Graph Algorithms

Minimum Spanning Trees

Michael Lampis

November 13, 2025

Michael Lampis Graph Algorithms November 13, 2025 1/38

-
The story so far

@ (Short) Reachability problems:

o Is there a path from s to t? (Strongly) connected components? ...
o What is the shortest path from s to t? From everyone to everyone?

Michael Lampis Graph Algorithms November 13, 2025 2/38

-
The story so far

@ (Short) Reachability problems:

o Is there a path from s to t? (Strongly) connected components? ...
o What is the shortest path from s to t? From everyone to everyone?

o Algorithms:
o Unweighted Reachability: BFS/DFS O(m + n) time
e Single-Source Shortest Paths:
e Unweighted: BFS O(m + n) time
o Positive weights: Dijkstra O((m + n) log n) time (with min-heaps)
o General weights: Bellman-Ford O(mn) time

Michael Lampis Graph Algorithms November 13, 2025 2/38

-
The story so far

@ (Short) Reachability problems:
o Is there a path from s to t? (Strongly) connected components? ...
o What is the shortest path from s to t? From everyone to everyone?
o Algorithms:

o Unweighted Reachability: BFS/DFS O(m + n) time
e Single-Source Shortest Paths:
e Unweighted: BFS O(m + n) time
o Positive weights: Dijkstra O((m + n) log n) time (with min-heaps)
o General weights: Bellman-Ford O(mn) time
@ New problem: Minimum Weight Spanning Tree
e Find minimum weight set of edges that maintains connectedness.

Michael Lampis Graph Algorithms November 13, 2025 2/38

Problem Definition

Problem Definition

Michael Lampis Graph Algorithms November 13, 2025 3/38

Problem Definition

Definition

Definition

For a connected, edge-weighted graph G = (V, E), a Minimum Weight
Spanning Tree is a set of edges E/ C E such that

Q@ G =(V,E') is connected.
@ The weight of E’ is minimum among sets satisfying (1).

Michael Lampis Graph Algorithms November 13, 2025 4/38

Problem Definition

Definition

Definition
For a connected, edge-weighted graph G = (V, E), a Minimum Weight
Spanning Tree is a set of edges E/ C E such that

Q@ G =(V,E') is connected.

@ The weight of E’ is minimum among sets satisfying (1).

Two keywords:
@ Tree: a connected graph without cycles.

@ Spanning: a subgraph touching all vertices.

Michael Lampis Graph Algorithms November 13, 2025 4/38

Problem Definition

Example

Michael Lampis Graph Algorithms November 13, 2025 5/38

Problem Definition

Example

This is a tree, but it is not
spanning.

Michael Lampis Graph Algorithms November 13, 2025 5/38

Problem Definition

Example

This is a tree, and it is
spanning.

Michael Lampis Graph Algorithms November 13, 2025 5/38

Problem Definition

Example

This is not a tree (not
connected), it is spanning.

Michael Lampis Graph Algorithms November 13, 2025 5/38

Problem Definition

Example

This is not a tree (contains
cycle), it is spanning.

Michael Lampis Graph Algorithms November 13, 2025 5/38

Problem Definition

Example

Michael Lampis

Graph Algorithms

This is better than the
previous spanning tree
(exchanged weight 15 with
weight 12). Can we do
better?

November 13, 2025 5/38

Problem Definition

Example

Take a cheap edge, add it to
the solution (now we don't
have a tree any more).

Michael Lampis Graph Algorithms November 13, 2025 5/38

Problem Definition

Example

Remove something more
expensive from the resulting
cycle.

Michael Lampis Graph Algorithms November 13, 2025 5/38

Problem Definition

Trees

Definition
A tree is a connected acyclic undirected graph.

Michael Lampis Graph Algorithms November 13, 2025 6/38

Problem Definition

Trees

Definition
A tree is a connected acyclic undirected graph.

@ The above is the standard definition in graph theory.

@ In computer science, we often deal with rooted trees
o One special vertex is called the root.

o All vertices have exactly one parent, except the root which has none.

@ The two definitions are equivalent, if we don't care about a specific
root (which we don't in the MST context).

