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|
Graph Traversal

Problem
Given (di)graph G, determine connectivity properties:

@ Is G (strongly) connected?
e What are the (strongly) connected components of G?7
@ Which vertices can be reached from a given source s?

@ What is the shortest path distance from (given vertex) s to (given
vertex) t?
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e What are the (strongly) connected components of G?7
@ Which vertices can be reached from a given source s?
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Algorithms:
@ BFS (two lectures ago)
o DFS (last lecture)
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Graph Traversal

Problem
Given (di)graph G, determine connectivity properties:

@ Is G (strongly) connected?
e What are the (strongly) connected components of G?7
@ Which vertices can be reached from a given source s?

@ What is the shortest path distance from (given vertex) s to (given
vertex) t?

Algorithms:
@ BFS (two lectures ago)
o DFS (last lecture)
@ Today: Applications
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Topological Sort

Topological Sort
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Topological Sort

Definition of Topological Sort

Definition

A topological sort of a digraph G = (V/, A) is an ordering (numbering) of
the vertices with the following property: if we have an arc from a vertex
numbered 7 to a vertex numbered j, then i < j.
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Topological Sort

Definition of Topological Sort

Definition

A topological sort of a digraph G = (V/, A) is an ordering (numbering) of
the vertices with the following property: if we have an arc from a vertex
numbered 7 to a vertex numbered j, then i < j.

@ In other words, arcs go from lower to higher numbers.

@ Vertices are numbered 1,...,n.
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Topological Sort — Example
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Topological Sort — Example

Ranking:
1 2 3 45 6 7 8 9
b a g ¢ d h i f e
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Topological Sort — Example

Ranking:
1 2 3 45 6 7 8 9
b a g ¢ d h i f e
g b a c h d f e i
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DAGs are topologically sortable
Definition

A digraph G is a Directed Acyclic Graph (DAG) if G contains no directed
cycles.

NB: We also count cycles of length 2 (digons).
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DAGs are topologically sortable

Definition

A digraph G is a Directed Acyclic Graph (DAG) if G contains no directed
cycles.

NB: We also count cycles of length 2 (digons).
Lemma

A digraph G admits a topological ordering if and only if G is a DAG. (
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DAGs are topologically sortable

Definition

A digraph G is a Directed Acyclic Graph (DAG) if G contains no directed
cycles.

NB: We also count cycles of length 2 (digons).

Lemma

A digraph G admits a topological ordering if and only if G is a DAG.

Proof.

@ =: A cycle C cannot be topo-sorted, because all vertices have
positive in- and out-degree.

e «<: A DAG always contains a sink v (why?), number it n, order the
rest inductively.

T = - - -—
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Topological Sort

Every DAG has a source/sink

Lemma

If G =(V,A) is a DAG, then G contains at least one source and at least
one sink.
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Every DAG has a source/sink

Lemma

If G =(V,A) is a DAG, then G contains at least one source and at least

one sink.
Proof.
o Let P = x1,xp,...,xx be the longest directed simple path in G.
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Every DAG has a source/sink

Lemma

If G =(V,A) is a DAG, then G contains at least one source and at least
one sink.

Proof.

o Let P = x1,xp,...,xx be the longest directed simple path in G.

@ If there exists an arc xxy with y € {x1,...,xk_1}, then G is not a
DAG, contradiction.

Michael Lampis Graph Algorithms September 25, 2025 7/33



Every DAG has a source/sink

Lemma

If G =(V,A) is a DAG, then G contains at least one source and at least
one sink.

Proof.
o Let P = x1,xp,...,xx be the longest directed simple path in G.
@ If there exists an arc xxy with y € {x1,...,xk_1}, then G is not a
DAG, contradiction.
o If there exists an arc xxy with y & {x1,...,xk_1}, then P is not

longest, contradiction.
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Every DAG has a source/sink

Lemma

If G =(V,A) is a DAG, then G contains at least one source and at least
one sink.

Proof.
o Let P = x1,xp,...,xx be the longest directed simple path in G.

@ If there exists an arc xxy with y € {x1,...,xk_1}, then G is not a
DAG, contradiction.

o If there exists an arc xxy with y & {x1,...,xk_1}, then P is not
longest, contradiction.

@ = xy is a sink (out-degree 0)

@ Symmetric reasoning shows that x; is a source.

