Graph Algorithms Shortest Paths II

Michael Lampis

October 3, 2025

Shortest Path Problems

Input: Edge-weighted (di)graph

Shortest Path Problems

Input: **Edge-weighted** (di)graph Problems:

- Single-Pair Shortest Path (SPSP): find shortest path from s to t.
- Single-Source Shortest Path (SSSP): find shortest path from s to everyone.
- All-Pairs Shortest Paths: find shortest paths from everyone to everyone.

Shortest Path Problems

Input: **Edge-weighted** (di)graph Problems:

- Single-Pair Shortest Path (SPSP): find shortest path from s to t.
- Single-Source Shortest Path (SSSP): find shortest path from s to everyone.
- All-Pairs Shortest Paths: find shortest paths from everyone to everyone.
- Last lecture: Dijkstra's algorithm, SSSP with positive weights
- This lecture:
 - SSSP with possibly negative weights
 - APSP

Negative Weights

Case I: Negative cycles

- Negative cycle: a cycle whose total cost is negative.
- Problem: unclear what we mean by shortest path, if graph contains negative cycle.
 - We can repeat the cycle many times, to get the cost down to -∞.
- NB: For positive weights, repeating cycles was always non-optimal.

Case I: Negative cycles

- Negative cycle: a cycle whose total cost is negative.
- Problem: unclear what we mean by shortest path, if graph contains negative cycle.
 - We can repeat the cycle many times, to get the cost down to -∞.
- NB: For positive weights, repeating cycles was always non-optimal.

Case I: Negative cycles

- Negative cycle: a cycle whose total cost is negative.
- Problem: unclear what we mean by shortest path, if graph contains negative cycle.
 - We can repeat the cycle many times, to get the cost down to -∞.
- NB: For positive weights, repeating cycles was always non-optimal.

- Key Dijkstra intuition: we know optimal path for closest Gray vertex
 - ⇒ Dequeue it and make it Black (fix solution)
- Justification: no shortcut can be found through other Gray vertices
 - (Because the other Gray vertices are farther away.)
- Reasoning is False for negative weights!!

- Key Dijkstra intuition: we know optimal path for closest Gray vertex
 - ⇒ Dequeue it and make it Black (fix solution)
- Justification: no shortcut can be found through other Gray vertices
 - (Because the other Gray vertices are farther away.)
- Reasoning is False for negative weights!!

- Key Dijkstra intuition: we know optimal path for closest Gray vertex
 - ⇒ Dequeue it and make it Black (fix solution)
- Justification: no shortcut can be found through other Gray vertices
 - (Because the other Gray vertices are farther away.)
- Reasoning is False for negative weights!!

- Key Dijkstra intuition: we know optimal path for closest Gray vertex
 - ⇒ Dequeue it and make it Black (fix solution)
- Justification: no shortcut can be found through other Gray vertices
 - (Because the other Gray vertices are farther away.)
- Reasoning is False for negative weights!!

- Key Dijkstra intuition: we know **optimal** path for closest Gray vertex
 - ⇒ Dequeue it and make it Black (fix solution)
- Justification: no shortcut can be found through other Gray vertices
 - (Because the other Gray vertices are farther away.)
- Reasoning is False for negative weights!!

- Key Dijkstra intuition: we know **optimal** path for closest Gray vertex
 - ⇒ Dequeue it and make it Black (fix solution)
- Justification: no shortcut can be found through other Gray vertices
 - (Because the other Gray vertices are farther away.)
- Reasoning is False for negative weights!!

- Key Dijkstra intuition: we know **optimal** path for closest Gray vertex
 - ⇒ Dequeue it and make it Black (fix solution)
- Justification: no shortcut can be found through other Gray vertices
 - (Because the other Gray vertices are farther away.)
- Reasoning is False for negative weights!!

- Key Dijkstra intuition: we know **optimal** path for closest Gray vertex
 - ⇒ Dequeue it and make it Black (fix solution)
- Justification: no shortcut can be found through other Gray vertices
 - (Because the other Gray vertices are farther away.)
- Reasoning is False for negative weights!!

- Key Dijkstra intuition: we know optimal path for closest Gray vertex
 - ⇒ Dequeue it and make it Black (fix solution)
- Justification: no shortcut can be found through other Gray vertices
 - (Because the other Gray vertices are farther away.)
- Reasoning is False for negative weights!!

An easy fix?

- Suggestion: eliminate negative weights
- Find the max absolute value of any negative weight *M*.
- Add M+1 to all weights.
- Run Dijkstra.
- Why not?

An easy fix?

- Suggestion: eliminate negative weights
- Find the max absolute value of any negative weight *M*.
- Add M+1 to all weights.
- Run Dijkstra.
- Why not?

An easy fix?

- Suggestion: eliminate negative weights
- Find the max absolute value of any negative weight M.
- Add M+1 to all weights.
- Run Dijkstra.
- Why not?
- Gives unfair advantage to paths with fewer edges. . .

