Graph Algorithms
Max Flow - Min Cut

Michael Lampis

November 13, 2025

Michael Lampis Graph Algorithms November 13, 2025 1/43



-
The story so far

@ (Short) Reachability problems:

o Is there a path from s to t? (Strongly) connected components? ...
e What is the shortest path from s to t? From everyone to everyone?
e What is the cheapest way to keep everyone connected?

Michael Lampis Graph Algorithms November 13, 2025 2/43



-
The story so far

@ (Short) Reachability problems:
o Is there a path from s to t? (Strongly) connected components? ...
e What is the shortest path from s to t? From everyone to everyone?
e What is the cheapest way to keep everyone connected?

@ Algorithms:

o Unweighted Reachability: BFS/DFS O(m + n) time

o Single-Source Shortest Paths:
e Unweighted: BFS O(m + n) time
o Positive weights: Dijkstra O((m + n) log n) time (with min-heaps)
o General weights: Bellman-Ford O(mn) time

e Minimum Spanning Tree:
e Prim’s and Kruskal's algorithms: O(mlog n) time

Michael Lampis Graph Algorithms November 13, 2025 2/43



-
The story so far

@ (Short) Reachability problems:
o Is there a path from s to t? (Strongly) connected components? ...
e What is the shortest path from s to t? From everyone to everyone?
e What is the cheapest way to keep everyone connected?

@ Algorithms:
o Unweighted Reachability: BFS/DFS O(m + n) time
o Single-Source Shortest Paths:

e Unweighted: BFS O(m + n) time
o Positive weights: Dijkstra O((m + n) log n) time (with min-heaps)
o General weights: Bellman-Ford O(mn) time

e Minimum Spanning Tree:
e Prim’s and Kruskal's algorithms: O(mlog n) time
@ New problem: Maximum Flow - Minimum Cut
e Find minimum weight set of edges that destroys connectedness.

Michael Lampis Graph Algorithms November 13, 2025 2/43



Problem Definition

Problem Definition

Michael Lampis Graph Algorithms November 13, 2025 3/43



Problem Definition

Definition

Definition

For an edge-weighted digraph G = (V/, A), a Minimum Edge Cut
between vertices s,t € V is a set of arcs A’ C A such that

Q@ G =(V,A\ A) has no directed path from s to t.

@ The weight of A’ is minimum among sets satisfying (1).

Michael Lampis Graph Algorithms November 13, 2025 4/43



Problem Definition

Definition

Definition
For an edge-weighted digraph G = (V/, A), a Minimum Edge Cut
between vertices s,t € V is a set of arcs A’ C A such that

Q@ G =(V,A\ A) has no directed path from s to t.

@ The weight of A’ is minimum among sets satisfying (1).

@ Algorithmic problem: Given G = (V,A) and s,t € V, compute
minimum s — t cut.

Equivalent formulation:
Definition
In the Min s — t Cut problem, we are given edge-weighted digraph

G =(V,A), s,t € V and are asked to compute a set S C V with
se€ S, t¢ Ssuchthat } o o> o5 w(xy) is minimum.

Michael Lampis Graph Algorithms November 13, 2025 4/43



Problem Definition

Example

Michael Lampis Graph Algorithms November 13, 2025 5/43



Problem Definition

Example

Cost: 14

Michael Lampis Graph Algorithms November 13, 2025 5/43



Problem Definition

Example

Cost: 13

Michael Lampis Graph Algorithms November 13, 2025 5/43



Problem Definition

Example

Cost: 12

Michael Lampis Graph Algorithms November 13, 2025 5/43



Problem Definition

Example

Cost: 11

Michael Lampis Graph Algorithms November 13, 2025 5/43



Problem Definition

Example

Michael Lampis Graph Algorithms November 13, 2025 5/43



Obvious (bad) algorithms

Lemma
The two formulations are equivalent.

Proof.
@ Given cut-set A’, define S as set of vertices reachable from s.
o Given set S, define A’ as set of arcs from S to V' \ S.

Michael Lampis Graph Algorithms November 13, 2025

6/43



Obvious (bad) algorithms

Lemma
The two formulations are equivalent.

Proof.
@ Given cut-set A’, define S as set of vertices reachable from s.
o Given set S, define A’ as set of arcs from S to V' \ S.

