Graph Algorithms

Graph Traversals and Connectivity II

Michael Lampis

September 11, 2025

Graph Traversal

Problem

Given (di)graph G, determine connectivity properties:

- Is *G* (strongly) connected?
- What are the (strongly) connected components of G?
- Which vertices can be reached from a given source s?
- What is the shortest path distance from (given vertex) s to (given vertex) t?

Graph Traversal

Problem

Given (di)graph G, determine connectivity properties:

- Is G (strongly) connected?
- What are the (strongly) connected components of *G*?
- Which vertices can be reached from a given source s?
- What is the shortest path distance from (given vertex) s to (given vertex) t?

Algorithms:

- BFS (last lecture)
- DFS (today)

Depth-First Search

Depth-first search (DFS) is a basic **graph traversal** algorithm.

- Input: G and specified source vertex s

Depth-First Search

Depth-first search (DFS) is a basic **graph traversal** algorithm.

- Input: G and specified source vertex s
- Output: Set of vertices reachable from s and/t/t/t/e/e//が/かられるまた/patths
 がらかい/s/t/o/AN/sがががらます。

Key properties:

- Linear time and space complexity O(n+m).
- Works for both graphs and digraphs.

Depth-First Search

Depth-first search (DFS) is a basic **graph traversal** algorithm.

- Input: G and specified source vertex s
- Output: Set of vertices reachable from s a/n/は/状ಳをとうが/索状/かる状態を がかが/ま/状め/がまりがいたがいた。

Key properties:

- Linear time and space complexity O(n+m).
- Works for both graphs and digraphs.

Key idea:

• Explore vertices in /order/of/incheasing/distance/from/s//using/a/dueue going as far as possible, until we get stuck, then backtracking.

DFS High-level ideas

- Vertices are colored White, Gray, or Black
 - White: undiscovered
 - Gray: discovered, not processed yet
 - Black: finished
- As vertices are discovered, they/are/abded/to/the/pueue we move to the first undiscovered neighbor and continue from there.
 - **NB**: This is essentially equivalent to adding vertices to a **stack** instead of a queue.
- FARO/////vertices/further/away/ave/processed/later/((proof?))
- We will keep track of the time when a vertex became Gray and Black.

DFS - Initialization

1: for $v \in V \setminus \{s\}$ do

▷ initialize

- 2: Color v White, Parent of $v \leftarrow NULL$
- 3: end for
- 4: t = 0
- 5: DFS-Visit(G,s)

▷ universal time variable

DFS - Recursive Procedure

```
1: procedure DFS-VISIT(G, u)
      t++
3:
   u.d = t, Color u Gray
    for v \in N(u) do
4:
          if v is White then
5:
             Set Parent of v to be u
6:
             DFS-Visit(G, v)
7:
          end if
8.
      end for
9.
10:
   t + +
11:
   u.f = t, Color u Black
12: end procedure
```


Recursion stack (top at bottom)

Α

Visit order

Α

Recursion stack (top at bottom)

A B

Visit order

 $\mathsf{A} \ \to \mathsf{B}$

Michael Lampis Graph Algorithms

Recursion stack (top at bottom)

A B

0

Visit order

 $A \rightarrow B \rightarrow D$

Recursion stack (top at bottom)

A B

.

-

$$A \rightarrow B \rightarrow D \rightarrow F$$

Recursion stack (top at bottom)

A

В

Г

G

$$\mathsf{A} \ \to \mathsf{B} \ \to \mathsf{D} \ \to \mathsf{F} \ \to \mathsf{G}$$

Recursion stack (top at bottom)

B F

G

Ε

Recursion stack (top at bottom)

Α

Recursion stack (top at bottom)

empty

Visit order

7/30

Michael Lampis Graph Algorithms September 11, 2025

Remarks about example

Remarks about example

- Previous example was generated by ChatGPT
 - ullet Only took 2 3 minutes of computing time, and a couple of iterations!
- It is mostly correct and illustrates the high-level idea of DFS
- However, it contains some minor error...
 - Incorrect DFS tree.
- What is the moral lesson of this story? (food for thought...)