O
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Straightforward Algorithm (for Matrices)

1. procedure TOPO-SORT(G)
2 for i=1to ndo
3 Find a source in G — v
4 Number of v < i
5: G+~ G—v
6 end for

7 Output Numbers of v € V
8: end procedure
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Straightforward Algorithm (for Matrices)

1. procedure TOPO-SORT(G)

2 for i=1to ndo

3 Find a source in G — v > How?
4 Number of v < i > Num[v] < i
5: G+~ G—-v > How?
6 end for

7 Output Numbers of v € V

8: end procedure
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Straightforward Algorithm (for Matrices)

1: Active[v] <~ 1 forall v e V
2: procedure TOPO-SORT(G)
3: fori=1tondo

4: v < Find-source(G,Active)

5 Numl[v] « i

6 Active[v] < 0

7: end for

8 Output Numbers of v € V

9: end procedure

10: procedure FIND-SOURCE(G,Active)
11: for vc V do

12: if Active[v] ==1 and d~(v) == 0 then
13: Return v

14: end if

15: end for

16: end procedure
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Straightforward Algorithm (for Matrices)
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2: procedure TOPO-SORT(G)
3: fori=1tondo
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5 Numl[v] « i

6 Active[v] < 0

7: end for

8 Output Numbers of v € V

9: end procedure

10: procedure FIND-SOURCE(G,Active)
11: for vc V do

12: if Active[v] ==1 and d~(v) == 0 then > How?
13: Return v

14: end if

15: end for
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Straightforward Algorithm (for Matrices)

1: procedure CHECK-IF-SOURCE(G,Active,v)
2 for ue V do

3 if Alu,v] ==1 and Active[u] then
4 Return No

5: end if

6 end for

7 Return Yes

8: end procedure
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Straightforward Algorithm (for Matrices)

1. procedure CHECK-IF-SOURCE(G,Active,v) > O(n) time
2 for ue V do

3 if Alu,v] ==1 and Active[u] then

4 Return No

5: end if

6 end for

7 Return Yes

8: end procedure
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Straightforward Algorithm (for Matrices)

1: Active[v] <~ 1 forall v e V
2: procedure TOPO-SORT(G)
3: fori=1tondo

4: v < Find-source(G,Active)
5 Numl[v] « i

6 Active[v] < 0

7: end for

8 Output Numbers of v € V

9: end procedure

10: procedure FIND-SOURCE(G,Active) > O(n?) time
11: for ve V do > O(n) iterations
12: if Active[v] ==1 and d~(v) == 0 then > O(n) time
13: Return v

14: end if

15: end for

16: end procedure
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Straightforward Algorithm (for Matrices)

1: Active[v] <~ 1 forall v e V
2: procedure TOPO-SORT(G)
3: fori=1tondo

4: v < Find-source(G,Active)

5 Numl[v] « i

6 Active[v] < 0

7: end for

8 Output Numbers of v € V

9: end procedure

10: procedure FIND-SOURCE(G,Active)

11: for ve V do

12: if Active[v] ==1 and d~(v) == 0 then
13: Return v

14: end if

15: end for

16: end procedure
Graph Algorithms

iterations

> O(n3) time
> O(n)

> O(n?) time
> O(n) iterations
> O(n) time
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Optimality for Find-Source

Lemma

Find-Source cannot be solved in o(n?) time (for adjacency matrices).
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Topological Sort

Optimality for Find-Source

Lemma

Find-Source cannot be solved in o(n?) time (for adjacency matrices).

Proof.

@ Intuition: If an algorithm takes < (g) — 1 steps, there exists pair i, j
for which neither A[i,j] nor A[j, i] was consulted, therefore impossible
to know which of i/, j are sources.

@ Adversary argument: as long as possible, reply to an algorithm's
queries by saying that a vertex has no incoming arcs, until the last

step.
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Topological Sort

Optimality for Find-Source

Lemma

Find-Source cannot be solved in o(n?) time (for adjacency matrices).

Proof.

@ Intuition: If an algorithm takes < (g) — 1 steps, there exists pair i, j
for which neither A[i,j] nor A[j, i] was consulted, therefore impossible
to know which of i/, j are sources.

@ Adversary argument: as long as possible, reply to an algorithm's
queries by saying that a vertex has no incoming arcs, until the last

step.

