Graph Algorithms Shortest Paths III

Michael Lampis

October 10, 2025

1/33

Michael Lampis Graph Algorithms October 10, 2025

Input: **Edge-weighted** (di)graph

2/33

Michael Lampis Graph Algorithms October 10, 2025

Input: **Edge-weighted** (di)graph Problems:

- Single-Pair Shortest Path (SPSP): find shortest path from s to t.
- Single-Source Shortest Path (SSSP): find shortest path from *s* to everyone.
- All-Pairs Shortest Paths: find shortest paths from everyone to everyone.

Input: **Edge-weighted** (di)graph Problems:

- Single-Pair Shortest Path (SPSP): find shortest path from s to t.
- Single-Source Shortest Path (SSSP): find shortest path from s to everyone.
- All-Pairs Shortest Paths: find shortest paths from everyone to everyone.
- Two lectures ago: Dijkstra's algorithm, SSSP with positive weights
- Last lecture: SSSP with possibly negative weights (Bellman-Ford), APSP (Matrix Multiplication-like)

Input: **Edge-weighted** (di)graph Problems:

- Single-Pair Shortest Path (SPSP): find shortest path from s to t.
- Single-Source Shortest Path (SSSP): find shortest path from s to everyone.
- All-Pairs Shortest Paths: find shortest paths from everyone to everyone.
- Two lectures ago: Dijkstra's algorithm, SSSP with positive weights
- Last lecture: SSSP with possibly negative weights (Bellman-Ford),
 APSP (Matrix Multiplication-like)
- Today:
 - Floyd-Warshall algorithm for APSP
 - Johnson's algorithm, APSP for sparse graphs, negative weights
 - Conditional Impossibility Results

APSP

Michael Lampis

Where we are

	SSSP	APSP
Pos. weights	$O((n+m)\log n)$	$O(n(n+m)\log n)$
Gen. weights	O(nm)	$O(n^2m)$

• Dijkstra, Bellman-Ford (SSSP), run *n* times (APSP).

Where we are

	SSSP	APSP
Pos. weights	$O((n+m)\log n)$	$O(n(n+m)\log n)$
Gen. weights	O(nm)	$O(n^2m)$

- Dijkstra, Bellman-Ford (SSSP), run *n* times (APSP).
- Last week: $(\min, +)$ -product APSP algorithm $\Rightarrow O(n^3 \log n)$ time.
 - OK for negative weights.

Where we are

	SSSP	APSP
Pos. weights	$O((n+m)\log n)$	$O(n(n+m)\log n)$
Gen. weights	O(nm)	$O(n^2m)$

- Dijkstra, Bellman-Ford (SSSP), run *n* times (APSP).
- Last week: $(\min, +)$ -product APSP algorithm $\Rightarrow O(n^3 \log n)$ time.
 - OK for negative weights.
- Can we do better? For sparse graphs?

The Floyd-Warshall-Roy algorithm

Michael Lampis Graph Algorithms October 10, 2025 5/33

• Published by Robert Floyd in 1962.

6/33

Michael Lampis Graph Algorithms October 10, 2025

- Published by Robert Floyd in 1962.
- Also by Stephen Warshall in 1962.

Michael Lampis Graph Algorithms October 10, 2025 6/33

- Published by Robert Floyd in 1962.
- Also by Stephen Warshall in 1962.
- Also by Bernard Roy in 1959.

6/33

- Published by Robert Floyd in 1962.
- Also by Stephen Warshall in 1962.
- Also by Bernard Roy in **1959**.
 - Caveat: published in French.

Remark

... De ce théoreme découle un procédé simple et mécanisable permettant de construire la fermeture transitive d'une matrice quelconque $M \in \Omega$. Ce résultat semble susceptible d'applications nombreuses en théorie des graphes....

- Published by Robert Floyd in 1962.
- Also by Stephen Warshall in 1962.
- Also by Bernard Roy in 1959.
 - Caveat: published in French.

Remark

... De ce théoreme découle un procédé simple et mécanisable permettant de construire la fermeture transitive d'une matrice quelconque $M \in \Omega$. Ce résultat semble susceptible d'applications nombreuses en théorie des graphes....

Bernard Roy is the founder of LAMSADE in Université Paris-Dauphine

Michael Lampis Graph Algorithms October 10, 2025 6 / 33

Lemma

Shortest paths satisfy triangle inequality: $\forall a, b, c$ we have $dist(a, b) \leq dist(a, c) + dist(c, b)$

Lemma

Shortest paths satisfy triangle inequality: $\forall a, b, c$ we have $\operatorname{dist}(a, b) \leq \operatorname{dist}(a, c) + \operatorname{dist}(c, b)$

(NB: Above also hold for digraphs. Assume no negative-weight cycles.)

Lemma

Shortest paths satisfy triangle inequality: $\forall a, b, c$ we have $\operatorname{dist}(a, b) \leq \operatorname{dist}(a, c) + \operatorname{dist}(c, b)$

(NB: Above also hold for digraphs. Assume no negative-weight cycles.)

Lemma (Optimal sub-structure)

If there is a shortest $a \to b$ path that goes through x, then dist(a, b) = dist(a, x) + dist(x, b).

Lemma

Shortest paths satisfy triangle inequality: $\forall a, b, c$ we have $\operatorname{dist}(a, b) \leq \operatorname{dist}(a, c) + \operatorname{dist}(c, b)$

(NB: Above also hold for digraphs. Assume no negative-weight cycles.)

Lemma (Optimal sub-structure)

If there is a shortest $a \to b$ path that goes through x, then dist(a, b) = dist(a, x) + dist(x, b).

(In other words, we can construct a shortest $a \rightarrow b$ path by gluing a shortest $a \rightarrow x$ path with a shortest $x \rightarrow b$ path.)

Basic Strategy

- Start with some initial distances
 - $\operatorname{dist}[i,j] \leftarrow w(i,j)$.
- For each vertex k check if k can be used as a shortcut.
 - Compare: Bellman-Ford (for each edge e, check if shortcut)
- k is a shortcut if dist[i, k] + dist[k, j] < dist[i, j]
 - If Yes, update.

Basic Strategy

- Start with some initial distances
 - dist $[i, j] \leftarrow w(i, j)$.
- For each vertex k check if k can be used as a shortcut.
 - Compare: Bellman-Ford (for each edge e, check if shortcut)
- k is a shortcut if dist[i, k] + dist[k, j] < dist[i, j]
 - If Yes, update.

Invariant:

• After k iterations, for all i, j, $\operatorname{dist}[i, j]$ contains the shortest-path length using internal vertices from $\{1, \dots, k\}$.

Algorithm in pseudocode

```
1: \forall i, j \in V: \operatorname{dist}[i, j] = w(ij)
 2: for k = 1 to n do
          for i = 1 to n do
 3:
                for j = 1 to n do
 4.
                      if dist[i, j] > dist[i, k] + dist[k, j] then
 5:
                           \operatorname{dist}[i,j] \leftarrow \operatorname{dist}[i,k] + \operatorname{dist}[k,j] \quad \triangleright k \text{ shortcut for } i \rightarrow j
 6:
                      end if
 7:
                end for
 8.
          end for
 9.
10: end for
```

Algorithm in pseudocode

```
1: \forall i, j \in V: \operatorname{dist}[i, j] = w(ij)
 2: for k = 1 to n do
          for i = 1 to n do
 3:
                for j = 1 to n do
 4.
                     if dist[i, j] > dist[i, k] + dist[k, j] then
 5:
                          \operatorname{dist}[i,j] \leftarrow \operatorname{dist}[i,k] + \operatorname{dist}[k,j] \quad \triangleright k \text{ shortcut for } i \rightarrow j
 6:
                     end if
 7:
                end for
 8.
          end for
 9.
10: end for
NB: For loops structured K - I - J.
```

Complexity

- Time: $O(n^3)$ arithmetic operations.
 - Three nested loops, each *n* iterations.
- Space: $O(n^2)$ for distance matrix.
 - Assume distances in O(1) space.