L]
e O(2™ - m) time: try all cut-sets
Graph Algorithms November 13, 2025 6/43



Obvious (bad) algorithms

Lemma
The two formulations are equivalent.

Proof.
@ Given cut-set A’, define S as set of vertices reachable from s.
o Given set S, define A’ as set of arcs from S to V' \ S.

L]
e O(2™ - m) time: try all cut-sets
e O(2"- m) time: try all sets S
Pretty terrible! Can we do polynomial time?
Graph Algorithms November 13, 2025 6/43



Flows

Definition

Given a digraph G = (V,A), s,t € V and a capacity function

c:A— QT, aflowis a function f : A — Q7 satisfying the following:
@ Capacity-respecting: for all a € A we have f(a) < c(a)

@ Flow-conservation: for all x € V' \ {s, t} we have
ZZEN*(X) f(ZX) = ZyEN*(X) f(Xy)

Intuition:

@ s is sending something (information, energy, etc.) to t.
o Capacities of arcs must be respected.

@ Flows can be re-arranged in vertices, but must be conserved and go
from sto t

@ Value of flow f is total flow coming out of s

@ We seek a flow of maximum value
Graph Algorithms November 13, 2025 7/43



Problem Definition

Example

Michael Lampis Graph Algorithms November 13, 2025 8/43



Problem Definition

Example

Michael Lampis Graph Algorithms November 13, 2025 8/43



Problem Definition

Example

Michael Lampis Graph Algorithms November 13, 2025 8/43



Problem Definition

Example

Michael Lampis Graph Algorithms November 13, 2025 8/43



Problem Definition

Example

Graph Algorithms November 13, 2025 8/43



Problem Definition

Example

Graph Algorithms November 13, 2025 8/43



Problem Definition

Max-Flow Min-Cut: easy connection

Lemma

For all directed graphs G = (V/, A), s, t, and weight function w : A — Q™
if f if a feasible flow value from s to t and c is a feasible cut from s to t,
then f < c.

Corollary

If f* is the max flow value and c* is the minimum cut value, then f* < c*.

Michael Lampis Graph Algorithms November 13, 2025 9/43



Problem Definition

Max-Flow Min-Cut: easy connection

Lemma

For all directed graphs G = (V/, A), s, t, and weight function w : A — Q™
if f if a feasible flow value from s to t and c is a feasible cut from s to t,
then f < c.

Corollary

If f* is the max flow value and c* is the minimum cut value, then f* < c*.

Proves that for previous example f* = c* = 9.

Michael Lampis Graph Algorithms November 13, 2025 9/43



Problem Definition

Lemma

For all directed graphs G = (V,A), s, t, and weight function w : A — Q™
if f if a feasible flow value from s to t and c is a feasible cut from s to t,
then f < c.

Michael Lampis Graph Algorithms November 13, 2025 10 /43



Problem Definition

Lemma

For all directed graphs G = (V,A), s, t, and weight function w : A — Q™
if f if a feasible flow value from s to t and c is a feasible cut from s to t,
then f < c.

Proof.
o Let A’ be a feasible cut, S the set of vertices reachable from s.

@ Let f be a flow function of value f.

o We have f <37 s> 45 f(xy).
° ZXES Zygs f(Xy) S ZXES Zygs C(Xy) = C.

Michael Lampis Graph Algorithms November 13, 2025 10/43



(Weak) duality

@ What we know: any flow has value < than any cut

Michael Lampis Graph Algorithms November 13, 2025 11/43



(Weak) duality

@ What we know: any flow has value < than any cut

@ Common situation in combinatorial optimization:
o We want to optimize (say, minimize) something
o For example: Min Weight Spanning Tree (variants)
o We find a dual objective (maximization) problem that lower bounds the
solution

o For example: the diameter (max distance of any two vertices) is a lower
bound on MST (why?)

Michael Lampis Graph Algorithms November 13, 2025 11/43



(Weak) duality

@ What we know: any flow has value < than any cut

@ Common situation in combinatorial optimization:
o We want to optimize (say, minimize) something
o For example: Min Weight Spanning Tree (variants)
o We find a dual objective (maximization) problem that lower bounds the
solution
o For example: the diameter (max distance of any two vertices) is a lower
bound on MST (why?)
@ In situations where the original problem is hard to solve (NP-hard),
this trick at least allows us to get an idea for how far we are from the
optimal solution.