		d	f
	S	1	
	a		
	a b c d		
Times:	С		
i iiiies.	d		
	e f		
	f		
	g		
	g h		

S				

	d	f
S	1	
a	2	
b		
С		
d		
е		
f		
g		
h		
	a b c d e f	s 1 2 b c d e f g

S	а				

		d	f
	S	1	
	a	1 2 3	
	b	3	
Times:	С		
i imes:	c d		
	е		
	f		
	g		
	h		

6						
	S	a	b			

		d	f
	S	1	
	a	1 2 3	
	b	3	
Times:	С		
i imes.	c d		
	e f	4	
	f		
	g		
	h		

	0 -				
S	a	b	е		

	d	f
5	1	
a	2	
o	3	
:	5	
l k		
<u>و</u>	4	
:		
5 1		
	5 3 5 6 6 7 7	1 2 3 5 5 d 4

	_				
S	а	b	е	С	

		d	f
	S	1	
	a	2	
	b	3	
Times:	С	5	
i imes:	c d	1 2 3 5 6 4	
	е	4	
	e f		
	g h		

Calling Stack:

	U					
S	а	b	е	С	d	

9/30

Michael Lampis Graph Algorithms September 11, 2025

		d	f
	S	1	
	a	2	
	b	3	
Times:	С	2 3 5 6 4	
i imes.	c d	6	7
	e f	4	
	f		
	g h		

	0 -				
S	a	b	е	С	

		d	f
	S	1	
	a	2	
	b	3	
Times:	c d	5	8 7
i imes:	d	1 2 3 5 6 4	7
	e f	4	
	f		
	g		
	g h		

	0 -				
S	a	b	е		

		d	f
	S	1	
	a	2	
	b	3	
Times:	c d	1 2 3 5 6 4 9	8 7
i imes.	d	6	7
	e f	4	
	f	9	
	g h		

Calling Stack:

	_				
S	а	b	е	f	

Michael Lampis Graph Algorithms

		d	f
	S	1	
	а	2	
	b	3	
Times:		1 2 3 5 6 4 9	8 7
i imes:	c d	6	7
	е	4	
	e f	9	
	g	10	
	g h		

	_					
S	а	b	е	f	g	

		d	f
	S	1	
	a	2	
	b	3	
T:	С	1 2 3 5 6 4 9	8 7
Times:	c d	6	7
	е	4	
	f	9	
	g	10	11
	g h		

	_				
S	а	b	е	f	

		d	f
	S	1	
	a	2	
	a b	3	
Times:	С	1 2 3 5 6 4 9	8 7
i imes:	c d	6	7
	е	4	
	e f	9	12
	g	10	11
	g h		
		•	

Calling Stack:

S	a	b	е						

Michael Lampis Gr

		d	f
	S	1	
	а	1 2 3 5 6 4 9	
	b	3	
Times:	c d	5	8 7
i imes.	d	6	7
	e f	4	
	f	9	12
	g	10	11
	g h	13	

	_				
S	а	b	е	h	

		d	f
	S	1	
	a	2	
	b	3	
Times:	c d	2 3 5 6 4 9	8 7
i imes:	d	6	7
	е	4	
	f	9	12
	g	10	11
	h	13	14

6						
	S	а	b	е		

	d	f
S	1	
a	2	
b	3	
С	5	8 7
d	6	7
е	4	15
f	9	12
g	10	11
h	13	14
	a b c d e f	s 1 a 2 b 3 c 5 d 6 e 4 f 9 g 10

	_			
S	а	b		

		d	f
	S	1	
	a	2	
	b	3	16
Times:	С	2 3 5 6 4 9	8
i imes:	c d	6	7
	е	4	15
	f	9	12
	g	10	11
	h	13	14

Calling Stack:

	_			
S	а			

9/30

		d	f
	S	1	
	a	2	17
	b	3	16
Times:	С	5	8
i imes:	c d	6 4	7
	е	4	15
	f	9	12
	g	10	11
	h	13	14

	0				
S					

Example – (human generated, could still be wrong?)

	d	f
S	1	18
a	2	17
b	3	16
С	5	8
d	6	7
е	4	15
f	9	12
g	10	11
h	13	14
	a b c d e f	s 1 a 2 b 3 c 5 d 6 e 4 f 9 g 10

Calling Stack:

Analysis of DFS

• Initialization takes O(n) time (and space).

- Initialization takes O(n) time (and space).
- Vertex colors go from White→Gray→Black
 - O(n) color changes.

- Initialization takes O(n) time (and space).
- Vertex colors go from White→Gray→Black
 - O(n) color changes.
- \circ O(n) stack operations:
 - ullet Only add to stack White vertices, which we turn Gray ullet each vertex added to stack at most once.
 - Therefore, O(n) stack operations.

