
Graph Algorithms
Graph Traversals and Connectivity II

Michael Lampis

September 11, 2025

Michael Lampis Graph Algorithms September 11, 2025 1 / 30

Graph Traversal

Problem

Given (di)graph G, determine connectivity properties:

Is G (strongly) connected?

What are the (strongly) connected components of G?

Which vertices can be reached from a given source s?

What is the shortest path distance from (given vertex) s to (given
vertex) t?

Algorithms:

BFS (last lecture)

DFS (today)

Michael Lampis Graph Algorithms September 11, 2025 2 / 30

Graph Traversal

Problem

Given (di)graph G, determine connectivity properties:

Is G (strongly) connected?

What are the (strongly) connected components of G?

Which vertices can be reached from a given source s?

What is the shortest path distance from (given vertex) s to (given
vertex) t?

Algorithms:

BFS (last lecture)

DFS (today)

Michael Lampis Graph Algorithms September 11, 2025 2 / 30

Depth-First Search

Depth-first search (DFS) is a basic graph traversal algorithm.

Input: G and specified source vertex s

Output: Set of vertices reachable from s ////and/////tree////of//////////shortest///////paths
//////from//s///to////all//////such//////////vertices.

Key properties:

Linear time and space complexity O(n +m).

Works for both graphs and digraphs.

Key idea:

Explore vertices //in///////order///of/////////////increasing//////////distance///////from///s,///////using//a////////queue
going as far as possible, until we get stuck, then backtracking.

Michael Lampis Graph Algorithms September 11, 2025 3 / 30

Depth-First Search

Depth-first search (DFS) is a basic graph traversal algorithm.

Input: G and specified source vertex s

Output: Set of vertices reachable from s ////and/////tree////of//////////shortest///////paths
//////from//s///to////all//////such//////////vertices.

Key properties:

Linear time and space complexity O(n +m).

Works for both graphs and digraphs.

Key idea:

Explore vertices //in///////order///of/////////////increasing//////////distance///////from///s,///////using//a////////queue
going as far as possible, until we get stuck, then backtracking.

Michael Lampis Graph Algorithms September 11, 2025 3 / 30

Depth-First Search

Depth-first search (DFS) is a basic graph traversal algorithm.

Input: G and specified source vertex s

Output: Set of vertices reachable from s ////and/////tree////of//////////shortest///////paths
//////from//s///to////all//////such//////////vertices.

Key properties:

Linear time and space complexity O(n +m).

Works for both graphs and digraphs.

Key idea:

Explore vertices //in///////order///of/////////////increasing//////////distance///////from///s,///////using//a////////queue
going as far as possible, until we get stuck, then backtracking.

Michael Lampis Graph Algorithms September 11, 2025 3 / 30

DFS High-level ideas

Vertices are colored White, Gray, or Black

White: undiscovered
Gray: discovered, not processed yet
Black: finished

As vertices are discovered, /////they/////are////////added///to/////the////////queue we move to
the first undiscovered neighbor and continue from there.

NB: This is essentially equivalent to adding vertices to a stack instead
of a queue.

/////////FIFO→//////////vertices/////////further///////away////are////////////processed///////later///////////(proof?)

We will keep track of the time when a vertex became Gray and Black.

Michael Lampis Graph Algorithms September 11, 2025 4 / 30

DFS – Initialization

1: for v ∈ V \ {s} do ▷ initialize
2: Color v White, Parent of v ← NULL
3: end for
4: t = 0 ▷ universal time variable
5: DFS-Visit(G ,s)

Michael Lampis Graph Algorithms September 11, 2025 5 / 30

DFS – Recursive Procedure

1: procedure DFS-Visit(G ,u)
2: t ++
3: u.d = t, Color u Gray
4: for v ∈ N(u) do
5: if v is White then
6: Set Parent of v to be u
7: DFS-Visit(G ,v)
8: end if
9: end for

10: t ++
11: u.f = t, Color u Black
12: end procedure

Michael Lampis Graph Algorithms September 11, 2025 6 / 30

DFS Example (7 Nodes) — Animation + Stack

A

B C

D E
F

G

A

Start at A.

