
Graph Algorithms
Graph Traversals and Connectivity II

Michael Lampis

September 11, 2025

Michael Lampis Graph Algorithms September 11, 2025 1 / 30



Graph Traversal

Problem

Given (di)graph G, determine connectivity properties:

Is G (strongly) connected?

What are the (strongly) connected components of G?

Which vertices can be reached from a given source s?

What is the shortest path distance from (given vertex) s to (given
vertex) t?

Algorithms:

BFS (last lecture)

DFS (today)
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Depth-First Search

Depth-first search (DFS) is a basic graph traversal algorithm.

Input: G and specified source vertex s

Output: Set of vertices reachable from s ////and/////tree////of//////////shortest///////paths
//////from//s///to////all//////such//////////vertices.

Key properties:

Linear time and space complexity O(n +m).

Works for both graphs and digraphs.

Key idea:

Explore vertices //in///////order///of/////////////increasing//////////distance///////from///s,///////using//a////////queue
going as far as possible, until we get stuck, then backtracking.
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DFS High-level ideas

Vertices are colored White, Gray, or Black

White: undiscovered
Gray: discovered, not processed yet
Black: finished

As vertices are discovered, /////they/////are////////added///to/////the////////queue we move to
the first undiscovered neighbor and continue from there.

NB: This is essentially equivalent to adding vertices to a stack instead
of a queue.

/////////FIFO→//////////vertices/////////further///////away////are////////////processed///////later///////////(proof?)

We will keep track of the time when a vertex became Gray and Black.
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DFS – Initialization

1: for v ∈ V \ {s} do ▷ initialize
2: Color v White, Parent of v ← NULL
3: end for
4: t = 0 ▷ universal time variable
5: DFS-Visit(G ,s)
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DFS – Recursive Procedure

1: procedure DFS-Visit(G ,u)
2: t ++
3: u.d = t, Color u Gray
4: for v ∈ N(u) do
5: if v is White then
6: Set Parent of v to be u
7: DFS-Visit(G ,v)
8: end if
9: end for

10: t ++
11: u.f = t, Color u Black
12: end procedure
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DFS Example (7 Nodes) — Animation + Stack

A

B C

D E
F

G

A

Start at A.

Recursion stack (top at
bottom)

A

Visit order

A
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A

B C

D E
F

G

A

B

Start at A. Go to B.

Recursion stack (top at
bottom)

A
B

Visit order

A → B
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DFS Example (7 Nodes) — Animation + Stack

A

B C

D E
F

G

A

B

D

Start at A. Go to B. Go to D.

Recursion stack (top at
bottom)

A
B
D

Visit order

A → B → D
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DFS Example (7 Nodes) — Animation + Stack

A

B C

D E
F

G

A

B

D
F

Start at A. Go to B. Go to D. Backtrack to
B, then go to F.

Recursion stack (top at
bottom)

A
B
F

Visit order

A → B → D → F
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DFS Example (7 Nodes) — Animation + Stack

A

B C

D E
F

G

A

B

D
F

G

Start at A. Go to B. Go to D. Backtrack to
B, then go to F. Go from F to G.

Recursion stack (top at
bottom)

A
B
F
G

Visit order

A → B → D → F → G
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DFS Example (7 Nodes) — Animation + Stack

A

B C

D E
F

G

A

B

D
F

G

E

Start at A. Go to B. Go to D. Backtrack to
B, then go to F. Go from F to G. Go from G

to E.

Recursion stack (top at
bottom)

A
B
F
G
E

Visit order

A → B → D → F → G →
E
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A

B C

D E
F

G

A

B

D
F

G

E

C

Start at A. Go to B. Go to D. Backtrack to
B, then go to F. Go from F to G. Go from G

to E. Backtrack to A, then to C.

Recursion stack (top at
bottom)

A
C

Visit order

A → B → D → F → G →
E → C
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DFS Example (7 Nodes) — Animation + Stack

A

B C

D E
F

G

A

B

D
F

G

E

C

Start at A. Go to B. Go to D. Backtrack to
B, then go to F. Go from F to G. Go from G

to E. Backtrack to A, then to C. Done.

Recursion stack (top at
bottom)

empty

Visit order

A → B → D → F → G →
E → C
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Remarks about example
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Remarks about example

Previous example was generated by ChatGPT

Only took 2− 3 minutes of computing time, and a couple of iterations!

It is mostly correct and illustrates the high-level idea of DFS

However, it contains some minor error. . .

Incorrect DFS tree.

