Graph Algorithms

Graph Traversals and Connectivity III

Michael Lampis

September 25, 2025

1/33

Graph Traversal

Problem

Given (di)graph G, determine connectivity properties:

- Is *G* (strongly) connected?
- What are the (strongly) connected components of *G*?
- Which vertices can be reached from a given source s?
- What is the shortest path distance from (given vertex) s to (given vertex) t?

Graph Traversal

Problem

Given (di)graph G, determine connectivity properties:

- Is G (strongly) connected?
- What are the (strongly) connected components of G?
- Which vertices can be reached from a given source s?
- What is the shortest path distance from (given vertex) s to (given vertex) t?

Algorithms:

- BFS (two lectures ago)
- DFS (last lecture)

Graph Traversal

Problem

Given (di)graph G, determine connectivity properties:

- Is *G* (strongly) connected?
- What are the (strongly) connected components of G?
- Which vertices can be reached from a given source s?
- What is the shortest path distance from (given vertex) s to (given vertex) t?

Algorithms:

- BFS (two lectures ago)
- DFS (last lecture)
- Today: Applications

Topological Sort

Definition of Topological Sort

Definition

A topological sort of a digraph G = (V, A) is an ordering (numbering) of the vertices with the following property: if we have an arc from a vertex numbered i to a vertex numbered j, then i < j.

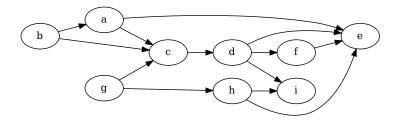
Definition of Topological Sort

Definition

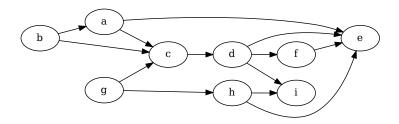
A topological sort of a digraph G = (V, A) is an ordering (numbering) of the vertices with the following property: if we have an arc from a vertex numbered i to a vertex numbered j, then i < j.

- In other words, arcs go from lower to higher numbers.
- Vertices are numbered 1, ..., n.

Topological Sort – Example



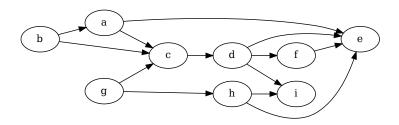
Topological Sort – Example



Ranking:

ranking.									
1	2	3	4	5	6	7	8	9	
b	а	g	С	d	h	i	f	е	

Topological Sort – Example



Ranking:

Mariking.									
1	2	3	4	5	6	7	8	9	
b	а	g	С	d	h	i	f	е	
g	b	a	С	h	d	f	е	i	

DAGs are topologically sortable

Definition

A digraph G is a Directed Acyclic Graph (DAG) if G contains no directed cycles.

NB: We also count cycles of length 2 (digons).

DAGs are topologically sortable

Definition

A digraph G is a Directed Acyclic Graph (DAG) if G contains no directed cycles.

NB: We also count cycles of length 2 (digons).

Lemma

A digraph G admits a topological ordering if and only if G is a DAG.

DAGs are topologically sortable

Definition

A digraph G is a Directed Acyclic Graph (DAG) if G contains no directed cycles.

NB: We also count cycles of length 2 (digons).

Lemma

A digraph G admits a topological ordering if and only if G is a DAG.

Proof.

- ⇒: A cycle C cannot be topo-sorted, because all vertices have positive in- and out-degree.
- \Leftarrow : A DAG always contains a sink v (why?), number it n, order the rest inductively.

Michael Lampis Graph Algorithms September 25, 2025 6/33

Lemma

If G = (V, A) is a DAG, then G contains at least one source and at least one sink.

Lemma

If G = (V, A) is a DAG, then G contains at least one source and at least one sink.

Proof.

• Let $P = x_1, x_2, \dots, x_k$ be the **longest** directed simple path in G.

Lemma

If G = (V, A) is a DAG, then G contains at least one source and at least one sink.

Proof.

- Let $P = x_1, x_2, \dots, x_k$ be the **longest** directed simple path in G.
- If there exists an arc $x_k y$ with $y \in \{x_1, \dots, x_{k-1}\}$, then G is not a DAG, contradiction.

Lemma

If G = (V, A) is a DAG, then G contains at least one source and at least one sink.

Proof.

- Let $P = x_1, x_2, \dots, x_k$ be the **longest** directed simple path in G.
- If there exists an arc $x_k y$ with $y \in \{x_1, \dots, x_{k-1}\}$, then G is not a DAG, contradiction.
- If there exists an arc $x_k y$ with $y \notin \{x_1, \dots, x_{k-1}\}$, then P is not longest, contradiction.

7 / 33

Lemma

If G = (V, A) is a DAG, then G contains at least one source and at least one sink.

Proof.

- Let $P = x_1, x_2, \dots, x_k$ be the **longest** directed simple path in G.
- If there exists an arc $x_k y$ with $y \in \{x_1, \dots, x_{k-1}\}$, then G is not a DAG, contradiction.
- If there exists an arc $x_k y$ with $y \notin \{x_1, \dots, x_{k-1}\}$, then P is not longest, contradiction.
- $\Rightarrow x_k$ is a sink (out-degree 0)
- Symmetric reasoning shows that x_1 is a source.

7 / 33

Michael Lampis Graph Algorithms September 25, 2025

```
1: procedure TOPO-SORT(G)
2: for i = 1 to n do
3: Find a source in G \rightarrow v
4: Number of v \leftarrow i
5: G \leftarrow G - v
6: end for
7: Output Numbers of v \in V
8: end procedure
```



```
1: procedure TOPO-SORT(G)
2: for i=1 to n do
3: Find a source in G \rightarrow v \triangleright How?
4: Number of v \leftarrow i \triangleright Num[v] \leftarrow i
5: G \leftarrow G - v \triangleright How?
6: end for
7: Output Numbers of v \in V
```

8: end procedure

```
1: Active[v] \leftarrow 1 for all v \in V
 2: procedure Topo-Sort(G)
       for i = 1 to n do
3:
            v \leftarrow \text{Find-source}(G, \text{Active})
 4:
            Num[v] \leftarrow i
 5:
           Active[v] \leftarrow 0
6:
    end for
        Output Numbers of v \in V
8:
 9: end procedure
10: procedure FIND-SOURCE(G,Active)
       for v \in V do
11:
            if Active[v] == 1 and d^-(v) == 0 then
12:
13:
                Return v
            end if
14:
       end for
15:
16: end procedure
```

