)) or O(1) (depending on how list is stored)
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Examples

Digraph degree II

Problem

Given digraph G in adjacency list represenation and a vertex v, compute
the indegree of v .
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Examples

Digraph degree II

Problem

Given digraph G in adjacency list represenation and a vertex v, compute
the indegree of v .

Solution (less easy):

c := 0

For each u ∈ V \ {v}
If v ∈ N+(u) then c ++

Output c

Complexity: O(n +m), as we have to traverse all the lists (deciding if
v ∈ N+(u) takes time O(|N+(u)|)).
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