Michael Lampis Graph Algorithms November 13, 2025

6/38

Problem Definition

Trees

Definition
A tree is a connected acyclic undirected graph.

@ The above is the standard definition in graph theory.

@ In computer science, we often deal with rooted trees
o One special vertex is called the root.

o All vertices have exactly one parent, except the root which has none.

The two definitions are equivalent, if we don't care about a specific
root (which we don't in the MST context).

@ A disconnected union of trees is called a forest.

Michael Lampis Graph Algorithms November 13, 2025

6/38

Problem Definition

Basic properties

Lemma

If C is a cycle of G = (V,E) and e € C an edge of C, then G — e has the
same connected components as G.

Lemma
In a tree, there is a unique path between any two vertices.

Lemma

A tree on n vertices has exactly n — 1 edges.

Michael Lampis Graph Algorithms November 13, 2025 7/38

Problem Definition

Lemma

A tree on n vertices has exactly n — 1 edges.

Michael Lampis Graph Algorithms November 13, 2025 8/38

Problem Definition

Lemma

A tree on n vertices has exactly n — 1 edges.

Proof.

More strongly: (i) A forest on n vertices with ¢ < n — 1 edges has exactly
n — ¢ components (ii) A tree cannot have > n edges.

@ (i) For ¢ = 0 true: all vertices are in distinct components.

@ (i) Inductive step: removing an edge increases the number of
components by 1.

o (ii) Take a minimum counter-example graph G, take an edge e
o If e = xy is not a bridge: there is another x — y path, we have a cycle,
contradiction.
o If e is a bridge, G — e has two components C;, C;, and
> |G| 4+ |G| — 1 edges, so one component is a smaller forest with too
many edges, contradiction.

0

Michael Lampis Graph Algorithms November 13, 2025 8/38

Problem Definition

Tree characterizations

Theorem

Consider the following three properties of an undirected graph G:
@ G is acyclic

@ G is connected

© G has n—1 edges

Any graph that satisfies two of these properties, must also satisfy the third.

Michael Lampis Graph Algorithms November 13, 2025 9/38

Problem Definition

Tree characterizations

Theorem

Consider the following three properties of an undirected graph G:
@ G is acyclic
@ G is connected
© G has n—1 edges

Any graph that satisfies two of these properties, must also satisfy the third.

Proof.

See you next year for a full proof of this and other characterizations of the
class of trees!

0J

Michael Lampis Graph Algorithms November 13, 2025 9/38

Prim's Algorithm

Prim's Algorithm

Michael Lampis Graph Algorithms November 13, 2025 10/38

Outline

@ Input: An undirected, connected, edge-weighted graph G (could have
negative weights).

@ Output: A spanning tree of G of minimum weight.

Michael Lampis Graph Algorithms November 13, 2025 11/38

Outline

Input: An undirected, connected, edge-weighted graph G (could have
negative weights).

@ Output: A spanning tree of G of minimum weight.

o Strategy: greedy algorithm

@ Start from an arbitrary vertex s, maintain a tree T containing s
@ At every step add to the tree the vertex that is closest to T

Michael Lampis Graph Algorithms November 13, 2025 11/38

Outline

Input: An undirected, connected, edge-weighted graph G (could have
negative weights).

@ Output: A spanning tree of G of minimum weight.

o Strategy: greedy algorithm

@ Start from an arbitrary vertex s, maintain a tree T containing s
@ At every step add to the tree the vertex that is closest to T

Compare to Dijkstra’s algorithm
@ At every step add to the tree the vertex that is closest to s

Michael Lampis Graph Algorithms November 13, 2025 11/38

Prim's Algorithm

Prim’s algorithm

1. Initialize (dist[1...n] = oo, parent[1l...n] + NULL, etc.)
2: Initialize Q< 0

3: Q.Insert(s,0)

4. while Q not empty do

5: u +Q.Extract()

6: forve NT(u) do

7: if dist[v]>dist[u]+w(u,v) then > Shortcut found
8: Parent[v] «+ u

9: dist[v] < dist[u]+w(u, v)

10: Q.Decrease(v,dist[v])