8/33

```
1: Active[v] \leftarrow 1 for all v \in V
 2: procedure Topo-Sort(G)
       for i = 1 to n do
3:
            v \leftarrow \text{Find-source}(G, \text{Active})
 4:
            Num[v] \leftarrow i
 5:
           Active[v] \leftarrow 0
6:
    end for
        Output Numbers of v \in V
8:
 9: end procedure
10: procedure FIND-SOURCE(G,Active)
       for v \in V do
11:
            if Active[v] == 1 and d^-(v) == 0 then
                                                                          ⊳ How?
12:
13:
                Return v
            end if
14:
       end for
15:
```

```
    procedure CHECK-IF-SOURCE(G,Active,v)
    for u ∈ V do
    if A[u, v] == 1 and Active[u] then
    Return No
    end if
    end for
    Return Yes
    end procedure
```

```
    procedure CHECK-IF-SOURCE(G,Active,v)
    for u ∈ V do
    if A[u, v] == 1 and Active[u] then
    Return No
    end if
    end for
    Return Yes
    end procedure
```

 $\triangleright O(n)$ time

```
1: Active[v] \leftarrow 1 for all v \in V
 2: procedure Topo-Sort(G)
        for i = 1 to n do
3:
             v \leftarrow \text{Find-source}(G, \text{Active})
 4:
             Num[v] \leftarrow i
 5:
            Active[v] \leftarrow 0
 6:
    end for
        Output Numbers of v \in V
 9: end procedure
                                                                         \triangleright O(n^2) time
10: procedure FIND-SOURCE(G,Active)
                                                                     \triangleright O(n) iterations
        for v \in V do
11:
             if Active[v] == 1 and d^-(v) == 0 then
                                                                          \triangleright O(n) time
12:
13:
                 Return v
             end if
14:
        end for
15:
```

```
1: Active[v] \leftarrow 1 for all v \in V
 2: procedure Topo-Sort(G)
                                                                            \triangleright O(n^3) time
                                                                       \triangleright O(n) iterations
        for i = 1 to n do
 3:
             v \leftarrow \text{Find-source}(G, \text{Active})
 4:
 5:
             Num[v] \leftarrow i
             Active[v] \leftarrow 0
 6:
    end for
         Output Numbers of v \in V
 9: end procedure
                                                                            \triangleright O(n^2) time
10: procedure FIND-SOURCE(G,Active)
                                                                       \triangleright O(n) iterations
         for v \in V do
11:
             if Active[v] == 1 and d^-(v) == 0 then
                                                                             \triangleright O(n) time
12:
13:
                  Return v
             end if
14:
        end for
15:
```

Optimality for Find-Source

Lemma

Find-Source cannot be solved in $o(n^2)$ time (for adjacency matrices).

Optimality for Find-Source

Lemma

Find-Source cannot be solved in $o(n^2)$ time (for adjacency matrices).

Proof.

- Intuition: If an algorithm takes $<\binom{n}{2}-1$ steps, there exists pair i,jfor which neither A[i, j] nor A[j, i] was consulted, therefore impossible to know which of i, j are sources.
- Adversary argument: as long as possible, reply to an algorithm's queries by saying that a vertex has no incoming arcs, until the last step.

Optimality for Find-Source

Lemma

Find-Source cannot be solved in $o(n^2)$ time (for adjacency matrices).

Proof.

- Intuition: If an algorithm takes $<\binom{n}{2}-1$ steps, there exists pair i,j for which neither A[i,j] nor A[j,i] was consulted, therefore impossible to know which of i,j are sources.
- Adversary argument: as long as possible, reply to an algorithm's queries by saying that a vertex has no incoming arcs, until the last step.

Caution!

This does not imply that our topological sorting algorithm is optimal!

4 나 가 4 대가 4 문가 4 문가 보고 */ 나

Topological sort in linear time

```
1. Initialize

    ▷ DFS Initialization as before

2: i \leftarrow n
                                            Next vertex to be added to list
3: for v \in V do
   if v is White then
           DFS-Visit(G,v)
    end if
6.
 7: end for
 8: procedure DFS-Visit(G, u)
                                                              DFS as before
9.
   u.f = t. Color u Black
                                              \triangleright When u turns black, append.
10:
11:
       Num[u] \leftarrow i, i - -
```

12: end procedure

Correctness Analysis

Lemma

G is a DAG \Leftrightarrow DFS produces no backward arcs.

Correctness Analysis

Lemma

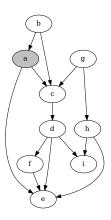
G is a DAG \Leftrightarrow DFS produces no backward arcs.

Theorem

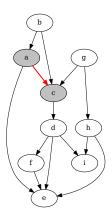
Previous algorithm is correct.

Proof.

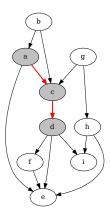
- Consider arc *uv* at time when *u* became Gray:
 - If v was White $\Rightarrow v$ will be descendant of $u \Rightarrow v$ will become Black first $\Rightarrow v$ will be assigned higher number.
 - If v was Black $\Rightarrow v$ will be assigned higher number.
 - If v was Gray $\Rightarrow uv$ is a backward arc, contradiction!



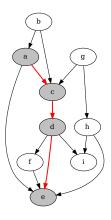
		d	f
	а	1	
	b		
	a b c d		
Times:	d		
i iiiies.	е		
	e f		
	g h		
	h		
	i		



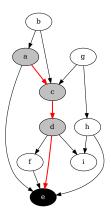
		d	f
T'	a	1	
	b		
	С	2	
	c d		
Times:	е		
	f		
	g		
	g h		
	i		



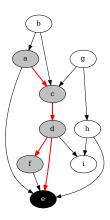
		d	f
Times:	a	1	
	b		
	С	2	
	c d	2 3	
	е		
	f		
	g		
	g h		
	i		



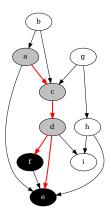
		d	f
Times:	а	1	
	a b		
	c d	2	
	d	2 3 4	
	е	4	
	f		
	g		
	g h		
	i		



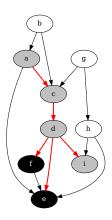
		d	f
	а	1	
	a b		
	c d	2	
Times:	d	2 3 4	
i imes.	е	4	5
	e f		
	g		
	g h		
	i		



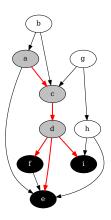
		d	f
	а	1	
	a b		
	c d	2	
Times:	d	2 3 4 6	
i imes.	е	4	5
	e f	6	
	g		
	g h		
	i		