Caution!
@ This does not imply that our topological sorting algorithm is optimal!
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Topological Sort

Topological sort in linear time

1: Initialize > DFS Initialization as before
2. i< n > Next vertex to be added to list
3: for ve V do

4: if v is White then

5: DFS-Visit(G,v)

6: end if

7: end for

8: procedure DFS-VISIT(G,u)

9: . > DFS as before
10: u.f = t, Color u Black > When u turns black, append.
11: Numlu] < i, i — —

12: end procedure
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Topological Sort

Correctness Analysis

Lemma
G is a DAG < DFS produces no backward arcs.
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Topological Sort

Correctness Analysis

Lemma
G is a DAG < DFS produces no backward arcs.

Theorem
Previous algorithm is correct.

Proof.

e Consider arc uv at time when u became Gray:
o If v was White = v will be descendant of u = v will become Black
first = v will be assigned higher number.
o If v was Black = v will be assigned higher number.
e If v was Gray = uv is a backward arc, contradiction!

0J
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Example
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Times:
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Example

) d | f
1
Oxﬁ
2
C)

Times:

ok
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Topological Sort

Example

) d | f
1
4 <D
2
C) 5

Times:

A

- > 0@ HHT0O QO 0 T w
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Topological Sort

Example

) d | f

a 1

I ED b
C 2

)

Times:cei i

@ f

01 D g

e |
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Topological Sort

Example

<, d | f
a 1
D\ b
C 2
)
Times:;i i 5
@ f
01 D g
i
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Topological Sort

Example

<, d | f
a 1
D\ b
C 2
)
Times:;i i 5
G () |
01 D 5
i
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Topological Sort

Example

<, d | f
a 1
D\ b
C 2
)
Times:;i i 5
G D BN
g
p :
i
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Topological Sort

Example

°§° <

Times:

d f
a 1
b
C 2
d 3
e 4 5
f 6 7
g
h
i 8
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Topological Sort

Example

d f
a 1
b
C 2
. d 3
Times: . 4 5
f 6 7
g
h
i 8 9
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Topological Sort

Example

d f
a 1
b
C 2
. d 3 10
Times: . 4 5
f 6 7
g
h
i 8 9
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Topological Sort

Example

d f
a 1
b
c 2 11
. d 3 10
Times: . 4 5
f 6 7
g
h
i 8 9
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Topological Sort

Example

d f
a 1 12
b
c 2 11
. d 3 10
Times: . 4 5
f 6 7
g
h
i 8 9
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Topological Sort

Example

d f
a 1 12
b 13
c 2 11
. d 3 10
Times: . 4 5
f 6 7
g
h
i 8 9
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Topological Sort

Example

d f
a 1 12
b 13 14
c 2 11
. d 3 10
Times: . 4 5
f 6 7
g
h
i 8 9
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Topological Sort

Example

f‘
a 1 12
b 13 14
c 2 11
. d 3 10
Times: . 4 5
f 6 7
g 15
h
i 8 9
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Topological Sort

Example

f‘
a 1 12
b 13 14
c 2 11
. d 3 10
Times: . 4 5
f 6 7
g 15
h 16
i 8 9
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Topological Sort

Example

f‘
a 1 12
b 13 14
c 2 11
. d 3 10
Times: . 4 5
f 6 7
g 15
h 16 17
i 8 9
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Topological Sort

Example

f‘

a 1 12

b 13 14

c 2 11

. d 3 10
Times: . 4 5
f 6 7

g 15 | 18

h 16 17
i 8 9
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Topological Sort

Example

f

a 1 12

b 13 14

c 2 11

: d 3 10
Times: . 4 5
f 6 7

g 15 | 18

h 16 | 17

[ 8 9

Ordering:

g, h b acdife
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Strongly Connected Components

Strongly Connected Components
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Strongly Connected Components

Strongly Connected Components

Definition
In a digraph G, a strongly connected component C is a maximal set of
vertices such that for all u,v € C. G contains a u — v and a v — u path.

Problem
Given a digraph G = (V, A), output a partition of V into strongly
connected components.