11: end if

12: end for

13: end while

Michael Lampis Graph Algorithms November 13, 2025 12/38

Prim's Algorithm

Prim’s algorithm

1. Initialize (dist[1...n] = oo, parent[1l...n] + NULL, etc.)
2: Initialize Q< 0 , T « {s}

3: Q.Insert(s,0)

4. while Q not empty do

5: u +Q.Extract() , T «+ T U {u}

6: forve NT(u)\T do

7: if dist[v]> w(u,v) then > Shortcut found
8: Parent[v] <+ u

9: dist[v] < w(u,v)

10: Q.Decrease(v,dist[v])

11: end if

12: end for

13: end while

Michael Lampis Graph Algorithms November 13, 2025 12/38

Dijkstra to Prim

@ General strategy:

o For Dijkstra: keep track of distances from s
e For Prim: keep track of distances from T, the tree that contains s

o Output:
e For Dijkstra: shortest-path tree from s
o For Prim: Minimum-weight Spanning Tree (MST) (independently of
choice of s)

o Complexity:

For both: O(m + n) Priority Queue Operations

Priority Queue implemented via Min-Heap = O(log n) per operation
Time complexity: O((m + n) log n).

]
]
]
o (As usual, assuming arithmetic operations are O(1) time...)

Michael Lampis Graph Algorithms November 13, 2025 13/38

Distances:

a 0

b [eS)
c oo
d =)
e oo
f [eS)
g oo
h =)
i oo

Priority Queue:
(0, a)

Legend:

@ White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

Michael Lampis Graph Algorithms November 13, 2025 14 /38

Distances:

a 0

b [eS)
c oo
d =)
e oo
f [eS)
g oo
h =)
i oo

Priority Queue:
(0, a)

Legend:

@ White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

Michael Lampis Graph Algorithms November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority
(17, b)

Legend:
"]

833888857

Queue:

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:
a 0
b 17
c 12
d =)
e [eS)
f [eS)
g [eS)
h =)
i oo
Priority Queue:
(12, ¢), (17, b)
Legend:
@ White vertex — no path found.
@ Gray vertex — some path found.
@ Black vertex — vertex is in T.
@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ VYellow edge — considered edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority
(12, ¢),

Legend:
"]

20

[ee]

Queue:
(17, b), (20, h)

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority
(17, b),

Legend:
"]

17
12
oo
0o
oo
oo

20
oo

Queue:
(20, h)

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority
(15, b),

Legend:
"]

15
12
oo
0o
oo
oo

20
oo

Queue:
(20, h)

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority
(15, b),

Legend:
"]

Queue:
(19, d), (20, h)

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority
(L),

Legend:
"]

20

Queue:
(15, b), (19, d), (20, h)

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority Queue:
(9, h), (11, e), (15, b), (19, d)

Legend:

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority
(L),

Legend:
"]

Queue:
(15, b), (19, d)

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority Queue:
(7,d), (11, ¢), (15, b)

Legend:

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority
(L),

Legend:
"]

Queue:
(15, b)

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority Queue:
(5,), (15, b)

Legend:

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority Queue:
(5, €), (15, b), (21, f)

Legend:

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority
(15, b),

Legend:
"]

Queue:
1,1

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority
(15, b),

Legend:
"]

Queue:
1,1

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority
(12,8),

Legend:
"]

Queue:
(15, b), (21, f)

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority
(15, b),

Legend:
"]

Queue:
1,1

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority
(10, b),

Legend:
"]

Queue:
1,1

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority
(10, b),

Legend:
"]

Queue:

(13, 1)

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

13
12
9

21

Priority Queue:

(10, b),

Legend:

(13, 1), (21, 1)

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

13
12
9

21

Priority Queue:

(13, 1),

Legend:

(21, 1)

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority
(13, 1),

Legend:
"]

13
12
9

16

Queue:

(16, 1)

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority
(16, 1)

Legend:
"]

13
12
9

16

Queue:

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority Queue:

(8,1

Legend:

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

Distances:

—TMm -0 a0 oW

Priority Queue:

Legend:

White vertex — no path found.
Gray vertex — some path found.
Black vertex — vertex is in T.
Black edge — not yet considered.
Blue edge — tree edge.

