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The story so far

(Short) Reachability problems:

Is there a path from s to t? (Strongly) connected components? . . .
What is the shortest path from s to t? From everyone to everyone?
What is the cheapest way to keep everyone connected?

Algorithms:

Unweighted Reachability: BFS/DFS O(m + n) time
Single-Source Shortest Paths:

Unweighted: BFS O(m + n) time
Positive weights: Dijkstra O((m + n) log n) time (with min-heaps)
General weights: Bellman-Ford O(mn) time

Minimum Spanning Tree:

Prim’s and Kruskal’s algorithms: O(m log n) time

New problem: Maximum Flow - Minimum Cut

Find minimum weight set of edges that destroys connectedness.
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Problem Definition

Problem Definition
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Problem Definition

Definition

Definition

For an edge-weighted digraph G = (V ,A), a Minimum Edge Cut
between vertices s, t ∈ V is a set of arcs A′ ⊆ A such that

1 G = (V ,A \ A′) has no directed path from s to t.

2 The weight of A′ is minimum among sets satisfying (1).

Algorithmic problem: Given G = (V ,A) and s, t ∈ V , compute
minimum s − t cut.

Equivalent formulation:

Definition

In the Min s − t Cut problem, we are given edge-weighted digraph
G = (V ,A), s, t ∈ V and are asked to compute a set S ⊆ V with
s ∈ S , t ̸∈ S such that

∑
x∈S

∑
y ̸∈S w(xy) is minimum.
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Problem Definition

Obvious (bad) algorithms

Lemma

The two formulations are equivalent.

Proof.

Given cut-set A′, define S as set of vertices reachable from s.

Given set S , define A′ as set of arcs from S to V \ S .

O(2m ·m) time: try all cut-sets

O(2n ·m) time: try all sets S

Pretty terrible! Can we do polynomial time?

Michael Lampis Graph Algorithms November 13, 2025 6 / 43



Problem Definition

Obvious (bad) algorithms

Lemma

The two formulations are equivalent.

Proof.

Given cut-set A′, define S as set of vertices reachable from s.

Given set S , define A′ as set of arcs from S to V \ S .

O(2m ·m) time: try all cut-sets

O(2n ·m) time: try all sets S

Pretty terrible! Can we do polynomial time?

Michael Lampis Graph Algorithms November 13, 2025 6 / 43



Problem Definition

Obvious (bad) algorithms

Lemma

The two formulations are equivalent.

Proof.

Given cut-set A′, define S as set of vertices reachable from s.

Given set S , define A′ as set of arcs from S to V \ S .

O(2m ·m) time: try all cut-sets

O(2n ·m) time: try all sets S

Pretty terrible! Can we do polynomial time?

Michael Lampis Graph Algorithms November 13, 2025 6 / 43



Problem Definition

Flows

Definition

Given a digraph G = (V ,A), s, t ∈ V and a capacity function
c : A → Q+, a flow is a function f : A → Q+ satisfying the following:

1 Capacity-respecting: for all a ∈ A we have f(a) ≤ c(a)

2 Flow-conservation: for all x ∈ V \ {s, t} we have∑
z∈N−(x) f(zx) =

∑
y∈N−(x) f(xy)

Intuition:

s is sending something (information, energy, etc.) to t.

Capacities of arcs must be respected.

Flows can be re-arranged in vertices, but must be conserved and go
from s to t

Value of flow f is total flow coming out of s

We seek a flow of maximum value
Michael Lampis Graph Algorithms November 13, 2025 7 / 43
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Problem Definition

Max-Flow Min-Cut: easy connection

Lemma

For all directed graphs G = (V ,A), s, t, and weight function w : A → Q+

if f if a feasible flow value from s to t and c is a feasible cut from s to t,
then f ≤ c.

Corollary

If f ∗ is the max flow value and c∗ is the minimum cut value, then f ∗ ≤ c∗.

Proves that for previous example f ∗ = c∗ = 9.
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Problem Definition

Lemma

For all directed graphs G = (V ,A), s, t, and weight function w : A → Q+

if f if a feasible flow value from s to t and c is a feasible cut from s to t,
then f ≤ c.

Proof.

Let A′ be a feasible cut, S the set of vertices reachable from s.

Let f be a flow function of value f .

We have f ≤
∑

x∈S
∑

y ̸∈S f(xy).∑
x∈S

∑
y ̸∈S f(xy) ≤

∑
x∈S

∑
y ̸∈S c(xy) = c.
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Problem Definition

(Weak) duality

What we know: any flow has value ≤ than any cut

Common situation in combinatorial optimization:

We want to optimize (say, minimize) something

For example: Min Weight Spanning Tree (variants)

We find a dual objective (maximization) problem that lower bounds the
solution

For example: the diameter (max distance of any two vertices) is a lower
bound on MST (why?)

