Graph Algorithms Minimum Spanning Trees

Michael Lampis

November 13, 2025

The story so far

- (Short) Reachability problems:
 - Is there a path from s to t? (Strongly) connected components? . . .
 - What is the shortest path from s to t? From everyone to everyone?

The story so far

- (Short) Reachability problems:
 - Is there a path from s to t? (Strongly) connected components? . . .
 - What is the shortest path from s to t? From everyone to everyone?
- Algorithms:
 - Unweighted Reachability: BFS/DFS O(m+n) time
 - Single-Source Shortest Paths:
 - Unweighted: BFS O(m+n) time
 - Positive weights: Dijkstra $O((m+n)\log n)$ time (with min-heaps)
 - General weights: Bellman-Ford O(mn) time

The story so far

- (Short) Reachability problems:
 - Is there a path from s to t? (Strongly) connected components? . . .
 - What is the shortest path from s to t? From everyone to everyone?
- Algorithms:
 - Unweighted Reachability: BFS/DFS O(m+n) time
 - Single-Source Shortest Paths:
 - Unweighted: BFS O(m+n) time
 - Positive weights: Dijkstra $O((m+n)\log n)$ time (with min-heaps)
 - General weights: Bellman-Ford O(mn) time
- New problem: Minimum Weight Spanning Tree
 - Find minimum weight set of edges that maintains connectedness.

Problem Definition

Michael Lampis

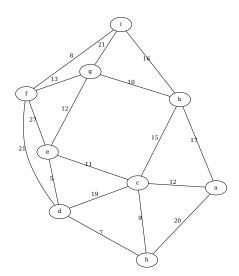
Definition

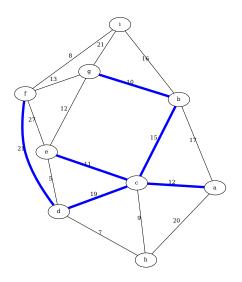
Definition

For a connected, edge-weighted graph G = (V, E), a **Minimum Weight** Spanning Tree is a set of edges $E' \subseteq E$ such that

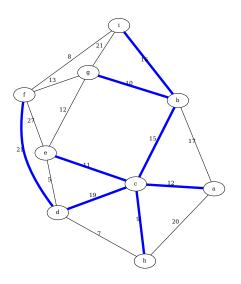
- G = (V, E') is connected.
- ② The weight of E' is minimum among sets satisfying (1).

Definition

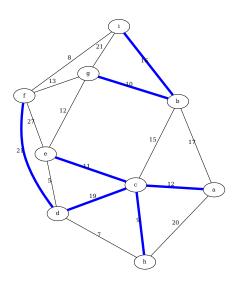

Definition

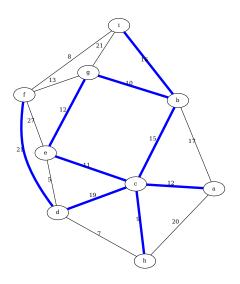

For a connected, edge-weighted graph G = (V, E), a **Minimum Weight** Spanning Tree is a set of edges $E' \subseteq E$ such that

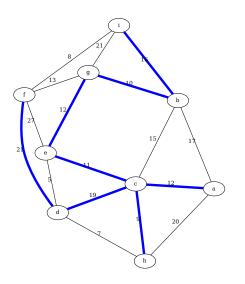
- G = (V, E') is connected.
- 2 The weight of E' is minimum among sets satisfying (1).

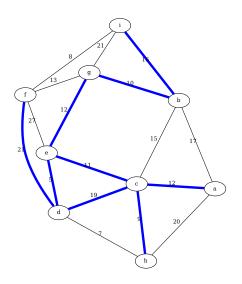

Two keywords:

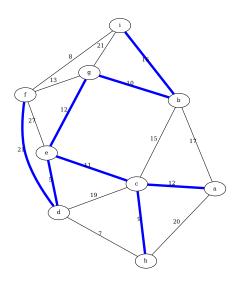
- Tree: a connected graph without cycles.
- Spanning: a subgraph touching all vertices.




This is a tree, but it is **not** spanning.


This is a tree, and it is spanning.


This is **not** a tree (not connected), it is spanning.


This is **not** a tree (contains cycle), it is spanning.

This is better than the previous spanning tree (exchanged weight 15 with weight 12). Can we do better?

Take a cheap edge, add it to the solution (now we don't have a tree any more).

Remove something more expensive from the resulting cycle.

Trees

Definition

A tree is a connected acyclic undirected graph.

Trees

Definition

A tree is a connected acyclic undirected graph.

- The above is the standard definition in graph theory.
- In computer science, we often deal with rooted trees
 - One special vertex is called the root.
 - All vertices have exactly one parent, except the root which has none.
- The two definitions are equivalent, if we don't care about a specific root (which we don't in the MST context).

Trees

Definition

A tree is a connected acyclic undirected graph.

- The above is the standard definition in graph theory.
- In computer science, we often deal with rooted trees
 - One special vertex is called the root.
 - All vertices have exactly one parent, except the root which has none.
- The two definitions are equivalent, if we don't care about a specific root (which we don't in the MST context).
- A disconnected union of trees is called a forest.

Basic properties

Lemma

If C is a cycle of G = (V, E) and $e \in C$ an edge of C, then G - e has the same connected components as G.

Lemma

In a tree, there is a unique path between any two vertices.

Lemma

A tree on n vertices has exactly n-1 edges.

Lemma

A tree on n vertices has exactly n-1 edges.

Lemma

A tree on n vertices has exactly n-1 edges.

Proof.

More strongly: (i) A forest on n vertices with $c \le n-1$ edges has exactly n-c components (ii) A tree cannot have $\ge n$ edges.

- (i) For c = 0 true: all vertices are in distinct components.
- (i) Inductive step: removing an edge increases the number of components by 1.
- \bullet (ii) Take a minimum counter-example graph G, take an edge e
 - If e = xy is not a bridge: there is another $x \to y$ path, we have a cycle, contradiction.
 - If e is a bridge, G e has two components C_1 , C_2 , and $\geq |C_1| + |C_2| 1$ edges, so one component is a smaller forest with too many edges, contradiction.

Michael Lampis Graph Algorithms November 13, 2025 8 / 38

Tree characterizations

Theorem

Consider the following three properties of an undirected graph G:

- G is acyclic
- G is connected
- \bullet G has n-1 edges

Any graph that satisfies two of these properties, must also satisfy the third.

Tree characterizations

Theorem

Consider the following three properties of an undirected graph G:

- G is acyclic
- G is connected
- \bullet G has n-1 edges

Any graph that satisfies two of these properties, must also satisfy the third.

Proof.

See you next year for a full proof of this and other characterizations of the class of trees!

Prim's Algorithm

Michael Lampis

Outline

- Input: An undirected, connected, edge-weighted graph *G* (could have negative weights).
- Output: A spanning tree of G of minimum weight.

Outline

- Input: An undirected, connected, edge-weighted graph *G* (could have negative weights).
- Output: A spanning tree of G of minimum weight.
- Strategy: greedy algorithm
- ullet Start from an arbitrary vertex s, maintain a tree T containing s
- At every step add to the tree the vertex that is closest to T

Outline

- Input: An undirected, connected, edge-weighted graph *G* (could have negative weights).
- Output: A spanning tree of G of minimum weight.
- Strategy: greedy algorithm
- Start from an arbitrary vertex s, maintain a tree T containing s
- At every step add to the tree the vertex that is **closest** to *T*

Compare to Dijkstra's algorithm

At every step add to the tree the vertex that is closest to s

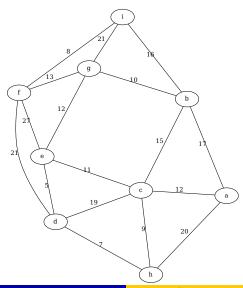
Prim's algorithm

```
1: Initialize (dist[1 \dots n] = \infty, parent[1 \dots n] \leftarrow \text{NULL}, etc. )
 2: Initialize Q \leftarrow \emptyset
 3: Q.Insert(s,0)
 4: while Q not empty do
       u \leftarrow Q.Extract()
 5:
        for v \in N^+(u) do
 6:
             if dist[v]>dist[u]+w(u,v) then

    Shortcut found

 7:
                  Parent[v] \leftarrow u
 8:
                  dist[v] \leftarrow dist[u] + w(u, v)
 9:
                  Q.Decrease(v,dist[v])
10:
             end if
11:
         end for
12:
13: end while
```