Yellow edge — considered edge.

Dotted edge — non-optimal edge.

November 13, 2025 14 /38

Prim's Algorithm

Proof of correctness

High-level strategy:

@ Prim’s algorithm definitively adds an edge to the tree each time we
extract a vertex from the queue.

@ Easier to see: Prim produces a spanning tree, because we add n — 1
edges, produce a tree rooted at the initial vertex.

@ Induction: assuming there exists an optimal MST containing the first
i edges added, there exists an optimal solution also containing the
first i + 1 edges added.

@ Why is the new edge optimal?

Michael Lampis Graph Algorithms November 13, 2025 15/38

Light edges

Definition

Let G = (V, E) be an edge-weighted undirected graph, S C V, and e € E
such that e has exactly one endpoint in S. Then, e is a light edge for set S
if it has minimum weight among all edges with exactly one endpoint in S.

Michael Lampis Graph Algorithms November 13, 2025 16 /38

Light edges

Definition

Let G = (V, E) be an edge-weighted undirected graph, S C V, and e € E
such that e has exactly one endpoint in S. Then, e is a light edge for set S
if it has minimum weight among all edges with exactly one endpoint in S.

Lemma

Let G, S, e as above and e a light edge for S. Let A be a set of edges with
0 or 2 endpoints in S such that A C T*, for some optimal MST T*.

Then, there exists an optimal MST that contains AU {e}.

Michael Lampis Graph Algorithms November 13, 2025 16 /38

Prim's Algorithm

Example

Michael Lampis

Graph Algorithms

S={a,c,d e, g, h}

Blue edges are contained in some
optimal solution

Edge bg is light for S

= safe to add to current solution.

November 13, 2025

17/38

Prim's Algorithm

Lemma

Let G, S, e as previously and e a light edge for S. Let A be a set of edges
with O or 2 endpoints in S such that A C T*, for some optimal MST T*.
Then, there exists an optimal MST that contains AU {e}.

Michael Lampis Graph Algorithms November 13, 2025 18 /38

Prim's Algorithm

Lemma

Let G, S, e as previously and e a light edge for S. Let A be a set of edges
with O or 2 endpoints in S such that A C T*, for some optimal MST T*.
Then, there exists an optimal MST that contains AU {e}.

Proof.

e If T* contains e, done!

@ Otherwise, let e = xy with x € S,y ¢ S. Add e to T*.

@ We have a cycle, which must use another edge ¢’ with one endpoint
in S.

e =€ dA

o w(e') > w(e) as e is light.

@ Remove ¢’ to obtain a better (or equally good) spanning tree that
contains AU {e}

L]

Michael Lampis Graph Algorithms November 13, 2025 18 /38

Prim's Algorithm

Theorem
Prim’s algorithm is correct.

Michael Lampis Graph Algorithms November 13, 2025 19/38

Prim's Algorithm

Theorem
Prim’s algorithm is correct.

Proof.
Claim: every edge added is light for the set of vertices incident on
previously selected vertices.

@ Let T; be the tree we have after / iterations.

@ Suppose we now add edge xy, with x just extracted from queue, but
edge x'y’ has w(x'y’") < w(xy), with x,x’ € T; and y,y' & T;.

@ We have extracted y’ in some previous iterations, so the distance we
have calculated for x” is w(x'y’) < w(xy), which is the distance we
have for x. This contradicts the selection of x (we should have
extracted x').

Michael Lampis Graph Algorithms November 13, 2025 19/38

Prim's Algorithm

Theorem
Prim’s algorithm is correct.

Proof.
Claim: every edge added is light for the set of vertices incident on
previously selected vertices.

@ Let T; be the tree we have after / iterations.

@ Suppose we now add edge xy, with x just extracted from queue, but
edge x'y’ has w(x'y’") < w(xy), with x,x’ € T; and y,y' & T;.