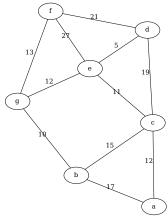
Correctness

Lemma

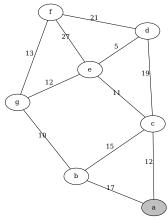
After k iterations of outer loop, dist[i,j] is equal to shortest-path distance from i to j using internal vertices from $\{1, ..., k\}$.

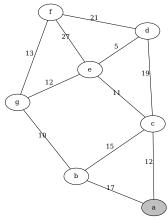
Correctness

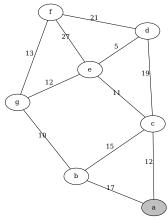
Lemma

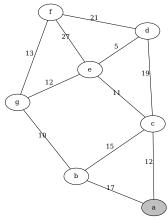

After k iterations of outer loop, $\operatorname{dist}[i,j]$ is equal to shortest-path distance from i to j using internal vertices from $\{1,\ldots,k\}$.

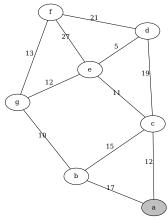
Proof.

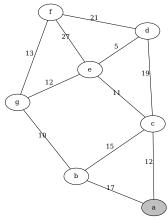

- $k = 0 \Rightarrow$ clear.
- $(k-1) \rightarrow k$: If k part of shortest path from i to j, then $\operatorname{dist}(i,j) = \operatorname{dist}(i,k) + \operatorname{dist}(k,j)$.

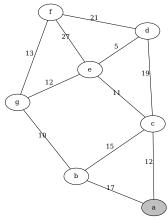


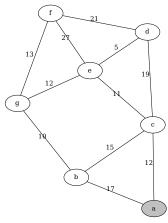

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

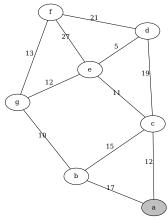

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

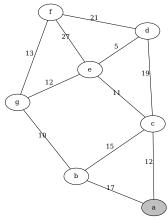

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

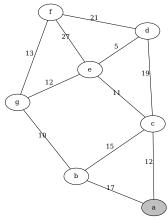

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

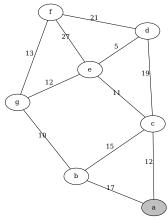

		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

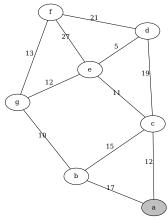

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

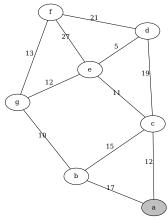

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

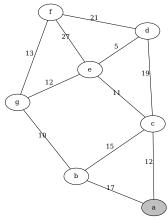

)								
		a	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

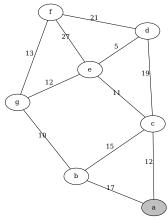

f	g
∞	∞
∞	10
∞	∞
21	∞
27	12
0	13
	0
_	∞ 21 27

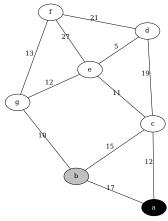

)								
		a	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

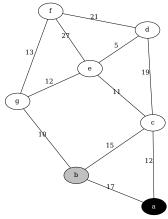

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
) .	е					0	27	12
	f						0	13
	g							0

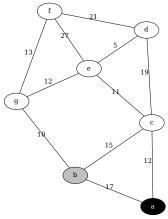

)								
		a	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

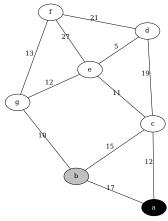

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
) .	е					0	27	12
	f						0	13
	g							0

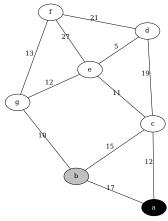

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
) .	е					0	27	12
	f						0	13
	g							0

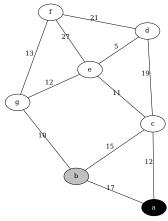

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
) .	е					0	27	12
	f						0	13
	g							0

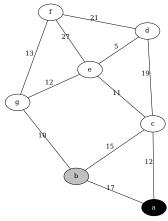

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
) .	е					0	27	12
	f						0	13
	g							0

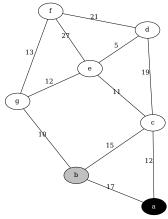

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
ノ・ ・ ・	е					0	27	12
	f						0	13
	g							0

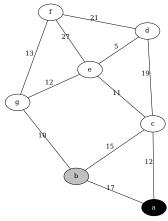

		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

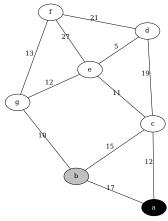

		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

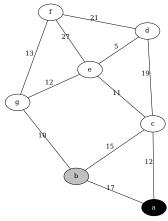

		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

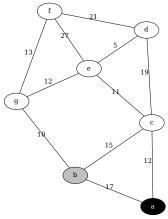

)								
		а	b	С	d	е	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

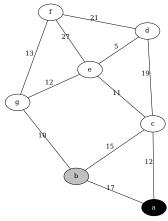

		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

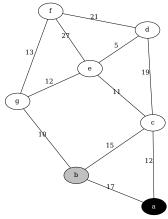

		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

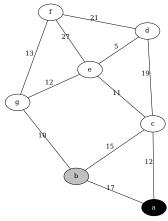

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
) .	е					0	27	12
	f						0	13
	g							0

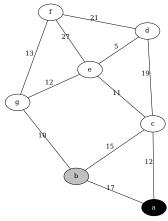

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	∞
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
` `	d				0	5	21	∞
<i>-</i>	е					0	27	12
	f						0	13
	g							0

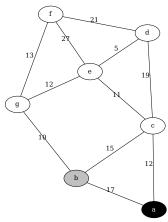

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	27
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

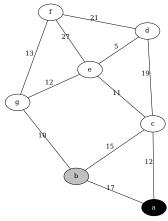

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	27
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

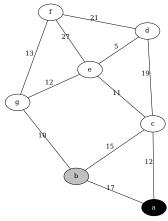

		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	27
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
) .	е					0	27	12
	f						0	13
	g							0

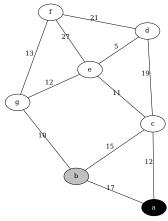

)								
		a	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	27
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

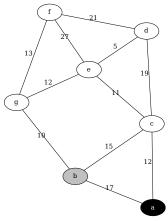

)								
		а	b	С	d	е	f	g
	а	0	17	12	∞	∞	∞	27
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

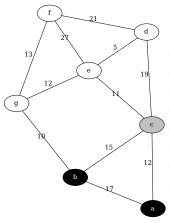

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	27
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	∞
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

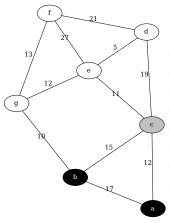

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	27
	b		0	15	∞	∞	∞	10
·	С			0	19	11	∞	25
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

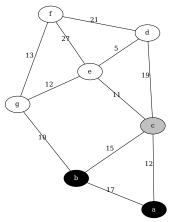

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	27
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	25
)	d				0	5	21	∞
) .	е					0	27	12
	f						0	13
	g							0

