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Graph Traversal

Problem

Given (di)graph G, determine connectivity properties:

Is G (strongly) connected?

What are the (strongly) connected components of G?

Which vertices can be reached from a given source s?

What is the shortest path distance from (given vertex) s to (given
vertex) t?

Algorithms:

BFS (two lectures ago)

DFS (last lecture)

Today: Applications
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Topological Sort

Topological Sort
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Topological Sort

Definition of Topological Sort

Definition

A topological sort of a digraph G = (V ,A) is an ordering (numbering) of
the vertices with the following property: if we have an arc from a vertex
numbered i to a vertex numbered j , then i < j .

In other words, arcs go from lower to higher numbers.

Vertices are numbered 1, . . . , n.
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Topological Sort

Topological Sort – Example

a

c
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Ranking:
1 2 3 4 5 6 7 8 9

b a g c d h i f e

g b a c h d f e i
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Topological Sort

DAGs are topologically sortable

Definition

A digraph G is a Directed Acyclic Graph (DAG) if G contains no directed
cycles.

NB: We also count cycles of length 2 (digons).

Lemma

A digraph G admits a topological ordering if and only if G is a DAG.

Proof.

⇒: A cycle C cannot be topo-sorted, because all vertices have
positive in- and out-degree.

⇐: A DAG always contains a sink v (why?), number it n, order the
rest inductively.
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Topological Sort

Every DAG has a source/sink

Lemma

If G = (V ,A) is a DAG, then G contains at least one source and at least
one sink.

Proof.

Let P = x1, x2, . . . , xk be the longest directed simple path in G .

If there exists an arc xky with y ∈ {x1, . . . , xk−1}, then G is not a
DAG, contradiction.

If there exists an arc xky with y ̸∈ {x1, . . . , xk−1}, then P is not
longest, contradiction.

⇒ xk is a sink (out-degree 0)

Symmetric reasoning shows that x1 is a source.
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Topological Sort

Straightforward Algorithm (for Matrices)

1: procedure Topo-Sort(G )
2: for i = 1 to n do
3: Find a source in G → v
4: Number of v ← i
5: G ← G − v
6: end for
7: Output Numbers of v ∈ V
8: end procedure
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Topological Sort

Straightforward Algorithm (for Matrices)

1: procedure Topo-Sort(G )
2: for i = 1 to n do
3: Find a source in G → v ▷ How?
4: Number of v ← i ▷ Num[v ]← i
5: G ← G − v ▷ How?
6: end for
7: Output Numbers of v ∈ V
8: end procedure
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Topological Sort

Straightforward Algorithm (for Matrices)

1: Active[v ]← 1 for all v ∈ V
2: procedure Topo-Sort(G )
3: for i = 1 to n do
4: v ← Find-source(G ,Active)
5: Num[v ] ← i
6: Active[v ]← 0
7: end for
8: Output Numbers of v ∈ V
9: end procedure

10: procedure Find-source(G ,Active)
11: for v ∈ V do
12: if Active[v ] == 1 and d−(v) == 0 then
13: Return v
14: end if
15: end for
16: end procedure
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Topological Sort

Straightforward Algorithm (for Matrices)

1: procedure Check-if-source(G ,Active,v)
2: for u ∈ V do
3: if A[u, v ] == 1 and Active[u] then
4: Return No
5: end if
6: end for
7: Return Yes
8: end procedure
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Topological Sort

Straightforward Algorithm (for Matrices)

1: procedure Check-if-source(G ,Active,v) ▷ O(n) time
2: for u ∈ V do
3: if A[u, v ] == 1 and Active[u] then
4: Return No
5: end if
6: end for
7: Return Yes
8: end procedure
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Topological Sort

Straightforward Algorithm (for Matrices)

1: Active[v ]← 1 for all v ∈ V
2: procedure Topo-Sort(G ) ▷ O(n3) time
3: for i = 1 to n do ▷ O(n) iterations
4: v ← Find-source(G ,Active)
5: Num[v ] ← i
6: Active[v ]← 0
7: end for
8: Output Numbers of v ∈ V
9: end procedure

10: procedure Find-source(G ,Active) ▷ O(n2) time
11: for v ∈ V do ▷ O(n) iterations
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Topological Sort

Optimality for Find-Source

Lemma

Find-Source cannot be solved in o(n2) time (for adjacency matrices).