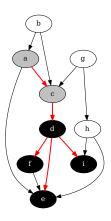
		d	f
	а	1	
	a b		
		2	
Times:	c d	2 3 4 6	
Times:	е	4	5 7
	f	6	7
	g		
	g h		
	i		



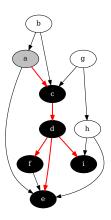
		d	f
	a	1	
	b		
		2	
Times:	c d	2 3 4 6	
Times:	е	4	5 7
	e f	6	7
	g h		
	i	8	



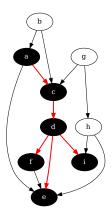
		d	f
	а	1	
	b		
	С	2	
Times:	c d	2 3 4 6	
i imes:	е	4	5 7
	e f	6	7
	g		
	g h		
	i	8	9



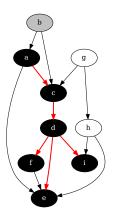
		d	f
	а	1	
	b		
	С	2	
Times:	c d	2 3 4 6	10
Times:	е	4	10 5
	f	6	7
	g h		
	i	8	9



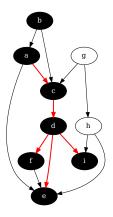
		d	f
	а	1	
	b		
	С	2	11
T:	c d	2 3 4 6	10
Times:	е	4	5
	f	6	7
	g		
	g h		
	i	8	9



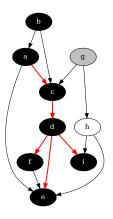
		d	f
	a	1	12
	a b		
	c d	2	11
Times:	d	3	10
i imes.	е	2 3 4 6	5
	f	6	7
	g		
	h		
	i	8	9



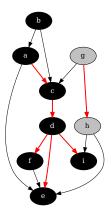
		d	f
	а	1	12
	b	13	
	С	2	11
Times:	c d	3	10
Times:	е	4	5 7
	e f	4 6	7
	g h		
	i	8	9



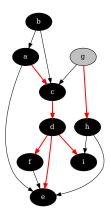
		d	f
	a	1	12
	b	13	14
	С	2	11
T:	c d	3	10
Times:	е	4 6	5
	f	6	7
	g h		
	i	8	9



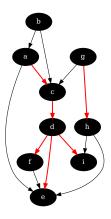
		d	f
	а	1	12
	b	13	14
	С	2	11
T:	c d	3	10
Times:	е	4	5
	f	4 6	7
	g	15	
	g h		
	i	8	9



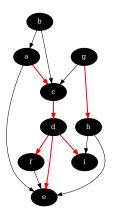
		d	f
•	a	1	12
	b	13	14
	С	2	11
Times:	c d	3	10
i imes:	е	4	5
	f	4 6	7
	g	15	
	g h	16	
	i	8	9



		d	f
	а	1	12
	b	13	14
	С	2	11
т	c d	3	10
Times:	е	4 6	5
	f	6	7
	g	15	
	g h	16	17
	i	8	9



		d	f
Times:	a	1	12
	b	13	14
	С	2	11
	c d	3	10
	е	4	5
	f	6	7
	g	15	18
	h	16	17
	i	8	9



		d	f
	а	1	12
	b	13	14
	С	2	11
Times:	d	2	10
	е	4 6	5
	f	6	7
	g	15	18
	h	16	17
	i	8	9

Ordering:

g, h, b, a, c, d, i, f, e

Strongly Connected Components

13/33

Michael Lampis Graph Algorithms September 25, 2025

Strongly Connected Components

Definition

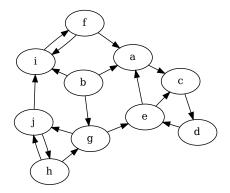
In a digraph G, a strongly connected component C is a maximal set of vertices such that for all $u, v \in C$. G contains a $u \to v$ and a $v \to u$ path.

Problem

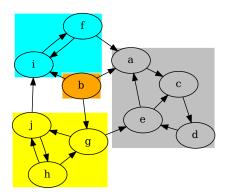
Given a digraph G = (V, A), output a partition of V into strongly connected components.

NB: For example, compute an integer cc(v) for each $v \in V$ such that cc(v) = cc(u) if and only if v, u are in the same SCC.

SCC Example



SCC Example



Straightforward Algorithm

```
1: procedure SCC(G)
        cc(v) \leftarrow -1 for all v \in V
2:
3:
       cur \leftarrow 1
      for v \in V do
4:
            if cc(v) == -1 then
 5:
                cc(v) \leftarrow cur
6:
                for u \in V do
7:
                    if Reach(G, u, v) \wedge \text{Reach}(G, v, u) then
8:
                        cc(u) = cc(v)
9:
                    end if
10:
                end for
11:
12:
                cur + +
13:
            end if
        end for
14:
15:
        Return cc
16: end procedure
```

Straightforward Algorithm

```
\triangleright O(n^3 + n^2m) time
 1: procedure SCC(G)
         cc(v) \leftarrow -1 for all v \in V
 2:
 3:
        cur \leftarrow 1
 4:
        for v \in V do
                                                                        \triangleright O(n) iterations
             if cc(v) == -1 then
 5:
                  cc(v) \leftarrow cur
 6:
                  for u \in V do
                                                                        \triangleright O(n) iterations
 7:
                      if Reach(G, u, v) \wedge \text{Reach}(G, v, u) then \triangleright O(n + m)
 8:
                           cc(u) = cc(v)
 9:
                      end if
10:
                  end for
11:
12:
                  cur + +
             end if
13:
         end for
14:
15:
         Return cc
16: end procedure
```

SCC by 2-DFS algorithm

Algorithm idea:

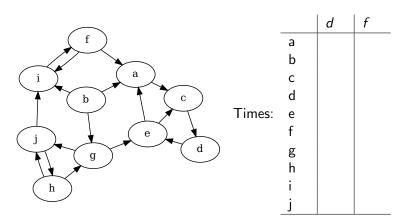
- Run DFS, compute a finish time for each vertex.
- **2** Compute G^T .
 - Reminder: G^T is G where arcs are reversed.
- \odot Run DFS on G^T .
 - Important: Consider vertices not in alphabetical order, but in decreasing order of finish time from first DFS.
 - (Topological sort order, if G was a DAG).
- Each DFS tree from the previous step is a SCC of G.