Bellman-Ford Algorithm

7 / 29

Michael Lampis Graph Algorithms October 3, 2025

Bellman-Ford

The Bellman-Ford algorithm:

- Can solve SSSP on digraphs with negative edge weights and no negative cycles.
- Can help detect negative cycles.
- Runs in time O(nm) and space O(n).
- Key step: find a shortcut (like Dijkstra)

Bellman-Ford

The Bellman-Ford algorithm:

- Can solve SSSP on digraphs with negative edge weights and no negative cycles.
- Can help detect negative cycles.
- Runs in time O(nm) and space O(n).
- Key step: find a shortcut (like Dijkstra)
- NB: Slower than Dijkstra, but solves more general problem.
- NB: We focus on digraphs, because undirected graphs with negative edges automatically have negative 2-cycles.

Bellman-Ford Algorithm

```
1: for v \in V do
                                                                              ▶ Initialization
         dist[v] \leftarrow \infty, parent[v] \leftarrow NULL
 3: end for
 4: \operatorname{dist}[s] \leftarrow 0
 5: for i = 1 to n - 1 do
         for \mu\nu \in E do
 6:
             if dist[u] + w(uv) < dist[v] then
                                                                                  Shortcut!
 7:
                  dist[v] \leftarrow dist[u] + w(uv)
 8.
                  parent[v] \leftarrow u
 9.
              end if
10:
         end for
11:
12: end for
```


List of edges:

\rightarrow	af
	ag
	cb
	db
	de
	ec
	fe
	gd
	gf

ノist	ance
а	0
b	∞
С	∞
d	∞
е	∞
f	∞
g	∞

List of edges:

\rightarrow	af
	ag
	cb
	db
	de
	ec
	fe
	gd
	gf

ノıst	ances
а	0
b	∞
С	∞
d	∞
е	∞
f	12
g	∞

List of edges:

	af
\rightarrow	ag
	cb
	db
	de
	ec
	fe
	gd
	gf

Jist	ance
а	0
b	∞
С	∞
d	∞
е	∞
f	12
g	∞

List of edges:

	٠. ت
	af
\rightarrow	ag
	cb
	db
	de
	ec
	fe
	gd
	gf

<u>Dıst</u>	ance
а	0
b	∞
С	∞
d	∞
e	∞
f	12
g	10

List of edges:

	_
	af
	ag
\rightarrow	cb
	db
	de
	ec
	fe
	gd
	gf

Jistance:	
а	0
b	∞
С	∞
d	∞
е	∞
f	12
g	10

List of edges:

	af
	ag
	cb
\rightarrow	db
	de
	ec
	fe
	gd
	gf

Distances from a:

ノいし	ance
а	0
b	∞
С	∞
d	∞
е	∞
f	12
g	10

g

List of edges:

LIST C	n cug
	af
	ag
	cb
	db
\rightarrow	de
	ec
	fe
	gd
	gf

Dist	ance
а	0
b	∞
С	∞
d	∞
е	∞
f	12
g	10

List of edges:

	0. 006
	af
	ag
	cb
	db
	de
\rightarrow	ec
	fe
	gd
	gf

<u>Distance</u> :	
а	0
b	∞
С	∞
d	∞
е	∞
f	12
g	10

List of edges:

LISE	Ji Cue
	af
	ag
	cb
	db
	de
	ec
\rightarrow	fe
	gd
	gf

Distance	
а	0
b	∞
С	∞
d	∞
е	∞
f	12
g	10

List of edges:

	0
	af
	ag
	cb
	db
	de
	ec
\rightarrow	fe
	gd
	gf

Distance	
а	0
b	∞
С	∞
d	∞
е	21
f	12
g	10

List of edges:

	af
	ag
	cb
	db
	de
	ec
	fe
\rightarrow	gd
	gf

<u> </u>	ance
а	0
b	∞
С	∞
d	∞
е	21
f	12
g	10

List of edges:

	, cab
	af
	ag
	cb
	db
	de
	ec
	fe
\rightarrow	gd
	gf

Distances from a:

a	0
b	∞
С	∞
d	17
е	21
f	12

10

List of edges:

	af
	ag
	cb
	db
	de
	ec
	fe
	gd
\rightarrow	gf

а	0
b	∞
С	∞
d	17
е	21
f	12
g	10

List of edges:

	af
	ag
	cb
	db
	de
	ec
	fe
	gd
\rightarrow	gf

а	0
b	∞
С	∞
d	17
е	21
f	7
g	10

List of edges:

\rightarrow	af
	ag
	cb
	db
	de
	ec
	fe
	gd
	gf

а	0
b	∞
С	∞
d	17
е	21
f	7
g	10

List of edges:

	af
\rightarrow	ag
	cb
	db
	de
	ec
	fe
	gd
	gf

а	0
b	∞
С	∞
d	17
е	21
f	7
g	10

List of edges:

	_
	af
	ag
\rightarrow	cb
	db
	de
	ec
	fe
	gd
	gf

а	0
b	∞
С	∞
d	17
е	21
f	7
g	10

List of edges:

	af
	ag
	cb
\rightarrow	db
	de
	ec
	fe
	gd
	gf

а	0
b	∞
С	∞
d	17
е	21
f	7
g	10

List of edges:

	af
	ag
	cb
\rightarrow	db
	de
	ec
	fe
	gd
	gf

Distances from a:

а	0
b	23
С	∞
d	17
е	21
f	7

10

List of edges:

	0
	af
	ag
	cb
	db
\rightarrow	de
	ec
	fe
	gd
	gf

Distances from a:

а	0
b	23
С	∞
d	17
е	21
c	7

10

List of edges:

	af
	ag
	cb
	db
\rightarrow	de
	ec
	fe
	gd
	gf

а	0
b	23
С	∞
d	17
е	15
f	7
g	10

List of edges:

LISC	or cas
	af
	ag
	cb
	db
	de
\rightarrow	ec
	fe
	gd
	gf

Distances from a:

а	0
b	23
С	∞
d	17
е	15
f	7

10

List of edges:

_150	n cug
	af
	ag
	cb
	db
	de
\rightarrow	ec
	fe
	gd
	gf

а	0
b	23
С	23
d	17
е	15
f	7
g	10

List of edges:

LIST	n cug
	af
	ag
	cb
	db
	de
	ec
\rightarrow	fe
	gd
	gf

Distances from a:

а	0
b	23
С	23
d	17
е	15
f	7

10

List of edges:

	af
	ag
	cb
	db
	de
	ec
	fe
\rightarrow	gd
	gf

а	0
b	23
С	23
d	17
е	15
f	7
g	10

List of edges:

	af
	ag
	cb
	db
	de
	ec
	fe
	gd
\rightarrow	gf

а	0
b	23
С	23
d	17
е	15
f	7
g	10

List of edges:

- C	,, cab
\rightarrow	af
	ag
	cb
	db
	de
	ec
	fe
	gd
	gf

а	U
b	23
С	23
d	17

List of edges:

	_
	af
\rightarrow	ag
	cb
	db
	de
	ec
	fe
	gd
	gf

а	0
b	23
С	23
d	17
е	15
f	7
g	10

List of edges:

	af
	ag
\rightarrow	cb
	db
	de
	ec
	fe
	gd
	gf

Distances from a:

а	0
b	23
С	23
d	17
e	15
f	7
g	10

g

List of edges:

_150	or cas
	af
	ag
\rightarrow	cb
	db
	de
	ec
	fe
	gd
	gf

<u> </u>	<u> </u>
а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

	af
	ag
	cb
\rightarrow	db
	de
	ec
	fe
	gd
	gf

а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

LIST	n eug
	af
	ag
	cb
	db
\rightarrow	de
	ec
	fe
	gd
	gf

а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

LISE	JI CUE
	af
	ag
	cb
	db
	de
\rightarrow	ec
	fe
	gd
	gf

а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

	0. 546
	af
	ag
	cb
	db
	de
	ec
\rightarrow	fe
	gd
	gf
	•

а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

	af
	ag
	cb
	db
	de
	ec
	fe
\rightarrow	gd
	gf

а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

	af
	ag
	cb
	db
	de
	ec
	fe
	gd
\rightarrow	gf

<u> </u>	<u> </u>
а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

\rightarrow	af
	ag
	cb
	db
	de
	ec
	fe
	gd
	gf

D_{1}	ance
а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

	_
	af
\rightarrow	ag
	cb
	db
	de
	ec
	fe
	gd
	gf

а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

_150	or cas
	af
	ag
\rightarrow	cb
	db
	de
	ec
	fe
	gd
	gf

<u> </u>	<u> </u>
а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

	af
	ag
	cb
\rightarrow	db
	de
	ec
	fe
	gd
	gf

а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

LIST	n eug
	af
	ag
	cb
	db
\rightarrow	de
	ec
	fe
	gd
	gf

а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

LISE	JI CUE
	af
	ag
	cb
	db
	de
\rightarrow	ec
	fe
	gd
	gf

а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

	0. 546
	af
	ag
	cb
	db
	de
	ec
\rightarrow	fe
	gd
	gf
	•

а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

	af
	ag
	cb
	db
	de
	ec
	fe
\rightarrow	gd
	gf

а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

	af
	ag
	cb
	db
	de
	ec
	fe
	gd
\rightarrow	gf

<u> </u>	<u> </u>
а	0
b	21
С	23
d	17
е	15
f	7
g	10

Analysis

- Running time: O(mn). Space: O(n)
 - We assume lines 7-9 take O(1) time.

Analysis

- Running time: O(mn). Space: O(n)
 - We assume lines 7-9 take O(1) time.
- Correctness based on two claims $(\forall v \in V)$:
 - $\operatorname{dist}(s, v) \leq d_{BF}[v]$ at all times
 - $\operatorname{dist}(s, v) = d_{BF}[v]$ after i iterations of main loop, if shortest $s \to v$ path uses i arcs.

Analysis

- Running time: O(mn). Space: O(n)
 - We assume lines 7-9 take O(1) time.
- Correctness based on two claims $(\forall v \in V)$:
 - $\operatorname{dist}(s, v) \leq d_{BF}[v]$ at all times
 - $\operatorname{dist}(s, v) = d_{BF}[v]$ after i iterations of main loop, if shortest $s \to v$ path uses i arcs.
 - Because in a digraph with no negative cycles, shortest paths have $\leq n-1$ arcs, the above imply correctness.

Easy part

Lemma

For all $v \in V$, if $d_{BF}[v]$ is the distance computed for v by the Bellman-Ford algorithm (at any point in the execution), then $\operatorname{dist}(s,v) \leq d_{BF}[v]$.