Proof.

Intuition: If an algorithm takes <
(n
2

)
− 1 steps, there exists pair i , j

for which neither A[i , j ] nor A[j , i ] was consulted, therefore impossible
to know which of i , j are sources.

Adversary argument: as long as possible, reply to an algorithm’s
queries by saying that a vertex has no incoming arcs, until the last
step.

Caution!

This does not imply that our topological sorting algorithm is optimal!
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Topological Sort

Topological sort in linear time

1: Initialize ▷ DFS Initialization as before
2: i ← n ▷ Next vertex to be added to list
3: for v ∈ V do
4: if v is White then
5: DFS-Visit(G ,v)
6: end if
7: end for
8: procedure DFS-Visit(G ,u)
9: . . . ▷ DFS as before

10: u.f = t, Color u Black ▷ When u turns black, append.
11: Num[u]← i , i −−
12: end procedure
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Topological Sort

Correctness Analysis

Lemma

G is a DAG ⇔ DFS produces no backward arcs.

Theorem

Previous algorithm is correct.

Proof.

Consider arc uv at time when u became Gray:

If v was White ⇒ v will be descendant of u ⇒ v will become Black
first ⇒ v will be assigned higher number.
If v was Black ⇒ v will be assigned higher number.
If v was Gray ⇒ uv is a backward arc, contradiction!
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Topological Sort

Example

a

c

e

d

b

f i

g

h

Times:

d f

a 1
b
c
d
e
f
g
h
i

Michael Lampis Graph Algorithms September 25, 2025 12 / 33



Topological Sort

Example

a

c

e

d

b

f i

g

h

Times:

d f

a 1
b
c 2
d
e
f
g
h
i

Michael Lampis Graph Algorithms September 25, 2025 12 / 33



Topological Sort

Example

a

c

e

d

b

f i

g

h

Times:

d f

a 1
b
c 2
d 3
e
f
g
h
i

Michael Lampis Graph Algorithms September 25, 2025 12 / 33



Topological Sort

Example

a

c

e

d

b

f i

g

h

Times:

d f

a 1
b
c 2
d 3
e 4
f
g
h
i

Michael Lampis Graph Algorithms September 25, 2025 12 / 33



Topological Sort

Example

a

c

e

d

b

f i

g

h

Times:

d f

a 1
b
c 2
d 3
e 4 5
f
g
h
i

Michael Lampis Graph Algorithms September 25, 2025 12 / 33



Topological Sort

Example

a

c

e

d

b

f i

g

h

Times:

d f

a 1
b
c 2
d 3
e 4 5
f 6
g
h
i

Michael Lampis Graph Algorithms September 25, 2025 12 / 33



Topological Sort

Example

a

c

e

d

b

f i

g

h

Times:

d f

a 1
b
c 2
d 3
e 4 5
f 6 7
g
h
i

Michael Lampis Graph Algorithms September 25, 2025 12 / 33



Topological Sort
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Topological Sort

Example

a

c

e

d

b

f i

g

h

Times:

d f

a 1 12
b 13 14
c 2 11
d 3 10
e 4 5
f 6 7
g 15 18
h 16 17
i 8 9

Ordering:
g, h, b, a, c, d, i, f, e
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Strongly Connected Components
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Strongly Connected Components

Strongly Connected Components

Definition

In a digraph G , a strongly connected component C is a maximal set of
vertices such that for all u, v ∈ C . G contains a u → v and a v → u path.

Problem

Given a digraph G = (V ,A), output a partition of V into strongly
connected components.