- Initialization takes O(n) time (and space).
- Vertex colors go from White→Gray→Black
 - O(n) color changes.
- \circ O(n) stack operations:
 - ullet Only add to stack White vertices, which we turn Gray o each vertex added to stack at most once.
 - Therefore, O(n) stack operations.
- $O(\deg(v))$ operations when v is discovered.
 - Recall $\sum_{v \in V} \deg(v) = 2m$.

- Initialization takes O(n) time (and space).
- Vertex colors go from White→Gray→Black
 - O(n) color changes.
- \circ O(n) stack operations:
 - ullet Only add to stack White vertices, which we turn Gray o each vertex added to stack at most once.
 - Therefore, O(n) stack operations.
- $O(\deg(v))$ operations when v is discovered.
 - Recall $\sum_{v \in V} \deg(v) = 2m$.
- \Rightarrow Total space: O(n) and total time O(n+m).

Lemma

For all $u \in V$ if, d_u , f_u are the discovery and finish times for u, then $d_u < f_u$

Lemma

For all $u \in V$ if, d_u, f_u are the discovery and finish times for u, then $d_u < f_u$

Proof.

- d_u is time that u became Gray.
- f_u is time that u became Black
- u becomes Black after becoming Gray..

Definition

Reminder: in a tree, u is an **ancestor** of v, if u = v, or u is an ancestor of the parent of v.

Lemma

For all $u, v \in V$, u is an ancestor of v in the DFS tree if and only if u was Gray when v became Gray $(d_u < d_v < f_u)$.

Definition

Reminder: in a tree, u is an **ancestor** of v, if u = v, or u is an ancestor of the parent of v.

Lemma

For all $u, v \in V$, u is an ancestor of v in the DFS tree if and only if u was Gray when v became Gray $(d_{ij} < d_{v} < f_{ij})$.

Proof.

- When a vertex v is added, all its ancestors are Gray.
 - Put another way: a Black vertex gains no new descendants.

13 / 30

Michael Lampis Graph Algorithms

Lemma

For all $u, v \in V$ we have one of the following:

• $[d_u, f_u]$ and $[d_v, f_v]$ are disjoint, u, v are not ancestor-descendant.

Lemma

For all $u, v \in V$ we have one of the following:

- $[d_u, f_u]$ and $[d_v, f_v]$ are disjoint, u, v are not ancestor-descendant.
- $[d_u, f_u]$ contains $[d_v, f_v]$, and u is ancestor of v.

Lemma

For all $u, v \in V$ we have one of the following:

- $[d_u, f_u]$ and $[d_v, f_v]$ are disjoint, u, v are not ancestor-descendant.
- $[d_u, f_u]$ contains $[d_v, f_v]$, and u is ancestor of v.
- Same as previous point but with u, v exchanged.

Lemma

For all $u, v \in V$ we have one of the following:

- $[d_u, f_u]$ and $[d_v, f_v]$ are disjoint, u, v are not ancestor-descendant.
- $[d_u, f_u]$ contains $[d_v, f_v]$, and u is ancestor of v.
- Same as previous point but with u, v exchanged.

Proof.

(Wlog $d_u < d_v$)

- u, v not related $\Leftrightarrow [d_u, f_u] \cap [d_v, f_v] = \emptyset$
 - Proof in next slide
- u ancestor of $v \Leftrightarrow d_u < d_v < f_v < f_u$
 - Proof in next slide

Proof.

• Recall we showed u ancestor of $v \Leftrightarrow d_u < d_v < f_u$

Proof.

- Recall we showed u ancestor of $v \Leftrightarrow d_u < d_v < f_u$
- Therefore u **not** ancestor of $v \Leftrightarrow (d_u > d_v \text{ or } d_v > f_u)$
- But we assumed wlog $d_u < d_v$
- Therefore u **not** ancestor of $v \Leftrightarrow d_v > f_u$, so intervals disjoint.
- Since $d_u < d_v$, v cannot be ancestor of u
- ... \Rightarrow (u, v not related \Leftrightarrow intervals are disjoint)

Proof.

• Recall we showed u ancestor of $v \Leftrightarrow d_u < d_v < f_u$

Proof.

- Recall we showed u ancestor of $v \Leftrightarrow d_u < d_v < f_u$
- What is missing: u ancestor of $v \Rightarrow f_v < f_u$
- This follows because the recursive call for v will terminate before the recursive call for u terminates (Stack structure)

Sanity check

Times:		
	d	f
S	1	18
a	2	17
b	2 3	16
С	5	8
d	6	7
e	4	15
f	9	12
g	10	11
h	13	14

White-Path Theorem

Theorem

For $u, v \in V$, v is a descendant of u if and only if at time d_u there is a White path from u to v.

