Graph Algorithms: Lecture 1 Introduction

Michael Lampis

August 29, 2025

Before we begin

Before we begin

- This is a **Theoretical Computer Science** course. . .
 - Focus will be on algorithms and their theoretical analysis.
 - We will discuss algorithms that solve problems on graphs.
 - Proofs will be important (just like in a math course).

Before we begin

- This is a **Theoretical Computer Science** course. . .
 - Focus will be on algorithms and their theoretical analysis.
 - We will discuss algorithms that solve problems on graphs.
 - Proofs will be important (just like in a math course).
- ...with a bit of an applied side
 - The course includes a (small) programming component.
 - We will be (somewhat) interested in real-world relevance (applications).

Administrative Stuff

- Course Instructor: Michael Lampis (michail.lampis AT dauphine.fr)
- Course Web page:

https://www.lamsade.dauphine.fr/~mlampis/GraphAlgs/

- Grade Calculation:
 - Midterm Exam: 30% of grade (date: TBD)
 - Final Exam: 70% of grade
- Material to Study:
 - Slides (posted on web page)
 - TD exercises and solutions (posted on web page)
 - Further reading material linked on web page

Administrative Stuff

- Course Instructor: Michael Lampis (michail.lampis AT dauphine.fr)
- Course Web page:

https://www.lamsade.dauphine.fr/~mlampis/GraphAlgs/

- Grade Calculation:
 - Midterm Exam: 30% of grade (date: TBD)
 - Final Exam: 70% of grade
- Material to Study:
 - Slides (posted on web page)
 - TD exercises and solutions (posted on web page)
 - Further reading material linked on web page
- Please come to class and participate actively!
- NB: Programming component is NOT graded.

Motivation

Definition

(Informal) A graph is a mathematical object that models **identical** pair-wise symmetric relations between objects.

Definition

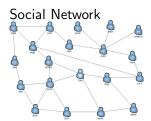
(Informal) A graph is a mathematical object that models **identical** pair-wise symmetric relations between objects.

Application Examples:

Definition

(Informal) A graph is a mathematical object that models **identical** pair-wise symmetric relations between objects.

Application Examples:



Definition

(Informal) A graph is a mathematical object that models **identical** pair-wise symmetric relations between objects.

Application Examples:

Telecommunication Network

Definition

(Informal) A graph is a mathematical object that models **identical** pair-wise symmetric relations between objects.

Application Examples:

Protein-Protein Interactions

Definition

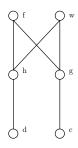
(Informal) A graph is a mathematical object that models **identical** pair-wise symmetric relations between objects.

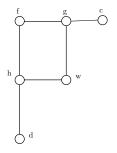
Definition

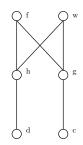
A simple graph G = (V, E) is a pair of a set of **vertices** and **edges**, with $E \subseteq \binom{V}{2}$.

- Pair-wise. $e = \{u, v\}$, for $e \in E, u, v \in V$. We write simply e = uv.
 - Otherwise: hypergraph
- Identical.
 - Otherwise: weighted graph, multi-graph
- Symmetric.
 - Otherwise: directed graph

Cabbage

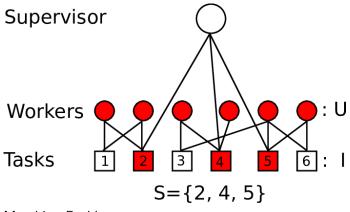




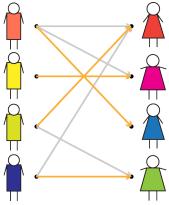


Mathematical definition:

- $V = \{f, w, g, h, d, c\}$
- $E = \{wg, gc, wh, fg, fh, hd\}$



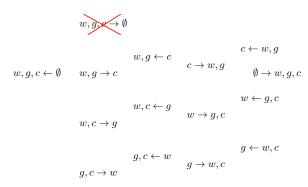
Matching Problems

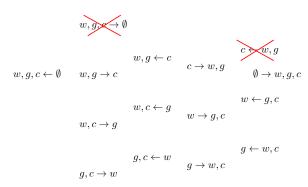


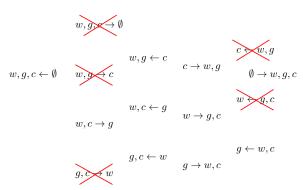
Matching Problems

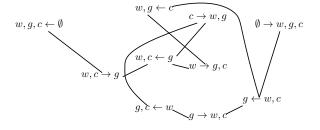
$$w, g, c \leftarrow \emptyset$$

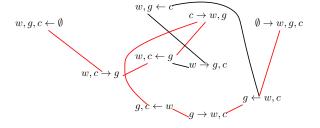
$$\emptyset \to w, g, c$$











Angela l

Angela l

Christine

Angela B

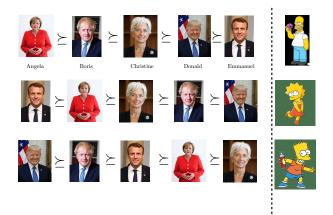
Christine

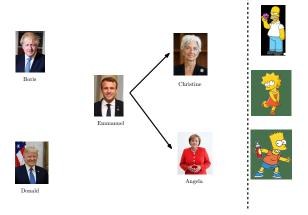
Donald

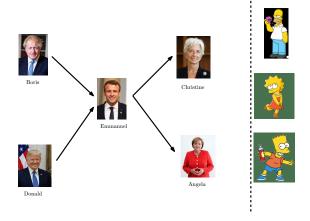
Angela Bor

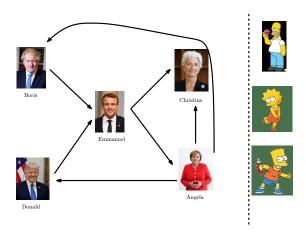
Christine

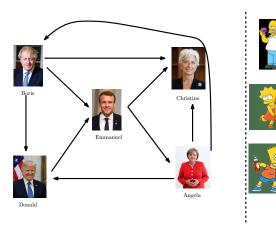
Emmant

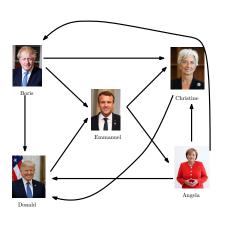


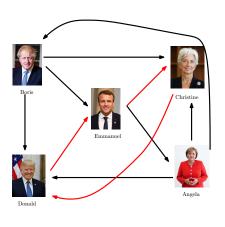


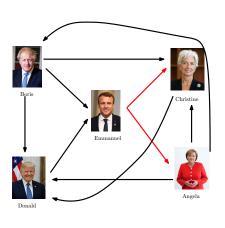


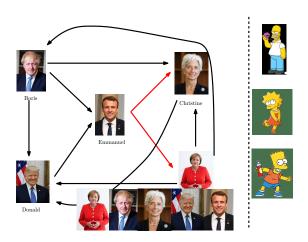


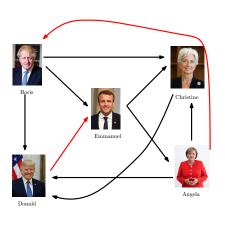


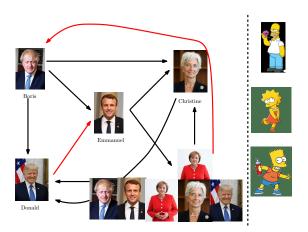


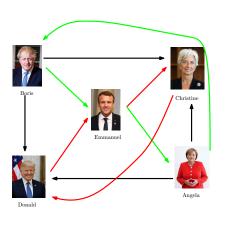










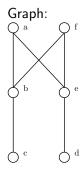


Basic Definitions

Adjacency Matrix:

	a	b	С	d	е	f
а	0	1	0	0	1	0
b	1	0	1	0	0	1
С	0	1	0	0	0	0
d	0	0	0	0	1	0
е	1	0	0	1	0	1
f	0	1	0	0	1	0