Recursion stack (top at
bottom)

A

Visit order

A

Michael Lampis Graph Algorithms September 11, 2025 7 / 30

DFS Example (7 Nodes) — Animation + Stack

A

B C

D E
F

G

A

B

Start at A. Go to B.

Recursion stack (top at
bottom)

A
B

Visit order

A → B

Michael Lampis Graph Algorithms September 11, 2025 7 / 30

DFS Example (7 Nodes) — Animation + Stack

A

B C

D E
F

G

A

B

D

Start at A. Go to B. Go to D.

Recursion stack (top at
bottom)

A
B
D

Visit order

A → B → D

Michael Lampis Graph Algorithms September 11, 2025 7 / 30

DFS Example (7 Nodes) — Animation + Stack

A

B C

D E
F

G

A

B

D
F

Start at A. Go to B. Go to D. Backtrack to
B, then go to F.

Recursion stack (top at
bottom)

A
B
F

Visit order

A → B → D → F

Michael Lampis Graph Algorithms September 11, 2025 7 / 30

DFS Example (7 Nodes) — Animation + Stack

A

B C

D E
F

G

A

B

D
F

G

Start at A. Go to B. Go to D. Backtrack to
B, then go to F. Go from F to G.

Recursion stack (top at
bottom)

A
B
F
G

Visit order

A → B → D → F → G

Michael Lampis Graph Algorithms September 11, 2025 7 / 30

DFS Example (7 Nodes) — Animation + Stack

A

B C

D E
F

G

A

B

D
F

G

E

Start at A. Go to B. Go to D. Backtrack to
B, then go to F. Go from F to G. Go from G

to E.

Recursion stack (top at
bottom)

A
B
F
G
E

Visit order

A → B → D → F → G →
E

Michael Lampis Graph Algorithms September 11, 2025 7 / 30

DFS Example (7 Nodes) — Animation + Stack

A

B C

D E
F

G

A

B

D
F

G

E

C

Start at A. Go to B. Go to D. Backtrack to
B, then go to F. Go from F to G. Go from G

to E. Backtrack to A, then to C.

Recursion stack (top at
bottom)

A
C

Visit order

A → B → D → F → G →
E → C

Michael Lampis Graph Algorithms September 11, 2025 7 / 30

DFS Example (7 Nodes) — Animation + Stack

A

B C

D E
F

G

A

B

D
F

G

E

C

Start at A. Go to B. Go to D. Backtrack to
B, then go to F. Go from F to G. Go from G

to E. Backtrack to A, then to C. Done.

Recursion stack (top at
bottom)

empty

Visit order

A → B → D → F → G →
E → C

Michael Lampis Graph Algorithms September 11, 2025 7 / 30

Remarks about example

Michael Lampis Graph Algorithms September 11, 2025 8 / 30

Remarks about example

Previous example was generated by ChatGPT

Only took 2− 3 minutes of computing time, and a couple of iterations!

It is mostly correct and illustrates the high-level idea of DFS

However, it contains some minor error. . .

Incorrect DFS tree.

What is the moral lesson of this story? (food for thought. . .)

Michael Lampis Graph Algorithms September 11, 2025 8 / 30

Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a
b
c
d
e
f
g
h

Calling Stack:
s . . .

Michael Lampis Graph Algorithms September 11, 2025 9 / 30

Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b
c
d
e
f
g
h

Calling Stack:
s a . . .

Michael Lampis Graph Algorithms September 11, 2025 9 / 30

Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c
d
e
f
g
h

Calling Stack:
s a b . . .

Michael Lampis Graph Algorithms September 11, 2025 9 / 30

Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c
d
e 4
f
g
h

Calling Stack:
s a b e . . .

Michael Lampis Graph Algorithms September 11, 2025 9 / 30

Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c 5
d
e 4
f
g
h

Calling Stack:
s a b e c . . .

Michael Lampis Graph Algorithms September 11, 2025 9 / 30

Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c 5
d 6
e 4
f
g
h

Calling Stack:
s a b e c d . . .