Easy part

Lemma

For all $v \in V$, if $d_{BF}[v]$ is the distance computed for v by the Bellman-Ford algorithm (at any point in the execution), then $\operatorname{dist}(s,v) \leq d_{BF}[v]$.

Proof.

Induction on number of modifications on array d_{BF} .

• $d_{BF}[s] = 0 = \operatorname{dist}(s, s)$ and $d_{BF}[v] = \infty \ge \operatorname{dist}(s, v)$ for $s \ne v$.

Easy part

Lemma

For all $v \in V$, if $d_{BF}[v]$ is the distance computed for v by the Bellman-Ford algorithm (at any point in the execution), then $\operatorname{dist}(s,v) \leq d_{BF}[v]$.

Proof.

Induction on number of modifications on array d_{BF} .

- $d_{BF}[s] = 0 = \operatorname{dist}(s, s)$ and $d_{BF}[v] = \infty \ge \operatorname{dist}(s, v)$ for $s \ne v$.
- Suppose we examine $uv \in E$ and update $d_{BF}[v] = d_{BF}[u] + w(uv)$.
 - $\operatorname{dist}(s, u) \leq d_{BF}[u]$ (IH)
 - $\operatorname{dist}(s,v) \leq \operatorname{dist}(s,u) + w(uv) \leq d_{BF}[u] + w(uv) = d_{BF}[v]$

Interesting part

Lemma

If there exists a shortest $s \to v$ path using at most i arcs, then after i iterations of the main loop we have $d_{BF}[v] = \operatorname{dist}(s, v)$ $(\forall v, i)$.

Interesting part

Lemma

If there exists a shortest $s \to v$ path using at most i arcs, then after i iterations of the main loop we have $d_{BF}[v] = \operatorname{dist}(s, v)$ ($\forall v, i$).

Proof.

Induction on i:

- i = 0: trivial. i = 1 not hard to see...
- Suppose claim true for i, $\exists s \rightarrow v$ path with i+1 arcs.
 - If already $d_{BF}[v] \leq \operatorname{dist}(s, v)$ before the (i + 1)-th iteration, DONE!
 - Otherwise, let u be last vertex in $s \rightarrow v$ path.
 - (IH) $d_{BF}[u] = \operatorname{dist}(s, u)$
 - (Assumption) dist(s, v) = dist(s, u) + w(uv)
 - $d_{BF}[v]$ will be set to dist(s, u) + w(uv)

Negative Cycle Detection

- Bellman-Ford algorithm can be used to detect if a digraph contains a negative-weight cycle.
- Key idea: if no cycle exists, distances **stabilize** after n-1 iterations of the outer loop.
- In fact, this is an if and only if: if distances stabilize, then no cycle exists.
 - Algorithm: check that no shortcut exists after n-1 iterations.

List of edges:

n eug
af
ag
be
cb
db
de
ec
fe
gd
gf

<u>Distance</u>	
а	0
b	∞
С	∞
d	∞
е	∞
f	∞
g	∞

List of edges:

Distance	
а	0
b	∞
С	∞
d	∞
е	∞
f	12
g	∞

List of edges:

	0. 046
	af
\rightarrow	ag
	be
	cb
	db
	de
	ec
	fe
	gd
	gf

)ist	ance
а	0
b	∞
С	∞
d	∞
е	∞
f	12
g	∞

List of edges:

 af be cb db de ec fe gd 		
be cb db de ec fe gd		af
cb db de ec fe gd	\rightarrow	ag
db de ec fe gd		be
de ec fe gd		cb
ec fe gd		db
fe gd		de
gd		ec
-		fe
		gd
gt		gf

<u>Distance</u>	
а	0
b	∞
С	∞
d	∞
е	∞
f	12
g	10

List of edges:

, cab
af
ag
be
cb
db
de
ec
fe
gd
gf

Jistance:	
а	0
b	∞
С	∞
d	∞
е	∞
f	12
g	10

List of edges:

	af
	ag
	be
\rightarrow	cb
	db
	de
	ec
	fe
	gd
	gf

Distance	
а	0
b	∞
С	∞
d	∞
е	∞
f	12
g	10

List of edges:

_150	or cab
	af
	ag
	be
	cb
\rightarrow	db
	de
	ec
	fe
	gd
	gf

Distance	
а	0
b	∞
С	∞
d	∞
е	∞
f	12
g	10

List of edges:

LIST	n cugo
	af
	ag
	be
	cb
	db
\rightarrow	de
	ec
	fe
	gd
	gf

Distance	
а	0
b	∞
С	∞
d	∞
е	∞
f	12
g	10

List of edges:

	af
	ag
	be
	cb
	db
	de
\rightarrow	ec
	fe
	gd
	gf

Distance	
а	0
b	∞
С	∞
d	∞
е	∞
f	12
g	10

List of edges:

	af
	ag
	be
	cb
	db
	de
	ec
\rightarrow	fe
	gd
	gf

∪ıst	ance
а	0
b	∞
С	∞
d	∞
е	∞
f	12
g	10

List of edges:

	af
	ag
	be
	cb
	db
	de
	ec
\rightarrow	fe
	gd
	gf

DIST	ance
а	0
b	∞
С	∞
d	∞
е	21
f	12
g	10

List of edges:

	af
	ag
	be
	cb
	db
	de
	ec
	fe
\rightarrow	gd
	gf

Distance	
а	0
b	∞
С	∞
d	∞
е	21
f	12
g	10

List of edges:

	af
	ag
	be
	cb
	db
	de
	ec
	fe
\rightarrow	gd
	gf

Distance	
а	0
b	∞
С	∞
d	17
е	21
f	12
g	10

List of edges:

	af
	ag
	be
	cb
	db
	de
	ec
	fe
	gd
\rightarrow	gf

а	0
b	∞
С	∞
d	17
е	21
f	12
g	10

List of edges:

	af
	ag
	be
	cb
	db
	de
	ec
	fe
	gd
\rightarrow	gf

D_{1}	ance
а	0
b	∞
С	∞
d	17
е	21
f	7
g	10

List of edges:

а	0
b	∞
С	∞
d	17
е	21
f	7
g	10

List of edges:

	af
\rightarrow	ag
	be
	cb
	db
	de
	ec
	fe
	gd
	gf

DIST	ance
а	0
b	∞
С	∞
d	17
е	21
f	7
g	10

List of edges:

af	
ag	
ightarrow be	
cb	
db	
de	
ec	
fe	
gd	
gf	

D_{1}	ance
а	0
b	∞
С	∞
d	17
е	21
f	7
g	10

List of edges:

	af
	ag
	be
\rightarrow	cb
	db
	de
	ec
	fe
	gd
	gf

а	0
b	∞
С	∞
d	17
е	21
f	7
g	10

List of edges:

LIST	or cage
	af
	ag
	be
	cb
\rightarrow	db
	de
	ec
	fe
	gd
	gf

<u> </u>	ance
а	0
b	∞
С	∞
d	17
е	21
f	7
g	10

List of edges:

LIST	n cago
	af
	ag
	be
	cb
\rightarrow	db
	de
	ec
	fe
	gd
	gf

<u> </u>	ance
а	0
b	23
С	∞
d	17
е	21
f	7
g	10

List of edges:

LIJU	or cago
	af
	ag
	be
	cb
	db
\rightarrow	de
	ec
	fe
	gd
	gf

а	0
b	23
С	∞
d	17
е	21
f	7
g	10

List of edges:

LIST	n cugo
	af
	ag
	be
	cb
	db
\rightarrow	de
	ec
	fe
	gd
	gf

а	0
b	23
С	∞
d	17
е	15
f	7
g	10

List of edges:

LIST	n cage
	af
	ag
	be
	cb
	db
	de
\rightarrow	ec
	fe
	gd
	gf

D_{131}	ance
а	0
b	23
С	∞
d	17
е	15
f	7
g	10

List of edges:

LIST	n cago
	af
	ag
	be
	cb
	db
	de
\rightarrow	ec
	fe
	gd
	gf

a	0
b	23
С	23
d	17
е	15
f	7
g	10

List of edges:

	af
	ag
	be
	cb
	db
	de
	ec
\rightarrow	fe
	gd
	gf

Distance	
а	0
b	23
С	23
d	17
е	15
f	7
g	10

List of edges:

	af
	ag
	be
	cb
	db
	de
	ec
	fe
\rightarrow	gd
	gf

Distance	
а	0
b	23
С	23
d	17
е	15
f	7
g	10

List of edges:

	af
	ag
	be
	cb
	db
	de
	ec
	fe
	gd
\rightarrow	gf

Distance	
а	0
b	23
С	23
d	17
е	15
f	7
g	10

List of edges:

or eage
af
ag
be
cb
db
de
ec
fe
gd
gf

а	0
b	23
С	23
d	17
е	15
f	7
g	10

List of edges:

	0
	af
\rightarrow	ag
	be
	cb
	db
	de
	ec
	fe
	gd
	gf

	<u></u>
а	0
b	23
С	23
d	17
е	15
f	7
g	10

List of edges:

	af
	ag
\rightarrow	be
	cb
	db
	de
	ec
	fe
	gd
	gf

<u>Distance</u>	
a	0
b	23
С	23
d	17
е	15
f	7
g	10

List of edges:

	af
	ag
	be
\rightarrow	cb
	db
	de
	ec
	fe
	gd
	gf

<u> </u>	ance
а	0
b	23
С	23
d	17
e	15
f	7
g	10

List of edges:

	af
	ag
	be
\rightarrow	cb
	db
	de
	ec
	fe
	gd
	gf

а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

LIST	n cago
	af
	ag
	be
	cb
\rightarrow	db
	de
	ec
	fe
	gd
	gf

<u> </u>	unce
а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

LIST	n cago
	af
	ag
	be
	cb
	db
\rightarrow	de
	ec
	fe
	gd
	gf

Distance	
а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

LISE	or cago
	af
	ag
	be
	cb
	db
	de
\rightarrow	ec
	fe
	gd
	gf

a	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

	af
	ag
	be
	cb
	db
	de
	ec
\rightarrow	fe
	gd
	gf

а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

	af
	ag
	be
	cb
	db
	de
	ec
	fe
\rightarrow	gd
	gf

Distance	
а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

	ag be
	be
1	
	cb
	db
	de
	ec
	fe
	gd
\rightarrow	gf

а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

	af
\rightarrow	ag
	be
	cb
	db
	de
	ec
	fe
	gd
	gf

а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

	af
	ag
\rightarrow	be
	cb
	db
	de
	ec
	fe
	gd
	gf

<u> </u>	ance
а	0
b	21
С	23
d	17
е	15
f	7
g	10

List of edges:

	af
	ag
\rightarrow	be
	cb
	db
	de
	ec
	fe
	gd
	gf

Distance	
а	0
b	21
С	23
d	17
е	14
f	7
g	10

List of edges:

	af
	ag
	be
\rightarrow	cb
	db
	de
	ec
	fe
	gd
	gf

а	0
b	21
С	23
d	17
е	14
f	7
g	10

List of edges:

LIJU	or cab
	af
	ag
	be
	cb
\rightarrow	db
	de
	ec
	fe
	gd
	gf

	<u> </u>
а	0
b	21
С	23
d	17
е	14
f	7
g	10

List of edges:

LIST	or cage
	af
	ag
	be
	cb
	db
\rightarrow	de
	ec
	fe
	gd
	gf

а	0
b	21
С	23
d	17
е	14
f	7
g	10

List of edges:

	af
	ag
	be
	cb
	db
	de
\rightarrow	ec
	fe
	gd
	gf

а	0
b	21
С	23
d	17
е	14
f	7
g	10

List of edges:

LISE	or cage
	af
	ag
	be
	cb
	db
	de
\rightarrow	ec
	fe
	gd
	gf

a	0
b	21
С	22
d	17
е	14
f	7
g	10

List of edges:

	af
	ag
	be
	cb
	db
	de
	ec
\rightarrow	fe
	gd
	gf

Distance		
а	0	
b	21	
С	22	
d	17	
е	14	
f	7	
g	10	

List of edges:

LIJU	n cage
	af
	ag
	be
	cb
	db
	de
	ec
	fe
\rightarrow	gd
	gf

Distance	
а	0
b	21
С	22
d	17
е	14
f	7
g	10

List of edges:

	af
	ag
	be
	cb
	db
	de
	ec
	fe
	gd
\rightarrow	gf

DISTAILCE		
а	0	
b	21	
С	22	
d	17	
е	14	
f	7	
g	10	

Proof of correctness

Lemma

If no negative cycle exists, distances stabilize after at most $\mathsf{n}-1$ iterations.

Lemma

If distances stabilize after at most n-1 iterations, no negative cycle exists.

Proof of correctness

Lemma

If no negative cycle exists, distances stabilize after at most n-1 iterations.

Lemma

If distances stabilize after at most n-1 iterations, no negative cycle exists.

 First lemma follows from previous analysis and the fact that shortest paths use at most n-1 edges if no negative cycle exists.

Converse direction

Lemma

If distances stabilize after at most n-1 iterations, no negative cycle exists.

Converse direction

Lemma

If distances stabilize after at most n-1 iterations, no negative cycle exists.

Proof.

- Suppose an iteration of the main loop does not change $d_{BF}[v]$ for any v.
- Take a cycle $C = \{x_1, x_2, \dots, x_k\}$ with weight w(C).
- Because arc x_1x_2 is not a short-cut, $d_{BF}[x_2] \leq d_{BF}[x_1] + w(x_1x_2)$
- Because arc $x_i x_{i+1}$ is not a short-cut, $d_{BF}[x_i] \leq d_{BF}[x_{i+1}] + w(x_i x_{i+1})$
- Because arc $x_k x_1$ is not a short-cut, $d_{BF}[x_1] \le d_{BF}[x_k] + w(x_k x_1)$

17/29

Converse direction

Lemma

If distances stabilize after at most n-1 iterations, no negative cycle exists.

Proof.

- Suppose an iteration of the main loop does not change $d_{BF}[v]$ for any v.
- Take a cycle $C = \{x_1, x_2, \dots, x_k\}$ with weight w(C).
- Because arc x_1x_2 is not a short-cut, $d_{BF}[x_2] \le d_{BF}[x_1] + w(x_1x_2)$
- Because arc $x_i x_{i+1}$ is not a short-cut, $d_{BF}[x_i] \leq d_{BF}[x_{i+1}] + w(x_i x_{i+1})$
- Because arc $x_k x_1$ is not a short-cut, $d_{BF}[x_1] \le d_{BF}[x_k] + w(x_k x_1)$
- Adding these together gives $w(C) \ge 0$.

Michael Lampis Graph Algorithms

APSP

	SSSP	APSP
Pos. weights		
Gen. weights		

- ullet Dijkstra o positive weight SSSP
- Bellman-Ford \rightarrow general weight SSSP (w/o neg. cycles)

	SSSP	APSP
Pos. weights	$O((n+m)\log n)$	
Gen. weights		

- ullet Dijkstra o positive weight SSSP
- Bellman-Ford \rightarrow general weight SSSP (w/o neg. cycles)

	SSSP	APSP
Pos. weights	$O((n+m)\log n)$	
Gen. weights	O(nm)	

- ullet Dijkstra o positive weight SSSP
- Bellman-Ford \rightarrow general weight SSSP (w/o neg. cycles)

	SSSP	APSP
Pos. weights	$O((n+m)\log n)$	$O(n(n+m)\log n)$
Gen. weights	O(nm)	$O(n^2m)$

- ullet Dijkstra o positive weight SSSP
- Bellman-Ford \rightarrow general weight SSSP (w/o neg. cycles)
- Easy idea: run previous algorithms *n* times for APSP
- Can we do better?