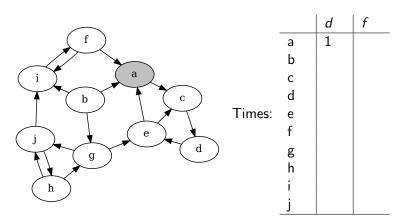
SCC by 2-DFS algorithm

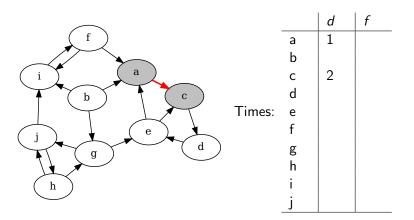
Algorithm idea:

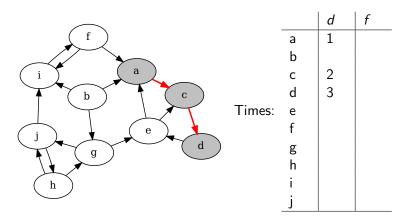
- Run DFS, compute a finish time for each vertex.
- **2** Compute G^T .
 - Reminder: G^T is G where arcs are reversed.
- \odot Run DFS on G^T .
 - **Important:** Consider vertices **not** in alphabetical order, but in decreasing order of finish time from first DFS.
 - (Topological sort order, if G was a DAG).
- Each DFS tree from the previous step is a SCC of G.

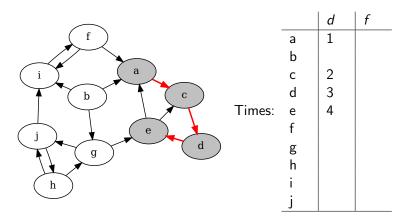
Sanity check: is this algorithm correct on DAGs?

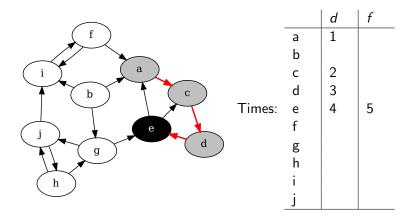


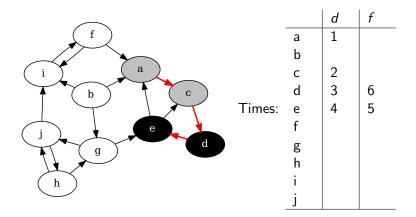


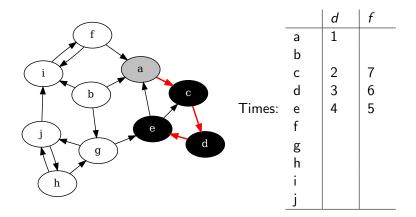


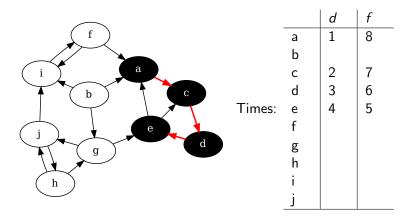


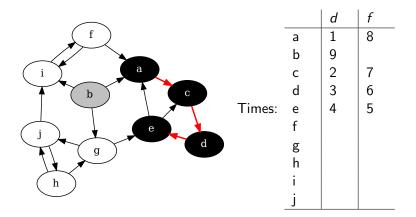


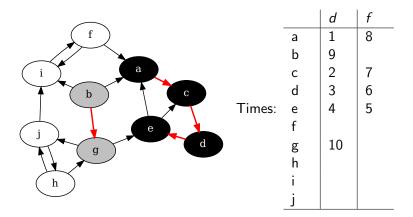


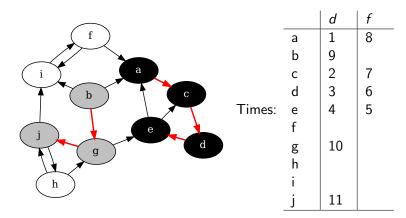


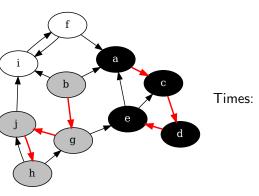




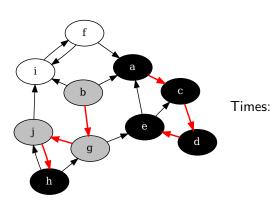




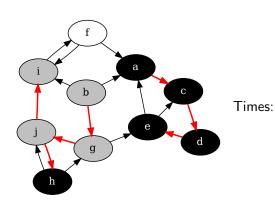




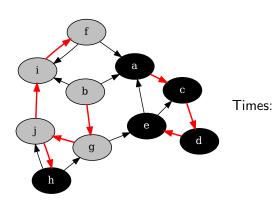
	d	f
а	1	8
a b	9	
c d	2	7
d	1 9 2 3 4	7 6 5
е	4	5
e f		
g	10	
g h	12	
i		
j	11	



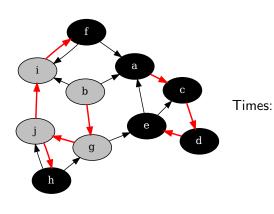
	d	f
а	1	8
b	9	
c d	2	7
d	1 9 2 3 4	7 6 5
e f	4	5
f		
g	10	
h	12	13
i		
j	11	



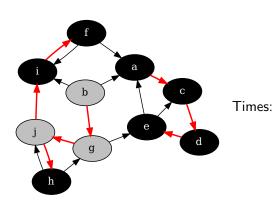
	d	f
а	1	8
b	9	
c d	2	7
d	1 9 2 3 4	7 6 5
е	4	5
f		
g	10	
h	12	13
i	14	
j	11	



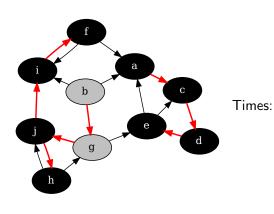
	d	f
а	1	8
b	9	
С	2	7
d	1 9 2 3 4	7 6 5
е	4	5
f	15	
g	10	
h	12	13
i	14	
j	11	



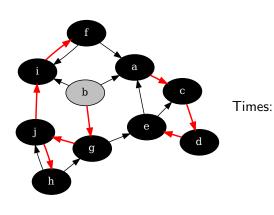
	d	f
а	1	8
b	9	
С	2	7
d	1 9 2 3 4	7 6
е	4	5
f	15	16
g	10	
h	12	13
i	14	
j	11	



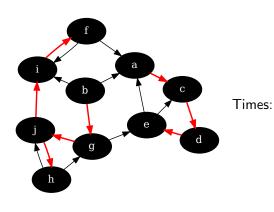
	d	f
а	1	8
b	9	
С	2	7
d	2 3	6
е	4	5
f	15	16
g	10	
h	12	13
i	14	17
j	11	