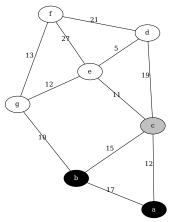

		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	27
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	25
)	d				0	5	21	∞
ノ . ・ ・	е					0	27	12
	f						0	13
	g							0

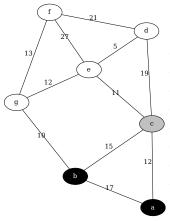

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	27
	b		0	15	∞	∞	∞	10
·)	С			0	19	11	∞	25
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

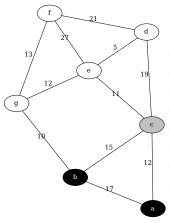

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	27
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	25
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

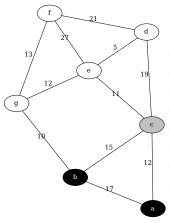

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	27
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	25
` `	d				0	5	21	∞
<i>-</i>	е					0	27	12
	f						0	13
	g							0

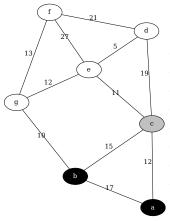

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	27
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	25
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

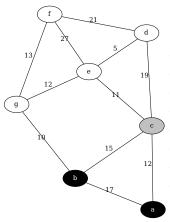

		а	b	С	d	e	f	g
	a	0	17	12	∞	∞	∞	27
- - - (b		0	15	∞	∞	∞	10
	С			0	19	11	∞	25
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

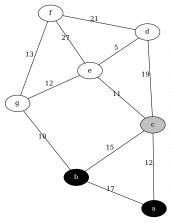

		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	27
- - - -	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	25
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

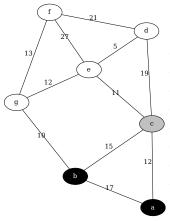

)								
		а	b	С	d	e	f	g
	а	0	17	12	∞	∞	∞	27
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	25
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

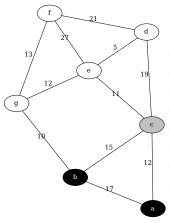

	а	b	С	d	e	f	g
а	0	17	12	∞	∞	∞	27
b		0	15	∞	∞	∞	10
С			0	19	11	∞	25
d				0	5	21	∞
е					0	27	12
f						0	13
g							0

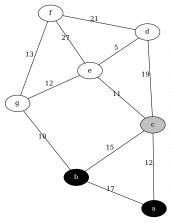

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	∞	∞	27
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	25
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

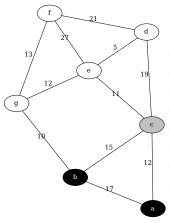

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	∞	∞	27
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	25
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

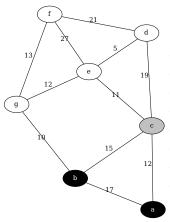

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	∞	∞	27
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	25
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

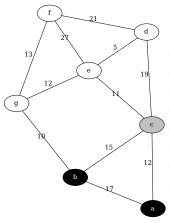

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	25
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

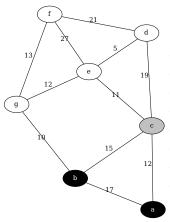

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	25
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

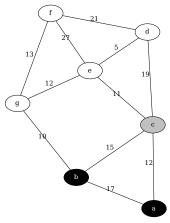

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	25
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

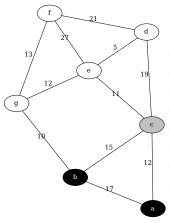

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	25
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

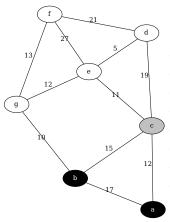

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	∞	∞	∞	10
	С			0	19	11	∞	25
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

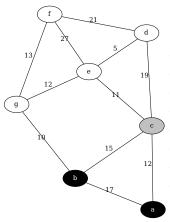

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	34	∞	∞	10
	С			0	19	11	∞	25
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

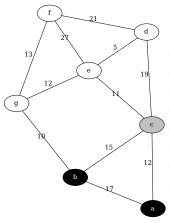

)								
		a	b	С	d	e	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	34	∞	∞	10
	С			0	19	11	∞	25
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

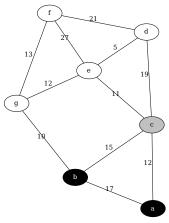

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	34	∞	∞	10
	С			0	19	11	∞	25
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

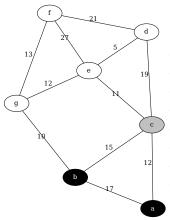

)								
		a	b	С	d	e	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

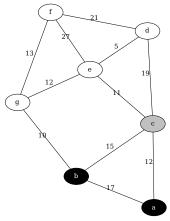

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

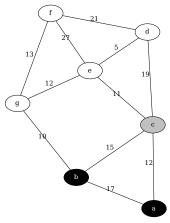

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

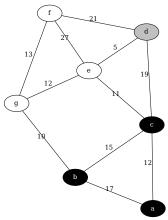

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

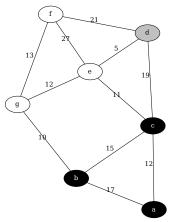

)								
		a	b	С	d	e	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

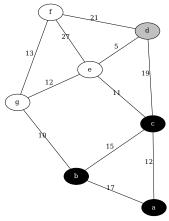

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

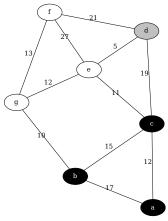

)								
		a	b	С	d	e	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
)	d				0	5	21	∞
	е					0	27	12
	f						0	13
	g							0

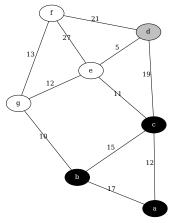

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0


	а	b	С	d	е	f	g
а	0	17	12	31	23	∞	27
b		0	15	34	26	∞	10
С			0	19	11	∞	25
d				0	5	21	44
е					0	27	12
f						0	13
g							0

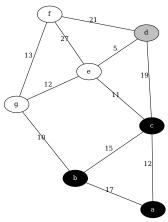

)								
		a	b	С	d	e	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0

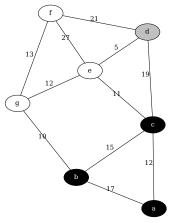

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0

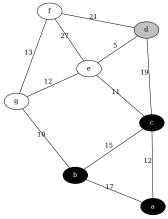

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0

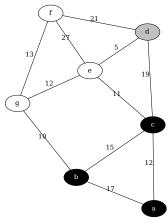

)								
		а	b	С	d	e	f	g
	a	0	17	12	31	23	∞	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
D	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0

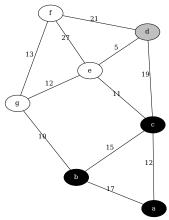
)								
		a	b	С	d	е	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
D	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0

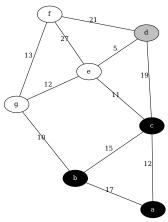

)								
		а	b	С	d	e	f	g
	a	0	17	12	31	23	∞	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
)	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0


		а	b	С	d	e	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0


)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	∞	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0

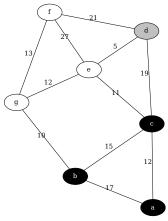

)								
		a	b	С	d	e	f	g
	а	0	17	12	31	23	52	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0


)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	52	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0


)								
		a	b	С	d	e	f	g
	а	0	17	12	31	23	52	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	52	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0

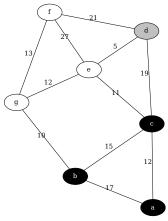
)								
		a	b	С	d	e	f	g
	а	0	17	12	31	23	52	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0