NB: For example, compute an integer cc(v) for each v ∈ V such that
cc(v) = cc(u) if and only if v , u are in the same SCC.
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Strongly Connected Components

SCC Example
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Strongly Connected Components

Straightforward Algorithm

1: procedure SCC(G )
2: cc(v)← −1 for all v ∈ V
3: cur ← 1
4: for v ∈ V do
5: if cc(v) == −1 then
6: cc(v)← cur
7: for u ∈ V do
8: if Reach(G , u, v) ∧ Reach(G , v , u) then
9: cc(u) = cc(v)

10: end if
11: end for
12: cur ++
13: end if
14: end for
15: Return cc
16: end procedure
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Strongly Connected Components

Straightforward Algorithm

1: procedure SCC(G ) ▷ O(n3 + n2m) time
2: cc(v)← −1 for all v ∈ V
3: cur ← 1
4: for v ∈ V do ▷ O(n) iterations
5: if cc(v) == −1 then
6: cc(v)← cur
7: for u ∈ V do ▷ O(n) iterations
8: if Reach(G , u, v) ∧ Reach(G , v , u) then ▷ O(n +m)
9: cc(u) = cc(v)

10: end if
11: end for
12: cur ++
13: end if
14: end for
15: Return cc
16: end procedure
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Strongly Connected Components

SCC by 2-DFS algorithm

Algorithm idea:

1 Run DFS, compute a finish time for each vertex.

2 Compute GT .

Reminder: GT is G where arcs are reversed.

3 Run DFS on GT .

Important: Consider vertices not in alphabetical order, but in
decreasing order of finish time from first DFS.
(Topological sort order, if G was a DAG).

4 Each DFS tree from the previous step is a SCC of G .

Sanity check: is this algorithm correct on DAGs?
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Strongly Connected Components

SCC by 2-DFS algorithm – Example – Phase 1
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Strongly Connected Components

SCC by 2-DFS algorithm – Example – Phase 1
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Strongly Connected Components

SCC by 2-DFS algorithm – Example – Phase 1
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Ordering in decreasing finish
time:
b, g, j, i, f, h, a, c, d, e
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SCC by 2-DFS algorithm – Example – Phase 2

Ordering: b, g, j, i, f, h, a, c, d, e
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Strongly Connected Components

Intuition – Component digraph

Definition

If G = (V ,A) is a digraph, GSCC is the digraph that has:

A vertex for each SCC of G .

An arc C1C2 if there exist x1 ∈ C1, x2 ∈ C2 with x1x2 ∈ A.

Lemma

GSCC is always a DAG.

Proof.

If there exist arcs C1 → C2 and C2 → C1, C1 ∪ C2 is strongly connected,
contradicting maximality.
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Strongly Connected Components

Intuition

Key ideas:

If x finished last in first DFS of G

⇒ the SCC of x is a source in GSCC

⇒ the SCC of x is a sink in (GT )SCC

⇒ a DFS in GT from x will visit exactly the SCC of x
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Strongly Connected Components

Sources SCC finishes last

Lemma

Let G = (V ,A) be a digraph, C1,C2 two SCCs, with x1 ∈ C1, x2 ∈ C2 and
x1x2 ∈ A. Then, there exists a vertex of C1 which finishes after all
vertices of C2.

Proof.

First vertex of C1 ∪ C2 to be discovered is y ∈ C1:
By White-Path theorem, all of C1 ∪ C2 are y ’s descendants, so finish
before y .

First vertex of C1 ∪ C2 to be discovered is y ∈ C2:
By White-Path theorem, all vertices of C2 are discovered after y and
finish before y . There is no path from C2 to C1 (o/w GSCC not a
DAG), so at fy all of C1 still White ⇒ finishes later than y .
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Strongly Connected Components

Proof of Correctness

Proof.

Induction on number of SCCs.

Suppose first k SCCs are correct.

DFS for (k + 1)-th SCC starts at x which has largest finish time of
all White vertices.

All vertices of the SCC of x (C ) are currently White (I.H.)
White-Path theorem: SCC computed contains at least all of C
Need to prove: we do not put other stuff in computed SCC of x

If y ̸∈ C is reachable from x in GT :

Either y is in the first k components ⇒ y Black
Or y ∈ C ′ with some C → C ′ path in GT

Then, ∃C ′ → C path in G
⇒ some vertex of C ′ finishes after x , contradiction!!
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Articulation Points

Articulation Points
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Articulation Points

Articulation Point

Definition

In a undirected graph G = (V ,E ), v ∈ V is a cut vertex or an
articulation point if G − v has more connected components than G .
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Articulation Points

Articulation Points

Problem

Given undirected graph G, output all articulation points (if any).