NB: For example, compute an integer cc(v) for each v € V such that
cc(v) = cc(u) if and only if v, u are in the same SCC.
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Strongly Connected Components

SCC Example

/0

< (2
LA

Michael Lampis Graph Algorithms September 25, 2025 15/33



SCC Example

/0

< (o)
o

Michael Lampis Graph Algorithms September 25, 2025 15/33



Straightforward Algorithm

1. procedure SCC(G)

2 cc(v) <~ —1forallveV

3 cur <1

4 for ve V do

5: if cc(v) == —1 then

6 cc(v) < cur

7 for u e V do

8 if Reach(G, u,v) A Reach(G, v, u) then
9: cc(u) = cc(v)
10: end if
11 end for
12: cur + +
13: end if
14: end for
15: Return cc

16: end procedure
Graph Algorithms September 25, 2025 16 /33



Straightforward Algorithm

1. procedure SCC(G) > O(n® + n®m) time
2 cc(v) <~ —1forallveV

3 cur <1

4 for ve V do > O(n) iterations
5: if cc(v) == —1 then

6 cc(v) < cur

7 for ue V do > O(n) iterations
8 if Reach(G, u,v) A Reach(G,v,u) then > O(n+ m)
9: cc(u) = cc(v)

10: end if

11: end for

12: cur + +

13: end if

14: end for

15: Return cc

16: end procedure
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SCC by 2-DFS algorithm

Algorithm idea:
@ Run DFS, compute a finish time for each vertex.
@ Compute GT.

o Reminder: GT is G where arcs are reversed.

© Run DFSon GT.

o Important: Consider vertices not in alphabetical order, but in
decreasing order of finish time from first DFS.
o (Topological sort order, if G was a DAG).

@ Each DFS tree from the previous step is a SCC of G.
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SCC by 2-DFS algorithm

Algorithm idea:
@ Run DFS, compute a finish time for each vertex.
@ Compute GT.

o Reminder: GT is G where arcs are reversed.

© Run DFSon GT.

o Important: Consider vertices not in alphabetical order, but in
decreasing order of finish time from first DFS.
o (Topological sort order, if G was a DAG).

@ Each DFS tree from the previous step is a SCC of G.
Sanity check: is this algorithm correct on DAGs?
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Strongly Connected Components

SCC by 2-DFS algorithm — Example — Phase 1

Times:

= =" om h0O O 0 T W
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SCC by 2-DFS algorithm — Example — Phase 1
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SCC by 2-DFS algorithm — Example — Phase 1

Times:

— = >0/ O QOO0 T W
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SCC by 2-DFS algorithm — Example — Phase 1

d f
a 1
b
C 2
d 3 6
Times: e 4 5
f
g
h
i
J
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SCC by 2-DFS algorithm — Example — Phase 1

d f
a 1
b
C 2 7
d 3 6
Times: e 4 5
f
g
h
i
J
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SCC by 2-DFS algorithm — Example — Phase 1

f

a 1 8
b

C 2 7

d 3 6

Times: e 4 5
f
g
h
i
J
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SCC by 2-DFS algorithm — Example — Phase 1

d f

1 8

9

2 7

3 6
Times: 4 5

— = >0m@| hO OO0 T W
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SCC by 2-DFS algorithm — Example — Phase 1

d f

1 8

9

2 7

3 6
Times: 4 5

— = >0m@| hO OO0 T W
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SCC by 2-DFS algorithm — Example — Phase 1

d f

a 1 8

b 9

C 2 7

d 3 6
Times: e 4 5

f

g 10

h

i

] 11
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SCC by 2-DFS algorithm — Example — Phase 1

d f

a 1 8

b 9

C 2 7

d 3 6
Times: e 4 5

f

g 10

h 12

i

] 11
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SCC by 2-DFS algorithm — Example — Phase 1

d f

a 1 8

b 9

C 2 7

d 3 6
Times: e 4 5

f

g 10

h 12 | 13

i

] 11
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SCC by 2-DFS algorithm — Example — Phase 1

d f

a 1 8

b 9

C 2 7

d 3 6
Times: e 4 5

f

g 10

h 12 | 13

i 14

] 11
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SCC by 2-DFS algorithm — Example — Phase 1

W N O Q.