What is the moral lesson of this story? (food for thought. . . )
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Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a
b
c
d
e
f
g
h

Calling Stack:
s . . .
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Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c
d
e 4
f
g
h
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Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c 5
d
e 4
f
g
h

Calling Stack:
s a b e c . . .
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Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c 5
d 6
e 4
f
g
h

Calling Stack:
s a b e c d . . .
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Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c 5
d 6 7
e 4
f
g
h

Calling Stack:
s a b e c . . .
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Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
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f
g
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Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c 5 8
d 6 7
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g
h

Calling Stack:
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Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c 5 8
d 6 7
e 4
f 9
g 10
h

Calling Stack:
s a b e f g . . .
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Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c 5 8
d 6 7
e 4
f 9
g 10 11
h

Calling Stack:
s a b e f . . .
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Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c 5 8
d 6 7
e 4
f 9 12
g 10 11
h

Calling Stack:
s a b e . . .
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Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c 5 8
d 6 7
e 4
f 9 12
g 10 11
h 13

Calling Stack:
s a b e h . . .
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Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c 5 8
d 6 7
e 4
f 9 12
g 10 11
h 13 14

Calling Stack:
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Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c 5 8
d 6 7
e 4 15
f 9 12
g 10 11
h 13 14

Calling Stack:
s a b . . .
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Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3 16
c 5 8
d 6 7
e 4 15
f 9 12
g 10 11
h 13 14

Calling Stack:
s a . . .
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Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2 17
b 3 16
c 5 8
d 6 7
e 4 15
f 9 12
g 10 11
h 13 14

Calling Stack:
s . . .
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Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1 18
a 2 17
b 3 16
c 5 8
d 6 7
e 4 15
f 9 12
g 10 11
h 13 14

Calling Stack:
. . .
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Analysis of DFS

Analysis of DFS
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Analysis of DFS

Running Time

Initialization takes O(n) time (and space).

Vertex colors go from White→Gray→Black

O(n) color changes.

O(n) stack operations:

Only add to stack White vertices, which we turn Gray → each vertex
added to stack at most once.
Therefore, O(n) stack operations.

O(deg(v)) operations when v is discovered.

Recall
∑

v∈V deg(v) = 2m.

⇒ Total space: O(n) and total time O(n +m).
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Analysis of DFS

Properties of DFS trees

Lemma

For all u ∈ V if, du, fu are the discovery and finish times for u, then
du < fu

Proof.

du is time that u became Gray.

fu is time that u became Black

u becomes Black after becoming Gray..
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Analysis of DFS

Properties of DFS trees

Definition

Reminder: in a tree, u is an ancestor of v , if u = v , or u is an ancestor of
the parent of v .

Lemma

For all u, v ∈ V , u is an ancestor of v in the DFS tree if and only if u was
Gray when v became Gray (du < dv < fu).

Proof.

When a vertex v is added, all its ancestors are Gray.

Put another way: a Black vertex gains no new descendants.
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Analysis of DFS

Interval Relations

Lemma

For all u, v ∈ V we have one of the following:

[du, fu] and [dv , fv ] are disjoint, u, v are not ancestor-descendant.

[du, fu] contains [dv , fv ], and u is ancestor of v .

Same as previous point but with u, v exchanged.

Proof.

(Wlog du < dv )

u, v not related ⇔ [du, fu] ∩ [dv , fv ] = ∅
Proof in next slide

u ancestor of v ⇔ du < dv < fv < fu
Proof in next slide
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Analysis of DFS

Interval Relations

Proof.

Recall we showed u ancestor of v ⇔ du < dv < fu

Therefore u not ancestor of v ⇔ (du > dv or dv > fu)

But we assumed wlog du < dv

Therefore u not ancestor of v ⇔ dv > fu, so intervals disjoint.

Since du < dv , v cannot be ancestor of u

. . .⇒ (u, v not related ⇔ intervals are disjoint)
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Analysis of DFS

Interval Relations

Proof.

Recall we showed u ancestor of v ⇔ du < dv < fu

What is missing: u ancestor of v ⇒ fv < fu

This follows because the recursive call for v will terminate before the
recursive call for u terminates (Stack structure)
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Analysis of DFS

Sanity check

s

a c

b d

h

e

f

g

Times:
d f

s 1 18
a 2 17
b 3 16
c 5 8
d 6 7
e 4 15
f 9 12
g 10 11
h 13 14

Intervals:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

s
a
b
c
d
e
f
g
h
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Analysis of DFS

White-Path Theorem

Theorem

For u, v ∈ V , v is a descendant of u if and only if at time du there is a
White path from u to v.