Obvious algorithm:

1: C ← number of components of G (DFS)
2: for v ∈ V do
3: if comps(G − v)> C then
4: Add v to output
5: end if
6: end for

Complexity O(mn + n2) for lists, O(n3) for matrices. Better?
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Articulation Points

Articulation Points – DFS

We will execute DFS on G and try to detect articulation points by
studying the DFS tree.

Lemma

The root r of a DFS tree is an articulation point if and only if r has at
least two children.

Lemma

An internal vertex v of a DFS tree is an articulation point, if and only if it
has a child c such that no descendant of c is adjacent to a proper ancestor
of v .
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Articulation Points

Articulation Points – Lemma 1

Lemma

The root r of a DFS tree is an articulation point if and only if r has at
least two children.

Proof.

⇐: let c1, c2 be the two children with min discovery times. Then,
c1, c2 in distinct components of G − r .

At time 2 only r , c1 Gray, so if c1 → c2 path exists, by White-Path
theorem, c2 would be descendant of c1.

⇒: if r has one child, there is a path between any two vertices of
G − r (using tree edges only).
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Articulation Points

Articulation Points – Lemma 2

Lemma

An internal vertex v of a DFS tree is an articulation point, if and only if it
has a child c such that no descendant of c is adjacent to a proper ancestor
of v . (assume G connected)

Proof.

⇐: c and its descendants form a component of G − v which does not
contain the proper ancestors of v . (also: no cross edges)

⇒: Let C1 be the component of G − v where DFS started.

v has earler discovery than all vertices of G \ (C1 ∪ {v})
⇒ all other vertices of G \ (C1 ∪ {v}) are descendants of v by
White-Path theorem
All proper ancestors of v are in C1

No edges between C1 and other components of G − v
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Articulation Points

Towards an algorithm

Execute DFS

Decide if root is an articulation point (easy!)

Decide if each internal vertex is an articulation point

Problem: obvious algorithm is O(m) per vertex. . .
Need to store some information so we don’t repeat work. . .
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Articulation Points

Going MADD

Definition

Given G and DFS tree, we define madd(v) to be the minimum
ancestor-descendant discovery time among the neighbors of v .
Formally,

madd(v) = min
u∈desc(v),w∈N[u]

dw

In other words: for each v , we check all the sub-trees rooted at v ,
and find who has the highest neighbor in the tree.

Claim: For internal vertex v with child x , v is an articulation point if
and only if

madd(x) = dv

.

Claim: madd(v) can be computed for all vertices in linear time.
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Claim: For internal vertex v with child x , v is an articulation point if
and only if

madd(x) = dv

.

Claim: madd(v) can be computed for all vertices in linear time.

Michael Lampis Graph Algorithms September 25, 2025 31 / 33



Articulation Points

Going MADD

Definition

Given G and DFS tree, we define madd(v) to be the minimum
ancestor-descendant discovery time among the neighbors of v .
Formally,

madd(v) = min
u∈desc(v),w∈N[u]

dw

In other words: for each v , we check all the sub-trees rooted at v ,
and find who has the highest neighbor in the tree.

Claim: For internal vertex v with child x , v is an articulation point if
and only if

madd(x) = dv

.

Claim: madd(v) can be computed for all vertices in linear time.
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Articulation Points

MADD in linear time

Lemma

We can compute all minimum ancestor-descendant discovery times in
linear time.

Proof.

madd(v) = min
u∈desc(v),w∈N[u]

dw

is equivalent to:

madd(v) = min{( min
u∈child(v)

madd(u)), ( min
u∈N(v)

du})

which can be computed bottom-up by checking computed values for the
children of each node, when a vertex becomes Black.
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Articulation Points

Articulation points – Example

a b

e

d
f

g

c

h

i
j

Times:

d f madd

a *
b
c
d
e
f
g
h
i
j
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Articulation Points

Articulation points – Example

a b

e

d
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h

i
j

Times:

d f madd

a 1 *
b
c
d
e
f
g
h
i
j
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Articulation Points