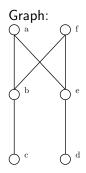
- $n \times n$ symmetric matrix
- 0 diagonal
- Number of 1's = 2m



Incidence Matrix:

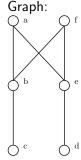
	ab	ae	bf	bc	de	ef
а	1	1	0	0	0	0
b	1	0	1	1	0	0
С	0	0	0	1	0	0
d	0	0	0	0	1	0
е	0	1	0	0	1	1
f	0	0	1	0	0	1

- $n \times m$ matrix
- Two 1's per column
- Number of 1's = 2m



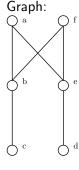
Adjacency Matrix:

	а	b	С	d	е	f
а	0	1	0	0	1	0
b	1	0	1	0	0	1
С	0	1	0	0	0	0
d	0	0	0	0	1	0
е	1	0	0	1	0	1
f	0	1	0	0	1	0



- Several different matrices could represent the same graph!
- Permuting rows/columns does not change the graph.

Adjacency lists:



A graph may also be represented by:

- n lists of neighbors
- ...or even a list of edges

Which representation is "better"?

Algorithmic Background

Polynomial Time

Algorithmic Efficiency: we care about

- Time/Space Complexity
- In the worst case
- As function of input size (n)
- Polynomial in n is good!

Polynomial Time

Algorithmic Efficiency: we care about

- Time/Space Complexity
- In the worst case
- As function of input size (n)
- Polynomial in n is good!
- And we care about which polynomial!

Reminder: O-notation

Definitions:

•
$$f(n) = O(g(n)) \Leftrightarrow \exists C, n_0 \forall n > n_0 : f(n) \leq Cg(n)$$

•
$$f(n) = \Omega(g(n)) \Leftrightarrow \exists C, n_0 \forall n > n_0 : f(n) \geq Cg(n)$$

•
$$f(n) = \Theta(g(n)) \Leftrightarrow f(n) = O(g(n)) \wedge f(n) = \Omega(g(n))$$

•
$$f(n) = o(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

•
$$f(n) = \omega(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Reminder: O-notation

(Slightly Inaccurate) Definitions:

•
$$f(n) = O(g(n)) \Leftrightarrow f(n) \leq g(n)$$

•
$$f(n) = \Omega(g(n)) \Leftrightarrow f(n) \geq g(n)$$

•
$$f(n) = \Theta(g(n)) \Leftrightarrow f(n) \approx g(n)$$

•
$$f(n) = o(g(n)) \Leftrightarrow f(n) << g(n)$$

•
$$f(n) = \omega(g(n)) \Leftrightarrow f(n) >> g(n)$$

Reminder: O-notation

Intuition:

- We care what happens when n is huge (\rightarrow asymptotically):
- n^2 and $3n^2 + 25n$ are "roughly" the same
- $500n^2$ is "much less" than $\frac{n^3}{10}$
- $\log n$ is negligible compared to n which is negligible compared to 2^n
- (We do care about the distinction between n and $n \log n$)

Reminder: Basic data structures

- Array/Matrix
 - O(1) time to access/modify an arbitrary element
 - O(n) time to add/remove an element
- Linked List
 - O(1) time to access first or last element
 - O(n) time to access arbitrary element
 - O(1) time to add/remove first/last element

Reminder: Basic data structures

- Array/Matrix
 - O(1) time to access/modify an arbitrary element
 - O(n) time to add/remove an element
- Linked List
 - O(1) time to access first or last element
 - O(n) time to access arbitrary element
 - O(1) time to add/remove first/last element

Other data structures: Stack, Queue, Priority Queue...

