Graph Algorithms

Graph Traversals and Connectivity |l

Michael Lampis

September 11, 2025

Michael Lampis Graph Algorithms September 11, 2025 1/30

|
Graph Traversal

Problem

Given (di)graph G, determine connectivity properties:

@ Is G (strongly) connected?
@ What are the (strongly) connected components of G?
@ Which vertices can be reached from a given source s?

@ What is the shortest path distance from (given vertex) s to (given
vertex) t?

Michael Lampis Graph Algorithms September 11, 2025 2/30

|
Graph Traversal

Problem

Given (di)graph G, determine connectivity properties:

@ Is G (strongly) connected?
@ What are the (strongly) connected components of G?
@ Which vertices can be reached from a given source s?

@ What is the shortest path distance from (given vertex) s to (given
vertex) t?

Algorithms:
e BFS (last lecture)
e DFS (today)

Michael Lampis Graph Algorithms September 11, 2025 2/30

|
Depth-First Search

Depth-first search (DFS) is a basic graph traversal algorithm.

@ Input: G and specified source vertex s

e Output: Set of vertices reachable from s Jfdl/Hrée/ oF SOItESsY/paiiis
fYom i3 /vs) M /1 Yeiioes.

Michael Lampis Graph Algorithms September 11, 2025 3/30

|
Depth-First Search

Depth-first search (DFS) is a basic graph traversal algorithm.

@ Input: G and specified source vertex s

e Output: Set of vertices reachable from s Jfdl/Hrée/ oF SOItESsY/paiiis
fYom i3 /vs) M /1 Yeiioes.

Key properties:
@ Linear time and space complexity O(n + m).

@ Works for both graphs and digraphs.

Michael Lampis Graph Algorithms September 11, 2025 3/30

|
Depth-First Search

Depth-first search (DFS) is a basic graph traversal algorithm.

@ Input: G and specified source vertex s

e Output: Set of vertices reachable from s Jfdl/Hrée/ oF SOItESsY/paiiis
fYom i3 /vs) M /1 Yeiioes.

Key properties:
@ Linear time and space complexity O(n + m).
@ Works for both graphs and digraphs.

Key idea:

o Explore vertices ify /gYdey /of/Inctodsing distanee/ from/ s/ /iaing/4 auelie

going as far as possible, until we get stuck, then backtracking.

Michael Lampis Graph Algorithms September 11, 2025 3/30

-
DFS High-level ideas

@ Vertices are colored White, Gray, or Black

o White: undiscovered
e Gray: discovered, not processed yet
o Black: finished

o As vertices are discovered, théy/ ave/added 1o/ thé/dlélé we move to

the first undiscovered neighbor and continue from there.

e NB: This is essentially equivalent to adding vertices to a stack instead
of a queue.

o PO INETHGES MEheY [ANAY e/ phoeessed Tater Nrowf Ry

@ We will keep track of the time when a vertex became Gray and Black.

Michael Lampis Graph Algorithms September 11, 2025 4/30

N
DFS - Initialization

1. for ve V\ {s} do > initialize
2: Color v White, Parent of v < NULL

3: end for

4: t=0 > universal time variable
5. DFS-Visit(G,s)

Michael Lampis Graph Algorithms September 11, 2025 5/30

DFS — Recursive Procedure

1. procedure DFS-VIsIT(G,u)

2 t+ +

3 u.d = t, Color u Gray

4 for v € N(u) do

5: if v is White then

6 Set Parent of v to be u
7 DFS-Visit(G,v)

8
9

end if
end for
10: t+ +
11: u.f = t, Color u Black

12: end procedure

Michael Lampis Graph Algorithms September 11, 2025 6/30

|
DFS Example (7 Nodes) — Animation + Stack

o Recursion stack (top at
bottom)

A

e e Visit order

A

Michael Lampis Graph Algorithms September 11, 2025 7/30

|
DFS Example (7 Nodes) — Animation + Stack

o Recursion stack (top at
bottom)