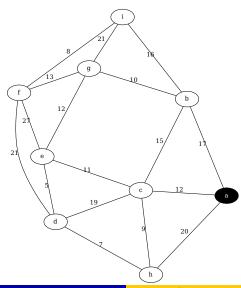
Prim's algorithm


```
1: Initialize (dist[1 \dots n] = \infty, parent[1 \dots n] \leftarrow \text{NULL}, etc. )
 2: Initialize Q \leftarrow \emptyset, T \leftarrow \{s\}
 3: Q.Insert(s,0)
 4: while Q not empty do
        u \leftarrow Q.Extract(), T \leftarrow T \cup \{u\}
 5:
         for v \in N^+(u) \setminus T do
 6:
              if dist[v] > w(u, v) then

    Shortcut found

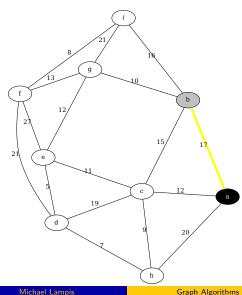
 7:
                   Parent[v] \leftarrow u
 8:
                   dist[v] \leftarrow w(u, v)
 9.
                   Q.Decrease(v,dist[v])
10:
              end if
11:
         end for
12:
13: end while
```

Dijkstra to Prim


- General strategy:
 - For Dijkstra: keep track of distances from s
 - For Prim: keep track of distances from T, the tree that contains s
- Output:
 - For Dijkstra: shortest-path tree from s
 - For Prim: Minimum-weight Spanning Tree (MST) (independently of choice of s)
- Complexity:
 - For both: O(m+n) Priority Queue Operations
 - Priority Queue implemented via Min-Heap $\Rightarrow O(\log n)$ per operation
 - Time complexity: $O((m+n)\log n)$.
 - (As usual, assuming arithmetic operations are O(1) time...)

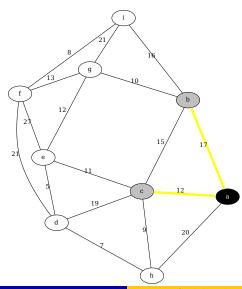
Distances:		
а	0	
b	∞	
С	∞	
d	∞	
e	∞	
f	∞	
g	∞	
h	∞	
i	∞	

Priority Queue: (0, a)


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$

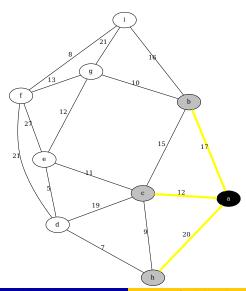
Distances:	
а	0
b	∞
С	∞
d	∞
e	∞
f	∞
g	∞
h	∞
i	∞

Priority Queue: (0, a)


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$

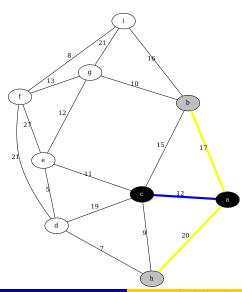
istances:		
а	0	
b	17	
С	∞	
d	∞	
e	∞	
f	∞	
g	∞	
h	∞	
i	$-\infty$	

Priority Queue: (17, b)


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge \rightarrow not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- Dotted edge \rightarrow non-optimal edge.

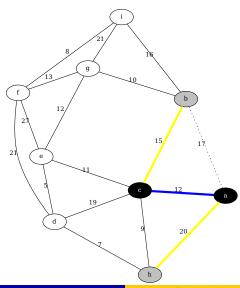
Distances:	
а	0
b	17
С	12
d	∞
e	∞
f	∞
g	∞
h	∞
i	∞

Priority Queue: (12, c), (17, b)


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$

istances:		
а	0	
b	17	
С	12	
d	∞	
e	∞	
f	∞	
g	∞	
h	20	
i	∞	

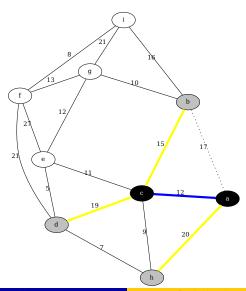
Priority Queue: (12, c), (17, b), (20, h)


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$

Distances:	
а	0
b	17
С	12
d	∞
e	∞
f	∞
g	∞
h	20
i	∞

Priority Queue: (17, b), (20, h)

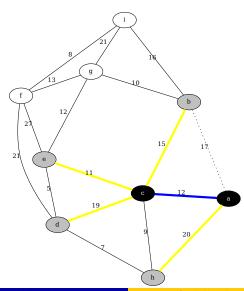
- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$


Distances:	
а	0
b	15
С	12
d	∞
e	∞
f	∞
g	∞
h	20
i	∞

Priority Queue: (15, b), (20, h)

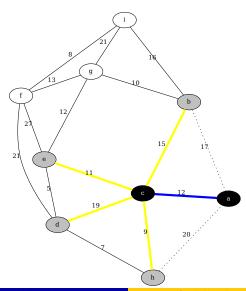
Legend:

- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex \rightarrow vertex is in T.
- Black edge \rightarrow not yet considered.
- Blue edge → tree edge.
- Yellow edge \rightarrow considered edge.
- Dotted edge \rightarrow non-optimal edge.


14 / 38

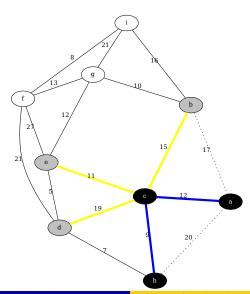
Distar	ices:
а	0
b	15
С	12
d	19
e	∞
f	∞
g	∞
h	20
i	∞

Priority Queue: (15, b), (19, d), (20, h)


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$

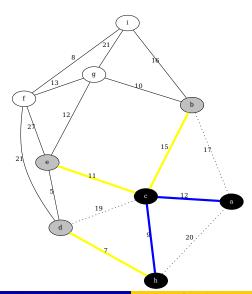
Distances:	
а	0
b	15
С	12
d	19
e	11
f	∞
g	∞
h	20
i	∞

Priority Queue: (11, e), (15, b), (19, d), (20, h)


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- lacksquare Dotted edge ightarrow non-optimal edge.

)istar	ices:
а	0
b	15
С	12
d	19
e	11
f	∞
g	∞
h	9
:	~

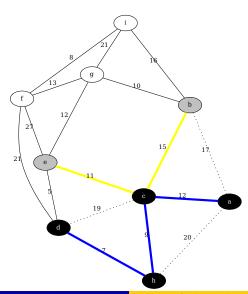
Priority Queue: (9, h), (11, e), (15, b), (19, d)


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge \rightarrow not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- Dotted edge \rightarrow non-optimal edge.

Distar	ices:
а	0
b	15
С	12
d	19
e	11
f	∞
g	∞
h	9
	~

Priority Queue: (11, e), (15, b), (19, d)

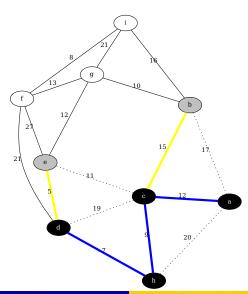
- White vertex → no path found.
- $\bullet \quad \mathsf{Gray} \ \mathsf{vertex} \to \mathsf{some} \ \mathsf{path} \ \mathsf{found}.$
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- lacksquare Dotted edge ightarrow non-optimal edge.



)istar	ices:
а	0
b	15
С	12
d	7
e	11
f	∞
g	∞
h	9
:	~

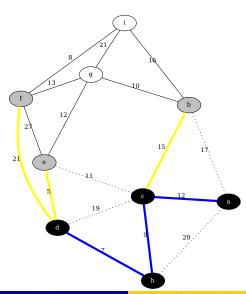
(7, d), (11, e), (15, b)

Priority Queue:


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- Dotted edge → non-optimal edge.

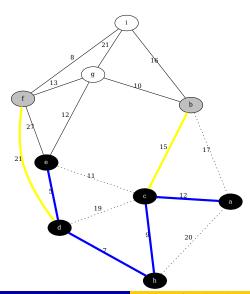
istar	nces:
а	0
b	15
С	12
d	7
e	11
f	∞
g	∞
h	9
:	

Priority Queue: (11, e), (15, b)


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- Dotted edge → non-optimal edge.

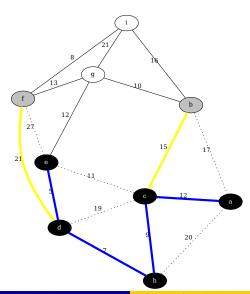
istances:		
а	0	
Ь	15	
С	12	
d	7	
e	5	
f	∞	
g	∞	
h	9	
:	~	

Priority Queue: (5, e), (15, b)


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- Dotted edge → non-optimal edge.