Which graph representation is more efficient?

- In graph G with n vertices and m edges:
 - $m = O(n^2)$
 - $m = \Omega(n)$ (unless we have many isolated vertices, which is silly)

Which graph representation is more efficient?

- In graph G with n vertices and m edges:
 - $m = O(n^2)$
 - $m = \Omega(n)$ (unless we have many isolated vertices, which is silly)
- Adjacency matrix size: $\Theta(n^2)$
- Incidence matrix size: $\Theta(nm)$
- Adjacency lists: $\Theta(n+m)$

Which graph representation is more efficient?

- In graph G with n vertices and m edges:
 - $m = O(n^2)$
 - $m = \Omega(n)$ (unless we have many isolated vertices, which is silly)
- Adjacency matrix size: $\Theta(n^2)$
- Incidence matrix size: $\Theta(nm)$
- Adjacency lists: $\Theta(n+m)$
- Adjacency lists are always best!

Which graph representation is more efficient?

- In graph G with n vertices and m edges:
 - $m = O(n^2)$
 - $m = \Omega(n)$ (unless we have many isolated vertices, which is silly)

• Adjacency matrix size: $\Theta(n^2)$

st!

- Total size of an adjacency list representation is O(m)...
- ullet ...if we assume that storing the index of a vertex takes O(1) space.

- Total size of an adjacency list representation is O(m)...
- ...if we assume that storing the index of a vertex takes O(1) space.
- If the index of a vertex takes k bits, then there are at most 2^k vertices
- If k = O(1), then $2^k = O(1)$, so *n* is a constant!?!?

- Total size of an adjacency list representation is O(m)...
- ullet . . . if we assume that storing the index of a vertex takes O(1) space.
- If the index of a vertex takes k bits, then there are at most 2^k vertices
- If k = O(1), then $2^k = O(1)$, so *n* is a constant!?!?
- Actually, adjacency lists take space $O(m \log n)$, because we need $\log n$ bits to give the index of a vertex.
- But, for any reasonable input $n < 2^{100}$, so log n is basically a constant.

- Total size of an adjacency list representation is O(m)...
- ... if we assume that storing the index of a vertex takes O(1) space.
- If the index of a vertex takes k bits, then there are at most 2^k vertices
- If k = O(1), then $2^k = O(1)$, so *n* is a constant!?!?
- Actually, adjacency lists take space $O(m \log n)$, because we need $\log n$ bits to give the index of a vertex.
- But, for any reasonable input $n < 2^{100}$, so log n is basically a constant.
- Take home message: this is why we don't worry too much about log *n* factors. *n* factors are another story. . .

Notation Basics

- n = |V|, m = |E|
- uv ∈ E ⇒ u, v are adjacent or neighbors
- N(v): set of neighbors of v
- $e = uv \in E \Rightarrow e$ is incident on u
- Degree d(v): number of edges incident on v
- Δ: maximum degree

- n = |V|, m = |E|
- $uv \in E \Rightarrow u, v$ are adjacent or neighbors
- N(v): set of neighbors of v
- $e = uv \in E \Rightarrow e$ is incident on u
- Degree d(v): number of edges incident on v
- Δ: maximum degree

 Clique K_n: all n vertices adjacent

- n = |V|, m = |E|
- $uv \in E \Rightarrow u, v$ are adjacent or neighbors
- N(v): set of neighbors of v
- $e = uv \in E \Rightarrow e$ is incident on u
- Degree d(v): number of edges incident on v
- Δ: maximum degree

- Clique K_n: all n vertices adjacent
- Path P_n : path on n vertices

- n = |V|, m = |E|
- uv ∈ E ⇒ u, v are adjacent or neighbors
- N(v): set of neighbors of v
- $e = uv \in E \Rightarrow e$ is incident on u
- Degree d(v): number of edges incident on v
- Δ: maximum degree