Michael Lampis Graph Algorithms November 13, 2025 11/43



(Weak) duality

@ What we know: any flow has value < than any cut

@ Common situation in combinatorial optimization:
o We want to optimize (say, minimize) something
o For example: Min Weight Spanning Tree (variants)
o We find a dual objective (maximization) problem that lower bounds the
solution
o For example: the diameter (max distance of any two vertices) is a lower
bound on MST (why?)
@ In situations where the original problem is hard to solve (NP-hard),
this trick at least allows us to get an idea for how far we are from the
optimal solution.

@ In some rare situations we can find a dual problem where the optimal
values of the two objectives match!!!

@ This is the case for Max-Flow and Min-Cut

Michael Lampis Graph Algorithms November 13, 2025 11/43



The Ford-Fulkerson Method

The Ford-Fulkerson Method

Michael Lampis Graph Algorithms November 13, 2025 12 /43



The Ford-Fulkerson Method

o Strategy: reduce Max-Flow computation to Reachability computation
Find a path from s to t

Saturate it!

Update the graph

Repeat

Michael Lampis Graph Algorithms November 13, 2025 13 /43



The Ford-Fulkerson Method

o Strategy: reduce Max-Flow computation to Reachability computation
Find a path from s to t

Saturate it!

Update the graph

Repeat

@ Saturate: send as much capacity as allowed by the arc of minimum
capacity in the path
e = this arc is then saturated (cannot take more flow)

Michael Lampis Graph Algorithms November 13, 2025 13 /43



The Ford-Fulkerson Method

o Strategy: reduce Max-Flow computation to Reachability computation
e Find a path from s to t
e Saturate it!
e Update the graph
o Repeat
@ Saturate: send as much capacity as allowed by the arc of minimum
capacity in the path
e = this arc is then saturated (cannot take more flow)
@ How to update the graph so that we respect future capacities?
o Naive method: subtract flow from capacities of used arcs (doesn't
work!!)
o Correct method: Construct Residual network
o Complexity:

o Depends heavily on how paths are selected (more later!)

Michael Lampis Graph Algorithms November 13, 2025 13 /43



The Ford-Fulkerson Method

Example

Michael Lampis Graph Algorithms November 13, 2025 14 /43



The Ford-Fulkerson Method

Example

Find an s — t
path.
Min capacity:4

Michael Lampis Graph Algorithms November 13, 2025 14 /43



The Ford-Fulkerson Method

Example

Saturate the
path

Michael Lampis Graph Algorithms November 13, 2025 14 /43



The Ford-Fulkerson Method

Example

Update
Capacities

Michael Lampis Graph Algorithms November 13, 2025 14 /43



The Ford-Fulkerson Method

Example

Find ans — ¢
path.
Min capacity:2

Michael Lampis Graph Algorithms November 13, 2025 14 /43



The Ford-Fulkerson Method

Example

Saturate the
path

Michael Lampis Graph Algorithms November 13, 2025 14 /43



The Ford-Fulkerson Method

Example

Update
Capacities

Michael Lampis Graph Algorithms November 13, 2025 14 /43



The Ford-Fulkerson Method

Example

Michael Lampis Graph Algorithms November 13, 2025 14 /43



The Ford-Fulkerson Method

Example

Michael Lampis Graph Algorithms November 13, 2025 14 /43



The Ford-Fulkerson Method

Example

Michael Lampis Graph Algorithms November 13, 2025 14 /43



The Ford-Fulkerson Method

Example

Michael Lampis Graph Algorithms November 13, 2025 14 /43



The Ford-Fulkerson Method

Example

Michael Lampis Graph Algorithms November 13, 2025 14 /43



The Ford-Fulkerson Method

Example

No path exists
= current flow
is max

Michael Lampis Graph Algorithms November 13, 2025 14 /43



The Ford-Fulkerson Method

How to update capacities

@ Each time we find a path we subtract its flow from the capacities of
used arcs (good!).