Michael Lampis Graph Algorithms September 11, 2025 9 / 30

Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c 5
d 6 7
e 4
f
g
h

Calling Stack:
s a b e c . . .

Michael Lampis Graph Algorithms September 11, 2025 9 / 30

Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c 5 8
d 6 7
e 4
f
g
h

Calling Stack:
s a b e . . .

Michael Lampis Graph Algorithms September 11, 2025 9 / 30

Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c 5 8
d 6 7
e 4
f 9
g
h

Calling Stack:
s a b e f . . .

Michael Lampis Graph Algorithms September 11, 2025 9 / 30

Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c 5 8
d 6 7
e 4
f 9
g 10
h

Calling Stack:
s a b e f g . . .

Michael Lampis Graph Algorithms September 11, 2025 9 / 30

Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c 5 8
d 6 7
e 4
f 9
g 10 11
h

Calling Stack:
s a b e f . . .

Michael Lampis Graph Algorithms September 11, 2025 9 / 30

Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c 5 8
d 6 7
e 4
f 9 12
g 10 11
h

Calling Stack:
s a b e . . .

Michael Lampis Graph Algorithms September 11, 2025 9 / 30

Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c 5 8
d 6 7
e 4
f 9 12
g 10 11
h 13

Calling Stack:
s a b e h . . .

Michael Lampis Graph Algorithms September 11, 2025 9 / 30

Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c 5 8
d 6 7
e 4
f 9 12
g 10 11
h 13 14

Calling Stack:
s a b e . . .

Michael Lampis Graph Algorithms September 11, 2025 9 / 30

Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3
c 5 8
d 6 7
e 4 15
f 9 12
g 10 11
h 13 14

Calling Stack:
s a b . . .

Michael Lampis Graph Algorithms September 11, 2025 9 / 30

Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2
b 3 16
c 5 8
d 6 7
e 4 15
f 9 12
g 10 11
h 13 14

Calling Stack:
s a . . .

Michael Lampis Graph Algorithms September 11, 2025 9 / 30

Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1
a 2 17
b 3 16
c 5 8
d 6 7
e 4 15
f 9 12
g 10 11
h 13 14

Calling Stack:
s . . .

Michael Lampis Graph Algorithms September 11, 2025 9 / 30

Example – (human generated, could still be wrong?)

s

a c

b d

h

e

f

g

Times:

d f

s 1 18
a 2 17
b 3 16
c 5 8
d 6 7
e 4 15
f 9 12
g 10 11
h 13 14

Calling Stack:
. . .

Michael Lampis Graph Algorithms September 11, 2025 9 / 30

Analysis of DFS

Analysis of DFS

Michael Lampis Graph Algorithms September 11, 2025 10 / 30

Analysis of DFS

Running Time

Initialization takes O(n) time (and space).

Vertex colors go from White→Gray→Black

O(n) color changes.

O(n) stack operations:

Only add to stack White vertices, which we turn Gray → each vertex
added to stack at most once.
Therefore, O(n) stack operations.

O(deg(v)) operations when v is discovered.

Recall
∑

v∈V deg(v) = 2m.

⇒ Total space: O(n) and total time O(n +m).

Michael Lampis Graph Algorithms September 11, 2025 11 / 30

Analysis of DFS

Running Time

Initialization takes O(n) time (and space).

Vertex colors go from White→Gray→Black

O(n) color changes.

O(n) stack operations:

Only add to stack White vertices, which we turn Gray → each vertex
added to stack at most once.
Therefore, O(n) stack operations.

O(deg(v)) operations when v is discovered.

Recall
∑

v∈V deg(v) = 2m.

⇒ Total space: O(n) and total time O(n +m).

Michael Lampis Graph Algorithms September 11, 2025 11 / 30

Analysis of DFS

Running Time

Initialization takes O(n) time (and space).

Vertex colors go from White→Gray→Black

O(n) color changes.

O(n) stack operations:

Only add to stack White vertices, which we turn Gray → each vertex
added to stack at most once.
Therefore, O(n) stack operations.