- Clique K_n: all n vertices adjacent
- Path P_n : path on n vertices
- Cycle C_n : cycle on n vertices

- n = |V|, m = |E|
- uv ∈ E ⇒ u, v are adjacent or neighbors
- N(v): set of neighbors of v
- $e = uv \in E \Rightarrow e$ is incident on u
- Degree d(v): number of edges incident on v
- Δ: maximum degree

- Clique K_n: all n vertices adjacent
- Path P_n : path on n vertices
- Cycle C_n : cycle on n vertices
- Wheel W_n : C_n plus a universal vertex

Conventions and Interesting Graphs

- n = |V|, m = |E|
- uv ∈ E ⇒ u, v are adjacent or neighbors
- N(v): set of neighbors of v
- $e = uv \in E \Rightarrow e$ is incident on u
- Degree d(v): number of edges incident on v
- Δ: maximum degree

- Clique K_n: all n vertices adjacent
- Path P_n : path on n vertices
- Cycle C_n : cycle on n vertices
- Wheel W_n : C_n plus a universal vertex

Q: Is there a polynomial-time algorithm to decide if a graph belongs in one of these classes?

Simple facts about Degrees

Theorem

For all
$$G = (V, E)$$
 we have $\sum_{v \in V} \deg(v) = 2|E|$.

Theorem

For all G = (V, E) the number of vertices of odd degree in G is even.

Theorem

Every graph G has two vertices with the same degree.

Degrees and Digraphs

In directed graphs:

- e = uv is an **arc** from u to v.
- The outdegree of u, $\deg^+(u)$, is the number of arcs going out of u.
- The indegree of u, $\deg^-(u)$, is the number of arcs going into u.

Theorem

For all digraphs
$$G = (V, A)$$
 we have $\sum_{v \in V} \deg^+(v) = |A| = \sum_{v \in V} \deg^-(v)$.

Theorem

In all digraphs, there exist two vertices with the same outdegree.

Paths and Connectivity

Definition

A path is an ordered sequence of **distinct** vertices v_1, v_2, \dots, v_k such that for all $i \in [k-1]$ we have $v_i v_{i+1} \in E$.

Definition

A graph is connected if there is a path between any two of its vertices.

Paths and Connectivity

Definition

A path is an ordered sequence of **distinct** vertices v_1, v_2, \dots, v_k such that for all $i \in [k-1]$ we have $v_i v_{i+1} \in E$.

Definition

A graph is connected if there is a path between any two of its vertices.

Can we decide in polynomial time if there is a path from s to $t? \to \mathsf{Graph}$ traversal algorithms (in a bit. . .)

- Subgraph Containment
- Short-Long Paths
- Interesting Sets
- Coloring

- G_1 is a subgraph of G_2 if it can be obtained from G_2 by deleting vertices and edges.
- G₁ is an **induced** subgraph of
 G₂ if we only delete vertices.
- G₁ is a spanning subgraph of G₂ if we only delete edges.
- Typical question: does G contain a given graph H?

- Subgraph Containment
- Short-Long Paths
- Interesting Sets
- Coloring

- A Hamiltonian Path is a path that visits every vertex exactly once.
- An Fulerian Walk is a walk (path that may repeat vertices) that visits every edge exactly once.
- Typical question: find the shortest/longest path between two vertices.
- Related Is G Hamiltonian? Fulerian?

- Subgraph Containment
- Short-Long Paths
- Interesting Sets
- Coloring

- An independent set is a set of vertices inducing no edges.
- A vertex cover is a set of vertices that intersects all edges.
- A dominating set is a set of vertices that is adjacent to all vertices.
-
- Typical question: Find the smallest/largest set of vertices satisfying some property.

- Subgraph Containment
- Short-Long Paths
- Interesting Sets
- Coloring

- A coloring is a partitioning of a graph into independent sets.
- Typical question: How many colors do we need to color the vertices of this graph?