In situations where the original problem is hard to solve (NP-hard),
this trick at least allows us to get an idea for how far we are from the
optimal solution.

In some rare situations we can find a dual problem where the optimal
values of the two objectives match!!!

This is the case for Max-Flow and Min-Cut
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The Ford-Fulkerson Method

The Ford-Fulkerson Method

Strategy: reduce Max-Flow computation to Reachability computation

Find a path from s to t
Saturate it!
Update the graph
Repeat

Saturate: send as much capacity as allowed by the arc of minimum
capacity in the path

⇒ this arc is then saturated (cannot take more flow)

How to update the graph so that we respect future capacities?

Näıve method: subtract flow from capacities of used arcs (doesn’t
work!!)
Correct method: Construct Residual network

Complexity:

Depends heavily on how paths are selected (more later!)
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Näıve method: subtract flow from capacities of used arcs (doesn’t
work!!)
Correct method: Construct Residual network

Complexity:

Depends heavily on how paths are selected (more later!)

Michael Lampis Graph Algorithms November 13, 2025 13 / 43



The Ford-Fulkerson Method

The Ford-Fulkerson Method

Strategy: reduce Max-Flow computation to Reachability computation

Find a path from s to t
Saturate it!
Update the graph
Repeat

Saturate: send as much capacity as allowed by the arc of minimum
capacity in the path

⇒ this arc is then saturated (cannot take more flow)

How to update the graph so that we respect future capacities?
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The Ford-Fulkerson Method

How to update capacities

Each time we find a path we subtract its flow from the capacities of
used arcs (good!).

However, the algorithm as currently formulated is not correct!
Intuitive reason: once we commit to a path, we never decrease the flow
along its arcs.
However, we don’t know beforehand if the optimal solution should
saturate the path.

To fix this, we need to update capacities in a way that allows us to
later on decrease the flow along a used arc, as needed.
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Counter-example
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Now we have a
problem!
New graph has
max-flow=18,
so in total we
get a flow of 19.
Max=20 (!!)
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The Ford-Fulkerson Method

Residual Networks

Definition

Let G = (V ,A), s, t ∈ V , c : A → Q+ be a Max-Flow instance,
f : A → Q+ a valid flow on G . The residual network
G = (V ,A), c′ : A → Q+ is defined as follows:

For each uv ∈ A we set
1 c′(uv) = c(uv)− f(uv)
2 c′(vu) = c(uv) + f(uv)

(To ease notation, assume that when ij ∈ A, then ji ∈ A, possibly with
capacity 0)
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The Ford-Fulkerson Method

Residual Network: intuition

We currently have a flow f.

If f(uv) > 0 we decrease c′(uv) by f(uv)
Makes sense, as we have used some of the capacity of uv .

Furthermore, we increase c′(vu) by f(uv)
We do this, even if vu previously did not exist (had capacity 0).
Intuition, if we later send flow through vu, we can simulate this by
decreasing the flow through uv .
Increasing f(vu) by 1 is the same as decreasing uv by 1 for the
flow-conservation constraints.

Thanks to this idea, we don’t commit when we add a path to the
solution (the flow can be reversed later).
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The Ford-Fulkerson Method

Ford-Fulkerson method

1: Initialize flow f := 0, residual graph G ′ := G .
2: while G ′ has an s → t path do
3: Find P, an s → t path in G ′ ▷ BFS/DFS
4: Find cp, min capacity of P in G ′

5: For uv ∈ P set f(uv) := f(uv) + cp ▷ Eliminate cycles!
6: Update residual graph G ′

7: end while
8: Output f

Eliminate cycles:

1: if f(uv) > 0 and f(vu) > 0 then
2: f(uv)− = min{f(uv), f(vu)}
3: f(vu)− = min{f(uv), f(vu)}
4: end if
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The Ford-Fulkerson Method

Counter-example fixed
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The Ford-Fulkerson Method

Counter-example fixed
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Now the
residual network
has a flow of
value 19.
Together with
the path this
gives a flow of
value 20.
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The Ford-Fulkerson Method

Correctness

Theorem

The Ford-Fulkerson algorithm calculates a maximum flow.

Lemma

The Ford-Fulkerson algorithm always terminates and outputs a valid flow.

Proof.

Suppose we have a valid current flow f

If the residual network G ′ has no s → t path, done.

Otherwise, we compute a larger flow, by adding to f the minimum
capacity of the computed path.

New flow is feasible (why?).

Flow cannot become ∞, so algorithm will eventually terminate.
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The Ford-Fulkerson Method

Correctness

Theorem

The Ford-Fulkerson algorithm calculates a maximum flow.