Articulation points – Example

a b

e

d
f

g

c

h

i
j

Times:

d f madd

a 1 *
b 2
c
d
e
f
g
h
i
j
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Articulation Points

Articulation points – Example

a b

e

d
f

g

c

h

i
j

Times:

d f madd

a 1 *
b 2
c
d 3
e
f
g
h
i
j

Michael Lampis Graph Algorithms September 25, 2025 33 / 33



Articulation Points

Articulation points – Example

a b

e

d
f

g

c

h

i
j

Times:

d f madd

a 1 *
b 2
c 4
d 3
e
f
g
h
i
j

Michael Lampis Graph Algorithms September 25, 2025 33 / 33



Articulation Points

Articulation points – Example

a b

e

d
f

g

c

h

i
j

Times:

d f madd

a 1 *
b 2
c 4
d 3
e
f 5
g
h
i
j

Michael Lampis Graph Algorithms September 25, 2025 33 / 33



Articulation Points

Articulation points – Example

a b

e

d
f

g

c

h

i
j

Times:

d f madd

a 1 *
b 2
c 4
d 3
e
f 5
g
h 6
i
j
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Articulation Points

Articulation points – Example

a b

e

d
f

g

c

h

i
j

Times:

d f madd

a 1 *
b 2
c 4
d 3
e
f 5
g
h 6
i
j 7
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Articulation Points

Articulation points – Example

a b

e

d
f

g

c

h

i
j

Times:

d f madd

a 1 *
b 2
c 4
d 3
e
f 5
g
h 6
i 8
j 7
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Articulation Points

Articulation points – Example

a b

e

d
f

g

c

h

i
j

Times:

d f madd

a 1 *
b 2
c 4
d 3
e
f 5
g
h 6
i 8 9
j 7
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Articulation Points

Articulation points – Example

a b

e

d
f

g

c

h

i
j

Times:

d f madd

a 1 *
b 2
c 4
d 3
e
f 5
g
h 6
i 8 9
j 7 10
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Articulation Points

Articulation points – Example

a b

e

d
f

g

c

h

i
j

Times:

d f madd

a 1 *
b 2
c 4
d 3
e
f 5
g
h 6 11
i 8 9
j 7 10
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Articulation Points

Articulation points – Example

a b

e

d
f

g

c

h

i
j

Times:

d f madd

a 1 *
b 2
c 4
d 3
e
f 5 12
g
h 6 11
i 8 9
j 7 10
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Articulation Points

Articulation points – Example

a b

e

d
f

g

c

h

i
j

Times:

d f madd

a 1 *
b 2
c 4
d 3
e
f 5 12
g 13
h 6 11
i 8 9
j 7 10
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Articulation Points

Articulation points – Example

a b

e

d
f

g

c

h

i
j

Times:

d f madd

a 1 *
b 2
c 4
d 3
e
f 5 12
g 13 14
h 6 11
i 8 9
j 7 10
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Articulation Points

Articulation points – Example

a b

e

d
f

g

c

h

i
j

Times:

d f madd

a 1 *
b 2
c 4 15
d 3
e
f 5 12
g 13 14
h 6 11
i 8 9
j 7 10
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Articulation Points

Articulation points – Example

a b

e

d
f

g

c

h

i
j

Times:

d f madd

a 1 *
b 2
c 4 15
d 3 16
e
f 5 12
g 13 14
h 6 11
i 8 9
j 7 10
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Articulation Points

Articulation points – Example

a b

e

d
f

g

c

h

i
j

Times:

d f madd

a 1 *
b 2
c 4 15
d 3 16
e 17
f 5 12
g 13 14
h 6 11
i 8 9
j 7 10
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Articulation Points

Articulation points – Example

a b

e

d
f

g

c

h

i
j

Times:

d f madd

a 1 *
b 2
c 4 15
d 3 16
e 17 18
f 5 12
g 13 14
h 6 11
i 8 9
j 7 10
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Articulation Points

Articulation points – Example

a b

e

d
f

g

c

h

i
j

Times:

d f madd

a 1 *
b 2 19
c 4 15
d 3 16
e 17 18
f 5 12
g 13 14
h 6 11
i 8 9
j 7 10
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Articulation Points