- Subgraph Containment
- Short-Long Paths
- Interesting Sets
- Coloring

- A coloring is a partitioning of a graph into independent sets.
- Typical question: How many colors do we need to color the vertices of this graph?

Many of these questions are **Hard**! Which are easy and for which classes of graphs? This is something we will discuss...

Examples

Problem

Given graph G as an adjacency matrix, design an algorithm that finds two vertices of G with the same degree.

Problem

Given graph G as an adjacency matrix, design an algorithm that finds two vertices of G with the same degree.

Solution:

- For $i \in \{1, ..., n\}$
- For $j \in \{i+1, ..., n\}$
 - Check if deg(i) = deg(j). If yes, output (i, j).

Complexity?

Problem

Given graph G as an adjacency matrix, design an algorithm that finds two vertices of G with the same degree.

Solution:

- For $i \in \{1, ..., n\}$
- For $j \in \{i+1, ..., n\}$
 - Check if deg(i) = deg(j). If yes, output (i, j).

Complexity? $O(n^3)$, because computing deg(i) takes time O(n)

Problem

Given graph G as an adjacency matrix, design an algorithm that finds two vertices of G with the same degree.

Solution:

- For $i \in \{1, ..., n\}$
 - Compute deg(i)
- Sort array of degrees D
- For $i \in \{1, ..., n\}$ check if D[i] = D[i + 1]

Complexity? $O(n^2)$ time.

Problem

Given graph G as an adjacency matrix, design an algorithm that finds two vertices of G with the same degree.

Solution:

- For $i \in \{1, ..., n\}$
 - Compute deg(i)
- Sort array of degrees D
- For $i \in \{1, ..., n\}$ check if D[i] = D[i + 1]

Complexity? $O(n^2)$ time.

 $O(n^2)$ time is optimal (why?). However, we are now using O(n) space, whereas previously we were using O(1)...

Problem

Given graph G as an adjacency matrix, find two vertices u, v (if they exist) which are at distance at least 3.

Problem

Given graph G as an adjacency matrix, find two vertices u, v (if they exist) which are at distance at least 3.

Solution:

- For $i \in \{1, ..., n\}$
- For $j \in \{i+1, ..., n\}$
 - if $ij \notin E$ and $N(i) \cap N(j) = \emptyset$ then output (i, j)
- Otherwise, Output Not Found!

Complexity?

Problem

Given graph G as an adjacency matrix, find two vertices u, v (if they exist) which are at distance at least 3.

Solution:

- For $i \in \{1, ..., n\}$
- For $j \in \{i+1, ..., n\}$
 - if $ij \notin E$ and $N(i) \cap N(j) = \emptyset$ then output (i, j)
- Otherwise, Output Not Found!

Complexity? $O(n^3)$ assuming $N(i) \cap N(j) = \emptyset$ can be checked in O(n) (how?)

Problem

Given graph G as an adjacency matrix, find two vertices u, v (if they exist) which are at distance at least 3.

Solution:

- For $i \in \{1, ..., n\}$
- For $j \in \{i+1, ..., n\}$
 - if $ij \notin E$ and $N(i) \cap N(j) = \emptyset$ then output (i, j)
- Otherwise, Output Not Found!

Complexity? $O(n^3)$ assuming $N(i) \cap N(j) = \emptyset$ can be checked in O(n) (how?)Can we do it in sub-cubic time???

Problem

Given graph G as an adjacency matrix, find two vertices u, v (if they exist) which touch all edges of G.

Problem

Given graph G as an adjacency matrix, find two vertices u, v (if they exist) which touch all edges of G.

Solution:

- For $i \in \{1, ..., n\}$
- For $j \in \{1, ..., n\}$
 - Check if there is an edge not incident on either i nor j.

Complexity?

Problem

Given graph G as an adjacency matrix, find two vertices u, v (if they exist) which touch all edges of G.