White-Path Theorem

Theorem

For $u, v \in V$, v is a descendant of u if and only if at time d_u there is a White path from u to v.

Proof.

- **○** ←:
 - Let u, v be counter-example with v as close as possible to u.
 - w last White vertex (time d_u) in $u \to v$ path.
 - w descendant of $u \Rightarrow d_u < d_w < f_w < f_u$
 - Also $d_u < d_v$, as v is White at d_u

White-Path Theorem

Theorem

For $u, v \in V$, v is a descendant of u if and only if at time d_u there is a White path from u to v.

Proof.

- **○** ←:
 - Let u, v be counter-example with v as close as possible to u.
 - w last White vertex (time d_u) in $u \to v$ path.
 - w descendant of $u \Rightarrow d_u < d_w < f_w < f_u$
 - Also $d_u < d_v$, as v is White at d_u
 - If $d_v > f_w$, then we would have explored v from w, contradiction!
 - If $d_v < f_w$, then u, v intervals intersect, v must be descendant of u!

Edge classification

DFS partitions the edges of a (di)graph into four types:

- Tree edges: edges which connect a vertex to its parent
- Back edges: edges which connect a vertex to its ancestor
- Forward edges: edges which connect a vertex to its descendant
- Cross edges: edges which connect two vertices without a descendant-ancestor relation

Legend:

• Tree edge: Red

Back edge: Blue

Forward edge: Green

• Cross edge: Dotted

Legend:

• Tree edge: Red

Back edge: Blue

Forward edge: Green

• Cross edge: Dotted

Legend:

• Tree edge: Red

Back edge: Blue

Forward edge: Green

Cross edge: Dotted

Legend:

• Tree edge: Red

Back edge: Blue

Forward edge: Green

• Cross edge: Dotted

Legend:

• Tree edge: Red

Back edge: Blue

Forward edge: Green

Cross edge: Dotted

Legend:

• Tree edge: Red

Back edge: Blue

Forward edge: Green

• Cross edge: Dotted

Legend:

• Tree edge: Red

Back edge: Blue

Forward edge: Green

• Cross edge: Dotted

Legend:

• Tree edge: Red

Back edge: Blue

Forward edge: Green

Cross edge: Dotted

Legend:

• Tree edge: Red

Back edge: Blue

Forward edge: Green

• Cross edge: Dotted

Legend:

• Tree edge: Red

Back edge: Blue

Forward edge: Green

• Cross edge: Dotted

Legend:

• Tree edge: Red

Back edge: Blue

Forward edge: Green

Cross edge: Dotted

Legend:

• Tree edge: Red

Back edge: Blue

Forward edge: Green

Cross edge: Dotted

Example - Digraph

Legend:

• Tree edge: Red

Back edge: Blue

Forward edge: Green

• Cross edge: Dotted

Edge classification

DFS partitions the edges of a (di)graph into four types:

- Tree edges: edges which connect a vertex to its parent
- Back edges: edges which connect a vertex to its ancestor
- Forward edges: edges which connect a vertex to its descendant
- Cross edges: edges which connect two vertices without a descendant-ancestor relation

If at time when uv was considered:

- v was White \rightarrow Tree edge
- v was Gray \rightarrow Back edge
- v was Black to Forward or Cross edge
 - Depending on whether v is descendant of u, which can be decided by comparing their time intervals.

Undirected DFS classification

Theorem

If G is undirected, then all edges are Tree or Back edges.

Undirected DFS classification

Theorem

If G is undirected, then all edges are Tree or Back edges.

Proof.

• Distinction between forward and back edges is not significant in undirected graphs.

Undirected DFS classification

Theorem

If G is undirected, then all edges are Tree or Back edges.

Proof.

- Distinction between forward and back edges is not significant in undirected graphs.
- For uv to be Cross, v must be Black when u was discovered.
- But, since vu is also a valid edge, before finishing v we would have visited u, so vu would have been a tree edge.

Space Considerations

Memory Usage

- BFS and DFS are optimal in time complexity
 - O(n+m) time
 - Input has size O(n+m), and we need to read all of it!
- Both algorithms use space $\Theta(n)$
 - Need to remember color of each vertex (White, Gray, Black)
- Optimal space?

Memory Usage

- BFS and DFS are optimal in time complexity
 - O(n+m) time
 - Input has size O(n+m), and we need to read all of it!
- Both algorithms use space $\Theta(n)$
 - Need to remember color of each vertex (White, Gray, Black)
- Optimal space?
- Possible argument: input already takes $\Theta(n+m)$ space, so using O(n) extra space is insignificant.