)								
		а	b	С	d	e	f	g
	a	0	17	12	31	23	52	27
	b		0	15	34	26	∞	10
	С			0	19	11	∞	25
	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0

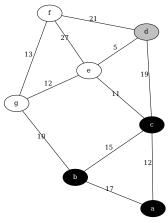
)								
		а	b	С	d	e	f	g
	a	0	17	12	31	23	52	27
	b		0	15	34	26	55	10
	С			0	19	11	∞	25
)	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0

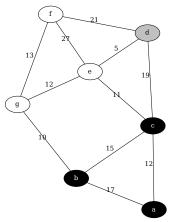
)								
		а	b	С	d	e	f	g
	a	0	17	12	31	23	52	27
	b		0	15	34	26	55	10
	С			0	19	11	∞	25
	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0

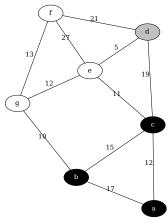
)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	52	27
	b		0	15	34	26	55	10
	С			0	19	11	∞	25
)	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0

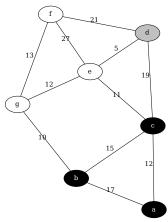

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	52	27
	b		0	15	34	26	55	10
	С			0	19	11	∞	25
	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0

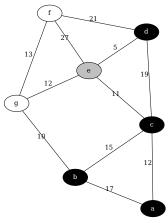
)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	52	27
	b		0	15	34	26	55	10
	С			0	19	11	∞	25
)	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0

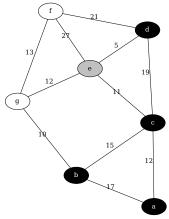

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	52	27
	b		0	15	34	26	55	10
	С			0	19	11	40	25
)	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0

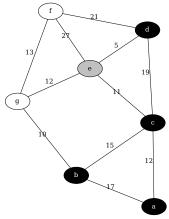

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	52	27
	b		0	15	34	26	55	10
.	С			0	19	11	40	25
	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0

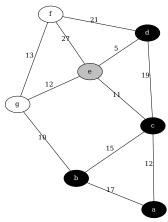

)								
		а	b	С	d	e	f	g
	a	0	17	12	31	23	52	27
	b		0	15	34	26	55	10
	С			0	19	11	40	25
	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0

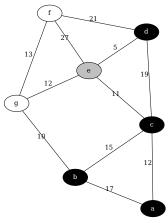

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	52	27
	b		0	15	34	26	55	10
	С			0	19	11	40	25
)	d				0	5	21	44
	е					0	27	12
	f						0	13
	g							0

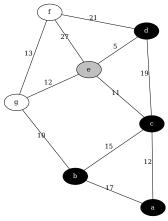

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	52	27
	b		0	15	34	26	55	10
	С			0	19	11	40	25
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

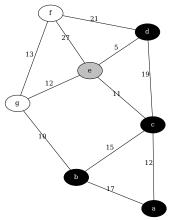

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	52	27
	b		0	15	34	26	55	10
	С			0	19	11	40	25
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

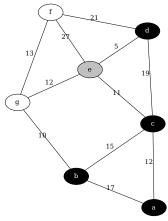

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	52	27
	b		0	15	34	26	55	10
•	С			0	19	11	40	25
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

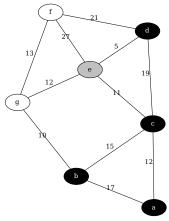

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	52	27
	b		0	15	34	26	55	10
.	С			0	19	11	40	25
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

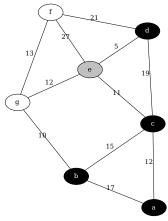

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	52	27
	b		0	15	34	26	55	10
.	С			0	19	11	40	25
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

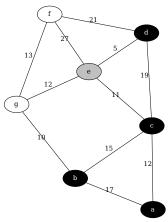

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	52	27
	b		0	15	34	26	55	10
•	С			0	19	11	40	25
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

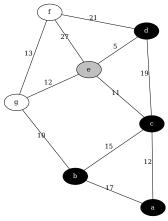

)								
		а	b	С	d	e	f	g
	a	0	17	12	31	23	52	27
	b		0	15	34	26	55	10
	С			0	19	11	40	25
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

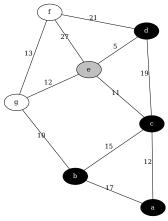

)								
		а	b	С	d	e	f	g
	а	0	17	12	31	23	52	27
	b		0	15	34	26	55	10
.	С			0	19	11	40	25
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

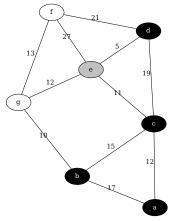

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	52	27
	b		0	15	34	26	55	10
•	С			0	19	11	40	25
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

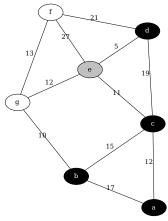

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	52	27
	b		0	15	34	26	55	10
	С			0	19	11	40	25
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

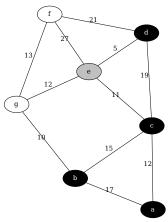

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	52	27
	b		0	15	34	26	55	10
	С			0	19	11	40	25
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

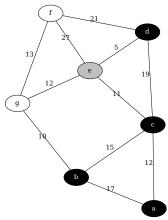

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	34	26	55	10
	С			0	19	11	40	25
)	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

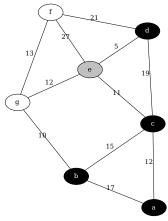

)								
		a	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	34	26	55	10
	С			0	19	11	40	25
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

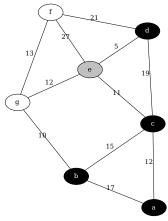

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	34	26	55	10
	С			0	19	11	40	25
)	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

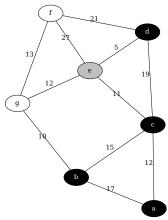

)								
		а	b	С	d	е	f	g
	а	0	17	12	28	23	49	27
	b		0	15	34	26	55	10
	С			0	19	11	40	25
)	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

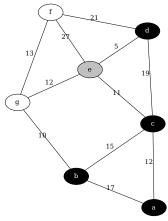

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	34	26	55	10
	С			0	19	11	40	25
)	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

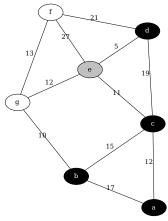

)								
		а	b	С	d	e	f	g
	a	0	17	12	28	23	49	27
	b		0	15	31	26	55	10
	С			0	19	11	40	25
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

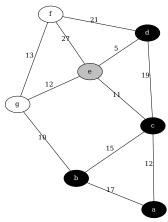

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	55	10
	С			0	19	11	40	25
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

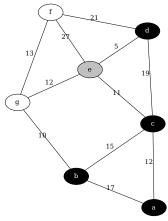

		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	55	10
	С			0	19	11	40	25
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

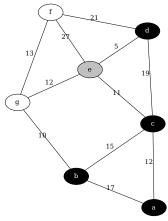

)								
		а	b	С	d	e	f	g
	a	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
• • •	С			0	19	11	40	25
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

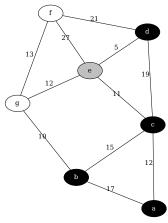

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
• • •	С			0	19	11	40	25
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

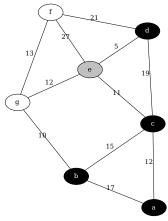

)								
		а	b	С	d	e	f	g
	a	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	19	11	40	25
)	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

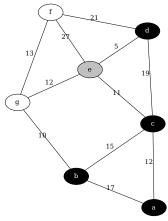

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	19	11	40	25
)	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