A
B

Visit order
A —-B

Michael Lampis Graph Algorithms September 11, 2025 7/30

DFS Example (7 Nodes) — Animation + Stack

o Recursion stack (top at
bottom)

A
B

(&) O

Visit order
A —-B —D

Michael Lampis Graph Algorithms September 11, 2025 7/30

DFS Example (7 Nodes) — Animation + Stack

o Recursion stack (top at
bottom)

A
B

O o F

Visit order
A —-B —-D —F

Michael Lampis Graph Algorithms September 11, 2025 7/30

DFS Example (7 Nodes) — Animation + Stack

o Recursion stack (top at

bottom)
A
B

(8) (o F
G
Visit order
A —-B —-D —=F =G

Michael Lampis Graph Algorithms September 11, 2025 7/30

DFS Example (7 Nodes) — Animation + Stack

Michael Lampis

Graph Algorithms

Recursion stack (top at
bottom)

mao T >

Visit order

A —-B —-D—=F =G —

E

September 11, 2025

7/30

|
DFS Example (7 Nodes) — Animation + Stack

° Recursion stack (top at
bottom)

A
0 ® '
Visit order

A —-B D —-F -G —
E —-C

v

Michael Lampis Graph Algorithms September 11, 2025 7/30

DFS Example (7 Nodes) — Animation + Stack

o Recursion stack (top at
bottom)

empty

e e Visit order

A —-B D —-F -G —
E —-C

v

Michael Lampis Graph Algorithms September 11, 2025 7/30

Remarks about example

Graph Algorithms September 11, 205 8/30

Remarks about example

@ Previous example was generated by ChatGPT
e Only took 2 — 3 minutes of computing time, and a couple of iterations!

o It is mostly correct and illustrates the high-level idea of DFS

@ However, it contains some minor error. ..
o Incorrect DFS tree.

e What is the moral lesson of this story? (food for thought. . .)

Michael Lampis Graph Algorithms September 11, 2025 8/30

Example — (human generated, could still be wrong?)

d f
° S 1
oto b
o ° Times: ;
o ‘
o o’ h
o ’Calli‘ng S‘tack:‘ ‘ ‘ ‘ ‘

Michael Lampis Graph Algorithms September 11, 2025 9/30

Example — (human generated, could still be wrong?)

d f
° S 1
eto .|
o ° Times: ;
o ‘
o o’ h
o ’Calli‘ng S‘tack:‘ ‘ ‘ ‘ ‘

Michael Lampis Graph Algorithms September 11, 2025 9/30

Example — (human generated, could still be wrong?)

d f

° s 1

a 2

G) b |3
°° Times: ¢
d
e
< f
g
°°§ h

Calling Stack:
- R N . ———

Michael Lampis Graph Algorithms September 11, 2025 9/30

Example — (human generated, could still be wrong?)

d f

CeD s |1

a 2

G) b |3
° ° Times: ¢
d

e 4
<, f
g
) 05 h

Calling Stack:
<, g

[s[albfe[| [.]

Michael Lampis Graph Algorithms September 11, 2025 9/30

Example — (human generated, could still be wrong?)

d f
CeD s |1
a 2
2y) b |3
° ° Times: ¢ 5
d
e 4
< f
g
) 05 h
Calling Stack:
<, g

slafblefec] [.]

Michael Lampis Graph Algorithms September 11, 2025 9/30

Example — (human generated, could still be wrong?)

d f
CD s |1
a 2
2y) b |3
° ° Times: ¢ >
d 6
e 4
<, f
g
<, 05 h
o Calling Stack:

’s ‘a ‘b‘e‘c‘d‘...‘

Michael Lampis Graph Algorithms September 11, 2025 9/30

Example — (human generated, could still be wrong?)

d f
° s 1
a 2
2y) b |3
° q Times: © >
d 6 7
e 4
<, f
g
) 05 h
Calling Stack:
<, g

slafblefec] [.]