Memory Usage

- BFS and DFS are optimal in time complexity
 - O(n+m) time
 - Input has size O(n+m), and we need to read all of it!
- Both algorithms use space $\Theta(n)$
 - Need to remember color of each vertex (White, Gray, Black)
- Optimal space?
- Possible argument: input already takes $\Theta(n+m)$ space, so using O(n) extra space is insignificant.
 - Not convincing! Input could be given in some implicit form.
 - We care about minimizing the working space we use.

Reachability

Problem (Reachability)

Given (di)graph G, two vertices s, t, is there a path from s to t in G?

Reachability

Problem (Reachability)

Given (di)graph G, two vertices s, t, is there a path from s to t in G?

Can reachability be solved using less than $\Theta(n)$ space?

Savitch's theorem

```
1: procedure Reach-in-k(G,s,t,k)
       if k < 0 then
            Return No
3:
       end if
4:
5:
        if s = t or (st \in E \text{ and } k > 0) then
            Return Yes
6:
       end if
7:
        for v \in V \setminus \{s, t\} do
8:
           if Reach-in-k(G,s,v,\lceil k/2\rceil) then
9:
                if Reach-in-k(G,v,t,|k/2|) then
10:
                    Return Yes
11:
                end if
12:
            end if
13:
       end for
14:
        Return No.
15:
16: end procedure
```

26/30

Savitch's theorem – Analysis

- Correctness is straightforward (induction on k).
- Space complexity S(k):
 - Total space needed for local variables: $O(\log n)$
 - Recursive calls: S(k/2)
 - $\Rightarrow S(k) \leq O(\log n) + S(k/2) \leq \dots O(\log k \log n)$
 - $k \leq n \Rightarrow S(k) = O(\log^2 n)$
 - Great!

Savitch's theorem - Analysis

- Correctness is straightforward (induction on k).
- Space complexity S(k):
 - Total space needed for local variables: $O(\log n)$
 - Recursive calls: S(k/2)
 - $\Rightarrow S(k) \leq O(\log n) + S(k/2) \leq \dots O(\log k \log n)$
 - $k \le n \Rightarrow S(k) = O(\log^2 n)$
 - Great!
- Time complexity T(k):
 - Iterations of local loop: n
 - Recursive calls per iteration: 2T(k/2)
 - $\Rightarrow T(k) \leq 2nT(k/2) \leq \dots (2n)^{\log k}$
 - $k \le n \Rightarrow T(k) = 2^{O(\log^2 n)} = n^{O(\log n)}$
 - Ouch!

L=NL?

- (Di)graph reachability can be solved in linear time and space.
- It can be solved in much less (poly-logarithmic) space, but only if we accept super-polynomial time (as far as we know so far).
- Can poly-time and poly-log space be achieved simultaneously?
 - One of the most notorious open problems in TCS!
 - L=NL?
 - (Compare with more famous P=NP problem...)

L=NL?

- (Di)graph reachability can be solved in linear time and space.
- It can be solved in much less (poly-logarithmic) space, but only if we accept super-polynomial time (as far as we know so far).
- Can poly-time and poly-log space be achieved simultaneously?
 - One of the most notorious open problems in TCS!
 - L=NL?
 - (Compare with more famous P=NP problem...)
- What if we make the problem a little easier?
 - Reachability of **undirected** graphs, can be decided in $O(\log n)$ space and $n^{O(1)}$ (**randomized**) time.

A random walk procedure

```
1: procedure REACH(G, s, t)
       count←0
2:
3:
       cur←s
       while count \leq n^4 do
4:
           if cur=t then
5:
              Output Yes
6:
           end if
7:
8:
           count++
           cur \leftarrow Rand(N(cur))
9:
       end while
10:
11:
       Output No
12: end procedure
```

(Partial) analysis

Random walk procedure:

- Is always correct if no path exists.
- Is correct with high probability (1 o(1)) if a path exists.
 - Proof beyond the scope of this course.
 - Idea: expected cover time: $O(n^3)$ for any undirected graph.
- Runs in time $O(n^4)$ and space $O(\log n)$.

(Partial) analysis

Random walk procedure:

- Is always correct if no path exists.
- Is correct with high probability (1 o(1)) if a path exists.
 - Proof beyond the scope of this course.
 - Idea: expected cover time: $O(n^3)$ for any undirected graph.
- Runs in time $O(n^4)$ and space $O(\log n)$.
- Does NOT work for directed graphs!
 - L=NL problem still open!