Articulation points – Example

a b

e

d
f

g

c

h

i
j

Times:

d f madd

a 1 20 *
b 2 19
c 4 15
d 3 16
e 17 18
f 5 12
g 13 14
h 6 11
i 8 9
j 7 10

Michael Lampis Graph Algorithms September 25, 2025 33 / 33



Articulation Points

Articulation points – Example

a

b

e d

f g

c

h

i

j

Times:

d f madd

a 1 20 *
b 2 19
c 4 15
d 3 16
e 17 18
f 5 12
g 13 14
h 6 11
i 8 9
j 7 10
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Articulation Points

Articulation points – Example

a

b

e d

f g

c

h

i

j

Times:

d f madd

a 1 20 *
b 2 19
c 4 15
d 3 16
e 17 18
f 5 12
g 13 14
h 6 11
i 8 9 5
j 7 10
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Articulation Points

Articulation points – Example

a

b

e d

f g

c

h

i

j

Times:

d f madd

a 1 20 *
b 2 19
c 4 15
d 3 16
e 17 18
f 5 12
g 13 14
h 6 11
i 8 9 5
j 7 10 5
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Articulation Points

Articulation points – Example

a

b

e d

f g

c

h

i

j

Times:

d f madd

a 1 20 *
b 2 19
c 4 15
d 3 16
e 17 18
f 5 12
g 13 14
h 6 11 5
i 8 9 5
j 7 10 5
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Articulation Points

Articulation points – Example

a

b

e d

f g

c

h

i

j

Times:

d f madd

a 1 20 *
b 2 19
c 4 15
d 3 16
e 17 18
f 5 12 3
g 13 14
h 6 11 5
i 8 9 5
j 7 10 5
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Articulation Points

Articulation points – Example

a

b

e d

f g

c

h

i

j

Times:

d f madd

a 1 20 *
b 2 19
c 4 15
d 3 16
e 17 18
f 5 12 3
g 13 14 3
h 6 11 5
i 8 9 5
j 7 10 5
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Articulation Points

Articulation points – Example

a

b

e d

f g

c

h

i

j

Times:

d f madd

a 1 20 *
b 2 19
c 4 15 3
d 3 16
e 17 18
f 5 12 3
g 13 14 3
h 6 11 5
i 8 9 5
j 7 10 5
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Articulation Points

Articulation points – Example

a

b

e d

f g

c

h

i

j

Times:

d f madd

a 1 20 *
b 2 19
c 4 15 3
d 3 16 2
e 17 18
f 5 12 3
g 13 14 3
h 6 11 5
i 8 9 5
j 7 10 5
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Articulation Points

Articulation points – Example

a

b

e d

f g

c

h

i

j

Times:

d f madd

a 1 20 *
b 2 19
c 4 15 3
d 3 16 2
e 17 18 1
f 5 12 3
g 13 14 3
h 6 11 5
i 8 9 5
j 7 10 5
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Articulation Points

Articulation points – Example

a

b

e d

f g

c

h

i

j

Times:

d f madd

a 1 20 *
b 2 19 1
c 4 15 3
d 3 16 2
e 17 18 1
f 5 12 3
g 13 14 3
h 6 11 5
i 8 9 5
j 7 10 5
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Articulation Points

Articulation points – Example

a

b

e d

f g

c

h

i

j

Times:

d f madd

a 1 20 *
b 2 19 1
c 4 15 3
d 3 16 2
e 17 18 1
f 5 12 3
g 13 14 3
h 6 11 5
i 8 9 5
j 7 10 5
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Articulation Points

Articulation points – Example

a

b

e d

f g

c

h

i

j

Times:

d f madd

a 1 20 *
b 2 19 1
c 4 15 3
d 3 16 2
e 17 18 1
f 5 12 3
g 13 14 3
h 6 11 5
i 8 9 5
j 7 10 5
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Articulation Points

Articulation points – Example

a

b

e d

f g

c

h

i

j

Times:

d f madd

a 1 20 *
b 2 19 1
c 4 15 3
d 3 16 2
e 17 18 1
f 5 12 3
g 13 14 3
h 6 11 5
i 8 9 5
j 7 10 5
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