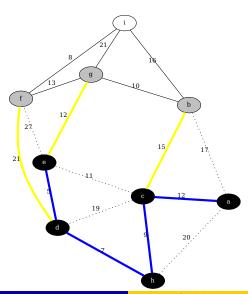
Distar	ices:
а	0
b	15
С	12
d	7
e	5
f	21
g	∞
h	9
:	~

Priority Queue: (5, e), (15, b), (21, f)


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- Dotted edge → non-optimal edge.

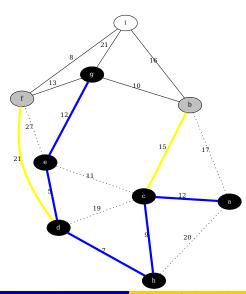
Distances:	
а	0
b	15
С	12
d	7
e	5
f	21
g	∞
h	9
i	~

Priority Queue: (15, b), (21, f)


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$

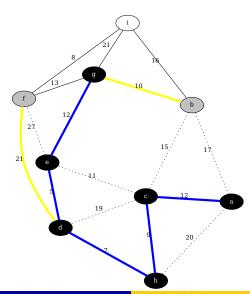
Distar	ices:
а	0
b	15
С	12
d	7
е	5
f	21
g	∞
h	9
:	

Priority Queue: (15, b), (21, f)


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- Dotted edge → non-optimal edge.

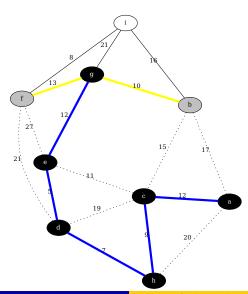
istances:	
а	0
b	15
С	12
d	7
e	5
f	21
g	12
ĥ	9
i	∞

Priority Queue: (12, g), (15, b), (21, f)


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- Dotted edge → non-optimal edge.

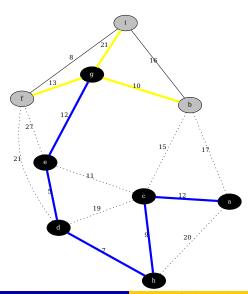
Distances:		
а	0	
b	15	
С	12	
d	7	
e	5	
f	21	
g	12	
ĥ	9	
	~	

Priority Queue: (15, b), (21, f)


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- Dotted edge → non-optimal edge.

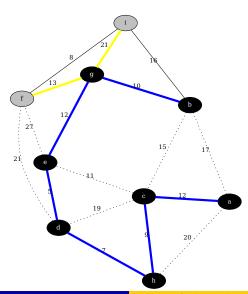
istances:		
а	0	
b	10	
С	12	
d	7	
e	5	
f	21	
g	12	
ĥ	9	
:	_ ~	

Priority Queue: (10, b), (21, f)


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- Dotted edge → non-optimal edge.

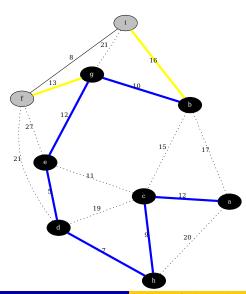
Distances:		
а	0	
b	10	
С	12	
d	7	
e	5	
f	13	
g	12	
h	9	

Priority Queue: (10, b), (13, f)


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- lacksquare Dotted edge o non-optimal edge.

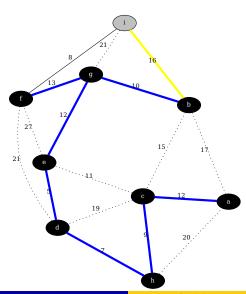
istances:		
а	0	
b	10	
С	12	
d	7	
e	5	
f	13	
g	12	
ĥ	9	
	21	

Priority Queue: (10, b), (13, f), (21, i)


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- lacksquare Dotted edge o non-optimal edge.

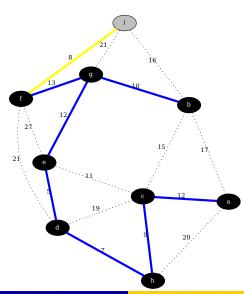
Distances:		
а	0	
b	10	
С	12	
d	7	
e	5	
f	13	
g	12	
ĥ	9	
:	21	

Priority Queue: (13, f), (21, i)


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- Dotted edge → non-optimal edge.

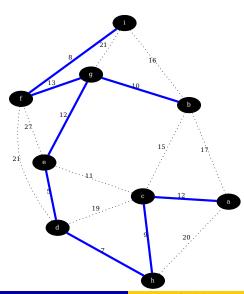
Distances:		
а	0	
b	10	
С	12	
d	7	
e	5	
f	13	
g	12	
h	9	
i	16	

Priority Queue: (13, f), (16, i)


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Blue edge → tree edge.
- lacksquare Yellow edge o considered edge.
- Dotted edge → non-optimal edge.

Distances:		
а	0	
b	10	
С	12	
d	7	
e	5	
f	13	
g	12	
h	9	
i	16	

Priority Queue: (16, i)


- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- lacksquare Dotted edge ightarrow non-optimal edge.

Distances:		
а	0	
b	10	
С	12	
d	7	
e	5	
f	13	
g	12	
ĥ	9	
	0	

Priority Queue: (8, i)

- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- lacksquare Dotted edge ightarrow non-optimal edge.

Distances:		
Distai	ices:	
a	0	
b	10	
С	12	
d	7	
e	5	
f	13	
g	12	
h	9	
i	8	

Priority Queue:

- White vertex → no path found.
- Gray vertex → some path found.
- Black vertex → vertex is in T.
- Black edge → not yet considered.
- Blue edge → tree edge.
- Yellow edge → considered edge.
- lacksquare Dotted edge o non-optimal edge.

Proof of correctness

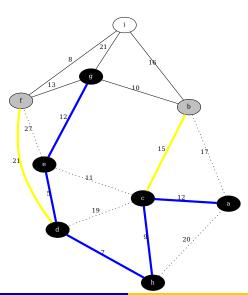
High-level strategy:

- Prim's algorithm definitively adds an edge to the tree each time we extract a vertex from the queue.
- Easier to see: Prim produces a spanning tree, because we add n-1 edges, produce a tree rooted at the initial vertex.
- Induction: assuming there exists an optimal MST containing the first i edges added, there exists an optimal solution also containing the first i+1 edges added.
- Why is the new edge optimal?

Light edges

Definition

Let G = (V, E) be an edge-weighted undirected graph, $S \subseteq V$, and $e \in E$ such that e has exactly one endpoint in S. Then, e is a **light** edge for set S if it has minimum weight among all edges with exactly one endpoint in S.


Light edges

Definition

Let G = (V, E) be an edge-weighted undirected graph, $S \subseteq V$, and $e \in E$ such that e has exactly one endpoint in S. Then, e is a **light** edge for set S if it has minimum weight among all edges with exactly one endpoint in S.

Lemma

Let G, S, e as above and e a light edge for S. Let A be a set of edges with 0 or 2 endpoints in S such that $A \subseteq T^*$, for some optimal MST T^* . Then, there exists an optimal MST that contains $A \cup \{e\}$.

- $S = \{a, c, d, e, g, h\}$
- Blue edges are contained in some optimal solution
- Edge bg is light for S
- safe to add to current solution.

Lemma

Let G, S, e as previously and e a light edge for S. Let A be a set of edges with 0 or 2 endpoints in S such that $A \subseteq T^*$, for some optimal MST T^* . Then, there exists an optimal MST that contains $A \cup \{e\}$.

Lemma

Let G, S, e as previously and e a light edge for S. Let A be a set of edges with 0 or 2 endpoints in S such that $A \subseteq T^*$, for some optimal MST T^* . Then, there exists an optimal MST that contains $A \cup \{e\}$.

Proof.

- If T* contains e, done!
- Otherwise, let e = xy with $x \in S, y \notin S$. Add e to T^* .
- We have a cycle, which must use another edge e' with one endpoint in S.
- \Rightarrow $e' \notin A$
- $w(e') \ge w(e)$ as e is light.
- Remove e' to obtain a better (or equally good) spanning tree that contains $A \cup \{e\}$

Michael Lampis Graph Algorithms November 13, 2025 18 / 38

Theorem

Prim's algorithm is correct.

Theorem

Prim's algorithm is correct.

Proof.

Claim: every edge added is light for the set of vertices incident on previously selected vertices.