O(deg(v)) operations when v is discovered.

Recall
∑

v∈V deg(v) = 2m.

⇒ Total space: O(n) and total time O(n +m).

Michael Lampis Graph Algorithms September 11, 2025 11 / 30

Analysis of DFS

Running Time

Initialization takes O(n) time (and space).

Vertex colors go from White→Gray→Black

O(n) color changes.

O(n) stack operations:

Only add to stack White vertices, which we turn Gray → each vertex
added to stack at most once.
Therefore, O(n) stack operations.

O(deg(v)) operations when v is discovered.

Recall
∑

v∈V deg(v) = 2m.

⇒ Total space: O(n) and total time O(n +m).

Michael Lampis Graph Algorithms September 11, 2025 11 / 30

Analysis of DFS

Running Time

Initialization takes O(n) time (and space).

Vertex colors go from White→Gray→Black

O(n) color changes.

O(n) stack operations:

Only add to stack White vertices, which we turn Gray → each vertex
added to stack at most once.
Therefore, O(n) stack operations.

O(deg(v)) operations when v is discovered.

Recall
∑

v∈V deg(v) = 2m.

⇒ Total space: O(n) and total time O(n +m).

Michael Lampis Graph Algorithms September 11, 2025 11 / 30

Analysis of DFS

Properties of DFS trees

Lemma

For all u ∈ V if, du, fu are the discovery and finish times for u, then
du < fu

Proof.

du is time that u became Gray.

fu is time that u became Black

u becomes Black after becoming Gray..

Michael Lampis Graph Algorithms September 11, 2025 12 / 30

Analysis of DFS

Properties of DFS trees

Lemma

For all u ∈ V if, du, fu are the discovery and finish times for u, then
du < fu

Proof.

du is time that u became Gray.

fu is time that u became Black

u becomes Black after becoming Gray..

Michael Lampis Graph Algorithms September 11, 2025 12 / 30

Analysis of DFS

Properties of DFS trees

Definition

Reminder: in a tree, u is an ancestor of v , if u = v , or u is an ancestor of
the parent of v .

Lemma

For all u, v ∈ V , u is an ancestor of v in the DFS tree if and only if u was
Gray when v became Gray (du < dv < fu).

Proof.

When a vertex v is added, all its ancestors are Gray.

Put another way: a Black vertex gains no new descendants.

Michael Lampis Graph Algorithms September 11, 2025 13 / 30

Analysis of DFS

Properties of DFS trees

Definition

Reminder: in a tree, u is an ancestor of v , if u = v , or u is an ancestor of
the parent of v .

Lemma

For all u, v ∈ V , u is an ancestor of v in the DFS tree if and only if u was
Gray when v became Gray (du < dv < fu).

Proof.

When a vertex v is added, all its ancestors are Gray.

Put another way: a Black vertex gains no new descendants.

Michael Lampis Graph Algorithms September 11, 2025 13 / 30

Analysis of DFS

Interval Relations

Lemma

For all u, v ∈ V we have one of the following:

[du, fu] and [dv , fv] are disjoint, u, v are not ancestor-descendant.

[du, fu] contains [dv , fv], and u is ancestor of v .

Same as previous point but with u, v exchanged.

Proof.

(Wlog du < dv)

u, v not related ⇔ [du, fu] ∩ [dv , fv] = ∅
Proof in next slide

u ancestor of v ⇔ du < dv < fv < fu
Proof in next slide

Michael Lampis Graph Algorithms September 11, 2025 14 / 30

Analysis of DFS

Interval Relations

Lemma

For all u, v ∈ V we have one of the following:

[du, fu] and [dv , fv] are disjoint, u, v are not ancestor-descendant.

[du, fu] contains [dv , fv], and u is ancestor of v .

Same as previous point but with u, v exchanged.

Proof.