Michael Lampis Graph Algorithms September 11, 2025 9/30

Example — (human generated, could still be wrong?)

d f
s 1
a 2
b 3
. c 5 8
Times: q 6 7
e 4
f
g
h
Calling Stack:

[s[albfe[| [.]

Michael Lampis Graph Algorithms September 11, 2025 9/30

Example — (human generated, could still be wrong?)

d f
s 1
a 2
b 3
. c 5 8
Times: q 6 7
e 4
f 9
g
h
Calling Stack:

slafbleff] [.]

Michael Lampis Graph Algorithms September 11, 2025 9/30

Example — (human generated, could still be wrong?)

d f
S 1
a 2
b 3
. c 5 8
Times: q 6 7
e 4
f 9
g 10
h
Calling Stack:

slafbfe|ffe].]

Michael Lampis Graph Algorithms September 11, 2025 9/30

Example — (human generated, could still be wrong?)

d f
s 1
a 2
b 3
. c 5 8
Times: q 6 7
e 4
f 9
g 10 11
h
Calling Stack:

slafbleff] [.]

Michael Lampis Graph Algorithms September 11, 2025 9/30

Example — (human generated, could still be wrong?)

d f
s 1
a 2
b 3
. c 5 8
Times: q 6 7
e 4
f 9 12
g 10 11
h
Calling Stack:

[s[albfe[| [.]

Michael Lampis Graph Algorithms September 11, 2025 9/30

Example — (human generated, could still be wrong?)

d f
s 1
a 2
b 3
. c 5 8
Times: q 6 7
e 4
f 9 12
g 10 11
h 13
Calling Stack:

slafblefh] [.]

Michael Lampis Graph Algorithms September 11, 2025 9/30

Example — (human generated, could still be wrong?)

d f
s 1
a 2
b 3
. c 5 8
Times: q 6 7
e 4
f 9 12
g 10 11
h 13 14
Calling Stack:

[s[albfe[| [.]

Michael Lampis Graph Algorithms September 11, 2025 9/30

Example — (human generated, could still be wrong?)

d f

S 1

a 2

b 3
Times: ; 2 ?

e 4 15

f 9 12

g 10 | 11

h 13 | 14
Calling Stack:
sfafb] | | [..]

Michael Lampis Graph Algorithms September 11, 2025 9/30

Example — (human generated, could still be wrong?)

d f
S 1
a 2
b 3 16
Times: ; 2 ?
e 4 15
f 9 12
g 10 | 11
h 13 | 14
Calling Stack:
sflaf [1 [

Michael Lampis Graph Algorithms September 11, 2025 9/30

Example — (human generated, could still be wrong?)

Michael Lampis

Times:

Calling Stack:

>0 ho QOO0 T o n

O OO W N Q)

— =
w O

17
16

15
12
11
14

s |

|

|

Graph Algorithms

September 11, 2025

9/30

Example — (human generated, could still be wrong?)

Times:
Calling Stack:

N I I A

Q.
-

18
17
16

15
12
11
14

>0 ho QOO0 T o n
H = O OO0 WN -
\l

w o

Michael Lampis Graph Algorithms September 11, 2025 9/30

Analysis of DFS

Analysis of DFS

Michael Lampis Graph Algorithms September 11, 2025 10 /30

Analysis of DFS

Running Time

e Initialization takes O(n) time (and space).

Michael Lampis Graph Algorithms September 11, 2025 11/30

Analysis of DFS

Running Time

e Initialization takes O(n) time (and space).
@ Vertex colors go from White— Gray—Black
o O(n) color changes.

Michael Lampis Graph Algorithms

September 11, 2025

11/30

Analysis of DFS

Running Time

e Initialization takes O(n) time (and space).

@ Vertex colors go from White— Gray—Black
o O(n) color changes.

@ O(n) stack operations:

e Only add to stack White vertices, which we turn Gray — each vertex
added to stack at most once.
o Therefore, O(n) stack operations.