Proof.

Let f be the output valid flow of value f ∗, G ′ the residual network
where no s → t path exists.

Let S be the set of vertices reachable from s in G ′.

⇒ no arc comes out of S in G ′.

Claim: S gives a cut of weight f ∗

Arcs coming into S have 0 flow (otherwise G ′ has outgoing arc from S)
Arcs coming out of S are removed in G ′

⇒ for such arcs uv we have f(uv) = c(uv)
f ∗ =

∑
u∈S

∑
v ̸∈S f(uv) =

∑
u∈S

∑
v ̸∈S c(uv)

⇒ no flow can have value higher than f ∗, so current flow is maximum.
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The Ford-Fulkerson Method

Consequences

Theorem

In any weighted digraph G = (V ,A), for any s, t ∈ V , the max-flow value
from s to t is equal to the min-cut value from s to t.

Proof.

Max-Flow≤Min-Cut is easy (as we saw).

Ford-Fulkerson algorithm produces a flow equal to some cut, so the
flow is maximum, the cut is minimum.

Rare duality theorem, considered one of the deepest in OR.

For most optimization problems, no such duality is known.

Classes: NP vs coNP, P
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The Ford-Fulkerson Method

Consequences

Corollary

If all capacities are integral, there exists an integral maximum flow.

Statement is obvious for min-cuts.

Non-obvious for flows, as we can partition flows into fractional pieces
(this is allowed by the problem definition).
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The Ford-Fulkerson Method

Complexity Analysis

1: Initialize flow f := 0, residual graph G ′ := G .
2: while G ′ has an s → t path do ▷ How many iterations?
3: Find P, an s → t path in G ′ ▷ BFS/DFS: O(m) time
4: Find cp, min capacity of P in G ′ ▷ O(n) time
5: For uv ∈ P set f(uv) := f(uv) + cp ▷ O(m) time
6: Update residual graph G ′

7: end while
8: Output f

Each iteration takes O(m) time, but how many times do we need to
execute the main loop?

Easy argument: each execution increases flow value, so if capacities
are integer, complexity is O(m · f ∗).
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The Ford-Fulkerson Method

Complexity Analysis

Theorem

Ford-Fulkerson method runs in time O(m · f ∗) and there exist instances on
which it takes Ω(m · f ∗) time.

NB: this means that FF method is an exponential-time algorithm!

More precisely, a pseudopolynomial-time algorithm.
Pseudopolynomial: polynomial-time if input numbers have O(log n)
bits.

Problem: we haven’t specified which s → t path to pick in the
residual graph.

If bad paths are repeatedly picked, FF method takes a very long
time. . .

Generic method can still be useful if we know that f ∗ is small.
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The Ford-Fulkerson Method

Bad Example
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Edmonds-Karp algorithm
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Edmonds-Karp algorithm

Outline

Take Ford-Fulkerson method but specify which path to select in each
iteration.

Natural choice: take the shortest path
NB: shortest in the sense of minimum number of arcs, disregarding
weights.

Key idea: shortest-path distances from s (in unweighted sense) can
only increase for each iteration

⇒ we can bound the number of iterations as a function of n,
independently of f ∗.
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Edmonds-Karp algorithm

Analysis

Theorem

Edmonds-Karp algorithm runs in time O(nm2).

Lemma

For all v , distance from s to v never decreases in the residual network.

Lemma

Every arc ij ∈ A is saturated at most n
2 times.
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Edmonds-Karp algorithm

Lemma

For all v , distance from s to v never decreases in the residual network.

Proof.

Let v be the first and closest to s vertex for which distance decreased
between two iterations.

Let G1,G2 be the two residual networks and
distG2(s, v) < distG1(s, v).

Let u be the last vertex of a shortest s → v path in G2.

Claim: uv ̸∈ G1

Suppose for contradiction uv ∈ G1:
distG1(s, v) ≤ distG1(s, u) + 1 ≤ distG2(s, u) + 1 = distG2(s, v)
So, distance to v actually did not decrease. . .
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Edmonds-Karp algorithm

Lemma

For all v , distance from s to v never decreases in the residual network.

Proof.

(Continued...)

uv ̸∈ G1 and uv ∈ G2

⇒ s → t path in G1 uses vu

distG1(s, v) = distG1(s, u)− 1 ≤ distG2(s, u)− 1 = distG2(s, v)− 2

So, again distance to v increased, contradiction!
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Edmonds-Karp algorithm

Lemma

Every arc ij ∈ A is saturated at most n
2 times.

Proof.

Suppose distG1(s, i) = d when ij is saturated.

Later, ji is used in some residual network G2.