- Let T_i be the tree we have after i iterations.
- Suppose we now add edge xy, with x just extracted from queue, but edge x'y' has w(x'y') < w(xy), with $x, x' \in T_i$ and $y, y' \notin T_i$.
- We have extracted y' in some previous iterations, so the distance we have calculated for x' is w(x'y') < w(xy), which is the distance we have for x. This contradicts the selection of x (we should have extracted x').

Theorem

Prim's algorithm is correct.

Proof.

Claim: every edge added is light for the set of vertices incident on previously selected vertices.

- Let T_i be the tree we have after i iterations.
- Suppose we now add edge xy, with x just extracted from queue, but edge x'y' has w(x'y') < w(xy), with $x, x' \in T_i$ and $y, y' \notin T_i$.
- We have extracted y' in some previous iterations, so the distance we have calculated for x' is w(x'y') < w(xy), which is the distance we have for x. This contradicts the selection of x (we should have extracted x').

To complete the proof, apply the lemma n-1 times.

Michael Lampis Graph Algorithms November 13, 2025 19/38

Kruskal's Algorithm

Kruskal's Algorithm

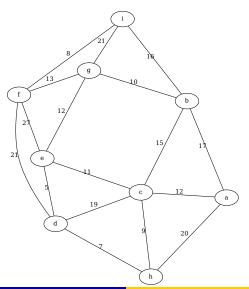
- Solves the same problem as Prim's algorithm (MST)
- Also, greedy strategy.
- **Difference:** instead of growing a tree, we greedily grow a **forest**, at each step adding the least expensive edge.
- "Comparable" complexity to Prim (more on this later)

Kruskal's algorithm

- 1: Sort edges e_1, \ldots, e_m in increasing order of weight.
- 2: $T \leftarrow \emptyset$
- 3: **for** i = 1 to m **do**
- 4: **if** $T \cup \{e_i\}$ has no cycle **then**
- 5: $T \leftarrow T \cup \{e_i\}$
- 6: end if
- 7: end for
- 8: Output *T*

Kruskal's algorithm

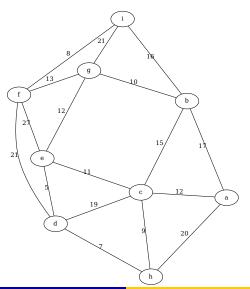
- 1: Sort edges e_1, \ldots, e_m in increasing order of weight.
- 2: $T \leftarrow \emptyset$
- 3: **for** i = 1 to m **do**
- 4: **if** $T \cup \{e_i\}$ has no cycle **then**
- 5: $T \leftarrow T \cup \{e_i\}$
- 6: **end if**
- 7: end for
- 8: Output *T*


▶ How to check this?

Kruskal's algorithm

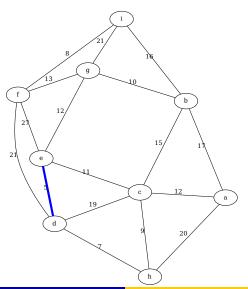
- 1: Sort edges e_1, \ldots, e_m in increasing order of weight.
- 2: $T \leftarrow \emptyset$
- 3: **for** i=1 to m **do** \triangleright Alternatively, end when T has n-1 edges
- 4: **if** $T \cup \{e_i\}$ has no cycle **then**

▶ How to check this?


- 5: $T \leftarrow T \cup \{e_i\}$
- 6: **end if**
- 7: end for
- 8: Output *T*

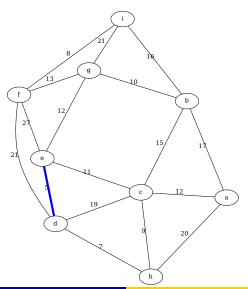
Sorted list of edges:

Sorted list of eages:		
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	


- Black edge → not yet considered.
- Blue edge ightarrow tree edge.
- Dotted edge → non-optimal edge.

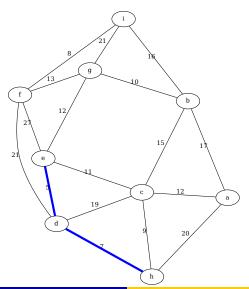
Sorted list of edges:

Sorted IIS	t or eages:	
Edge	Weight	
de	5	←
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	


- Black edge → not yet considered.
- Blue edge ightarrow tree edge.
- Dotted edge → non-optimal edge.

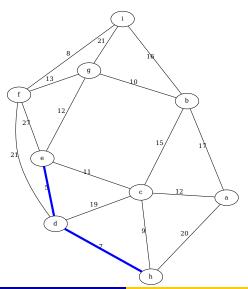
Sorted list of edges:

Sorted IIS	t or euges.	
Edge	Weight	
de	5	←
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	


- Black edge → not yet considered.
- Blue edge ightarrow tree edge.
- Dotted edge → non-optimal edge.

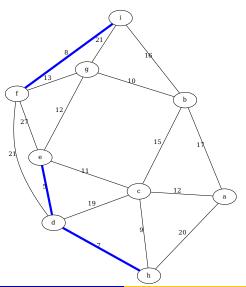
Sorted list of edges:

Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	←
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	


- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \hbox{ Dotted edge} \to \hbox{ non-optimal edge}.$

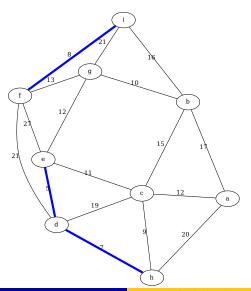
Sorted list of edges:

Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	←
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	


- Black edge → not yet considered.
- Blue edge ightarrow tree edge.
- Dotted edge → non-optimal edge.

Sorted list of edges:

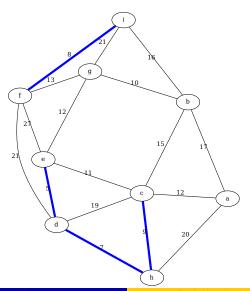
t or eages:	
Weight	
5	
7	
8	←
9	
10	
11	
12	
12	
13	
15	
16	
17	
19	
20	
21	
21	
27	
	Weight 5 7 8 9 10 11 12 12 13 15 16 17 19 20 21 21


- Black edge → not yet considered.
- Blue edge ightarrow tree edge.
- Dotted edge → non-optimal edge.

Sorted list of edges:

Sortea IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	←
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	

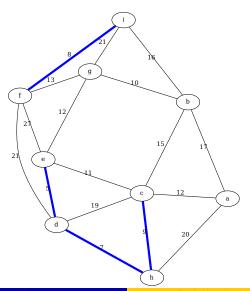
- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$


Sorted list of edges:

Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	←
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	

Legend:

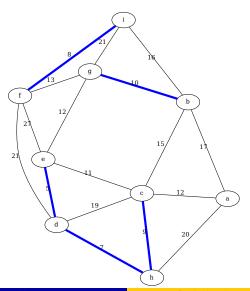
- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \hbox{ Dotted edge} \to \hbox{non-optimal edge}.$


November 13, 2025

Sorted list of edges:

Sortea IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	←
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	

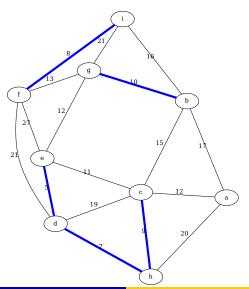
- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$


Sorted list of edges:

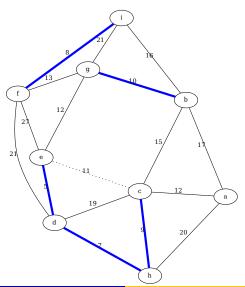
Joi tea 115	t or euges.	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	←
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	

Legend:

- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$

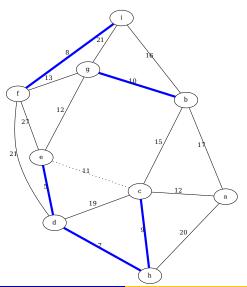

23 / 38

Sorted list of edges:


Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	←
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	

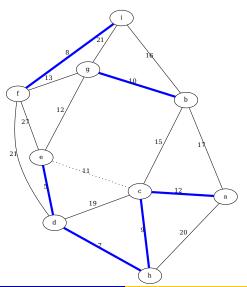
- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$

Sorted lis	t of edges:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	←
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	


- Black edge → not yet considered.
- Blue edge ightarrow tree edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$

Sorted list of edges:

Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	←
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	


- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$

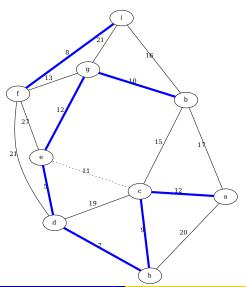
Sorted list of edges:

Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	←
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	

- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \hbox{ Dotted edge} \to \hbox{non-optimal edge}.$

Sorted list of edges

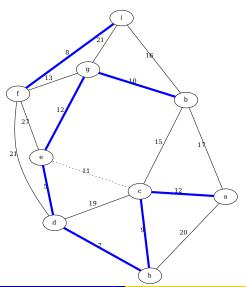
Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	←
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	


- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$

Sorted list of edges:

sortea iis	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	←
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	

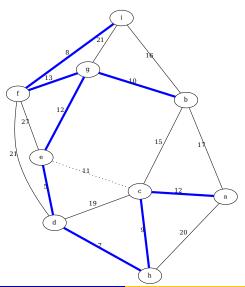
- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \hbox{ Dotted edge} \to \hbox{non-optimal edge}.$


Sorted list of edges:

Sorted lis	t of edges:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	←
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	

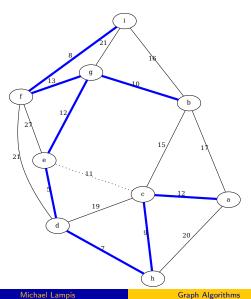
Legend:

- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$


23 / 38

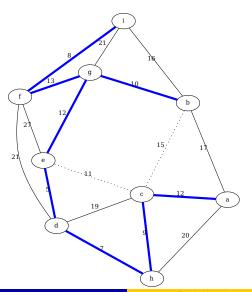
Sorted list of edges:

Sorted lis	t of edges:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	←
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	


- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$

Sorted list of edges

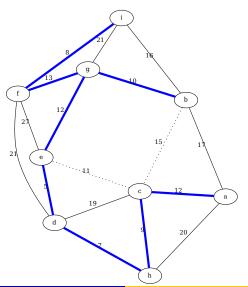
Sorted lis	t of edges:	
Edge	Weight	1
de	5	
dh	7	
fi	8	
ch	9	İ
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	←
bc	15	
bi	16	
ab	17	İ
cd	19	
ah	20	İ
df	21	
gi	21	
ef	27	


- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$

Sorted list of edges:

Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	\leftarrow
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	

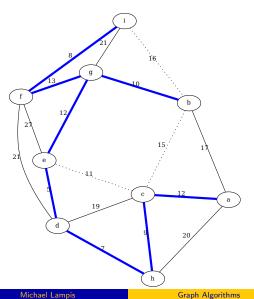
- Black edge → not yet considered.
- Blue edge ightarrow tree edge.
- Dotted edge → non-optimal edge.


Sorted list of edges:

Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	\leftarrow
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	

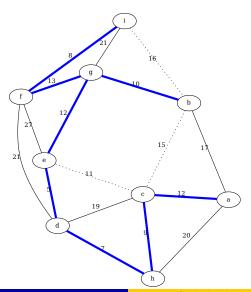
Legend:

- Black edge → not yet considered.
- Blue edge ightarrow tree edge.
- Dotted edge → non-optimal edge.


23 / 38

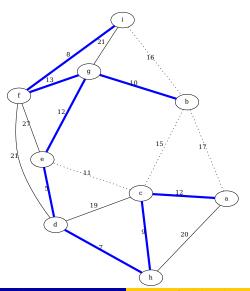
Sorted list of edges:

Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	←
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	


- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$

Sorted list of edges:

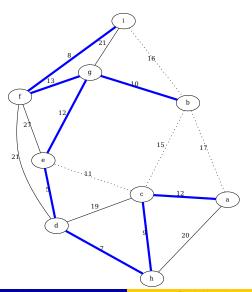
Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	←
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	


- Black edge → not yet considered.
- Blue edge ightarrow tree edge.
- Dotted edge → non-optimal edge.

Sorted list of edges:

Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	←
cd	19	
ah	20	
df	21	
gi	21	
ef	27	

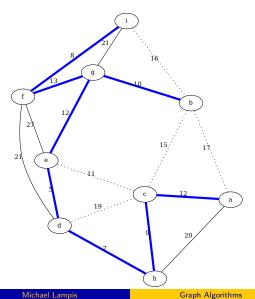
- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$


Sorted list of edges:

Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	←
cd	19	
ah	20	
df	21	
gi	21	
ef	27	

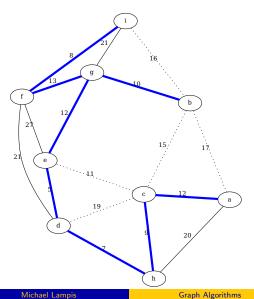
Legend:

- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$


23 / 38

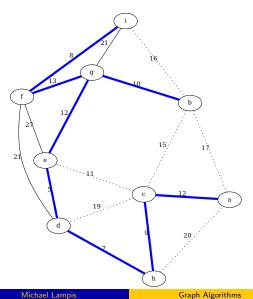
Sorted list of edges:

Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	←
ah	20	
df	21	
gi	21	
ef	27	


- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$

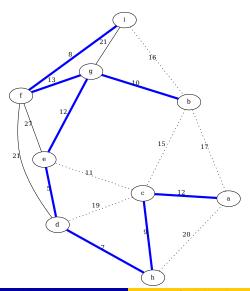
Sorted list of edges:

Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	←
ah	20	
df	21	
gi	21	
ef	27	


- Black edge → not yet considered.
- Blue edge ightarrow tree edge.
- Dotted edge → non-optimal edge.

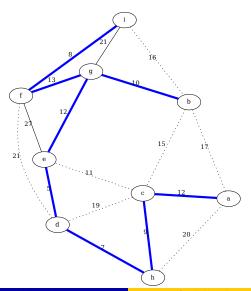
Sorted list of edges:

Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	\leftarrow
df	21	
gi	21	
ef	27	


- Black edge → not yet considered.
- Blue edge ightarrow tree edge.
- Dotted edge → non-optimal edge.

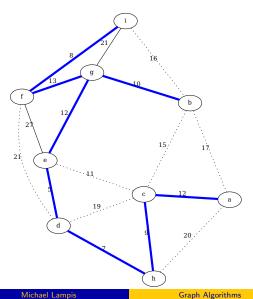
Sorted list of edges:

Sortea IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	←
df	21	
gi	21	
ef	27	


- Black edge → not yet considered.
- Blue edge ightarrow tree edge.
- Dotted edge → non-optimal edge.

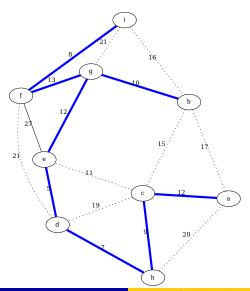
Sorted list of edges

Sorted lis	t of edges:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	←
gi	21	
ef	27	


- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$

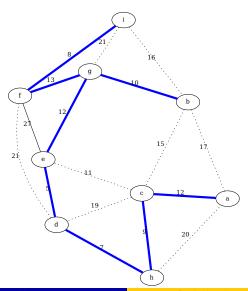
Sorted list of edges:

Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	←
gi	21	
ef	27	


- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$

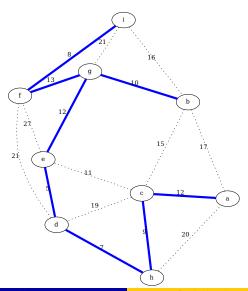
Sorted list of edges:

Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	←
ef	27	


- Black edge → not yet considered.
- Blue edge ightarrow tree edge.
- Dotted edge → non-optimal edge.

Sorted list of edges

Sorted lis	t of edges:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	←
ef	27	


- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$

Sorted list of edges

Sorted lis	t of edges:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	←

- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$

Sorted list of edges:

Sortea IIS	t ot eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	
cd	19	
ah	20	
df	21	
gi	21	
ef	27	←

- Black edge → not yet considered.
- Blue edge → tree edge.
- $\qquad \qquad \textbf{Dotted edge} \, \rightarrow \, \textbf{non-optimal edge}.$

Proof of correctness

Theorem

Kruskal's algorithm outputs a spanning tree of minimum weight.

Proof of correctness

Theorem

Kruskal's algorithm outputs a spanning tree of minimum weight.

Proof.

- Easy to see that algorithm outputs some spanning tree
 - We consider all edges, only refuse one if we already have a path between its endpoints.
- Let $E_i = \{e_1, \dots, e_i\}$ and $S_i \subseteq E_i$ be the set of edges selected by Kruskal from E_i .
- Claim: for all i, there exists a minimum spanning tree T^* with $S_i \subseteq T^*$.
- If claim is correct ⇒ Kruskal is correct.