Michael Lampis Graph Algorithms September 11, 2025 11/30

Analysis of DFS

Running Time

e Initialization takes O(n) time (and space).

@ Vertex colors go from White— Gray—Black
o O(n) color changes.

@ O(n) stack operations:

e Only add to stack White vertices, which we turn Gray — each vertex
added to stack at most once.
o Therefore, O(n) stack operations.

e O(deg(v)) operations when v is discovered.

o Recall 7 .\ deg(v) =2m.

Michael Lampis Graph Algorithms September 11, 2025 11/30

Analysis of DFS

Running Time

Initialization takes O(n) time (and space).
Vertex colors go from White—Gray—Black
o O(n) color changes.

@ O(n) stack operations:
e Only add to stack White vertices, which we turn Gray — each vertex
added to stack at most once.
o Therefore, O(n) stack operations.

e O(deg(v)) operations when v is discovered.
o Recall 7 .\ deg(v) =2m.
e = Total space: O(n) and total time O(n + m).

Michael Lampis Graph Algorithms September 11, 2025 11/30

Analysis of DFS

Properties of DFS trees

Lemma

For all u € V if, d,, f, are the discovery and finish times for u, then
d, < fy

Michael Lampis Graph Algorithms September 11, 2025 12 /30

Properties of DFS trees

Lemma

For all u € V if, d,, f, are the discovery and finish times for u, then
d, < fy

Proof.
@ d, is time that u became Gray.
@ f, is time that v became Black

@ u becomes Black after becoming Gray..

Michael Lampis Graph Algorithms September 11, 2025 12 /30

Properties of DFS trees

Definition

Reminder: in a tree, u is an ancestor of v, if u = v, or u is an ancestor of
the parent of v.

Lemma

For all u,v € V, u is an ancestor of v in the DFS tree if and only if u was
Gray when v became Gray (d, < d, < f,).

Michael Lampis Graph Algorithms September 11, 2025 13 /30

Properties of DFS trees

Definition

Reminder: in a tree, u is an ancestor of v, if u = v, or u is an ancestor of
the parent of v.

Lemma

For all u,v € V, u is an ancestor of v in the DFS tree if and only if u was
Gray when v became Gray (d, < d, < f,).

Proof.

@ When a vertex v is added, all its ancestors are Gray.

o Put another way: a Black vertex gains no new descendants.

Michael Lampis Graph Algorithms September 11, 2025 13 /30

Analysis of DFS

Interval Relations

Lemma
For all u,v € V we have one of the following:

e [dy,, f,] and [d,, f,] are disjoint, u, v are not ancestor-descendant.

Michael Lampis Graph Algorithms September 11, 2025 14 /30

Analysis of DFS

Interval Relations

Lemma
For all u,v € V we have one of the following:
e [dy,, f,] and [d,, f,] are disjoint, u, v are not ancestor-descendant.

e [d,, f,] contains [d,,f,]|, and u is ancestor of v.

Michael Lampis Graph Algorithms September 11, 2025 14 /30

Analysis of DFS

Interval Relations

Lemma

For all u,v € V we have one of the following:
e [dy,, f,] and [d,, f,] are disjoint, u, v are not ancestor-descendant.
e [d,, f,] contains [d,,f,]|, and u is ancestor of v.

@ Same as previous point but with u, v exchanged.

Michael Lampis Graph Algorithms September 11, 2025 14 /30

Analysis of DFS

Interval Relations

Lemma

For all u,v € V we have one of the following:
e [dy,, f,] and [d,, f,] are disjoint, u, v are not ancestor-descendant.
e [d,, f,] contains [d,,f,]|, and u is ancestor of v.

@ Same as previous point but with u, v exchanged.