(Wlog du < dv)

u, v not related ⇔ [du, fu] ∩ [dv , fv] = ∅
Proof in next slide

u ancestor of v ⇔ du < dv < fv < fu
Proof in next slide

Michael Lampis Graph Algorithms September 11, 2025 14 / 30

Analysis of DFS

Interval Relations

Lemma

For all u, v ∈ V we have one of the following:

[du, fu] and [dv , fv] are disjoint, u, v are not ancestor-descendant.

[du, fu] contains [dv , fv], and u is ancestor of v .

Same as previous point but with u, v exchanged.

Proof.

(Wlog du < dv)

u, v not related ⇔ [du, fu] ∩ [dv , fv] = ∅
Proof in next slide

u ancestor of v ⇔ du < dv < fv < fu
Proof in next slide

Michael Lampis Graph Algorithms September 11, 2025 14 / 30

Analysis of DFS

Interval Relations

Lemma

For all u, v ∈ V we have one of the following:

[du, fu] and [dv , fv] are disjoint, u, v are not ancestor-descendant.

[du, fu] contains [dv , fv], and u is ancestor of v .

Same as previous point but with u, v exchanged.

Proof.

(Wlog du < dv)

u, v not related ⇔ [du, fu] ∩ [dv , fv] = ∅
Proof in next slide

u ancestor of v ⇔ du < dv < fv < fu
Proof in next slide

Michael Lampis Graph Algorithms September 11, 2025 14 / 30

Analysis of DFS

Interval Relations

Proof.

Recall we showed u ancestor of v ⇔ du < dv < fu

Therefore u not ancestor of v ⇔ (du > dv or dv > fu)

But we assumed wlog du < dv

Therefore u not ancestor of v ⇔ dv > fu, so intervals disjoint.

Since du < dv , v cannot be ancestor of u

. . .⇒ (u, v not related ⇔ intervals are disjoint)

Michael Lampis Graph Algorithms September 11, 2025 15 / 30

Analysis of DFS

Interval Relations

Proof.

Recall we showed u ancestor of v ⇔ du < dv < fu

Therefore u not ancestor of v ⇔ (du > dv or dv > fu)

But we assumed wlog du < dv

Therefore u not ancestor of v ⇔ dv > fu, so intervals disjoint.

Since du < dv , v cannot be ancestor of u

. . .⇒ (u, v not related ⇔ intervals are disjoint)

Michael Lampis Graph Algorithms September 11, 2025 15 / 30

Analysis of DFS

Interval Relations

Proof.

Recall we showed u ancestor of v ⇔ du < dv < fu

What is missing: u ancestor of v ⇒ fv < fu

This follows because the recursive call for v will terminate before the
recursive call for u terminates (Stack structure)

Michael Lampis Graph Algorithms September 11, 2025 16 / 30

Analysis of DFS

Interval Relations

Proof.

Recall we showed u ancestor of v ⇔ du < dv < fu

What is missing: u ancestor of v ⇒ fv < fu

This follows because the recursive call for v will terminate before the
recursive call for u terminates (Stack structure)

Michael Lampis Graph Algorithms September 11, 2025 16 / 30

Analysis of DFS

Sanity check

s

a c

b d

h

e

f

g

Times:
d f

s 1 18
a 2 17
b 3 16
c 5 8
d 6 7
e 4 15
f 9 12
g 10 11
h 13 14

Intervals:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

s
a
b
c
d
e
f
g
h

Michael Lampis Graph Algorithms September 11, 2025 17 / 30

Analysis of DFS

White-Path Theorem

Theorem

For u, v ∈ V , v is a descendant of u if and only if at time du there is a
White path from u to v.

Proof.
⇐:

Let u, v be counter-example with v as close as possible to u.
w last White vertex (time du) in u → v path.
w descendant of u ⇒ du < dw < fw < fu
Also du < dv , as v is White at du
If dv > fw , then we would have explored v from w , contradiction!
If dv < fw , then u, v intervals intersect, v must be descendant of u!

Michael Lampis Graph Algorithms September 11, 2025 18 / 30

Analysis of DFS

White-Path Theorem

Theorem

For u, v ∈ V , v is a descendant of u if and only if at time du there is a
White path from u to v.