For all i, there exists a minimum spanning tree T^* with $S_i \subseteq T^*$.

For all i, there exists a minimum spanning tree T^* with $S_i \subseteq T^*$.

Proof.

Proof by induction:

- i = 0, easy.
- i = 1, easy(?)

For all i, there exists a minimum spanning tree T^* with $S_i \subseteq T^*$.

Proof.

Proof by induction:

- i = 0, easy.
- i = 1, easy(?)
 - If $e_1 = xy$, set $S = \{x\}$ and e_1 is light for S.

For all i, there exists a minimum spanning tree T^* with $S_i \subseteq T^*$.

Proof.

Proof by induction:

- i = 0, easy.
- i = 1, easy(?)
 - If $e_1 = xy$, set $S = \{x\}$ and e_1 is light for S.
- Suppose true for i, show for i + 1:
- If Kruskal does not select e_{i+1} , done!
- If it does and $e_{i+1} = xy$, let C, C' be the components of x, y in $G[S_i]$.
 - C, C' are distinct, because Kruskal accepted e_{i+1} .
- Observation: e_{i+1} is light for C, all edges of S_i have 0 or 2 endpoints in C.

Complexity Analysis

- Step 1: sort edges $\Rightarrow O(m \log n)$
- Repeat m times, check if adding e = xy adds a cycle
 - Need to check if path $x \to y$ already exists.
 - Can be done in O(m) for connected graphs.
- Complexity: $O(m^2)$, much worse than Prim!
- Can we do better?

Union-Find

We need two operations:

- (**Find**): Given two vertices x, y, check if x, y are already in same connected component.
- (**Union**): Merge the components of two given vertices x, y.

Where we need these:

- Find: test if adding the edge e = xy creates a cycle.
- Union: if not, we add e to the graph, so the two components become one.

Union-Find naïvely

- Create an array Comp[1...n] such that C[i] is the component number of vertex i.
- Initially Comp[i] = i for all $i \in \{1, ..., n\}$.
- Find: check if Comp[i] == Comp[j]
- Union:

```
1: procedure UNION(i,j)

2: c_2 \leftarrow Comp[j]

3: for k = 1 to n do

4: if Comp[k] == c_2 then

5: Comp[k] \leftarrow Comp[i]

6: end if

7: end for

8: end procedure
```

Analysis of naïve solution

- Find takes constant time (good!)
- Union takes O(n) time (bad!)
- Total complexity: O(mn)
 - Slightly better than running a connectivity algorithm each time $(O(m^2))$
- Can we do better?

Faster Union-Find

- We define two attributes for each vertex v
 - The leader of v, denoted $v.\ell$ is (supposed to be) a vertex (possibly v itself) that is the most important in v's component.
 - The rank of v, denoted v.r gives an idea of the size of v's component.
- Initially, $v.\ell \leftarrow v$, $v.r \leftarrow 1$ for all v.

Faster Union-Find

- We define two attributes for each vertex v
 - The leader of v, denoted $v.\ell$ is (supposed to be) a vertex (possibly v itself) that is the most important in v's component.
 - The rank of v, denoted v.r gives an idea of the size of v's component.
- Initially, $v.\ell \leftarrow v$, $v.r \leftarrow 1$ for all v.

Key ideas:

- To check if x, y are in the same component, we check if they have the same leader.
- When we merge, the leader of the new component is the leader of the larger component (based on rank).

Algorithms – Find

```
    procedure FIND-SET(x)
    if x.ℓ == x then
    Return x
    else
    Return Find-Set(x.ℓ)
    end if
    end procedure
```

Returns the leader of x's component▷ x is a leader

Algorithms - Find

```
1: procedure FIND-SET(x) 
ightharpoonup Returns the leader of x's component

2: if x.\ell == x then 
ightharpoonup x is a leader

3: Return x

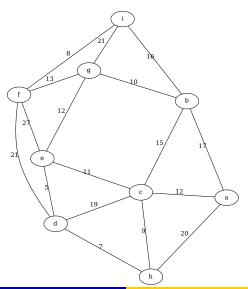
4: else

5: Return Find-Set(x.\ell)

6: end if

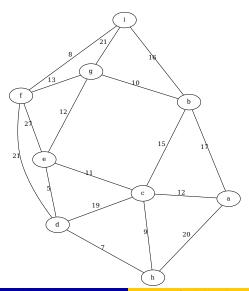
7: end procedure
```

To check if e = xy creates a cycle check if Find-Set(x)==Find-Set(y).


Algorithms – Union

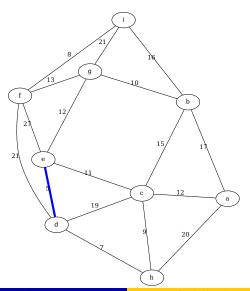
```
1: procedure UNION(x, y)
                                                  \triangleright Assume x, y are leaders
       if x.r > y.r then
          y.\ell \leftarrow x
                                                  3:
       else
4:
          x.\ell \leftarrow y
 5:
           if x.r == y.r then
6:
7:
              y.r + +
                                     ▶ Merged two equal rank components
           end if
 8:
       end if
9.
10: end procedure
```

Algorithms – Union


```
1: procedure UNION(x, y)
                                                  \triangleright Assume x, y are leaders
       if x.r > y.r then
          y.\ell \leftarrow x
                                                  3:
       else
4:
          x.\ell \leftarrow v
 5:
          if x.r == y.r then
6:
                                     ▶ Merged two equal rank components
7:
              y.r + +
           end if
 8:
       end if
9.
10: end procedure
```

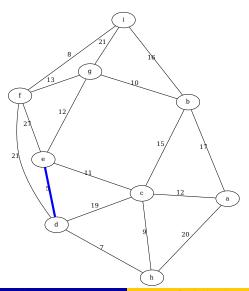
To merge two arbitrary z, w, call Union(Find-Set(z),Find-Set(w)).

Sorted list of edges:			
Edge	Weight		
de	5		
dh	7		
fi	8		
ch	9		
bg	10		
ce	11		
ac	12		
eg	12		
fg	13		
bc	15		
bi	16		
ab	17		


Ranks and leaders:			
Vertex	Leader	Rank	
a	a	1	
b	b	1	
С	С	1	
d	d	1	
e	e	1	
f	f	1	
g	g	1	
h	h	1	
i	i	1	
4 □ ▶	4 🗗 ▶ 4	∄ ト ∢ ∄ ト	

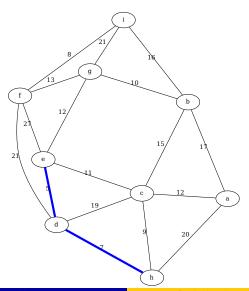
Joi tea fist of eages.			
Edge	Weight		
de	5	←	
dh	7		
fi	8		
ch	9		
bg	10		
ce	11		
ac	12		
eg	12		
fg	13		
bc	15		
bi	16		
ab	17		

ь .		
Ranks	and	leaders:


Ranks and leaders:			
Vertex	Leader	Rank	
а	a	1	
b	b	1	
С	С	1	
d	d	1	
e	e	1	
f	f	1	
g	g	1	
h	h	1	
i	i	1	
4.01	400 1 4		

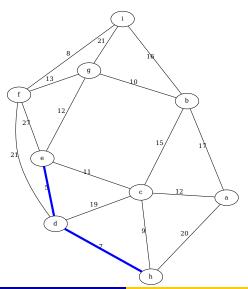
Sorted IIS	t or eages:	
Edge	Weight	
de	5	←
dh	7	
fi	8	
ch	9	İ
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	İ

D I		Landania.
Kanks	and	leaders:


Ranks and leaders:			
Vertex	Leader	Rank	
a	a	1	
b	b	1	
С	С	1	
d	d	2	
e	d	1	
f	f	1	
g	g	1	
h	h	1	
i	i	1	

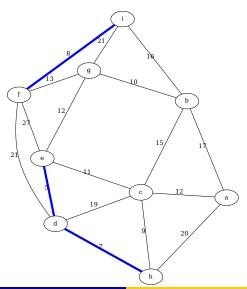
Sorted list of edges:			
Edge	Weight		
de	5		
dh	7	←	
fi	8		
ch	9		
bg	10		
ce	11		
ac	12		
eg	12		
fg	13		
bc	15		
bi	16		
ab	17		

ь .		
Ranks	and	leaders:


Ranks and leaders:			
Vertex	Leader	Rank	
а	a	1	
b	Ь	1	
С	с	1	
d	d	2	
e	d	1	
f	f	1	
g	g	1	
ĥ	ĥ	1	
i	i	1	
4.00			

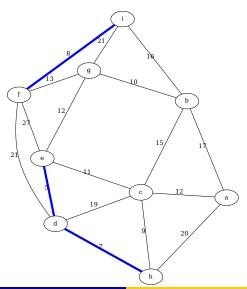
Sorted list of edges:			
Edge	Weight		
de	5		
dh	7	←	
fi	8		
ch	9		
bg	10		
ce	11		
ac	12		
eg	12		
fg	13		
bc	15		
bi	16		
ab	17		
		.'	