Proof.
(Wlog dy, < d\)
@ u,v not related < [d,, f,)] N [dy,] =0
e Proof in next slide

@ uvancestorof v& d, <d, <f, <f,
o Proof in next slide

Michael Lampis Graph Algorithms September 11, 2025 14 /30

Analysis of DFS

Interval Relations

Proof.
@ Recall we showed u ancestor of v & d, < d, < f,

Michael Lampis Graph Algorithms

September 11, 2025

15 /30

Analysis of DFS

Interval Relations

Proof.
@ Recall we showed u ancestor of v < d, < d, < f,
Therefore u not ancestor of v < (d, > d, or d, > f,)
But we assumed wlog d, < d,
Therefore u not ancestor of v & d, > f,, so intervals disjoint.

Since d, < d,, v cannot be ancestor of u

..= (u, v not related < intervals are disjoint)

Michael Lampis Graph Algorithms September 11, 2025 15 /30

Analysis of DFS

Interval Relations

Proof.
@ Recall we showed u ancestor of v & d, < d, < f,

Michael Lampis Graph Algorithms

September 11, 2025

16 /30

Analysis of DFS

Interval Relations

Proof.
@ Recall we showed u ancestor of v & d, < d, < f,

@ What is missing: u ancestor of v = f, < f,

@ This follows because the recursive call for v will terminate before the

recursive call for u terminates (Stack structure)

O

Michael Lampis Graph Algorithms

September 11, 2025

16 /30

Sanity check

Times:

d f
B 1 18
a 2 17
b 3 16
c 5 8
d 6 7
e 4 15
f 9 12
g 10 11
h 13 14

Intervals:
1

@ N0 ON TL 0

Graph Algorithms September 11, 2025 17 /30

White-Path Theorem

Theorem

For u,v € V, v is a descendant of u if and only if at time d, there is a
White path from u to v.

Michael Lampis Graph Algorithms September 11, 2025 18 /30

White-Path Theorem

Theorem

For u,v € V, v is a descendant of u if and only if at time d, there is a
White path from u to v.

Proof.
o !
o Let u, v be counter-example with v as close as possible to u.
o w last White vertex (time d,) in u — v path.
o wdescendantof u =d, <d, <f, <f,
e Also d, < d,, as v is White at d,

Michael Lampis Graph Algorithms September 11, 2025 18 /30

White-Path Theorem

Theorem

For u,v € V, v is a descendant of u if and only if at time d, there is a
White path from u to v.

Proof.
o <=
Let u, v be counter-example with v as close as possible to u.
w last White vertex (time d,) in u — v path.
w descendant of u = d, < d, <f, <f,
Also d, < d,, as v is White at d,
If d, > f,, then we would have explored v from w, contradiction!
If d, < f,, then u, v intervals intersect, v must be descendant of u!

O

Michael Lampis Graph Algorithms September 11, 2025 18 /30

Analysis of DFS

Edge classification

DFS partitions the edges of a (di)graph into four types:
Tree edges: edges which connect a vertex to its parent
Back edges: edges which connect a vertex to its ancestor

Forward edges: edges which connect a vertex to its descendant

Cross edges: edges which connect two vertices without a
descendant-ancestor relation

Michael Lampis Graph Algorithms September 11, 2025 19 /30

Example — Digraph

<
° Legend:

@ Tree edge: Red
° ° o Back edge: Blue

@ Forward edge:
° @ Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20/30

Example — Digraph

<
° Legend:

@ Tree edge: Red
° ° o Back edge: Blue

@ Forward edge:
° @ Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20/30

Example — Digraph

()
° Legend:

@ Tree edge: Red
° ° o Back edge: Blue

@ Forward edge:
° @ Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20/30

Example — Digraph

()
° Legend:

@ Tree edge: Red
° o o Back edge: Blue

@ Forward edge:
° @ Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20/30

Example — Digraph

<
° Legend:

@ Tree edge: Red
° o o Back edge: Blue

@ Forward edge:
° @ Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20/30

Example — Digraph

<
° Legend:

@ Tree edge: Red
° o o Back edge: Blue

@ Forward edge:
° @ Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20/30

Example — Digraph

Legend:
@ Tree edge: Red

° o o Back edge: Blue
@ Forward edge:
)

@ Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20/30

Example — Digraph

Legend:
@ Tree edge: Red
o Back edge: Blue
@ Forward edge:

@ Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20/30

Example — Digraph

Legend:
@ Tree edge: Red
o Back edge: Blue
@ Forward edge:

@ Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20/30

Example — Digraph

Legend:
@ Tree edge: Red
o Back edge: Blue
@ Forward edge:

@ Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20/30

Example — Digraph

Legend:
@ Tree edge: Red
o Back edge: Blue
@ Forward edge:

@ Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20/30

Example — Digraph

Legend:
@ Tree edge: Red
o Back edge: Blue
@ Forward edge:

@ Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20/30

Example — Digraph

Legend:
@ Tree edge: Red
o Back edge: Blue
@ Forward edge:

@ Cross edge: Dotted

Michael Lampis Graph Algorithms September 11, 2025 20/30

Analysis of DFS

Edge classification

DFS partitions the edges of a (di)graph into four types:
Tree edges: edges which connect a vertex to its parent
Back edges: edges which connect a vertex to its ancestor

Forward edges: edges which connect a vertex to its descendant

e 6 o ¢

Cross edges: edges which connect two vertices without a
descendant-ancestor relation

If at time when uv was considered:
o v was White — Tree edge
@ v was Gray — Back edge

@ v was Black to Forward or Cross edge

e Depending on whether v is descendant of u, which can be decided by
comparing their time intervals.

Michael Lampis Graph Algorithms September 11, 2025 21/30

Undirected DFS classification

Theorem
If G is undirected, then all edges are Tree or Back edges.

Michael Lampis Graph Algorithms September 11, 2025 22/30

Undirected DFS classification

Theorem

If G is undirected, then all edges are Tree or Back edges.

Proof.

@ Distinction between forward and back edges is not significant in
undirected graphs.

Michael Lampis Graph Algorithms September 11, 2025 22/30

Undirected DFS classification

Theorem

If G is undirected, then all edges are Tree or Back edges.

Proof.

@ Distinction between forward and back edges is not significant in
undirected graphs.

@ For uv to be Cross, v must be Black when u was discovered.

@ But, since vu is also a valid edge, before finishing v we would have
visited u, so vu would have been a tree edge.

Michael Lampis Graph Algorithms September 11, 2025 22/30

Space Considerations

Michael Lampis Graph Algorithms September 11, 2025 23/30

-
Memory Usage

@ BFS and DFS are optimal in time complexity
o O(n+ m) time
o Input has size O(n+ m), and we need to read all of it!

e Both algorithms use space ©(n)
o Need to remember color of each vertex (White, Gray, Black)

@ Optimal space?

Michael Lampis Graph Algorithms September 11, 2025 24 /30

-
Memory Usage

BFS and DFS are optimal in time complexity
o O(n+ m) time
o Input has size O(n+ m), and we need to read all of it!

Both algorithms use space ©(n)
o Need to remember color of each vertex (White, Gray, Black)

Optimal space?

@ Possible argument: input already takes ©(n + m) space, so using
O(n) extra space is insignificant.

Michael Lampis Graph Algorithms September 11, 2025 24 /30

-
Memory Usage

BFS and DFS are optimal in time complexity
o O(n+ m) time
o Input has size O(n+ m), and we need to read all of it!

Both algorithms use space ©(n)
o Need to remember color of each vertex (White, Gray, Black)

Optimal space?
@ Possible argument: input already takes ©(n + m) space, so using
O(n) extra space is insignificant.

e Not convincing! Input could be given in some implicit form.
e We care about minimizing the working space we use.

Michael Lampis Graph Algorithms September 11, 2025 24 /30

-
Reachability

Problem (Reachability)
Given (di)graph G, two vertices s, t, is there a path from s to t in G?