Proof.
⇐:

Let u, v be counter-example with v as close as possible to u.
w last White vertex (time du) in u → v path.
w descendant of u ⇒ du < dw < fw < fu
Also du < dv , as v is White at du
If dv > fw , then we would have explored v from w , contradiction!
If dv < fw , then u, v intervals intersect, v must be descendant of u!
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Analysis of DFS

Edge classification

DFS partitions the edges of a (di)graph into four types:

Tree edges: edges which connect a vertex to its parent

Back edges: edges which connect a vertex to its ancestor

Forward edges: edges which connect a vertex to its descendant

Cross edges: edges which connect two vertices without a
descendant-ancestor relation
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Analysis of DFS

Example – Digraph

s

a

d b

e

cf

Legend:

Tree edge: Red

Back edge: Blue

Forward edge: Green

Cross edge: Dotted
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Analysis of DFS

Edge classification

DFS partitions the edges of a (di)graph into four types:

Tree edges: edges which connect a vertex to its parent

Back edges: edges which connect a vertex to its ancestor

Forward edges: edges which connect a vertex to its descendant

Cross edges: edges which connect two vertices without a
descendant-ancestor relation

If at time when uv was considered:

v was White → Tree edge

v was Gray → Back edge

v was Black to Forward or Cross edge

Depending on whether v is descendant of u, which can be decided by
comparing their time intervals.
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Analysis of DFS

Undirected DFS classification

Theorem

If G is undirected, then all edges are Tree or Back edges.

Proof.

Distinction between forward and back edges is not significant in
undirected graphs.

For uv to be Cross, v must be Black when u was discovered.

But, since vu is also a valid edge, before finishing v we would have
visited u, so vu would have been a tree edge.
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Space Considerations ,

Memory Usage

BFS and DFS are optimal in time complexity

O(n +m) time
Input has size O(n +m), and we need to read all of it!

Both algorithms use space Θ(n)

Need to remember color of each vertex (White, Gray, Black)

Optimal space?

Possible argument: input already takes Θ(n +m) space, so using
O(n) extra space is insignificant.

Not convincing! Input could be given in some implicit form.
We care about minimizing the working space we use.
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Space Considerations ,

Reachability

Problem (Reachability)

Given (di)graph G, two vertices s, t, is there a path from s to t in G?

Can reachability be solved using less than Θ(n) space?
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Space Considerations ,

Savitch’s theorem

1: procedure Reach-in-k(G ,s,t,k)
2: if k < 0 then
3: Return No
4: end if
5: if s = t or (st ∈ E and k > 0) then
6: Return Yes
7: end if
8: for v ∈ V \ {s, t} do
9: if Reach-in-k(G ,s,v ,⌈k/2⌉) then

10: if Reach-in-k(G ,v ,t,⌊k/2⌋) then
11: Return Yes
12: end if
13: end if
14: end for
15: Return No
16: end procedure
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Space Considerations ,

Savitch’s theorem – Analysis

Correctness is straightforward (induction on k).

Space complexity S(k):

Total space needed for local variables: O(log n)
Recursive calls: S(k/2)
⇒ S(k) ≤ O(log n) + S(k/2) ≤ . . .O(log k log n)
k ≤ n⇒ S(k) = O(log2 n)
Great!

Time complexity T (k):

Iterations of local loop: n
Recursive calls per iteration: 2T (k/2)
⇒ T (k) ≤ 2nT (k/2) ≤ . . . (2n)log k

k ≤ n⇒ T (k) = 2O(log2 n) = nO(log n)

Ouch!
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Space Considerations ,

L=NL?

(Di)graph reachability can be solved in linear time and space.

It can be solved in much less (poly-logarithmic) space, but only if we
accept super-polynomial time (as far as we know so far).

Can poly-time and poly-log space be achieved simultaneously?

One of the most notorious open problems in TCS!
L=NL?
(Compare with more famous P=NP problem. . . )

What if we make the problem a little easier?

Reachability of undirected graphs, can be decided in O(log n) space
and nO(1) (randomized) time.
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Space Considerations ,

A random walk procedure

1: procedure Reach(G , s, t)
2: count←0
3: cur←s
4: while count≤ n4 do
5: if cur=t then
6: Output Yes
7: end if
8: count++
9: cur← Rand(N(cur))

10: end while
11: Output No
12: end procedure
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Space Considerations ,

(Partial) analysis

Random walk procedure:

Is always correct if no path exists.

Is correct with high probability (1− o(1)) if a path exists.

Proof beyond the scope of this course.
Idea: expected cover time: O(n3) for any undirected graph.

Runs in time O(n4) and space O(log n).

Does NOT work for directed graphs!

L=NL problem still open!
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