@ We have extracted y’ in some previous iterations, so the distance we
have calculated for x” is w(x'y’) < w(xy), which is the distance we
have for x. This contradicts the selection of x (we should have
extracted x').

To complete the proof, apply the lemma n — 1 times.

O

Michael Lampis Graph Algorithms November 13, 2025 19/38

Kruskal's Algorithm

Kruskal's Algorithm

Michael Lampis Graph Algorithms November 13, 2025 20/38

Kruskal's Algorithm

@ Solves the same problem as Prim'’s algorithm (MST)
o Also, greedy strategy.

o Difference: instead of growing a tree, we greedily grow a forest, at
each step adding the least expensive edge.

e “Comparable” complexity to Prim (more on this later)

Michael Lampis Graph Algorithms November 13, 2025 21/38

Kruskal's Algorithm

Kruskal's algorithm

Sort edges ey, ..., en in increasing order of weight.
T+ 0
for i=1to mdo

if TU{ei} has no cycle then

T+ TuU {e,-}

end if
end for
Output T

@ Nk

Michael Lampis Graph Algorithms November 13, 2025 22/38

Kruskal's Algorithm

Kruskal's algorithm

Sort edges ey, ..., en in increasing order of weight.
T+ 0
for i=1to mdo
if T U {e;j} has no cycle then > How to check this?
T+ TuU {e,-}
end if
end for
Output T

@ Nk

Michael Lampis Graph Algorithms November 13, 2025 22/38

Kruskal's Algorithm

Kruskal's algorithm

@ Nk

Sort edges ey, ..., en in increasing order of weight.

T+ 0

for i=1to mdo > Alternatively, end when T has n — 1 edges
if T U {e;j} has no cycle then > How to check this?

T+ TuU {e,-}

end if

end for

Output T

Michael Lampis Graph Algorithms November 13, 2025 22/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5
dh 7
fi 8
ch 9
bg 10
ce 11
ac 12
eg 12
fg 13
bc 15
bi 16
ab 17
cd 19
ah 20
df 21
gi 21
ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

Michael Lampis Graph Algorithms November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5 —

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5 —

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7 —

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7 —

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8 —

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8 —

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9 —

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9 —

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10 —

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10 —

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11 —

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11 —

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12 —

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12 —

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12 “—

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12 “—

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13 —

bc 15

bi 16

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13 —

bc 15

bi 16

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15 —

bi 16

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15 —

bi 16

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16 —

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16 —

ab 17

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17 —

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17 —

cd 19

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19 “—

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19 “—

ah 20

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20 —

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20 —

df 21

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20

df 21 —

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20

df 21 —

gi 21

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20

df 21

gi 21 <

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20

df 21

gi 21 <

ef 27
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Sorted list of edges:

Michael Lampis Graph Algorithms

Edge Weight

de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15

bi 16

ab 17

cd 19

ah 20

df 21

gi 21

ef 27 <
Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Example

Michael Lampis Graph Algorithms

Sorted list of edges:
Edge Weight
de 5
dh 7
fi 8
ch 9
bg 10
ce 11
ac 12
eg 12
fg 13
bc 15
bi 16
ab 17
cd 19
ah 20
df 21
gi 21
ef 27 <

Legend:

@ Black edge — not yet considered.
@ Blue edge — tree edge.
@ Dotted edge — non-optimal edge.

November 13, 2025 23/38

Kruskal's Algorithm

Proof of correctness

Theorem
Kruskal's algorithm outputs a spanning tree of minimum weight.

Michael Lampis Graph Algorithms November 13, 2025 24 /38

Proof of correctness

Theorem

Kruskal's algorithm outputs a spanning tree of minimum weight.

Proof.

@ Easy to see that algorithm outputs some spanning tree

o We consider all edges, only refuse one if we already have a path
between its endpoints.

o Let E; ={e1,...,e} and S; C E; be the set of edges selected by
Kruskal from E;.

@ Claim: for all /, there exists a minimum spanning tree T* with
S5 C T

o If claim is correct = Kruskal is correct.

Michael Lampis Graph Algorithms November 13, 2025 24 /38

Kruskal's Algorithm

Lemma
For all i, there exists a minimum spanning tree T* with S; C T*.