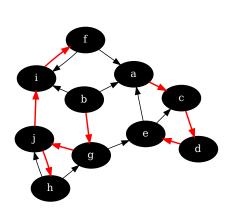
	لہ ا	f
	d	•
a	1 9	8
b		
С	2 3 4	7
d	3	6
е	4	5
f	15	16
g	10	
h	12	13
i	14	17
j	11	18



	d	f
а	1	8
b	9	
С	2	7
d	2 3 4	6
е	4	5
f	15	16
g	10	19
h	12	13
i	14	17
j	11	18



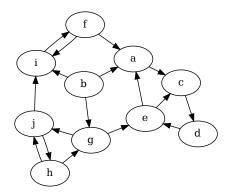
	d	f	
а	1	8	
b	9	20	
С	2 3	7	
d	3	6	
е	4	5	
f	15	16	
g	10	19	
h	12	13	
i	14	17	
j	11	18	

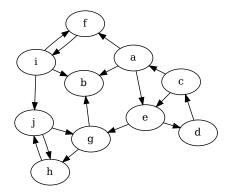


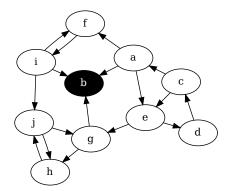
		d	f
	а	1	8
	b	9	20
	С	9 2 3	7
	d	3	6
Times:	е	4	5
	f	15	16
	g	10	19
	h	12	13
	i	14	17
	j	11	18

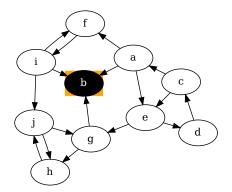
Ordering in decreasing finish time:

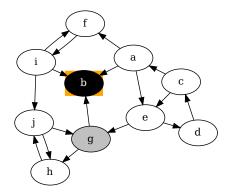
b, g, j, i, f, h, a, c, d, e

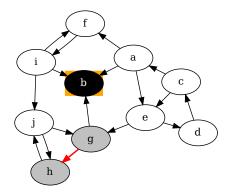


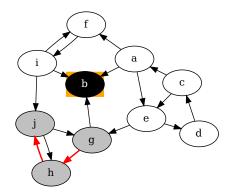


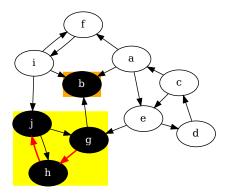


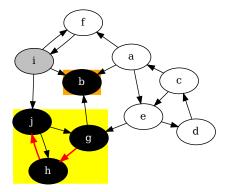


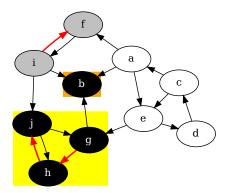


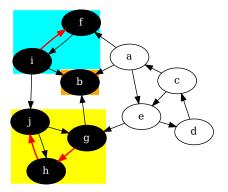




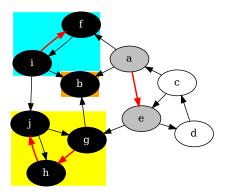


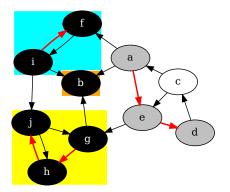


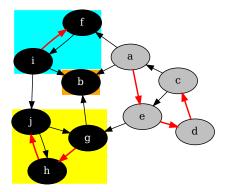


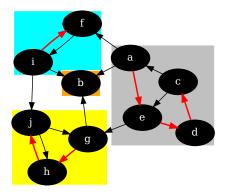












Intuition - Component digraph

Definition

If G = (V, A) is a digraph, G^{SCC} is the digraph that has:

- A vertex for each SCC of G.
- An arc C_1C_2 if there exist $x_1 \in C_1, x_2 \in C_2$ with $x_1x_2 \in A$.

Lemma

G^{SCC} is always a DAG.

Intuition - Component digraph

Definition

If G = (V, A) is a digraph, G^{SCC} is the digraph that has:

- A vertex for each SCC of G.
- An arc C_1C_2 if there exist $x_1 \in C_1, x_2 \in C_2$ with $x_1x_2 \in A$.

Lemma

G^{SCC} is always a DAG.

Proof.

If there exist arcs $C_1 \to C_2$ and $C_2 \to C_1$, $C_1 \cup C_2$ is strongly connected, contradicting maximality.

Key ideas:

• If x finished last in first DFS of G

Key ideas:

- If x finished last in first DFS of G
- \Rightarrow the SCC of x is a source in G^{SCC}

Key ideas:

- If x finished last in first DFS of G
- \Rightarrow the SCC of x is a source in G^{SCC}
- \Rightarrow the SCC of x is a sink in $(G^T)^{SCC}$

Key ideas:

- If x finished last in first DFS of G
- \Rightarrow the SCC of x is a source in G^{SCC}
- \Rightarrow the SCC of x is a sink in $(G^T)^{SCC}$
- \Rightarrow a DFS in G^T from x will visit exactly the SCC of x

Sources SCC finishes last

Lemma

Let G = (V, A) be a digraph, C_1 , C_2 two SCCs, with $x_1 \in C_1$, $x_2 \in C_2$ and $x_1x_2 \in A$. Then, there exists a vertex of C_1 which finishes **after** all vertices of C_2 .

Sources SCC finishes last

Lemma

Let G = (V, A) be a digraph, C_1, C_2 two SCCs, with $x_1 \in C_1, x_2 \in C_2$ and $x_1x_2 \in A$. Then, there exists a vertex of C_1 which finishes **after** all vertices of C_2 .

Proof.

First vertex of C₁ ∪ C₂ to be discovered is y ∈ C₁:
 By White-Path theorem, all of C₁ ∪ C₂ are y's descendants, so finish before y.

Sources SCC finishes last

Lemma

Let G = (V, A) be a digraph, C_1 , C_2 two SCCs, with $x_1 \in C_1$, $x_2 \in C_2$ and $x_1x_2 \in A$. Then, there exists a vertex of C_1 which finishes **after** all vertices of C_2 .

Proof.

- First vertex of $C_1 \cup C_2$ to be discovered is $y \in C_1$: By White-Path theorem, all of $C_1 \cup C_2$ are y's descendants, so finish before y.
- First vertex of $C_1 \cup C_2$ to be discovered is $y \in C_2$: By White-Path theorem, all vertices of C_2 are discovered after y and finish before y. There is no path from C_2 to C_1 (o/w G^{SCC} not a DAG), so at f_v all of C_1 still White \Rightarrow finishes later than y.