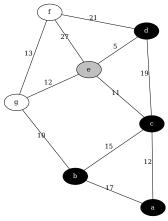

)								
		а	b	С	d	e	f	g
	a	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	40	25
)	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

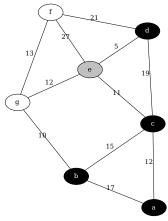

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
•	С			0	16	11	40	25
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

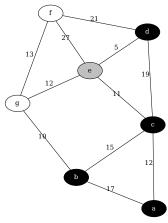

		а	b	С	d	е	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	40	25
)	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

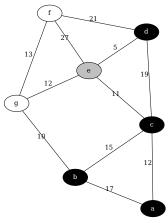

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
.	С			0	16	11	37	25
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

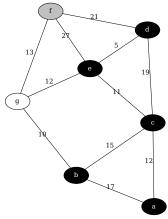

)								
		а	b	С	d	e	f	g
	a	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	37	25
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

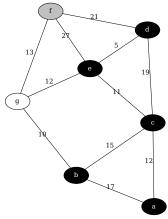

)								
		а	b	С	d	e	f	g
	a	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	37	25
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

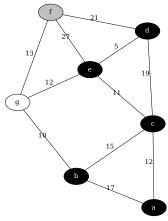

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

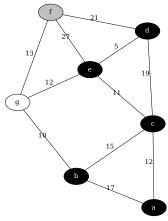

)								
		а	b	С	d	e	f	g
	a	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

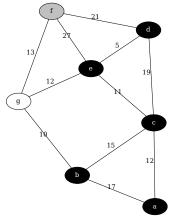

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

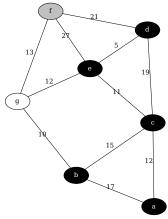

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
	d				0	5	21	44
	е					0	26	12
	f						0	13
	g							0

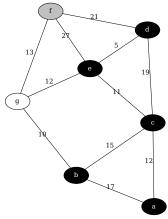

)								
		а	b	С	d	e	f	g
	a	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
)	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

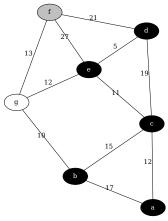

)								
		a	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
.	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

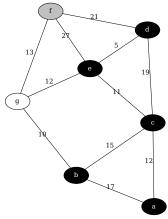

1								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

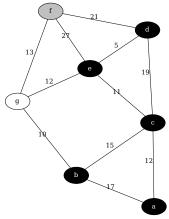

)								
		а	b	С	d	e	f	g
	a	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

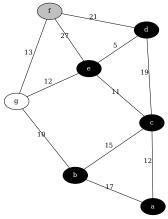

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
•	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

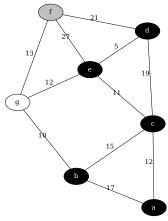

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
•	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

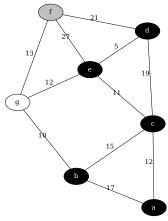

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
•	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

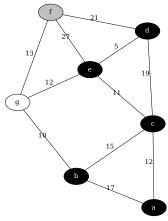

		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
)	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

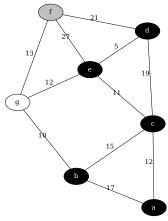

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
)	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

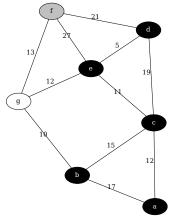

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

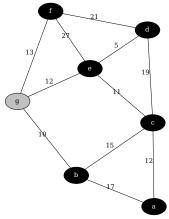

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
.	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

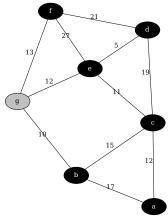

)								
		a	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
•	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

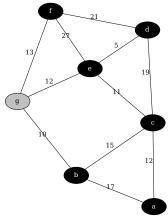

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
•	b		0	15	31	26	52	10
	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

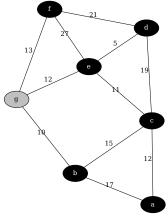

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

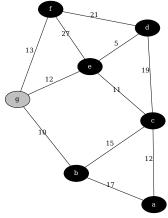

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
• • •	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

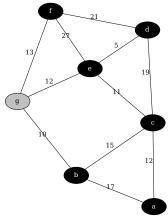

)								
		а	b	С	d	e	f	g
	a	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

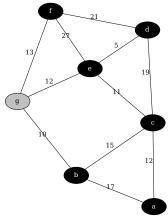

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

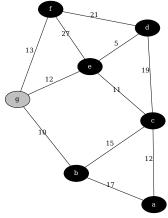

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
•	b		0	15	31	26	52	10
	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

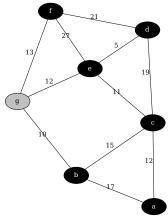

)								
		a	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

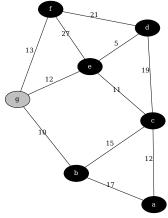

)								
		а	b	С	d	e	f	g
	a	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

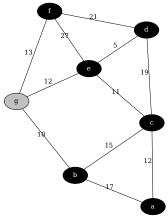

)								
		а	b	С	d	e	f	g
	a	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

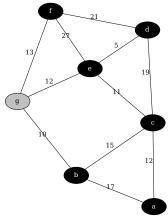

1								
		а	b	С	d	е	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
)	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

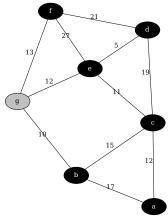

1								
		а	b	С	d	е	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

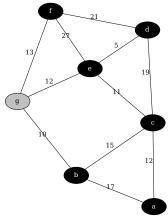

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

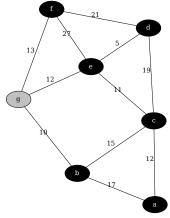

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	49	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

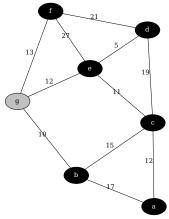

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	40	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

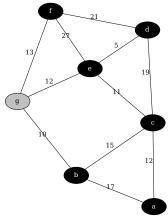

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	40	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
)	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

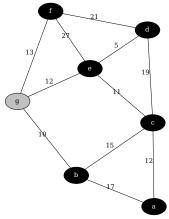

)								
		а	b	С	d	e	f	g
	a	0	17	12	28	23	40	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
)	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

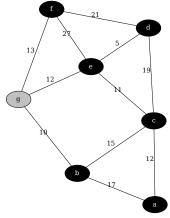

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	40	27
	b		0	15	31	26	52	10
	С			0	16	11	37	23
)	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

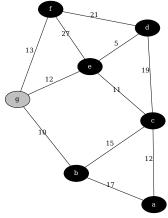

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	40	27
	b		0	15	27	26	52	10
	С			0	16	11	37	23
)	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

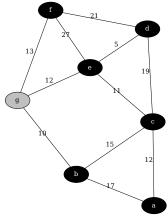

)								
		а	b	С	d	e	f	g
	a	0	17	12	28	23	40	27
	b		0	15	27	26	52	10
	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

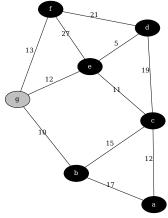

)								
		а	b	С	d	e	f	g
	a	0	17	12	28	23	40	27
	b		0	15	27	26	52	10
	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

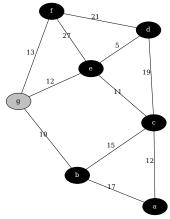

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	40	27
	b		0	15	27	22	52	10
	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

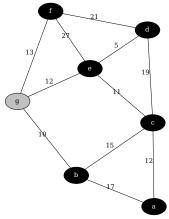

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	40	27
	b		0	15	27	22	52	10
	С			0	16	11	37	23
)	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