Michael Lampis Graph Algorithms November 13, 2025 25/38

Kruskal's Algorithm

Lemma
For all i, there exists a minimum spanning tree T* with S; C T*.

Proof.

Proof by induction:
o /i =0, easy.
o /=1, easy(?)

Michael Lampis Graph Algorithms November 13, 2025 25/38

Kruskal's Algorithm

Lemma

For all i, there exists a minimum spanning tree T* with S; C T*.

Proof.

Proof by induction:
o /i =0, easy.
o /=1, easy(?)

o If e =xy, set S = {x} and ¢ is light for S.

Michael Lampis Graph Algorithms

November 13, 2025

25/38

Kruskal's Algorithm

Lemma
For all i, there exists a minimum spanning tree T* with S; C T*.

Proof.
Proof by induction:
o /i =0, easy.
o /=1, easy(?)
o If g = xy, set S = {x} and ¢ is light for S.

Suppose true for i, show for i + 1:

If Kruskal does not select e;;1, done!

If it does and e;11 = xy, let C, C’' be the components of x,y in G[S/].
e C,(C’ are distinct, because Kruskal accepted e;,1.

@ Observation: e;,1 is light for C, all edges of S; have 0 or 2 endpoints
in C.

O

Michael Lampis Graph Algorithms November 13, 2025 25/38

Complexity Analysis

Step 1: sort edges = O(mlog n)

Repeat m times, check if adding e = xy adds a cycle

o Need to check if path x — y already exists.
o Can be done in O(m) for connected graphs.

Complexity: O(m?), much worse than Prim!
Can we do better?

Michael Lampis Graph Algorithms November 13, 2025 26 /38

Union-Find

We need two operations:

e (Find): Given two vertices x, y, check if x, y are already in same
connected component.

@ (Union): Merge the components of two given vertices x, y.
Where we need these:
@ Find: test if adding the edge e = xy creates a cycle.

@ Union: if not, we add e to the graph, so the two components become
one.

Michael Lampis Graph Algorithms November 13, 2025 27/38

Kruskal's Algorithm

Union-Find naively

o Create an array Comp[l...n] such that C[i] is the component
number of vertex i.

o Initially Compl[i] =i for all i € {1,..., n}.
e Find: check if Compl[i] == Compl|j]
@ Union:

1. procedure UNION(i,j)

2 ¢ < Complj]

3 for k=1 to ndo

4 if Comp[k] == ¢, then
5: Comp[k] <— Compli]
6 end if

7 end for

8. end procedure

Michael Lampis Graph Algorithms November 13, 2025 28/38

Kruskal's Algorithm

Analysis of naive solution

Find takes constant time (good!)
Union takes O(n) time (bad!)
Total complexity: O(mn)
o Slightly better than running a connectivity algorithm each time
(0(m?))

Can we do better?

Michael Lampis Graph Algorithms November 13, 2025

29/38

Faster Union-Find

@ We define two attributes for each vertex v

o The leader of v, denoted v.¢ is (supposed to be) a vertex (possibly v
itself) that is the most important in v's component.
e The rank of v, denoted v.r gives an idea of the size of v's component.

o Initially, v.l < v, v.r < 1 for all v.

Michael Lampis Graph Algorithms November 13, 2025 30/38

Faster Union-Find

@ We define two attributes for each vertex v

o The leader of v, denoted v.¢ is (supposed to be) a vertex (possibly v
itself) that is the most important in v's component.
e The rank of v, denoted v.r gives an idea of the size of v's component.

o Initially, v.l < v, v.r < 1 for all v.
Key ideas:

@ To check if x, y are in the same component, we check if they have
the same leader.

@ When we merge, the leader of the new component is the leader of the
larger component (based on rank).

Michael Lampis Graph Algorithms November 13, 2025 30/38

Algorithms — Find

1. procedure FIND-SET(x) > Returns the leader of x's component
2 if x./ == x then > x is a leader
3: Return x

4: else

5 Return Find-Set(x./)

6 end if

7. end procedure

Michael Lampis Graph Algorithms November 13, 2025 31/38

Algorithms — Find

1. procedure FIND-SET(x) > Returns the leader of x's component
2 if x./ == x then > x is a leader
3: Return x

4 else

5: Return Find-Set(x./)

6: end if

7. end procedure
To check if e = xy creates a cycle check if Find-Set(x)==Find-Set(y).