We claim, next time ij is saturated, distG3(s, i) ≥ d + 2.

When ij first saturated, distG1(s, j) = distG1(s, i) + 1 = d + 1.

Later, ji is used, so distG2(s, i) = distG2(s, j) + 1 ≥ d + 2.

distG3(s, i) ≥ distG2(s, i).
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Edmonds-Karp algorithm

Theorem

Edmonds-Karp algorithm runs in time O(nm2).

Proof.

Each iteration takes O(m) time and saturates an edge of the residual
network.

There are m edges, each saturated at most O(n) times.

Running time can be improved with better analysis.

However, bad examples can force the algorithm to flip-flop an arc
many times (see next slide).

Best known algorithm: m1+o(1) time (almost-linear), with completely
different techniques.
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Edmonds-Karp algorithm

Bad Example

s

A

b1

b2

a1
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c1

c2

b3

a2

t

d1

c3

d2

b4

c4

Capacity 1
everywhere

s → A paths: 1,3

s → B paths: 2,4

A → t paths: 2,4

B → t paths: 1,3
Goal: make AB arc flip many times for Edmonds-Karp.
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Michael Lampis Graph Algorithms November 13, 2025 35 / 43



Edmonds-Karp algorithm

Bad Example

s

A

b1

b2

a1

B

c1

c2

b3

a2

t

d1

c3

d2

b4

c4

Capacity 1
everywhere

s → A paths: 1,3

s → B paths: 2,4

A → t paths: 2,4

B → t paths: 1,3
Goal: make AB arc flip many times for Edmonds-Karp.

Michael Lampis Graph Algorithms November 13, 2025 35 / 43



Edmonds-Karp algorithm

Bad Example

s

A

b1

b2

a1

B

c1

c2

b3

a2

t

d1

c3

d2

b4

c4

Capacity 1
everywhere

s → A paths: 1,3

s → B paths: 2,4

A → t paths: 2,4

B → t paths: 1,3
Goal: make AB arc flip many times for Edmonds-Karp.

Michael Lampis Graph Algorithms November 13, 2025 35 / 43



Edmonds-Karp algorithm

Bad Example

s

A

b1

b2

a1

B

c1

c2

b3

a2

t

d1

c3

d2

b4

c4

Capacity 1
everywhere

s → A paths: 1,3

s → B paths: 2,4

A → t paths: 2,4

B → t paths: 1,3
Goal: make AB arc flip many times for Edmonds-Karp.

Michael Lampis Graph Algorithms November 13, 2025 35 / 43



Bipartite Matching

Bipartite Matching

Michael Lampis Graph Algorithms November 13, 2025 36 / 43



Bipartite Matching

Bipartite Matching

We are given a graph G = (V ,E ) with vertices partitioned into two
parts A,B.

Goal: We want to match elements of A to elements of B using edges
of E .

Each vertex should be matched to exactly one other vertex.
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Motivation
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Bipartite Matching

Matchings

Definition

A matching in a graph G = (V ,E ) is a set M ⊆ E such that no two
elements of M share a vertex.

Michael Lampis Graph Algorithms November 13, 2025 39 / 43



Bipartite Matching

Matchings

Definition

A matching in a graph G = (V ,E ) is a set M ⊆ E such that no two
elements of M share a vertex.

Michael Lampis Graph Algorithms November 13, 2025 39 / 43



Bipartite Matching

Matchings

Definition

A matching in a graph G = (V ,E ) is a set M ⊆ E such that no two
elements of M share a vertex.

Definition

A matching M is perfect if all vertices are incident to an edge of M.

Definition

A matching M is maximum if all sets of edges of size |M|+ 1 or more
contain two edges incident on the same vertex.

Algorithmic problem: Given a graph, find the maximum matching.
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Example
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Bipartite Matching

Matchings to Flows

Finding a maximum matching is a non-trivial problem

Can be reduced to computing a maximum flow as follows:

Orient edges from A to B
Add a vertex s with arcs to A
Add a vertex t with arcs from B
Compute maximum s → t flow
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Bipartite Matching

Example
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We want to calculate a maximum matching
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Run some max flow algorithm (some details skipped)
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Arcs used in flow ↔ Matching edges
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Example
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Flow is maximum ↔ Matching is maximum
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Bipartite Matching

Example
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Flow is maximum as blue set has cut size 8 (8 arcs coming out)
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Bipartite Matching

Example
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⇒ maximum matching has size 8
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Bipartite Matching

Analysis

Given G = (V ,E ) with V = A ∪ B and |E | = m we run
Ford-Fulkerson

Observe that f ∗ ≤ n

Running time: O(mn)

(As mentioned, a much more complicated almost-linear time
algorithm exists.)
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