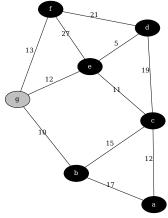

)								
		а	b	С	d	e	f	g
	a	0	17	12	28	23	40	27
	b		0	15	27	22	52	10
	С			0	16	11	37	23
)	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

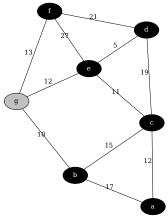

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	40	27
	b		0	15	27	22	23	10
	С			0	16	11	37	23
)	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

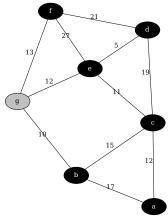

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	40	27
	b		0	15	27	22	23	10
	С			0	16	11	37	23
)	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

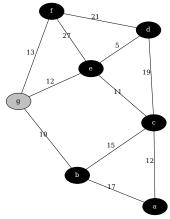

)								
		а	b	С	d	e	f	g
	a	0	17	12	28	23	40	27
	b		0	15	27	22	23	10
	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0


)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	40	27
	b		0	15	27	22	23	10
	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0


)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	40	27
	b		0	15	27	22	23	10
	С			0	16	11	37	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0


)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	40	27
	b		0	15	27	22	23	10
	С			0	16	11	36	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0


)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	40	27
	b		0	15	27	22	23	10
	С			0	16	11	36	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0


)								
		а	b	С	d	е	f	g
	а	0	17	12	28	23	40	27
	b		0	15	27	22	23	10
	С			0	16	11	36	23
	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	40	27
	b		0	15	27	22	23	10
	С			0	16	11	36	23
)	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

		а	b	С	d	e	f	g
	а	0	17	12	28	23	40	27
	b		0	15	27	22	23	10
	С			0	16	11	36	23
)	d				0	5	21	17
	е					0	26	12
	f						0	13
	g							0

)								
		а	b	С	d	e	f	g
	а	0	17	12	28	23	40	27
	b		0	15	27	22	23	10
	С			0	16	11	36	23
	d				0	5	21	17
	е					0	25	12
	f						0	13
	g							0

APSP state of the art

- Last week's algorithm: $O(n^3 \log n)$ arithmetic operations.
- Floyd-Warshall: $O(n^3)$ arithmetic operations.
- Can we do better?

APSP state of the art

- Last week's algorithm: $O(n^3 \log n)$ arithmetic operations.
- Floyd-Warshall: $O(n^3)$ arithmetic operations.
- Can we do better?
- In general, we conjecture that NO, but this is a major open problem.
- What if the input graph is sparse (e.g. m = O(n))?
 - $n \times \text{Dijkstra} \Rightarrow O(n(m+n) \log n)$
 - $n \times BF \Rightarrow O(n^2m)$
- First is quadratic for sparse graphs, but only for positive weights.
- Second is worse than Floyd-Warshall, even for sparse graphs. . .

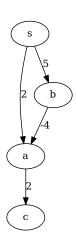
APSP state of the art

- Last week's algorithm: $O(n^3 \log n)$ arithmetic operations.
- Floyd-Warshall: $O(n^3)$ arithmetic operations.
- Can we do better?
- In general, we conjecture that NO, but this is a major open problem.
- What if the input graph is sparse (e.g. m = O(n))?
 - $n \times \text{Dijkstra} \Rightarrow O(n(m+n) \log n)$
 - $n \times BF \Rightarrow O(n^2m)$
- First is quadratic for sparse graphs, but only for positive weights.
- Second is worse than Floyd-Warshall, even for sparse graphs...
 Questions:
- O(nm) APSP with negative weights?
- $O(m^{2-\varepsilon})$ with positive weights?

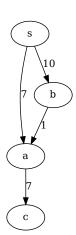
14 / 33

Michael Lampis Graph Algorithms

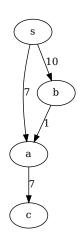
- APSP in digraphs with negative weights faster than $n \times BF$.
- Strategy:
 - Run Bellman-Ford **once** to ensure no negative cycles.
 - Adjust edge weights so all are non-negative.
 - Run Dijkstra *n* times.


- APSP in digraphs with negative weights faster than $n \times BF$.
- Strategy:
 - Run Bellman-Ford **once** to ensure no negative cycles.
 - Adjust edge weights so all are non-negative.
 - Run Dijkstra *n* times.

Do we expect this to work??


Reminder: An easy FAILED fix

- Suggestion: eliminate negative weights
- Find the max absolute value of any negative weight *M*.
- Add M+1 to all weights.
- Run Dijkstra.
- Why not?


Reminder: An easy FAILED fix

- Suggestion: eliminate negative weights
- Find the max absolute value of any negative weight *M*.
- Add M+1 to all weights.
- Run Dijkstra.
- Why not?

Reminder: An easy FAILED fix

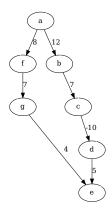
- Suggestion: eliminate negative weights
- Find the max absolute value of any negative weight M.
- Add M+1 to all weights.
- Run Dijkstra.
- Why not?
- Gives unfair advantage to paths with fewer edges. . .

Johnson's fix

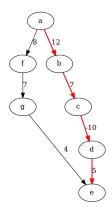
- Will compute a potential h(v) for every vertex u.
- Modify weights: $w'(uv) \leftarrow w(uv) + h(u) h(v)$.
- Key intuition: in every s → t path, potentials of internal vertices cancel out.
- We just need to compute h() so that w' is nowhere negative.

Johnson's fix

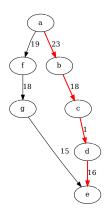
- Will compute a potential h(v) for every vertex u.
- Modify weights: $w'(uv) \leftarrow w(uv) + h(u) h(v)$.
- **Key intuition:** in every $s \to t$ path, potentials of internal vertices cancel out.
- We just need to compute h() so that w' is nowhere negative.

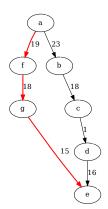

How to compute h():

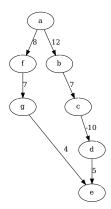
- Add universal source s to the graph.
- Run Bellman-Ford from $s \Rightarrow \forall v \text{ set } h(v) = \operatorname{dist}(s, v)$.

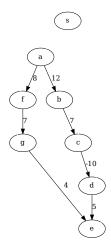


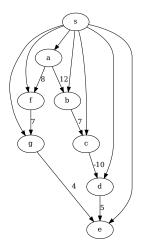
- 1: Add to G a universal source s with arcs of weight 0 to everyone.
- 2: Bellman-Ford(G,s)
- 3: for $ij \in E$ do
- 4: $w'(ij) \leftarrow w(ij) + \operatorname{dist}(s,i) \operatorname{dist}(s,j)$
- 5: end for
- 6: for $i \in V$ do
- 7: Run Dijkstra from i with weight function w'
- 8: end for