Proof.
⇐:

Let u, v be counter-example with v as close as possible to u.
w last White vertex (time du) in u → v path.
w descendant of u ⇒ du < dw < fw < fu
Also du < dv , as v is White at du

If dv > fw , then we would have explored v from w , contradiction!
If dv < fw , then u, v intervals intersect, v must be descendant of u!

Michael Lampis Graph Algorithms September 11, 2025 18 / 30

Analysis of DFS

White-Path Theorem

Theorem

For u, v ∈ V , v is a descendant of u if and only if at time du there is a
White path from u to v.

Proof.
⇐:

Let u, v be counter-example with v as close as possible to u.
w last White vertex (time du) in u → v path.
w descendant of u ⇒ du < dw < fw < fu
Also du < dv , as v is White at du
If dv > fw , then we would have explored v from w , contradiction!
If dv < fw , then u, v intervals intersect, v must be descendant of u!

Michael Lampis Graph Algorithms September 11, 2025 18 / 30

Analysis of DFS

Edge classification

DFS partitions the edges of a (di)graph into four types:

Tree edges: edges which connect a vertex to its parent

Back edges: edges which connect a vertex to its ancestor

Forward edges: edges which connect a vertex to its descendant

Cross edges: edges which connect two vertices without a
descendant-ancestor relation

Michael Lampis Graph Algorithms September 11, 2025 19 / 30

Analysis of DFS

Example – Digraph

s

a

d b

e

cf

Legend:

Tree edge: Red

Back edge: Blue

Forward edge: Green

Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20 / 30

Analysis of DFS

Example – Digraph

s

a

d b

e

cf

Legend:

Tree edge: Red

Back edge: Blue

Forward edge: Green

Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20 / 30

Analysis of DFS

Example – Digraph

s

a

d b

e

cf

Legend:

Tree edge: Red

Back edge: Blue

Forward edge: Green

Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20 / 30

Analysis of DFS

Example – Digraph

s

a

d b

e

cf

Legend:

Tree edge: Red

Back edge: Blue

Forward edge: Green

Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20 / 30

Analysis of DFS

Example – Digraph

s

a

d b

e

cf

Legend:

Tree edge: Red

Back edge: Blue

Forward edge: Green

Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20 / 30

Analysis of DFS

Example – Digraph

s

a

d b

e

cf

Legend:

Tree edge: Red

Back edge: Blue

Forward edge: Green

Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20 / 30

Analysis of DFS

Example – Digraph

s

a

d b

e

cf

Legend:

Tree edge: Red

Back edge: Blue

Forward edge: Green

Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20 / 30

Analysis of DFS

Example – Digraph

s

a

d b

e

cf

Legend:

Tree edge: Red

Back edge: Blue

Forward edge: Green

Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20 / 30

Analysis of DFS

Example – Digraph

s

a

d b

e

cf

Legend:

Tree edge: Red

Back edge: Blue

Forward edge: Green

Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20 / 30

Analysis of DFS

Example – Digraph

s

a

d b

e

cf

Legend:

Tree edge: Red

Back edge: Blue

Forward edge: Green

Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20 / 30

Analysis of DFS

Example – Digraph

s

a

d b

e

cf

Legend:

Tree edge: Red

Back edge: Blue

Forward edge: Green

Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20 / 30

Analysis of DFS

Example – Digraph

s

a

d b

e

cf

Legend:

Tree edge: Red

Back edge: Blue

Forward edge: Green

Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20 / 30

Analysis of DFS

Example – Digraph

s

a

d b

e

cf

Legend:

Tree edge: Red

Back edge: Blue

Forward edge: Green

Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20 / 30

Analysis of DFS

Edge classification

DFS partitions the edges of a (di)graph into four types:

Tree edges: edges which connect a vertex to its parent

Back edges: edges which connect a vertex to its ancestor

Forward edges: edges which connect a vertex to its descendant

Cross edges: edges which connect two vertices without a
descendant-ancestor relation

If at time when uv was considered:

v was White → Tree edge

v was Gray → Back edge

v was Black to Forward or Cross edge

Depending on whether v is descendant of u, which can be decided by
comparing their time intervals.