Michael Lampis Graph Algorithms September 11, 2025 25 /30

-
Reachability

Problem (Reachability)

Given (di)graph G, two vertices s, t, is there a path from s to t in G?

Can reachability be solved using less than ©(n) space?

Michael Lampis Graph Algorithms September 11, 2025 25 /30

Savitch's theorem

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:

procedure REACH-IN-k(G,s,t,k)

if kK <0 then
Return No
end if
if s=tor (st €E and k > 0) then
Return Yes
end if
for ve V\ {s,t} do
if Reach-in-k(G,s,v,[k/2]) then
if Reach-in-k(G,v,t,|k/2]) then
Return Yes
end if
end if
end for
Return No

16: end procedure
Graph Algorithms September 11, 2025

26 /30

Savitch's theorem — Analysis

e Correctness is straightforward (induction on k).

@ Space complexity S(k):

o Total space needed for local variables: O(log n)
o Recursive calls: S(k/2)

o = S(k) < O(logn)+ S(k/2) < ...O(log klog n)
o k< n= S(k) = O(log® n)

o Great!

Michael Lampis Graph Algorithms September 11, 2025 27 /30

Savitch's theorem — Analysis

e Correctness is straightforward (induction on k).

@ Space complexity S(k):

o Total space needed for local variables: O(log n)
o Recursive calls: S(k/2)

o = S(k) < O(logn)+ S(k/2) < ...O(log klog n)
o k< n= S(k) = O(log® n)

o Great!

e Time complexity T (k):

Iterations of local loop: n

Recursive calls per iteration: 2T (k/2)
= T(k) <2nT(k/2) <...(2n)lek

k < n= T(k) = 200&"n = Ologn)
Ouch!

Michael Lampis Graph Algorithms September 11, 2025 27 /30

L=NL?

o (Di)graph reachability can be solved in linear time and space.
@ It can be solved in much less (poly-logarithmic) space, but only if we
accept super-polynomial time (as far as we know so far).

@ Can poly-time and poly-log space be achieved simultaneously?

e One of the most notorious open problems in TCS!
e L=NL?
o (Compare with more famous P=NP problem. . .)

Michael Lampis Graph Algorithms September 11, 2025 28 /30

L=NL?

o (Di)graph reachability can be solved in linear time and space.

@ It can be solved in much less (poly-logarithmic) space, but only if we
accept super-polynomial time (as far as we know so far).

@ Can poly-time and poly-log space be achieved simultaneously?
e One of the most notorious open problems in TCS!
e L=NL?
o (Compare with more famous P=NP problem. . .)
@ What if we make the problem a little easier?
o Reachability of undirected graphs, can be decided in O(log n) space
and n°®) (randomized) time.

Michael Lampis Graph Algorithms September 11, 2025 28/30

A random walk procedure

1. procedure REACH(G, s, t)
2 count«+0

3 cur<s

4 while count< n* do

5: if cur=t then

6 Output Yes

7 end if

8 count++

9: cur<— Rand(N(cur))
10: end while

11: Output No

12: end procedure

Michael Lampis Graph Algorithms September 11, 2025 29/30

|
(Partial) analysis

Random walk procedure:
@ |s always correct if no path exists.

@ Is correct with high probability (1 — o(1)) if a path exists.

e Proof beyond the scope of this course.
o ldea: expected cover time: O(n®) for any undirected graph.

@ Runs in time O(n*) and space O(log n).

Michael Lampis Graph Algorithms September 11, 2025 30/30

|
(Partial) analysis

Random walk procedure:
@ |s always correct if no path exists.

@ Is correct with high probability (1 — o(1)) if a path exists.

e Proof beyond the scope of this course.
o ldea: expected cover time: O(n®) for any undirected graph.

@ Runs in time O(n*) and space O(log n).
@ Does NOT work for directed graphs!
o L=NL problem still open!

Michael Lampis Graph Algorithms September 11, 2025 30/30

	Analysis of DFS
	Space Considerations =[height=0.35]space