Graph Algorithms

Proof of Correctness

Proof.

Induction on number of SCCs.

- Suppose first *k* SCCs are correct.
- DFS for (k + 1)-th SCC starts at x which has largest **finish** time of all White vertices.
 - All vertices of the SCC of x (C) are currently White (I.H.)
 - White-Path theorem: SCC computed contains at least all of C
 - Need to prove: we do not put other stuff in computed SCC of x

Proof of Correctness

Proof.

Induction on number of SCCs.

- Suppose first *k* SCCs are correct.
- DFS for (k + 1)-th SCC starts at x which has largest **finish** time of all White vertices.
 - All vertices of the SCC of x (C) are currently White (I.H.)
 - White-Path theorem: SCC computed contains at least all of C
 - Need to prove: we do not put other stuff in computed SCC of x
- If $y \notin C$ is reachable from x in G^T :
 - Either y is in the first k components \Rightarrow y Black
 - Or $y \in C'$ with some $C \to C'$ path in G^T

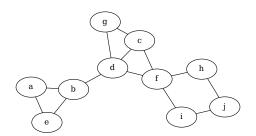
Proof of Correctness

Proof.

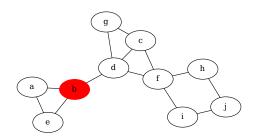
Induction on number of SCCs.

- Suppose first *k* SCCs are correct.
- DFS for (k + 1)-th SCC starts at x which has largest **finish** time of all White vertices.
 - All vertices of the SCC of x (C) are currently White (I.H.)
 - White-Path theorem: SCC computed contains at least all of C
 - Need to prove: we do not put other stuff in computed SCC of x
- If $y \notin C$ is reachable from x in G^T :
 - Either y is in the first k components \Rightarrow y Black
 - Or $y \in C'$ with some $C \to C'$ path in G^T
 - Then, $\exists C' \to C$ path in G
 - \Rightarrow some vertex of C' finishes after x, contradiction!!

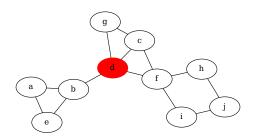
Definition



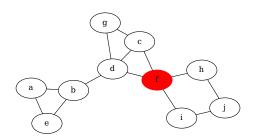
Definition



Definition



Definition



Problem

Given undirected graph G, output all articulation points (if any).

Problem

Given undirected graph G, output all articulation points (if any).

Obvious algorithm:

- 1: $C \leftarrow \text{number of components of } G \text{ (DFS)}$
- 2: for $v \in V$ do
- 3: **if** comps(G v)> C **then**
- 4: Add v to output
- 5: end if
- 6: end for

Problem

Given undirected graph G, output all articulation points (if any).

Obvious algorithm:

- 1: $C \leftarrow$ number of components of G (DFS)
- 2: for $v \in V$ do
- 3: **if** comps(G v)> C **then**
- 4: Add v to output
- 5: end if
- 6: end for

Complexity $O(mn + n^2)$ for lists, $O(n^3)$ for matrices. Better?

Articulation Points - DFS

We will execute DFS on G and try to detect articulation points by studying the DFS tree.

Articulation Points - DFS

We will execute DFS on G and try to detect articulation points by studying the DFS tree.

Lemma

The root r of a DFS tree is an articulation point if and only if r has at least two children.

Lemma

An internal vertex v of a DFS tree is an articulation point, if and only if it has a child c such that no descendant of c is adjacent to a proper ancestor of v.

Lemma

The root r of a DFS tree is an articulation point if and only if r has at least two children.

Lemma

The root r of a DFS tree is an articulation point if and only if r has at least two children.

Proof.

- \Leftarrow : let c_1, c_2 be the two children with min discovery times. Then, c_1, c_2 in distinct components of G r.
 - At time 2 only r, c_1 Gray, so if $c_1 \rightarrow c_2$ path exists, by White-Path theorem, c_2 would be descendant of c_1 .

Lemma

The root r of a DFS tree is an articulation point if and only if r has at least two children.

Proof.

- \Leftarrow : let c_1, c_2 be the two children with min discovery times. Then, c_1, c_2 in distinct components of G r.
 - At time 2 only r, c_1 Gray, so if $c_1 \rightarrow c_2$ path exists, by White-Path theorem, c_2 would be descendant of c_1 .
- \Rightarrow : if r has one child, there is a path between any two vertices of G r (using tree edges only).

Lemma

An internal vertex v of a DFS tree is an articulation point, if and only if it has a child c such that no descendant of c is adjacent to a proper ancestor of v. (assume G connected)

Lemma

An internal vertex v of a DFS tree is an articulation point, if and only if it has a child c such that no descendant of c is adjacent to a proper ancestor of v. (assume G connected)

Proof.

• \Leftarrow : c and its descendants form a component of G - v which does not contain the proper ancestors of v. (also: no cross edges)

Lemma

An internal vertex v of a DFS tree is an articulation point, if and only if it has a child c such that no descendant of c is adjacent to a proper ancestor of v. (assume G connected)

Proof.

- \Leftarrow : c and its descendants form a component of G v which does not contain the proper ancestors of v. (also: no cross edges)
- \Rightarrow : Let C_1 be the component of G v where DFS started.
 - v has earler discovery than all vertices of $G \setminus (C_1 \cup \{v\})$
 - \Rightarrow all other vertices of $G \setminus (C_1 \cup \{v\})$ are descendants of v by White-Path theorem
 - All proper ancestors of v are in C_1
 - No edges between C_1 and other components of G-v

Lampis Graph Algorithms September 25, 2025 29 / 33

Towards an algorithm

- Execute DFS
- Decide if root is an articulation point (easy!)
- Decide if each internal vertex is an articulation point

Towards an algorithm

- Execute DFS
- Decide if root is an articulation point (easy!)
- Decide if each internal vertex is an articulation point
 - Problem: obvious algorithm is O(m) per vertex...
 - Need to store some information so we don't repeat work...

Going MADD

Definition

Given G and DFS tree, we define $\operatorname{madd}(v)$ to be the **minimum** ancestor-descendant discovery time among the neighbors of v. Formally,

$$\mathrm{madd}(v) = \min_{u \in \mathrm{desc}(v), w \in N[u]} d_w$$

Going MADD

Definition

Given G and DFS tree, we define madd(v) to be the **minimum** ancestor-descendant discovery time among the neighbors of v. Formally,

$$\mathrm{madd}(v) = \min_{u \in \mathrm{desc}(v), w \in N[u]} d_w$$

• In other words: for each v, we check all the sub-trees rooted at v, and find who has the **highest** neighbor in the tree.