Michael Lampis Graph Algorithms September 11, 2025 21 / 30

Analysis of DFS

Undirected DFS classification

Theorem

If G is undirected, then all edges are Tree or Back edges.

Proof.

Distinction between forward and back edges is not significant in
undirected graphs.

For uv to be Cross, v must be Black when u was discovered.

But, since vu is also a valid edge, before finishing v we would have
visited u, so vu would have been a tree edge.

Michael Lampis Graph Algorithms September 11, 2025 22 / 30

Analysis of DFS

Undirected DFS classification

Theorem

If G is undirected, then all edges are Tree or Back edges.

Proof.

Distinction between forward and back edges is not significant in
undirected graphs.

For uv to be Cross, v must be Black when u was discovered.

But, since vu is also a valid edge, before finishing v we would have
visited u, so vu would have been a tree edge.

Michael Lampis Graph Algorithms September 11, 2025 22 / 30

Analysis of DFS

Undirected DFS classification

Theorem

If G is undirected, then all edges are Tree or Back edges.

Proof.

Distinction between forward and back edges is not significant in
undirected graphs.

For uv to be Cross, v must be Black when u was discovered.

But, since vu is also a valid edge, before finishing v we would have
visited u, so vu would have been a tree edge.

Michael Lampis Graph Algorithms September 11, 2025 22 / 30

Space Considerations ,

Space Considerations

Michael Lampis Graph Algorithms September 11, 2025 23 / 30

Space Considerations ,

Memory Usage

BFS and DFS are optimal in time complexity

O(n +m) time
Input has size O(n +m), and we need to read all of it!

Both algorithms use space Θ(n)

Need to remember color of each vertex (White, Gray, Black)

Optimal space?

Possible argument: input already takes Θ(n +m) space, so using
O(n) extra space is insignificant.

Not convincing! Input could be given in some implicit form.
We care about minimizing the working space we use.

Michael Lampis Graph Algorithms September 11, 2025 24 / 30

Space Considerations ,

Memory Usage

BFS and DFS are optimal in time complexity

O(n +m) time
Input has size O(n +m), and we need to read all of it!

Both algorithms use space Θ(n)

Need to remember color of each vertex (White, Gray, Black)

Optimal space?

Possible argument: input already takes Θ(n +m) space, so using
O(n) extra space is insignificant.

Not convincing! Input could be given in some implicit form.
We care about minimizing the working space we use.

Michael Lampis Graph Algorithms September 11, 2025 24 / 30

Space Considerations ,

Memory Usage

BFS and DFS are optimal in time complexity

O(n +m) time
Input has size O(n +m), and we need to read all of it!

Both algorithms use space Θ(n)

Need to remember color of each vertex (White, Gray, Black)

Optimal space?

Possible argument: input already takes Θ(n +m) space, so using
O(n) extra space is insignificant.

Not convincing! Input could be given in some implicit form.
We care about minimizing the working space we use.

Michael Lampis Graph Algorithms September 11, 2025 24 / 30

Space Considerations ,

Reachability

Problem (Reachability)

Given (di)graph G, two vertices s, t, is there a path from s to t in G?

Can reachability be solved using less than Θ(n) space?

Michael Lampis Graph Algorithms September 11, 2025 25 / 30

Space Considerations ,

Reachability

Problem (Reachability)

Given (di)graph G, two vertices s, t, is there a path from s to t in G?

Can reachability be solved using less than Θ(n) space?

Michael Lampis Graph Algorithms September 11, 2025 25 / 30

Space Considerations ,

Savitch’s theorem

1: procedure Reach-in-k(G ,s,t,k)
2: if k < 0 then
3: Return No
4: end if
5: if s = t or (st ∈ E and k > 0) then
6: Return Yes
7: end if
8: for v ∈ V \ {s, t} do
9: if Reach-in-k(G ,s,v ,⌈k/2⌉) then

10: if Reach-in-k(G ,v ,t,⌊k/2⌋) then
11: Return Yes
12: end if
13: end if
14: end for
15: Return No
16: end procedure

Michael Lampis Graph Algorithms September 11, 2025 26 / 30

Space Considerations ,

Savitch’s theorem – Analysis

Correctness is straightforward (induction on k).