[e)}

Times:

10
12 | 13
14
11

— = >0m@| hO OO0 T W
S
ol
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SCC by 2-DFS algorithm — Example — Phase 1

d f

a 1 8

b 9

C 2 7

d 3 6
Times: e 4 5

f 15 | 16

g 10

h 12 | 13

i 14

] 11
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Strongly Connected Components

SCC by 2-DFS algorithm — Example — Phase 1

Michael Lampis

Graph Algorithms

Times:

d f
a 1 8
b 9
C 2 7
d 3 6
e 4 5
f 15 | 16
g 10
h 12 |13
i 14 | 17
] 11
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SCC by 2-DFS algorithm — Example — Phase 1

d f

a 1 8

b 9

C 2 7

d 3 6
Times: e 4 5

f 15 | 16

g 10

h 12 | 13

i 14 | 17

j 11 | 18
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SCC by 2-DFS algorithm — Example — Phase 1

d f
a 1 8
b 9
C 2 7
d 3 6
Times: e 4 5
f 15 | 16
g 10 | 19
h 12 | 13
i 14 | 17
j 11 | 18
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SCC by 2-DFS algorithm — Example — Phase 1

Michael Lampis

Times:

Graph Algorithms

d f
a 1 8
b 9 20
C 2 7
d 3 6
e 4 5
f 15 | 16
g 10 | 19
h 12 |13
i 14 | 17
j 11 | 18
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SCC by 2-DFS algorithm — Example — Phase 1

d f

a 1 8
b 9 20

C 2 7

d 3 6

Times: e 4 5
f 15 | 16
g 10 | 19
h 12 | 13
i 14 | 17
j 11 | 18

time:

Ordering in decreasing finish

b,g j,i,f hacde
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SCC by 2-DFS algorithm — Example — Phase 2

Ordering: b, g, j, i, f, h,a,c,d, e
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SCC by 2-DFS algorithm — Example — Phase 2

Ordering: b, g, j, i, f, h,a,c,d, e
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Ordering: b, g, j, i, f, h,a,c,d, e
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SCC by 2-DFS algorithm — Example — Phase 2

Ordering: b, g, j, i, f, h,a,c,d, e
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Intuition — Component digraph

Definition
If G =(V,A)is a digraph, G°¢C is the digraph that has:
@ A vertex for each SCC of G.
@ An arc (1 G if there exist x1 € C1,x € (G with x1x € A.

Lemma

G>CC is always a DAG.
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Strongly Connected Components

Intuition — Component digraph

Definition
If G =(V,A)is a digraph, G°¢C is the digraph that has:
@ A vertex for each SCC of G.
@ An arc (1 G if there exist x1 € C1,x € (G with x1x € A.

Lemma
G>CC is always a DAG.

Proof.

If there exist arcs C; — G and G — (3, C; U G, is strongly connected,

contradicting maximality. O
Graph Algorithms September 25, 2025 20/33



Strongly Connected Components

Intuition

Key ideas:
o If x finished last in first DFS of G
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Strongly Connected Components

Intuition

Key ideas:
@ If x finished last in first DFS of G
@ = the SCC of x is a source in G5€
o = the SCC of x is a sink in (G7)>¢¢
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Strongly Connected Components

Intuition

Key ideas:
o If x finished last in first DFS of G
@ = the SCC of x is a source in G5¢C
o = the SCC of x is a sink in (G7)>¢¢
@ = a DFSin GT from x will visit exactly the SCC of x
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Sources SCC finishes last

Lemma

Let G = (V,A) be a digraph, Ci, C; two SCCs, with x; € C1,x2 € C; and
x1xo € A. Then, there exists a vertex of C; which finishes after all
vertices of C,.
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Sources SCC finishes last

Lemma

Let G = (V,A) be a digraph, Ci, C; two SCCs, with x; € C1,x2 € C; and
x1xo € A. Then, there exists a vertex of C; which finishes after all
vertices of C,.

Proof.
@ First vertex of C; U (; to be discovered is y € (3:
By White-Path theorem, all of C; U G, are y's descendants, so finish
before y.
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Sources SCC finishes last

Lemma

Let G = (V,A) be a digraph, Ci, C; two SCCs, with x; € C1,x2 € C; and
x1xo € A. Then, there exists a vertex of C; which finishes after all
vertices of C,.

Proof.

@ First vertex of C; U (; to be discovered is y € (3:
By White-Path theorem, all of C; U G, are y's descendants, so finish
before y.

@ First vertex of (3 U (; to be discovered is y € C:
By White-Path theorem, all vertices of C, are discovered after y and
finish before y. There is no path from C, to C; (o/w G°¢€ not a
DAG), so at f, all of C; still White = finishes later than y.

0J
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Strongly Connected Components

Proof of Correctness

Proof.

Induction on number of SCCs.

@ Suppose first k SCCs are correct.