ь.		
Kanks	and	leaders:


Ranks and	leaders:	
Vertex	Leader	Rank
a	a	1
b	b	1
С	С	1
d	d	2
e	d	1
f	f	1
g	g	1
h	d	1
i	i	1

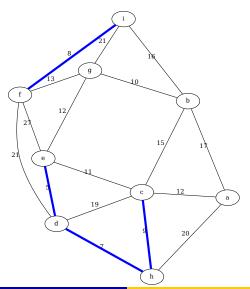
Joi ted list of edges.				
Edge	Weight			
de	5			
dh	7			
fi	8	←		
ch	9			
bg	10			
ce	11			
ac	12			
eg	12			
fg	13			
bc	15			
bi	16			
ab	17			

Ranks	and	leaders:


Ranks and leaders:		
Vertex	Leader	Rank
a	a	1
b	b	1
С	С	1
d	d	2
e	d	1
f	f	1
g	g	1
h	d	1
i	i	1

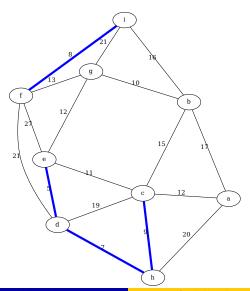
Sortea IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	\leftarrow
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	

ь.		
Kanks	and	leaders:


Ranks and leaders:			
Vertex	Leader	Rank	
a	a	1	
b	b	1	
С	С	1	
d	d	2	
e	d	1	
f	f	2	
g	g	1	
h	d	1	
i	f	1	
4 □ ▶	4 🗗 ▶ 4	∄ ト ∢ ∄ ト	

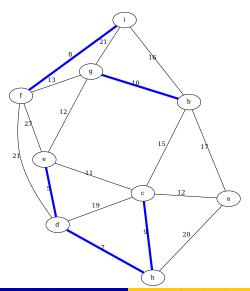
Sorted lis	t of edges:	
Edge	Weight	
de	5	
dh	7	İ
fi	8	
ch	9	←
bg	10	İ
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	İ
bi	16	İ
ab	17	İ

ь.		
Kanks	and	leaders:


Ranks and leaders:			
Vertex	Leader	Rank	
a	a	1	
b	b	1	
С	С	1	
d	d	2 1	
e	d		
f	f	2	
g	g	1	
h	d	1	
i	f	1	

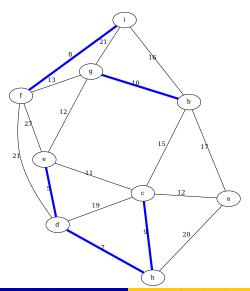
Sorted list of edges:			
Edge	Weight		
de	5		
dh	7		
fi	8		
ch	9	←	
bg	10		
ce	11		
ac	12		
eg	12		
fg	13		
bc	15		
bi	16		
ab	17		

Danle		
Kanks	and	leaders:


Ranks and leaders:		
Vertex	Leader	Rank
a	a	1
b	b	1
С	d	1
d	d	2 1
e	d	1
f	f	2
g	g	1
h	d	1
i	f	1
4.00	4.5	

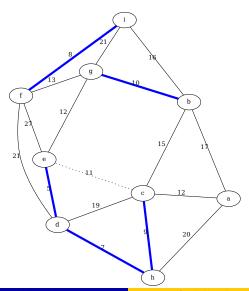
Joi teu iis	t or euges.	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	←
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	

ь .		
Ranks	and	leaders:


Ranks and leaders:		
Vertex	Leader	Rank
a	a	1
b	b	1
С	d	1
d	d	2
e	d	1
f	f	2
g	g	1
h	d	1
i	f	1
4 11 1	400 1 4	

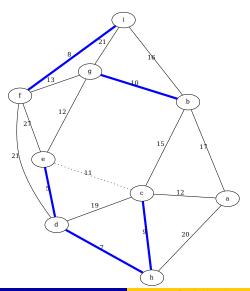
Sorted lis	t of edges:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	←
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	

Ranks	and	leaders:


Ranks and leaders:		
Vertex	Leader	Rank
а	a	1
b	b	2
С	d	1
d	d	1 2 1
e	d	1
f	f	2
g	Ь	1
h	d	1
i	f	1
4.00		

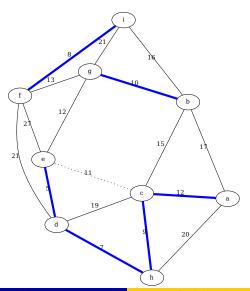
Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	İ
fi	8	
ch	9	İ
bg	10	İ
ce	11	←
ac	12	İ
eg	12	
fg	13	İ
bc	15	İ
bi	16	
ab	17	ĺ

ь.		
Kanks	and	leaders:


Ranks and leaders:		
Vertex	Leader	Rank
a	a	1
b	b	2
С	d	1
d	d	2 1
e	d	
f	f	2
g	Ь	1
h	d	1
i	f	1

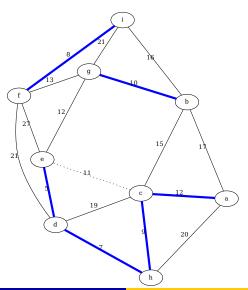
Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	←
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	

Ranks	and	leaders:


Ranks and leaders:		
Vertex	Leader	Rank
a	a	1
b	b	2
С	d	1
d	d	2 1
e	d	1
f	f	2
g	Ь	1
h	d	1
i	f	1
4 11 1	4.5	

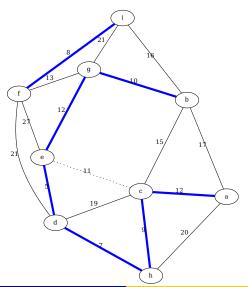
Sorted list of edges:		
Edge	Weight	
de	5	
dh	7	İ
fi	8	
ch	9	İ
bg	10	İ
ce	11	İ
ac	12	←
eg	12	
fg	13	İ
bc	15	İ
bi	16	
ab	17	

Danle		
Kanks	and	leaders:

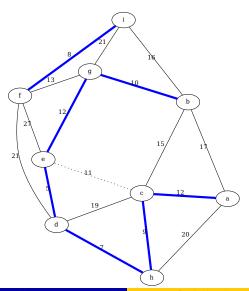

Ranks and leaders:		
Vertex	Leader	Rank
а	а	1
b	b	2
С	d	1
d	d	2 1
e	d	
f	f	2
g	Ь	1
h	d	1
i	f	1
4.00	4.5	

Sorted list of edges:		
Edge	Weight	
de	5	
dh	7	ĺ
fi	8	
ch	9	İ
bg	10	İ
ce	11	
ac	12	←
eg	12	
fg	13	İ
bc	15	İ
bi	16	İ
ab	17	

Ranks	and	leaders:


Ranks and leaders:		
Vertex	Leader	Rank
а	d	1
b	b	2
С	d	1
d	d	2
e	d	1
f	f	2
g	Ь	1
h	d	1
i	f	1

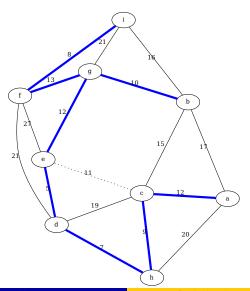
Sorted list of edges:		
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	←
fg	13	
bc	15	
bi	16	
ab	17	


Ranks	and	leaders:

Ranks and leaders:		
Vertex	Leader	Rank
а	d	1
b	b	2
С	d	1
d	d	2
e	d	1
f	f	2
g	b	1
h	d	1
i	f	1
4 □ ▶	4 🗗 ▶ 4	∄ ト ∢ ∄ ト