Michael Lampis Graph Algorithms November 13, 2025 31/38

Algorithms — Union

1. procedure UNION(x, y) > Assume x, y are leaders
2 if x.r > y.r then

3 yAl <+ x > y not a leader anymore
4 else

5: xt+y

6 if x.r == y.r then

7 y.r++ > Merged two equal rank components
8 end if

9: end if

10: end procedure

Michael Lampis Graph Algorithms November 13, 2025 32/38

Kruskal's Algorithm

Algorithms — Union

1. procedure UNION(x, y) > Assume x, y are leaders
2 if x.r > y.r then

3 yAl <+ x > y not a leader anymore
4 else

5: xt+y

6 if x.r == y.r then

7 y.r++ > Merged two equal rank components
8 end if

9: end if

10: end procedure
To merge two arbitrary z, w, call Union(Find-Set(z),Find-Set(w)).

Michael Lampis Graph Algorithms November 13, 2025 32/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5
dh 7
fi 8
ch 9
bg 10
ce 11
ac 12
eg 12
fg 13
be 15
bi 16
ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
- Tm 0 an oo
RFRRRRRRRR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5 —
dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

be 15

bi 16

ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
- Tm 0 an oo
RFRRRRRRRR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5 —
dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

be 15

bi 16

ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
—Tm o000 oW
RFRRRRNRRR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7 —
fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

be 15

bi 16

ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
—Tm o000 oW
RFRRRRNRRR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7 —
fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

be 15

bi 16

ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
—am h"o0n oW
RFRRRRNRRR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7

fi 8 —
ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

be 15

bi 16

ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
—am h"o0n oW
RFRRRRNRRR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7

fi 8 —
ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

be 15

bi 16

ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
“~om ho0n oW
FRRNRNRRR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7

fi 8

ch 9 <
bg 10

ce 11

ac 12

eg 12

fg 13

be 15

bi 16

ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
“~om ho0n oW
FRRNRNRRR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7

fi 8

ch 9 <
bg 10

ce 11

ac 12

eg 12

fg 13

be 15

bi 16

ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
“~om h"o00 oW
FRRNRNRRR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7

fi 8

ch 9

bg 10 “—
ce 11

ac 12

eg 12

fg 13

be 15

bi 16

ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
“~om h"o00 oW
FRRNRNRRR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7

fi 8

ch 9

bg 10 “—
ce 11

ac 12

eg 12

fg 13

be 15

bi 16

ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
~o o o0 oTw
FRRNRNRNR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7

fi 8

ch 9

bg 10

ce 11 —
ac 12

eg 12

fg 13

be 15

bi 16

ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
~o o o0 oTw
FRRNRNRNR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7

fi 8

ch 9

bg 10

ce 11 —
ac 12

eg 12

fg 13

be 15

bi 16

ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
~o o o0 oTw
FRRNRNRNR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12 —
eg 12

fg 13

be 15

bi 16

ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
~o o o0 oTw
FRRNRNRNR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12 —
eg 12

fg 13

be 15

bi 16

ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
“~0o o haoaoa
FRRNRNRNR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12 —
fg 13

be 15

bi 16

ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
“~0o o haoaoa
FRRNRNRNR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12 —
fg 13

be 15

bi 16

ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
“~oohooTaoaoa
FRRNRNRWR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13 —
be 15

bi 16

ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
“~oohooTaoaoa
FRRNRNRWR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13 —
be 15

bi 16

ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
oo o Qoo Q)
FRRNRNRWR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15 —
bi 16

ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
oo o Qoo Q)
FRRNRNRWR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

bc 15 —
bi 16

ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
oo o Qoo Q)
FRRNRNRWR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

be 15

bi 16 —
ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
oo o Qoo Q)
FRRNRNRWR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

be 15

bi 16 —
ab 17

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
oo o Qoo Q)
FRRNRNRWR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

be 15

bi 16

ab 17 “—

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
oo o Qoo Q)
FRRNRNRWR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Kruskal's Algorithm

Example

Sorted list of edges:

Edge Weight
de 5

dh 7

fi 8

ch 9

bg 10

ce 11

ac 12

eg 12

fg 13

be 15

bi 16

ab 17 “—

Ranks and leaders:
Vertex Leader Rank

- Tm 0 Q0T
oo o Qoo Q)
FRRNRNRWR

Michael Lampis Graph Algorithms November 13, 2025 33/38

Analysis

Lemma

All vertices have rank at most O(log n).