@ DFS for (k 4+ 1)-th SCC starts at x which has largest finish time of

all White vertices.

o All vertices of the SCC of x (C) are currently White (I.H.)
o White-Path theorem: SCC computed contains at least all of C

o Need to prove: we do not put other stuff in computed SCC of x
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Proof.

Induction on number of SCCs.

@ Suppose first k SCCs are correct.

@ DFS for (k 4+ 1)-th SCC starts at x which has largest finish time of

all White vertices.

o All vertices of the SCC of x (C) are currently White (I.H.)
o White-Path theorem: SCC computed contains at least all of C
o Need to prove: we do not put other stuff in computed SCC of x

o If y & C is reachable from x in G:

o Either y is in the first k components = y Black
e Ory € C" with some C — C’ pathin G"
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Strongly Connected Components

Proof of Correctness

Proof.
Induction on number of SCCs.

@ Suppose first k SCCs are correct.

@ DFS for (k 4+ 1)-th SCC starts at x which has largest finish time of

all White vertices.

o All vertices of the SCC of x (C) are currently White (I.H.)
o White-Path theorem: SCC computed contains at least all of C
o Need to prove: we do not put other stuff in computed SCC of x

o If y & C is reachable from x in G:

Either y is in the first k components = y Black
Or y € C' with some C — C’ pathin G”

()]
e Then, 3C' — C path in G
e = some vertex of C’ finishes after x, contradiction!!

Michael Lampis

Graph Algorithms

September 25, 2025

23/33



Articulation Points

Articulation Points
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Articulation Points

Articulation Point

Definition
In a undirected graph G = (V,E), v € V is a cut vertex or an
articulation point if G — v has more connected components than G.
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Articulation Points

Articulation Point

Definition
In a undirected graph G = (V,E), v € V is a cut vertex or an
articulation point if G — v has more connected components than G.

°8° ‘°°.°°
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Articulation Point

Definition
In a undirected graph G = (V,E), v € V is a cut vertex or an
articulation point if G — v has more connected components than G.
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Articulation Points

Articulation Points

Problem

Given undirected graph G, output all articulation points (if any).
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Articulation Points

Articulation Points

Problem

Given undirected graph G, output all articulation points (if any).

Obvious algorithm:
C < number of components of G (DFS)
: for v € V do
if comps(G — v)> C then
Add v to output
end if
end for

A
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Articulation Points

Articulation Points

Problem
Given undirected graph G, output all articulation points (if any).

Obvious algorithm:

C < number of components of G (DFS)
: for ve Vdo
if comps(G — v)> C then
Add v to output
end if
6: end for

Complexity O(mn + n?) for lists, O(n3) for matrices. Better?

g e
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Articulation Points — DFS

We will execute DFS on G and try to detect articulation points by
studying the DFS tree.
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Articulation Points — DFS

We will execute DFS on G and try to detect articulation points by
studying the DFS tree.

Lemma

The root r of a DFS tree is an articulation point if and only if r has at
least two children.

Lemma

An internal vertex v of a DFS tree is an articulation point, if and only if it

has a child ¢ such that no descendant of c¢ is adjacent to a proper ancestor
of v.

Michael Lampis Graph Algorithms September 25, 2025 27/33



Articulation Points

Articulation Points — Lemma 1

Lemma

The root r of a DFS tree is an articulation point if and only if r has at
least two children.
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Articulation Points

Articulation Points — Lemma 1

Lemma

The root r of a DFS tree is an articulation point if and only if r has at
least two children.

Proof.
@ <: let c1, ¢ be the two children with min discovery times. Then,
c1, ¢ in distinct components of G — r.

e At time 2 only r, ¢; Gray, so if c; — ¢, path exists, by White-Path
theorem, ¢, would be descendant of ¢;.
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Articulation Points

Articulation Points — Lemma 1

Lemma

The root r of a DFS tree is an articulation point if and only if r has at
least two children.

Proof.
@ <: let c1, ¢ be the two children with min discovery times. Then,
c1, ¢ in distinct components of G — r.
e At time 2 only r, ¢; Gray, so if c; — ¢, path exists, by White-Path
theorem, ¢, would be descendant of ¢;.
@ = if r has one child, there is a path between any two vertices of
G — r (using tree edges only).
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Articulation Points

Articulation Points — Lemma 2

Lemma

An internal vertex v of a DFS tree is an articulation point, if and only if it
has a child ¢ such that no descendant of c is adjacent to a proper ancestor
of v. (assume G connected)
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Articulation Points

Articulation Points — Lemma 2

Lemma

An internal vertex v of a DFS tree is an articulation point, if and only if it
has a child ¢ such that no descendant of c is adjacent to a proper ancestor
of v. (assume G connected)

Proof.