Solution:

- For $i \in \{1, ..., n\}$
- For $j \in \{1, \dots, n\}$
 - Check if there is an edge not incident on either *i* nor *j*.

Complexity?

 $O(n^4)$ in the obvious implementation. Better?

Problem

Given graph G as an adjacency matrix, find two vertices u, v (if they exist) which touch all edges of G.

First, let us find is G has vertex cover of size 1 in $O(n^2)$ (instead of $O(n^3)$) Solution:

- Find an edge ij
- Check if $\{i\}$ is a vertex cover. If yes, output i
- If not, check if $\{j\}$ is a vertex cover. If yes, output j
- Otherwise, output No

Problem

Given graph G as an adjacency matrix, find two vertices u, v (if they exist) which touch all edges of G.

First, let us find is G has vertex cover of size 1 in $O(n^2)$ (instead of $O(n^3)$) Solution:

- Find an edge ij
- Check if $\{i\}$ is a vertex cover. If yes, output i
- If not, check if $\{j\}$ is a vertex cover. If yes, output j
- Otherwise, output No

 $O(n^2)$ time

Problem

Given graph G as an adjacency matrix, find two vertices u, v (if they exist) which touch all edges of G.

Now, work recursively:

Solution:

- Find an edge ij.
- Let G_1 be the graph obtained from G if we remove i. Check if G_1 has a vertex cover of size 1. If yes, output $\{i\}$ plus the vertex cover of G_1 .
- If not, let G_2 be the graph obtained from G if we remove j. If G_2 has a vertex cover of size 1, output $\{j\}$ plus the vertex cover of G_2 .
- Otherwise, output No

Complexity: $O(n^2)$

Digraph Transpose I

Problem

Given digraph G as an adjacency matrix, compute the adjacency matrix of G^T , which is the digraph where the direction of all arcs is reversed.

Digraph Transpose I

Problem

Given digraph G as an adjacency matrix, compute the adjacency matrix of G^T , which is the digraph where the direction of all arcs is reversed.

Solution: (easy!)

• For each $i, j \in \{1, ..., n\}$ set A'[i, j] = A[j, i], where A is the original matrix.

Digraph Transpose II

Problem

Given digraph G as adjacency lists, compute the adjacency list representation of G^T , which is the digraph where the direction of all arcs is reversed.

Digraph Transpose II

Problem

Given digraph G as adjacency lists, compute the adjacency list representation of G^T , which is the digraph where the direction of all arcs is reversed.

Wait! What is the adjacency list representation of a digraph?

• For each $v \in V$ we have a list $N^+(v)$ with all the out-neighbors of v.

Digraph Transpose II

Problem

Given digraph G as adjacency lists, compute the adjacency list representation of G^T , which is the digraph where the direction of all arcs is reversed.

- Initialize with empty lists for all $v \in V$
- For each $v \in V$
 - For each $u \in N^+(v)$ in the original graph
 - ullet ... Add v to the list of outneighbors of u in the new graph.

Complexity: O(m+n) time, but **NB** adjacency lists are not sorted (we never promised they were!)

Digraph degree I

Problem

Given digraph G in adjacency list representaion and a vertex v, compute the outdegree of v.

Digraph degree I

Problem

Given digraph G in adjacency list representation and a vertex v, compute the outdegree of v.

Solution (easy):

• Output $|N^+(v)|$

Complexity: $O(\deg^+(v))$ or O(1) (depending on how list is stored)

Digraph degree II

Problem

Given digraph G in adjacency list representation and a vertex v, compute the indegree of v.

Digraph degree II

Problem

Given digraph G in adjacency list representation and a vertex v, compute the indegree of v.

Solution (less easy):

- c := 0
 - For each $u \in V \setminus \{v\}$
 - If $v \in N^+(u)$ then c++
 - Output c

Complexity: O(n+m), as we have to traverse all the lists (deciding if $v \in N^+(u)$ takes time $O(|N^+(u)|)$).