Going MADD

Definition

Given G and DFS tree, we define madd(v) to be the **minimum** ancestor-descendant discovery time among the neighbors of v. Formally,

$$\mathrm{madd}(v) = \min_{u \in \mathrm{desc}(v), w \in N[u]} d_w$$

- In other words: for each v, we check all the sub-trees rooted at v, and find who has the **highest** neighbor in the tree.
- Claim: For internal vertex v with child x, v is an articulation point if and only if

$$madd(x) = d_v$$

• Claim: madd(v) can be computed for all vertices in linear time.

31/33

MADD in linear time

Lemma

We can compute all minimum ancestor-descendant discovery times in linear time.

MADD in linear time

Lemma

We can compute all minimum ancestor-descendant discovery times in linear time.

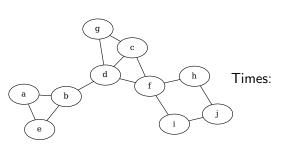
Proof.

$$\mathrm{madd}(v) = \min_{u \in \mathrm{desc}(v), w \in N[u]} d_w$$

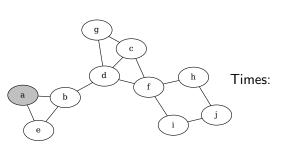
is equivalent to:

$$\operatorname{madd}(v) = \min\{(\min_{u \in \operatorname{child}(v)} \operatorname{madd}(u)), (\min_{u \in N(v)} d_u\})$$

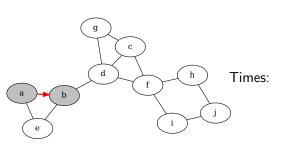
which can be computed bottom-up by checking computed values for the children of each node, when a vertex becomes Black.



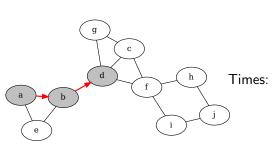
	d	f	madd
а			*
a b c d e f			
С			
d			
е			
f			
g			
h			
i			
j			



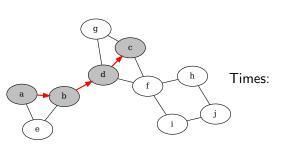
	d	f	madd
а	1		*
b			
С			
c d			
e f			
f			
g			
g h			
i			
j			



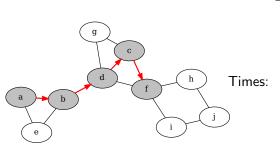
	d	f	madd
а	1		*
b	1 2		
С			
c d			
e f			
f			
g			
g h			
i			
j			



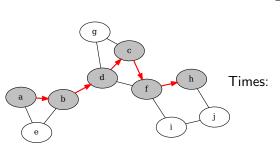
d	f	madd
1		*
2		
3		
	1 2	1 2



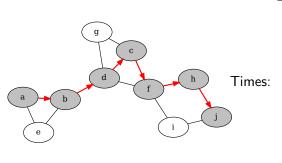
	d	f	madd
a	1		*
b	1 2 4 3		
b c d	4		
d	3		
e f			
f			
g			
h			
i			
j			



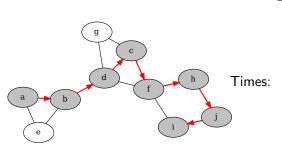
	d	f	madd
a	1		*
b	1 2 4 3		
С	4		
b c d e f	3		
е			
f	5		
g h			
h			
i			
j			



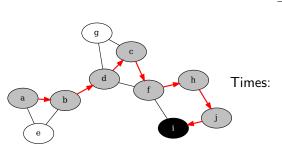
	d	f	madd
а	1		*
b	1 2 4 3		
С	4		
c d e f	3		
е			
f	5		
g h			
h	6		
i			
j			



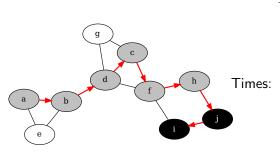
	d	f	mado
а	1		*
a b	1 2 4 3		
С	4		
c d e f	3		
е			
f	5		
g h			
h	6		
i			
j	7		



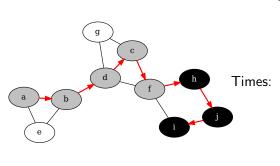
	d	f	mado
а	1		*
a b c d	1 2 4 3		
С	4		
d	3		
e f			
f	5		
g h			
h	6		
i	6 8 7		
j	7		



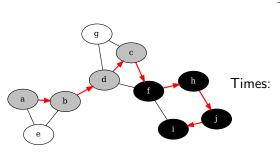
	d	f	mado
а	1		*
a b	1 2 4 3		
С	4		
c d e f	3		
е			
f	5		
g h			
h	6		
i	6 8 7	9	
j	7		



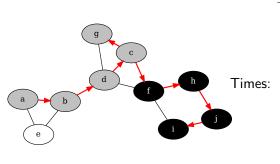
	d	f	madd
а	1		*
b	1 2 4 3		
С	4		
b c d e f	3		
e			
f	5		
g			
h	6		
i	6 8 7	9	
j	7	10	



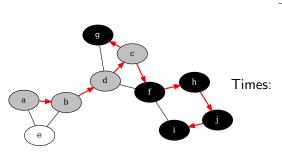
	d	f	madd
а	1		*
b	1 2 4 3		
С	4		
a b c d e f	3		
е			
f	5		
g			
h	6	11	
i	6 8 7	9	
j	7	10	



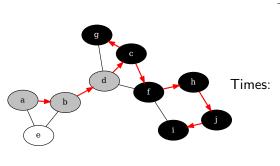
	d	f	mado
а	1		*
b	1 2 4 3		
С	4		
c d	3		
e f			
f	5	12	
g			
g h	6	11	
i	6 8 7	9	
j	7	10	



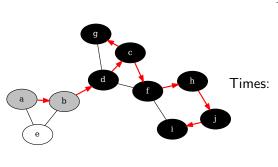
	d	f	madd
а	1		*
a b c d	1 2 4 3		
С	4		
d	3		
e f			
f	5	12	
g	5 13		
h	6 8	11	
i	8	9	
j	7	10	