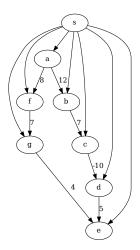


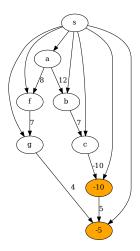


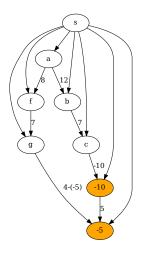


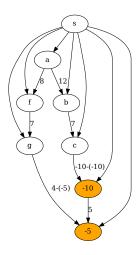


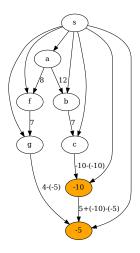


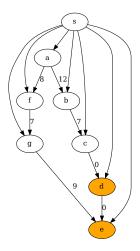







0110	LCS	. pu	cii aist	unce	5	,,,,
а	b	С	d	е	f	g
0	0	0	-10	-5	0	0


0110	· ccs	. pu	cii aist	unce	5 110	,,,,
а	b	С	d	е	f	g
0	0	0	-10	-5	0	0


5110	1 665	. pa	path distances no				
а	b	С	d	е	f	g	
0	0	0	-10	-5	0	0	

Shortest path distances from s								
	а	b	С	d	е	f	g	
	0	0	0	-10	-5	0	0	

01101 0000		Pu	patin distances moni				
	а	b	С	d	е	f	g
	0	0	0	-10	-5	0	0

0110	· ccs	. pu	cii aist	unce	5 110	,,,,
а	b	С	d	е	f	g
0	0	0	-10	-5	0	0

Analysis

- Running time is O(nm) for BF and $O(n(n+m)\log n)$ for $n \times \text{Dijkstra}$
 - $O(nm \log n)$ (compare with $n \times BF$)
- Space complexity is same as for BF and Dijkstra (O(n))
 - Note: output is $n \times n$ matrix \Rightarrow size $O(n^2)$
 - But we generate it row-by-row.

Lemma

G has a negative cycle if and only if G + s does.

Lemma

A path P is a shortest $s \to t$ path for w if and only if it is a shortest $s \to t$ path from w'.

Lemma

 $w'(ij) \ge 0$ for all $i, j \in V$.

Lemma

G has a negative cycle if and only if G + s does.

Lemma

G has a negative cycle if and only if G + s does.

Proof.

Easy: no cycle goes through s (only outgoing arcs).

Lemma

G has a negative cycle if and only if G + s does.

Proof.

Easy: no cycle goes through s (only outgoing arcs).

Lemma

A path P is a shortest $s \to t$ path for w if and only if it is a shortest $s \to t$ path from w'.

Lemma

G has a negative cycle if and only if G + s does.

Proof.

Easy: no cycle goes through s (only outgoing arcs).

Lemma

A path P is a shortest $s \to t$ path for w if and only if it is a shortest $s \to t$ path from w'.

Proof.

Cost of any $s \to t$ paths changes by h(s) - h(t):

•
$$P = s, x_1, x_2, \dots, x_k, t \Rightarrow w'(P) = (w(sx_1) + h(s) - h(x_1)) + (w(sx_2) + h(x_1) - h(x_2)) + \dots + (w(x_kt) + h(x_k) - h(t)) = w(P) + h(s) - h(t).$$

Michael Lampis Graph Algorithms October 10, 2025

Lemma

 $w'(ij) \ge 0$ for all $i, j \in V$.

Michael Lampis

Lemma

$$w'(ij) \ge 0$$
 for all $i, j \in V$.

Proof.

- $w'(ij) = w(ij) + h(i) h(j) \ge 0 \Leftrightarrow h(j) \le w(ij) + h(i)$
- \Leftrightarrow dist $(s,j) \leq$ dist(s,i) + w(ij).
- Follows from triangle inequality.

Conditional Impossibility Results

Michael Lampis Graph Algorithms October 10, 2025 24 / 33

State of the art

- Best algorithms for APSP take $O(n^3)$ time in worst case (even for positive weights).
- APSP for sparse graphs can be solved in $O(nm \log n)$ time (even for negative weights).

Can we do better?

State of the art

- Best algorithms for APSP take $O(n^3)$ time in worst case (even for positive weights).
- APSP for sparse graphs can be solved in $O(nm \log n)$ time (even for negative weights).

Can we do better?

- Is there a sub-cubic algorithm for APSP?
- Is there a sub-quadratic $(O(m^{2-\varepsilon}))$ algorithm if we are promised that m = O(n)?

APSP-equivalence

Is there a sub-cubic algorithm for APSP?

APSP-equivalence

Is there a sub-cubic algorithm for APSP? **We don't know!**

APSP-equivalence

Is there a sub-cubic algorithm for APSP?

We don't know!

Theorem

There is a sub-cubic algorithm for APSP if and only if there is a sub-cubic algorithm for one of the following:

- Computing the diameter
- Finding a negative triangle
- Finding the minimum-weight cycle
- Testing if a matrix satisfies triangle inequality
- . . .

Idea: either all these problems are easy, or all are hard...

26 / 33

Is there a sub-quadratic $(O(m^{2-\varepsilon}))$ algorithm for APSP if we are promised that m = O(n)?

Is there a sub-quadratic $(O(m^{2-\varepsilon}))$ algorithm for APSP if we are promised that m = O(n)? We don't know!

27 / 33

Is there a sub-quadratic $(O(m^{2-\varepsilon}))$ algorithm for APSP if we are promised that m = O(n)?

We don't know!

- Some care must be taken in defining the problem, as output has size $n^2 \Rightarrow$ no algorithm can produce it in sub-quadratic time.
- Instead, will consider closely related diameter problem: given G, compute the distance between x, y ∈ V which are at maximum distance.

Is there a sub-quadratic $(O(m^{2-\varepsilon}))$ algorithm for APSP if we are promised that m = O(n)?

We don't know!

- Some care must be taken in defining the problem, as output has size $n^2 \Rightarrow$ no algorithm can produce it in sub-quadratic time.
- Instead, will consider closely related diameter problem: given G, compute the distance between x, y ∈ V which are at maximum distance.
- We have **some** reasons to believe diameter needs at least quadratic time, even if m = O(n) and weights are positive.

Boolean CNF Satisfiability

Michael Lampis Graph Algorithms October 10, 2025 28 / 33

Boolean CNF Satisfiability

Attention: NOT a GRAPH PROBLEM!

28 / 33

Boolean CNF Satisfiability

- *n* Boolean variables x_1, x_2, \ldots, x_n .
- Literal: x_i or $\neg x_i$.
- Clause: A disjunction of literals.
 - Examples: $(x_1 \lor \neg x_2 \lor x_3), (x_4 \lor \neg x_5)$
- CNF Formula: A conjunction of clauses.
 - CNF: Conjunctive Normal Form
 - Example: $(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee \neg x_3) \wedge \dots$
- SAT: Given a CNF formula, decide if it is SATISFIABLE:
 - Does there exist a Boolean assignment to the variables that makes all clauses True?

• Is $(x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (x_3)$ satisfiable?

29 / 33

Michael Lampis Graph Algorithms October 10, 2025

- Is $(x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (x_3)$ satisfiable?
 - Yes! $x_1 = 1, x_2 = 1, x_3 = 1$ satisfies it.

- Is $(x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (x_3)$ satisfiable?
 - Yes! $x_1 = 1, x_2 = 1, x_3 = 1$ satisfies it.
- Is $(x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (x_3) \wedge (\neg x_2 \vee \neg x_3)$ satisfiable?

- Is $(x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (x_3)$ satisfiable?
 - Yes! $x_1 = 1, x_2 = 1, x_3 = 1$ satisfies it.
- Is $(x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (x_3) \wedge (\neg x_2 \vee \neg x_3)$ satisfiable?
 - Yes! $x_1 = 1, x_2 = 0, x_3 = 1$ satisfies it.

- Is $(x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (x_3)$ satisfiable?
 - Yes! $x_1 = 1, x_2 = 1, x_3 = 1$ satisfies it.
- Is $(x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (x_3) \wedge (\neg x_2 \vee \neg x_3)$ satisfiable?
 - Yes! $x_1 = 1, x_2 = 0, x_3 = 1$ satisfies it.
- Is $(x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (x_3) \wedge (\neg x_1 \vee \neg x_3)$ satisfiable?