	SSSP	APSP
Pos. weights	$O((n+m)\log n)$	$O(n(n+m)\log n)$
Gen. weights	O(nm)	$O(n^2m)$

- ullet Dijkstra o positive weight SSSP
- Bellman-Ford \rightarrow general weight SSSP (w/o neg. cycles)
- Easy idea: run previous algorithms n times for APSP
- Can we do better?
- Dijkstra is almost linear-time ⇒ probably optimal.

	SSSP	APSP
Pos. weights	$O((n+m)\log n)$	$O(n(n+m)\log n)$
Gen. weights	O(nm)	$O(n^2m)$

- ullet Dijkstra o positive weight SSSP
- Bellman-Ford \rightarrow general weight SSSP (w/o neg. cycles)
- Easy idea: run previous algorithms n times for APSP
- Can we do better?
- Dijkstra is almost linear-time ⇒ probably optimal.
- BF is **NOT** optimal! (2022 breakthrough gives $O(m \log^8 n)$ time)
 - Out of scope for this class!

	SSSP	APSP
Pos. weights	$O((n+m)\log n)$	$O(n(n+m)\log n)$
Gen. weights	O(nm)	$O(n^2m)$

- ullet Dijkstra o positive weight SSSP
- Bellman-Ford \rightarrow general weight SSSP (w/o neg. cycles)
- Easy idea: run previous algorithms n times for APSP
- Can we do better?
- Dijkstra is almost linear-time ⇒ probably optimal.
- BF is **NOT** optimal! (2022 breakthrough gives $O(m \log^8 n)$ time)
 - Out of scope for this class!
- Can APSP be solved faster than $n \times SSSP$?

APSP on dense graphs with negative weights

Michael Lampis Graph Algorithms October 3, 2025 20 / 29

APSP and Matrix Multiplication

- Suppose graph is given in **adjacency matrix** form.
 - $\bullet \ A[i,j] = w(ij)$
- We want to do APSP faster than $O(n^4)$ (= $n \times BF$).

Michael Lampis Graph Algorithms

21 / 29

APSP and Matrix Multiplication

- Suppose graph is given in **adjacency matrix** form.
 - $\bullet \ A[i,j] = w(ij)$
- We want to do APSP faster than $O(n^4)$ (= $n \times BF$).
- $A_1[i,j] = A[i,j]$ is the cost of the shortest 1-arc path from i to j.
- We can compute $A_2[i,j]$ to be the cost of the shortest (≤ 2)-arc path from i to j as follows:

APSP and Matrix Multiplication

- Suppose graph is given in adjacency matrix form.
 - $\bullet \ A[i,j] = w(ij)$
- We want to do APSP faster than $O(n^4)$ (= $n \times BF$).
- $A_1[i,j] = A[i,j]$ is the cost of the shortest 1-arc path from i to j.
- We can compute $A_2[i,j]$ to be the cost of the shortest (≤ 2)-arc path from i to j as follows:

```
1: for i = 1 to n do
2: for j = 1 to n do
3: A_2[i,j] \leftarrow A_1[i,j]
4: for k = 1 to n do
5: A_2[i,j] \leftarrow \min\{A_2[i,j], A_1[i,k] + A_1[k,j]\}
6: end for
7: end for
8: end for
```

APSP and Matrix Multiplication cont'd

- Let $A_{\ell}[i,j]$ be the cost of the shortest $i \to j$ path with $\leq \ell$ arcs.
 - $A_{n-1}[i,j]$ is the correct output (if no neg. cycles).

22 / 29

APSP and Matrix Multiplication cont'd

- Let $A_{\ell}[i,j]$ be the cost of the shortest $i \to j$ path with $\leq \ell$ arcs.
 - $A_{n-1}[i,j]$ is the correct output (if no neg. cycles).
- Consider the following algorithm:

```
1: A_1[i,j] \leftarrow A[i,j] for all i,j
 2: for \ell = 2 to n do
         for i = 1 to n do
 3:
              for i = 1 to n do
 4:
                   A_{\ell}[i,j] \leftarrow A_{\ell-1}[i,j]
 5:
                   for k = 1 to n do
 6:
                        A_{\ell}[i,j] \leftarrow \min\{A_{\ell}[i,j], A_{\ell-1}[i,k] + A_{1}[k,j]\}
 7:
                   end for
 8:
              end for
 9:
         end for
10:
11: end for
```

Correctness

Lemma

Previous Algorithm is correct

Correctness

Lemma

Previous Algorithm is correct

Proof.

- Induction on ℓ . For $\ell=1$ good.
- Define $\operatorname{dist}_i(x,y)$ be minimum cost of $x \to y$ path with $\leq i$ arcs.
- We have $\operatorname{dist}_{\ell}(i,j) = \min_{k \in V} \operatorname{dist}_{\ell-1}(i,k) + w(kj)$
 - Proof: let k be last vertex before j in optimal path.
- By induction, $A_{\ell-1}[i, k] = \operatorname{dist}_{\ell-1}(i, k)$.

Analysis

• What is the running time of the previous algorithm?