Space complexity S(k):

Total space needed for local variables: O(log n)
Recursive calls: S(k/2)
⇒ S(k) ≤ O(log n) + S(k/2) ≤ . . .O(log k log n)
k ≤ n⇒ S(k) = O(log2 n)
Great!

Time complexity T (k):

Iterations of local loop: n
Recursive calls per iteration: 2T (k/2)
⇒ T (k) ≤ 2nT (k/2) ≤ . . . (2n)log k

k ≤ n⇒ T (k) = 2O(log2 n) = nO(log n)

Ouch!

Michael Lampis Graph Algorithms September 11, 2025 27 / 30

Space Considerations ,

Savitch’s theorem – Analysis

Correctness is straightforward (induction on k).

Space complexity S(k):

Total space needed for local variables: O(log n)
Recursive calls: S(k/2)
⇒ S(k) ≤ O(log n) + S(k/2) ≤ . . .O(log k log n)
k ≤ n⇒ S(k) = O(log2 n)
Great!

Time complexity T (k):

Iterations of local loop: n
Recursive calls per iteration: 2T (k/2)
⇒ T (k) ≤ 2nT (k/2) ≤ . . . (2n)log k

k ≤ n⇒ T (k) = 2O(log2 n) = nO(log n)

Ouch!

Michael Lampis Graph Algorithms September 11, 2025 27 / 30

Space Considerations ,

L=NL?

(Di)graph reachability can be solved in linear time and space.

It can be solved in much less (poly-logarithmic) space, but only if we
accept super-polynomial time (as far as we know so far).

Can poly-time and poly-log space be achieved simultaneously?

One of the most notorious open problems in TCS!
L=NL?
(Compare with more famous P=NP problem. . .)

What if we make the problem a little easier?

Reachability of undirected graphs, can be decided in O(log n) space
and nO(1) (randomized) time.

Michael Lampis Graph Algorithms September 11, 2025 28 / 30

Space Considerations ,

L=NL?

(Di)graph reachability can be solved in linear time and space.

It can be solved in much less (poly-logarithmic) space, but only if we
accept super-polynomial time (as far as we know so far).

Can poly-time and poly-log space be achieved simultaneously?

One of the most notorious open problems in TCS!
L=NL?
(Compare with more famous P=NP problem. . .)

What if we make the problem a little easier?

Reachability of undirected graphs, can be decided in O(log n) space
and nO(1) (randomized) time.

Michael Lampis Graph Algorithms September 11, 2025 28 / 30

Space Considerations ,

A random walk procedure

1: procedure Reach(G , s, t)
2: count←0
3: cur←s
4: while count≤ n4 do
5: if cur=t then
6: Output Yes
7: end if
8: count++
9: cur← Rand(N(cur))

10: end while
11: Output No
12: end procedure

Michael Lampis Graph Algorithms September 11, 2025 29 / 30

Space Considerations ,

(Partial) analysis

Random walk procedure:

Is always correct if no path exists.

Is correct with high probability (1− o(1)) if a path exists.

Proof beyond the scope of this course.
Idea: expected cover time: O(n3) for any undirected graph.

Runs in time O(n4) and space O(log n).

Does NOT work for directed graphs!

L=NL problem still open!

Michael Lampis Graph Algorithms September 11, 2025 30 / 30

Space Considerations ,

(Partial) analysis

Random walk procedure:

Is always correct if no path exists.

Is correct with high probability (1− o(1)) if a path exists.

Proof beyond the scope of this course.
Idea: expected cover time: O(n3) for any undirected graph.

Runs in time O(n4) and space O(log n).

Does NOT work for directed graphs!

L=NL problem still open!

Michael Lampis Graph Algorithms September 11, 2025 30 / 30

	Analysis of DFS
	Space Considerations =[height=0.35]space