Sorted list of edges:		
Edge	Weight	
de	5	
dh	7	İ
fi	8	
ch	9	İ
bg	10	İ
ce	11	
ac	12	İ
eg	12	←
fg	13	İ
bc	15	İ
bi	16	
ab	17	

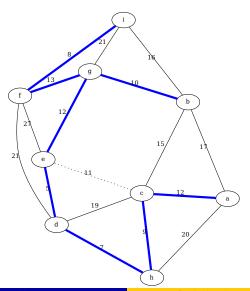
Ranks and leaders:			
Vertex	Leader	Rank	
a	d	1	
b	b	3	
С	d	1	
d	Ь	2	
e	d	1	
f	f	2	
g	Ь	1	
h	d	1	
i	f	1	
4 □ ▶	4 🗗 ▶ 4	∄ ト ∢ ∄ ト	



Sorted list of advac-

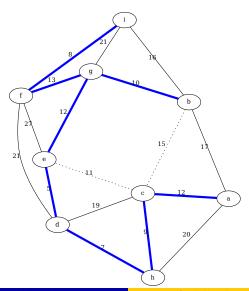
Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	←
bc	15	
bi	16	
ab	17	

Ranks	and	leaders:


Ranks and leaders:			
Vertex	Leader	Rank	
a	d	1	
b	Ь	3	
С	d	1	
d	Ь	2	
e	d	1	
f	f	2	
g	Ь	1	
h	d	1	
i	f	1	
4 □ ▶	4 🗗 ▶ 4	∄ ▶ ∢ ∄ ▶	

Sorted IIS	t or eages:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	←
bc	15	
bi	16	
ab	17	

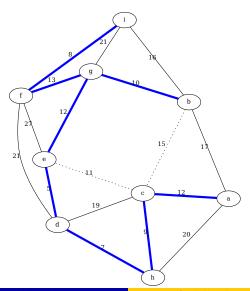
Ranke	and	leaders.


Ranks and leaders:			
Vertex	Leader	Rank	
a	d	1	
b	b	3	
С	d	1	
d	Ь	2	
e	d	1	
f	Ь	2	
g	Ь	1	
h	d	1	
i	f	1	
4 □ ▶	4 🗗 ▶ 4	∄ ト ∢ ∄ ト	

Sorted lis	t of edges:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	←
bi	16	
ab	17	

Ranks and leaders:

Ranks and	leaders:	
Vertex	Leader	Rank
a	d	1
b	b	3
С	d	1
d	Ь	2
e	d	1
f	Ь	2
g	Ь	1
h	d	1
i	f	1
4 □ ▶	4 🗗 ▶ 4	∄ ト ∢ ∄ ト

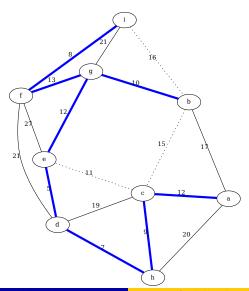


Sorted list of edges

Sorted lis	t of edges:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	←
bi	16	
ab	17	

Ranks and leaders:

Ranks and leaders:			
Vertex	Leader	Rank	
a	d	1	
b	b	3	
С	d	1	
d	Ь	2	
e	d	1	
f	Ь	2	
g	Ь	1	
h	d	1	
i	f	1	
4 □ ▶	4 🗗 ▶ 4	∄ ト ∢ ∄ ト	

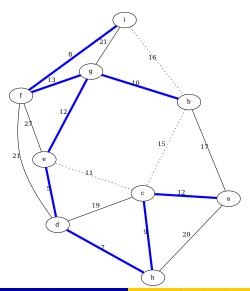

Sorted list of edges

Sorted lis	t of edges:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	←
ab	17	

Ranks and leaders:

Ranks and leaders:		
Vertex	Leader	Rank
а	d	1
b	b	3
С	d	1
d	Ь	2 1
e	d	1
f	Ь	2
g	b	1
h	d	1
i	f	1
4 D S 4 D S 4 T S 4 T		

Example

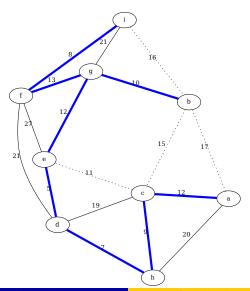

Sorted list of edges

Sorted lis	t of edges:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	İ
bg	10	İ
ce	11	İ
ac	12	İ
eg	12	
fg	13	İ
bc	15	
bi	16	←
ab	17	ĺ
		,

Ranks and leaders:

Ranks and	leaders:	
Vertex	Leader	Rank
a	d	1
b	b	3
С	d	1
d	Ь	2
e	d	1
f	Ь	2
g	b	1
h	d	1
i	f	1

Example


Sorted list of edges

Sorted lis	t of edges:	
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	
bc	15	
bi	16	
ab	17	←

Ranks and leaders

Ranks and leaders:		
Vertex	Leader	Rank
a	d	1
b	b	3
С	d	1
d	Ь	2
e	d	1
f	Ь	2
g	Ь	1
h	d	1
i	f	1
4□ > 4□ > 4 □ > 4 □ > 4 □ >		

Example

Sorted list of edges

Sorted list of edges:		
Edge	Weight	
de	5	
dh	7	
fi	8	
ch	9	İ
bg	10	
ce	11	
ac	12	
eg	12	
fg	13	İ
bc	15	İ
bi	16	İ
ab	17	←

Ranks and leaders:

Ranks and leaders:		
Vertex	Leader	Rank
a	d	1
b	b	3
С	d	1
d	Ь	2
e	d	1
f	Ь	2
g	Ь	1
h	d	1
i	f	1
4 □ ▶	4 🗗 ▶ 4	∄ ト ∢ ∄ ト

Analysis

Lemma

All vertices have rank at most $O(\log n)$.

Lemma

Find-Set takes time $O(\log n)$.

Theorem

Kruskal's algorithm runs in time $O(m \log n)$.

All vertices have rank at most $O(\log n)$.

All vertices have rank at most $O(\log n)$.

Proof.

Equivalently: if a vertex has rank i, its component has at least 2^{i-1} vertices.

- For i = 1, correct.
- A vertex attains rank i + 1 if it had rank i and it is the leader of a component merged with another one whose leader has rank i.
- Inductive hypothesis: both components have $\geq 2^{i-1}$ vertices, so $\geq 2^i$ vertices in total.

Find-Set takes time $O(\log n)$.

Find-Set takes time $O(\log n)$.

Proof.

- Observation: if $x.\ell \neq x$, then $x.\ell.r > x.r$ (my leader has higher rank)
 - Proof by induction, whenever we modify a leader the condition is true.
- Find-Set either returns immediately, or calls itself on a vertex with higher rank.
- Since ranks are at most $O(\log n)$, the lemma follows.

Theorem

Kruskal's algorithm runs in time $O(m \log n)$.

Theorem

Kruskal's algorithm runs in time $O(m \log n)$.

Proof.

- Repeat *m* times:
- Run two Find-Set calls for edge e=xy to find the leaders of the components of x,y
- If leaders are the same, continue to next edge
- If not, treat the two leaders in O(1) time.
- Total complexity: $O(m \log n)$

Going further

A further improvement is possible:

```
1: procedure FIND-SET(x) 
ightharpoonup Returns the leader of x's component

2: if x.\ell == x then 
ightharpoonup x is a leader

3: Return x

4: else

5: Return Find-Set(x.\ell)
```

end if

7: end procedure

6:

Going further

A further improvement is possible:

```
1: procedure FIND-SET(x)
                                              \triangleright Returns the leader of x's component
        if x.\ell == x then
                                                                               \triangleright x is a leader
2:
3:
             Return x
        else
4.
             x.\ell \leftarrow \mathsf{Find}\text{-}\mathsf{Set}(x.\ell)
5:
             Return x.\ell
                                                                        ▶ Path Compression
6:
        end if
7:
8: end procedure
```

- The improved version actually runs in $O(m\alpha(n))$ where $\alpha(n)$ is the inverse Ackermann function (significantly less than $\log n$).
- Analysis too complicated for this course.
- So, if edges are pre-sorted, Kruskal is **slightly faster** than Prim!

Summary

Minimum Spanning Tree Algorithms:

- Input: Connected undirected graph G with edge weights
- Prim's: greedily extend the current tree
 - Complexity: $O(m \log n)$ (using min-heaps)
- Kruskal's: greedily extend the current forest
 - Complexity: $O(m \log n)$ (using Union-Find with ranks)
 - Complexity: $O(m\alpha(n))$ (using Union-Find with ranks and path compression, if edges are pre-sorted)