- Is $(x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (x_3)$ satisfiable?
 - Yes! $x_1 = 1, x_2 = 1, x_3 = 1$ satisfies it.
- Is $(x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (x_3) \wedge (\neg x_2 \vee \neg x_3)$ satisfiable?
 - Yes! $x_1 = 1, x_2 = 0, x_3 = 1$ satisfies it.
- Is $(x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (x_3) \wedge (\neg x_1 \vee \neg x_3)$ satisfiable?
 - Yes! $x_1 = 0, x_2 = 0, x_3 = 1$ satisfies it.

- Is $(x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (x_3)$ satisfiable?
 - Yes! $x_1 = 1, x_2 = 1, x_3 = 1$ satisfies it.
- Is $(x_1 \lor \neg x_2) \land (x_2 \lor x_3) \land (x_3) \land (\neg x_2 \lor \neg x_3)$ satisfiable?
 - Yes! $x_1 = 1, x_2 = 0, x_3 = 1$ satisfies it.
- Is $(x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (x_3) \wedge (\neg x_1 \vee \neg x_3)$ satisfiable?
 - Yes! $x_1 = 0, x_2 = 0, x_3 = 1$ satisfies it.
- Is $(x_1 \lor \neg x_2) \land (x_2 \lor x_3) \land (x_3) \land (\neg x_1 \lor \neg x_3) \land (x_1 \lor x_2)$ satisfiable?

- Is $(x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (x_3)$ satisfiable?
 - Yes! $x_1 = 1, x_2 = 1, x_3 = 1$ satisfies it.
- Is $(x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (x_3) \wedge (\neg x_2 \vee \neg x_3)$ satisfiable?
 - Yes! $x_1 = 1, x_2 = 0, x_3 = 1$ satisfies it.
- Is $(x_1 \lor \neg x_2) \land (x_2 \lor x_3) \land (x_3) \land (\neg x_1 \lor \neg x_3)$ satisfiable?
 - Yes! $x_1 = 0, x_2 = 0, x_3 = 1$ satisfies it.
- Is $(x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (x_3) \wedge (\neg x_1 \vee \neg x_3) \wedge (x_1 \vee x_2)$ satisfiable?
 - No! (but proving it seems a little more ad-hoc)

SAT - state of the art

- Without (much) exageration, SAT is the most important algorithmic problem.
- Intuition: many problems have form "I'm looking for a good solution.
 I'll know it when I see it!"
 - Example: Bitcoin mining uses Proof-of-Work. We have a simple hash function f() and a target y. We need to find x such that f(x) = y.
 - Assumption: Must try out all possible x values.
- Key intuition: verification function f can be encoded as a CNF formula ⇒ solving SAT solves a generic search problem!

SAT - state of the art

- Without (much) exageration, SAT is the most important algorithmic problem.
- Intuition: many problems have form "I'm looking for a good solution.
 I'll know it when I see it!"
 - Example: Bitcoin mining uses Proof-of-Work. We have a simple hash function f() and a target y. We need to find x such that f(x) = y.
 - Assumption: Must try out all possible x values.
- Key intuition: verification function f can be encoded as a CNF formula ⇒ solving SAT solves a generic search problem!

Two possible conclusions:

If you solve SAT you will be rich!

SAT - state of the art

- Without (much) exageration, SAT is **the most important** algorithmic problem.
- Intuition: many problems have form "I'm looking for a good solution.
 I'll know it when I see it!"
 - Example: Bitcoin mining uses Proof-of-Work. We have a simple hash function f() and a target y. We need to find x such that f(x) = y.
 - Assumption: Must try out all possible x values.
- Key intuition: verification function f can be encoded as a CNF formula ⇒ solving SAT solves a generic search problem!

Two possible conclusions:

- If you solve SAT you will be rich!
- Solving SAT efficiently is probably impossible.

- SAT is the central problem of computational complexity theory.
- Does SAT have a poly-time algorithm?
 - Equivalent to P=NP? question.
 - Technically open (1,000,000\$ prize!), consensus is $P \neq NP$.

- SAT is the central problem of computational complexity theory.
- Does SAT have a poly-time algorithm?
 - Equivalent to P=NP? question.
 - Technically open (1,000,000\$ prize!), consensus is $P \neq NP$.
- Best algorithm essentially 2^n time.
- Does SAT have a $(1.99)^n$ -time algorithm?

- SAT is the central problem of computational complexity theory.
- Does SAT have a poly-time algorithm?
 - Equivalent to P=NP? question.
 - Technically open (1,000,000\$ prize!), consensus is $P \neq NP$.
- Best algorithm essentially 2^n time.
- Does SAT have a $(1.99)^n$ -time algorithm?
 - At the moment NO!
 - Conjecture that no such algorithm exists is called STRONG EXPONENTIAL TIME HYPOTHESIS (SETH).
 - Wide open problem!

- SAT is the central problem of computational complexity theory.
- Does SAT have a poly-time algorithm?
 - Equivalent to P=NP? question.
 - Technically open (1,000,000\$ prize!), consensus is $P \neq NP$.
- Best algorithm essentially 2^n time.
- Does SAT have a $(1.99)^n$ -time algorithm?
 - At the moment NO!
 - Conjecture that no such algorithm exists is called STRONG EXPONENTIAL TIME HYPOTHESIS (SETH).
 - Wide open problem!
- Fine, what does this have to do with graph algorithms?

ullet High-level idea: **reduce** SAT to a diameter computation, so that if we have a fast algorithm for computing the diameter, we have a fast algorithm for SAT.

- \bullet High-level idea: **reduce** SAT to a diameter computation, so that if we have a fast algorithm for computing the diameter, we have a fast algorithm for SAT.
- Given: CNF formula with *n* variables, *m* clauses.
- Output: G with $N = O(2^{n/2} + m)$ vertices, $M = O(2^{n/2} + m)$ edges.
- G has diameter 3 if formula is satisfiable.
- G has diameter 2 if formula is not satisfiable.

- \bullet High-level idea: **reduce** SAT to a diameter computation, so that if we have a fast algorithm for computing the diameter, we have a fast algorithm for SAT.
- Given: CNF formula with *n* variables, *m* clauses.
- Output: G with $N = O(2^{n/2} + m)$ vertices, $M = O(2^{n/2} + m)$ edges.
- G has diameter 3 if formula is satisfiable.
- G has diameter 2 if formula is not satisfiable.
- If $M^{1.99}$ time algorithm exists for diameter, use it to decide satisfiability in time $(2^{n/2})^{1.99} < (1.99999)^n$.
- ullet Breakthrough in diameter computation \Rightarrow breakthrough for SAT

Sketch:

- Partition variables into two sets $x_1, \ldots, x_{n/2}$ and $x_{n/2+1}, \ldots, x_n$.
- Construct one vertex for each truth assignment to each set $\Rightarrow 2 \cdot 2^{n/2}$ vertices so far. Call these sets L, R.
- Construct a vertex for each clause. For clause c and assignment σ put the edge $c\sigma$ if σ fails to satisfy c.
- Add a common neighbor to L, a common neighbor to R, make them adjacent to each other and all clauses.

Sketch:

- Partition variables into two sets $x_1, \ldots, x_{n/2}$ and $x_{n/2+1}, \ldots, x_n$.
- Construct one vertex for each truth assignment to each set $\Rightarrow 2 \cdot 2^{n/2}$ vertices so far. Call these sets L, R.
- Construct a vertex for each clause. For clause c and assignment σ put the edge $c\sigma$ if σ fails to satisfy c.
- Add a common neighbor to L, a common neighbor to R, make them adjacent to each other and all clauses.
- Only two vertices (possibly) at distance 3: an assignment from L and an assignment from R which have no common neighbor ⇒ form a satisfying assignment.