24 / 29

Analysis

- What is the running time of the previous algorithm?
 - $O(n^4)$ (no improvement over $n \times BF!$)

24 / 29

Analysis

- What is the running time of the previous algorithm?
 - $O(n^4)$ (no improvement over $n \times BF!$)
- However, the algorithm should feel familiar.

Matrix Multiplication

```
1: A_1[i,j] \leftarrow A[i,j] for all i,j
 2: for \ell = 2 to n do
         for i = 1 to n do
 3:
              for i = 1 to n do
 4:
                   A_{\ell}[i,j] \leftarrow A_{\ell-1}[i,j]
 5:
                   for k = 1 to n do
 6:
                       A_{\ell}[i,j] \leftarrow \min\{A_{\ell}[i,j], A_{\ell-1}[i,k] + A_{1}[k,j]\}
 7:
                   end for
 8.
              end for
 9.
10:
         end for
11: end for
```

Matrix Multiplication

```
1: A_1[i,j] \leftarrow A[i,j] for all i,j
 2: for \ell = 2 to n do
         for i = 1 to n do
 3:
              for j = 1 to n do
 4:
                   A_{\ell}[i,j] \leftarrow A_{\ell-1}[i,j]
 5:
                   for k = 1 to n do
 6:
                        A_{\ell}[i,j] \leftarrow \sum \{A_{\ell}[i,j], A_{\ell-1}[i,k] \times A_{1}[k,j] \}
 7:
                   end for
 8.
              end for
 9.
         end for
10:
11: end for
  • n matrix multiplications with (\min, +) in the place of (+, \times)

 Output: A<sup>n</sup>
```

• How many multiplications do we need to compute x^{1024} ?

26 / 29

Michael Lampis October 3, 2025

• How many multiplications do we need to compute x^{1024} ?

• Naive: 1023

- How many multiplications do we need to compute x^{1024} ?
- Naive: 1023
- Clever: 10
 - $x \rightarrow x^2 \rightarrow x^4 \rightarrow x^8 \rightarrow \dots$

- How many multiplications do we need to compute x^{1024} ?
- Naive: 1023
- Clever: 10

$$\bullet \ \ x \to x^2 \to x^4 \to x^8 \to \dots$$

- Given A we want to calculate A^n (for our version of M.M.)
- By repeated squaring, this can be done in $O(n^3 \log n)$ time.

Strassen?

- APSP boils down to a form of Matrix Multiplication.
- We perform each MM in $O(n^3)$ time.
- But: faster MM algorithms exist (Strassen etc.). Why not use that?

Strassen?

- APSP boils down to a form of Matrix Multiplication.
- We perform each MM in $O(n^3)$ time.
- But: faster MM algorithms exist (Strassen etc.). Why not use that?
- Recall the basic idea behind Strassen's algorithm:

Strassen's algorithm

• We want to calculate $C = A \times B$

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}, C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

$$C_{12} = A_{11}B_{12} + A_{12}B_{22}$$

$$C_{21} = A_{21}B_{11} + A_{22}B_{21}$$

$$C_{22} = A_{21}B_{12} + A_{22}B_{22}$$

Strassen's algorithm

Need to calculate:

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

$$C_{12} = A_{11}B_{12} + A_{12}B_{22}$$

$$C_{21} = A_{21}B_{11} + A_{22}B_{21}$$

$$C_{22} = A_{21}B_{12} + A_{22}B_{22}$$

Will calculate:

$$M_{1} = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$M_{2} = (A_{21} + A_{22})B_{11}$$

$$M_{3} = A_{11}(B_{12} - B_{22})$$

$$M_{4} = A_{22}(B_{21} - B_{11})$$

$$M_{5} = (A_{11} + A_{12})B_{22}$$

$$M_{6} = (A_{21} - A_{11})(B_{11} + B_{12})$$

$$M_{7} = (A_{12} - A_{22})(B_{21} + B_{22})$$

28 / 29

Strassen's algorithm

Need to calculate:

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

$$C_{12} = A_{11}B_{12} + A_{12}B_{22}$$

$$C_{21} = A_{21}B_{11} + A_{22}B_{21}$$

$$C_{22} = A_{21}B_{12} + A_{22}B_{22}$$

Will calculate:

$$M_{1} = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$M_{2} = (A_{21} + A_{22})B_{11}$$

$$M_{3} = A_{11}(B_{12} - !!B_{22})$$

$$M_{4} = A_{22}(B_{21} - B_{11})$$

$$M_{5} = (A_{11} + A_{12})B_{22}$$

$$M_{6} = (A_{21} - A_{11})(B_{11} + B_{12})$$

$$M_{7} = (A_{12} - A_{22})(B_{21} + B_{22})$$

Problem with Strassen's Algorithm

- We want to replace + with a min operation.
- The + operation has an inverse (used by Strassen), the min operation does not!

Problem with Strassen's Algorithm

- We want to replace + with a min operation.
- The + operation has an inverse (used by Strassen), the min operation does not!
- Currently, no algorithm better than $O(n^3)$ known for computing $(\min, +)$ -product of matrices.
- Also, no better than $O(n^3)$ algorithm known for APSP (even for positive weights).
 - However, fast MM improves APSP on unweighted graphs, or graphs with small weights.