Lemma
Find-Set takes time O(log n).

Theorem
Kruskal's algorithm runs in time O(mlog n).

Michael Lampis Graph Algorithms November 13, 2025 34/38

Kruskal's Algorithm

Lemma

All vertices have rank at most O(log n).

Michael Lampis Graph Algorithms November 13, 2025 35/38

Kruskal's Algorithm

Lemma
All vertices have rank at most O(log n).

Proof.
Equivalently: if a vertex has rank i, its component has at least 2/~1
vertices.
@ For i =1, correct.
@ A vertex attains rank / 4 1 if it had rank i and it is the leader of a
component merged with another one whose leader has rank i.
@ Inductive hypothesis: both components have > 2i=1 vertices, so > 2/
vertices in total.

O

Michael Lampis Graph Algorithms November 13, 2025 35/38

Kruskal's Algorithm

Lemma
Find-Set takes time O(log n).

Michael Lampis Graph Algorithms November 13, 2025 36/38

Kruskal's Algorithm

Lemma
Find-Set takes time O(log n).

Proof.

@ Observation: if x.l # x, then x.l.r > x.r (my leader has higher rank)
e Proof by induction, whenever we modify a leader the condition is true.

@ Find-Set either returns immediately, or calls itself on a vertex with
higher rank.

@ Since ranks are at most O(log n), the lemma follows.

Michael Lampis Graph Algorithms November 13, 2025 36/38

Kruskal's Algorithm

Theorem

Kruskal's algorithm runs in time O(mlog n).

Michael Lampis Graph Algorithms November 13, 2025 37/38

Kruskal's Algorithm

Theorem
Kruskal's algorithm runs in time O(mlog n).

Proof.
@ Repeat m times:

@ Run two Find-Set calls for edge e = xy to find the leaders of the
components of x, y

o If leaders are the same, continue to next edge
e If not, treat the two leaders in O(1) time.

@ Total complexity: O(mlog n)

Michael Lampis Graph Algorithms November 13, 2025 37/38

Going further

A further improvement is possible:

1. procedure FIND-SET(x) > Returns the leader of x's component
2 if x.{/ == x then > x is a leader
3 Return x

4: else

5 Return Find-Set(x.¢)

6 end if

7: end procedure

Michael Lampis Graph Algorithms November 13, 2025 38/38

Going further

A further improvement is possible:

1. procedure FIND-SET(x) > Returns the leader of x's component
2 if x.{ == x then > x is a leader
3 Return x

4 else

5: x.£ < Find-Set(x.0)

6: Return x.¢ > Path Compression
7 end if

8: end procedure

@ The improved version actually runs in O(ma(n)) where «(n) is the
inverse Ackermann function (significantly less than log n).

@ Analysis too complicated for this course.
@ So, if edges are pre-sorted, Kruskal is slightly faster than Prim!

Michael Lampis Graph Algorithms November 13, 2025 38/38

Kruskal's Algorithm

Summary

Minimum Spanning Tree Algorithms:

@ Input: Connected undirected graph G with edge weights

@ Prim’s: greedily extend the current tree
o Complexity: O(mlog n) (using min-heaps)

o Kruskal's: greedily extend the current forest
o Complexity: O(mlog n) (using Union-Find with ranks)
o Complexity: O(ma(n)) (using Union-Find with ranks and path

compression, if edges are pre-sorted)

Michael Lampis Graph Algorithms November 13, 2025

39/38

	Problem Definition
	Prim's Algorithm
	Kruskal's Algorithm