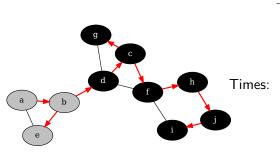
	d	f	mado
а	1		*
b	2		
С	1 2 4 3		
c d	3		
e f	5	12	
g	5 13 6 8 7	14	
g h	6	11	
i	8	9	
j	7	10	



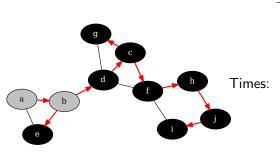
	d	f	madd
а	1		*
b	1 2 4 3		
c d	4	15	
d	3		
e f			
f	5	12	
g	5 13	14	
g h	6	11	
i	6 8 7	9	
j	7	10	



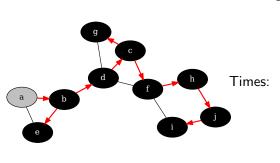
	d	f	mado
а	1		*
b	2		
С	1 2 4 3	15	
c d	3	16	
е			
e f	5	12	
g	13	14	
g h	6	11	
i	6 8 7	9	
j	7	10	



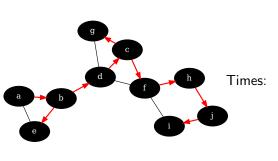
	d	f	mado
а	1		*
b	1 2 4 3		
С	4	15	
c d	3	16	
e f	17		
f	5	12	
g	13	14	
h	6 8	11	
i		9	
j	7	10	



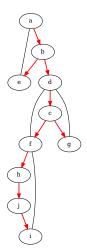
d	f	mado
1		*
2		
4	15	
3	16	
17	18	
5	12	
13	14	
6	11	
8	9	
7	10	
	1 2 4 3 17 5 13 6 8	1 2 4 15 3 16 17 18 5 12 13 14 6 11 8 9



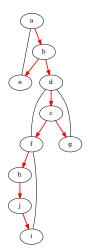
	d	f	mado
а	1		*
b	1 2	19	
С	4 3	15	
c d	3	16	
е	17	18	
f	5	12	
g	13	14	
h	6	11	
i	8	9	
j	7	10	



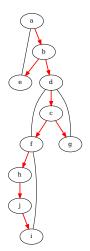
	d	f	mado
а	1	20	*
b	1 2	19	
С	4 3	15	
c d	3	16	
е	17	18	
f	5	12	
g	13	14	
h	6	11	
i	8	9	
j	7	10	



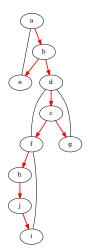
		d	f	madd
	а	1	20	*
	b	2	19	
	С	2 4	15	
	c d	3	16	
imes:	е	17	18	
	f	5	12	
	g	13	14	
	h	6	11	
	i	8	9	
	j	7	10	



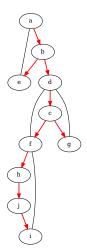
		d	f	mado
	а	1	20	*
	b	2	19	
	С	4	15	
	c d	3	16	
Times:	е	17	18	
	f	5	12	
	g	13	14	
	g h	6	11	
	i	8	9	5
	i	7	10	



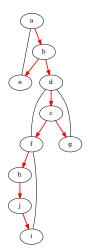
		d	f	madd
	а	1	20	*
	b	2	19	
	С	4	15	
	c d	3	16	
Γimes:	е	17	18	
	f	5	12	
	g	13	14	
	h	6	11	
	i	8	9	5
	i	7	10	5 5



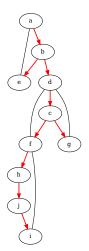
		d	f	madd
	а	1	20	*
	b	1 2 4	19	
	С	4	15	
	c d	3	16	
imes:	е	17	18	
	f	5	12	
	g	13	14	
	g h	6	11	5
	i	8	9	5 5
	j	7	10	5



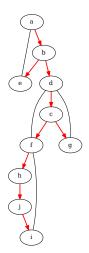
		d	f	mado
	а	1	20	*
	b	2	19	
	С	4	15	
	d	3	16	
Times:	е	17	18	
	f	5	12	3
	g	13	14	
	g h	6	11	5
	i	8	9	5
	j	7	10	5



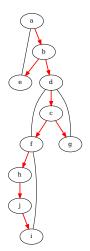
		d	f	mado
	а	1	20	*
	b	2	19	
	С	4	15	
	c d	3	16	
Times:	е	17	18	
	f	5	12	3
	g	13	14	3
	h	6	11	5
	i	8	9	5
	j	7	10	5



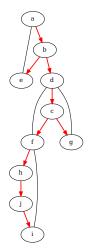
		d	f	made
	а	1	20	*
	b	2	19	
	С	4	15	3
	d	3	16	
Times:	е	17	18	
	f	5	12	3
	g	13	14	3
	g h	6	11	5
	i	8	9	5
	j	7	10	5



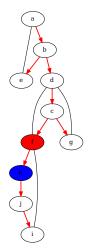
		d	f	mado
	а	1	20	*
	b	2	19	
	С	4	15	3
	c d	3	16	3 2
Times:	е	17	18	
	f	5	12	3
	g	13	14	3
	h	6	11	5
	i	8	9	5
	j	7	10	5



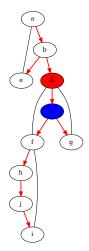
		d	f	made
	а	1	20	*
	b	2	19	
	С	4	15	3
	c d	3	16	3 2
Times:	е	17	18	1
	f	5	12	3
	g	13	14	3
	h	6	11	5
	i	8	9	5
	j	7	10	5 5



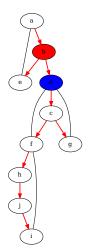
		d	f	made
	а	1	20	*
	b	2	19	1
	С	4	15	3
	d	3	16	2
Times:	е	17	18	1
	f	5	12	3
	g	13	14	3
	h	6	11	5
	i	8	9	5
	j	7	10	5



		d	f	mado
	а	1	20	*
	b	2	19	1
	С	4	15	3
	c d	3	16	2
Times:	е	17	18	1
	f	5	12	3
	g	13	14	3
	h	6	11	5
	i	8	9	5
	j	7	10	5



		d	f	mad
	а	1	20	*
	b	2	19	1
	С	4	15	3
	c d	3	16	3 2
Times:	е	17	18	1
	f	5	12	3
	g	13	14	3
	h	6	11	5
	i	8	9	5
	j	7	10	5 5



		d	f	made
	а	1	20	*
	b	2	19	1
	С	4	15	3
	d	3	16	3 2
Times:	е	17	18	1
	f	5	12	3
	g	13	14	3
	h	6	11	5
	i	8	9	5
	j	7	10	5 5