@ <: c and its descendants form a component of G — v which does not
contain the proper ancestors of v. (also: no cross edges)

- = = = — ~
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Articulation Points

Articulation Points — Lemma 2

Lemma

An internal vertex v of a DFS tree is an articulation point, if and only if it
has a child ¢ such that no descendant of c is adjacent to a proper ancestor
of v. (assume G connected)

Proof.

@ <: c and its descendants form a component of G — v which does not
contain the proper ancestors of v. (also: no cross edges)

@ =: Let C; be the component of G — v where DFS started.
o v has earler discovery than all vertices of G\ (C; U {v})
o = all other vertices of G\ (C; U {v}) are descendants of v by
White-Path theorem
o All proper ancestors of v are in C;
o No edges between C; and other components of G — v

O

- = = = — ~
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Articulation Points

Towards an algorithm

o Execute DFS
@ Decide if root is an articulation point (easy!)

@ Decide if each internal vertex is an articulation point
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Articulation Points

Towards an algorithm

o Execute DFS
@ Decide if root is an articulation point (easy!)

@ Decide if each internal vertex is an articulation point

o Problem: obvious algorithm is O(m) per vertex. ..
@ Need to store some information so we don’t repeat work. . .

Michael Lampis Graph Algorithms September 25, 2025 30/33



Going MADD

Definition
Given G and DFS tree, we define madd(v) to be the minimum
ancestor-descendant discovery time among the neighbors of v.

Formally,

madd(v) = min dw
uedesc(v),weN[u]
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Definition

Given G and DFS tree, we define madd(v) to be the minimum
ancestor-descendant discovery time among the neighbors of v.
Formally,

madd(v) = min dw
uedesc(v),weN[u]

@ In other words: for each v, we check all the sub-trees rooted at v,
and find who has the highest neighbor in the tree.
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Going MADD

Definition

Given G and DFS tree, we define madd(v) to be the minimum
ancestor-descendant discovery time among the neighbors of v.
Formally,

madd(v) = min dw
uedesc(v),weN[u]

@ In other words: for each v, we check all the sub-trees rooted at v,
and find who has the highest neighbor in the tree.
@ Claim: For internal vertex v with child x, v is an articulation point if

and only if
madd(x) = d,

e Claim: madd(v) can be computed for all vertices in linear time.
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Articulation Points

MADD in linear time

Lemma

We can compute all minimum ancestor-descendant discovery times in
linear time.
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MADD in linear time

Lemma

We can compute all minimum ancestor-descendant discovery times in
linear time.

Proof.

madd(v) = min dw
u€desc(v),weN[u]

which can be computed bottom-up by checking computed values for the
children of each node, when a vertex becomes Black.
L]
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Articulation points — Example

d f madd

— = >TMm 0O QOO0 T W
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Articulation points — Example

Graph Algorithms

d f madd
a 1 *
b 2
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d 3
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Articulation points — Example
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Articulation points — Example

Graph Algorithms

d f madd

a 1 *
b 2

C 4

d 3
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f 5
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Articulation Points

Articulation points — Example

d f madd
a 1 *
b 2
C 4
d 3
e
f 5
g
h 6
i 8 9
j 7
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Articulation Points

Articulation points — Example

d f madd
a 1 *
b 2
C 4
d 3
e
f 5
g
h 6
i 8 9
j 7 10
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Articulation points — Example
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Articulation points — Example
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Articulation Points

Articulation points — Example

Michael Lampis

Graph Algorithms

d f madd
a 1 *
b 2
C 4
d 3
e
f 5 12
g 13
h 6 11
i 8 9
] 7 10
September 25, 2025 33/33



Articulation Points

Articulation points — Example
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Articulation Points

Articulation points — Example
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Articulation Points

Articulation points — Example
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Articulation Points

Articulation points — Example
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Articulation points — Example
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Articulation points — Example
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Articulation Points

Articulation points — Example
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Articulation points — Example
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Articulation points — Example
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Articulation Points

Articulation points — Example

G
d f madd
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b 2 19
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Articulation points — Example
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Articulation points — Example
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Articulation points — Example
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Articulation points — Example
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Articulation points — Example
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Articulation points — Example
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