@ However, the algorithm as currently formulated is not correct!
o Intuitive reason: once we commit to a path, we never decrease the flow
along its arcs.
e However, we don't know beforehand if the optimal solution should
saturate the path.
@ To fix this, we need to update capacities in a way that allows us to
later on decrease the flow along a used arc, as needed.

Michael Lampis Graph Algorithms November 13, 2025 15 /43



The Ford-Fulkerson Method

Counter-example

D

Michael Lampis Graph Algorithms November 13, 2025 16 /43



The Ford-Fulkerson Method

Counter-example

10

Find an s — t
path.
Min capacity:1

Michael Lampis Graph Algorithms November 13, 2025 16 /43



The Ford-Fulkerson Method

Counter-example

10

. (D
G

Saturate the
path

Michael Lampis Graph Algorithms November 13, 2025 16 /43



The Ford-Fulkerson Method

Counter-example

10

10 ° / Note: this path
me looks stupid,
° but may in fact
be the shortest
path (e.g. if we
subdivide At
many times)

Michael Lampis Graph Algorithms November 13, 2025 16 /43




The Ford-Fulkerson Method

Counter-example

10

|

Michael Lampis Graph Algorithms

Update
Capacities

November 13, 2025

16 /43



The Ford-Fulkerson Method

Counter-example

10

© ‘.. -
Now we have a
IA e problem!
New graph has

max-flow=18,
so in total we
get a flow of 19.

(D)o Max=20 (!1)
< ©

i

Michael Lampis Graph Algorithms November 13, 2025 16 /43




The Ford-Fulkerson Method

Residual Networks

Definition
Let G =(V,A),s,t € V,c: A— Q" be a Max-Flow instance,
f: A— Q7 avalid flow on G. The residual network
G =(V,A),c : A— Q7 is defined as follows:
@ For each uv € A we set
O c(uv) = c(uv) —f(uv)
Q c'(vu) =c(uv) + f(uv)

Michael Lampis Graph Algorithms November 13, 2025 17 /43



The Ford-Fulkerson Method

Residual Networks

Definition
Let G =(V,A),s,t € V,c: A— Q" be a Max-Flow instance,
f: A— Q7 avalid flow on G. The residual network
G =(V,A),c : A— Q7 is defined as follows:
@ For each uv € A we set
O c(uv) = c(uv) —f(uv)
Q c'(vu) =c(uv) + f(uv)

(To ease notation, assume that when jj € A, then ji € A, possibly with
capacity 0)

Michael Lampis Graph Algorithms November 13, 2025 17 /43



The Ford-Fulkerson Method

Residual Network: intuition

o We currently have a flow f.

o If f(uv) > 0 we decrease c’(uv) by f(uv)
o Makes sense, as we have used some of the capacity of uv.

Michael Lampis Graph Algorithms November 13, 2025

18/43



Residual Network: intuition

@ We currently have a flow f.

o If f(uv) > 0 we decrease c’(uv) by f(uv)
o Makes sense, as we have used some of the capacity of uv.

e Furthermore, we increase c/(vu) by f(uv)

o We do this, even if vu previously did not exist (had capacity 0).

o Intuition, if we later send flow through vu, we can simulate this by
decreasing the flow through uv.

o Increasing f(vu) by 1 is the same as decreasing uv by 1 for the
flow-conservation constraints.

Michael Lampis Graph Algorithms November 13, 2025 18 /43



Residual Network: intuition

@ We currently have a flow f.

o If f(uv) > 0 we decrease c’(uv) by f(uv)
o Makes sense, as we have used some of the capacity of uv.

e Furthermore, we increase c/(vu) by f(uv)

o We do this, even if vu previously did not exist (had capacity 0).

o Intuition, if we later send flow through vu, we can simulate this by
decreasing the flow through uv.

o Increasing f(vu) by 1 is the same as decreasing uv by 1 for the
flow-conservation constraints.

@ Thanks to this idea, we don’t commit when we add a path to the
solution (the flow can be reversed later).

Michael Lampis Graph Algorithms November 13, 2025 18 /43



The Ford-Fulkerson Method

Ford-Fulkerson method

Initialize flow f := 0, residual graph G’ := G.

while G’ has an s — t path do
Find P, an s — t path in G’ > BFS/DFS
Find cp, min capacity of P in G’
For uv € P set f(uv) :=f(uv) + ¢, > Eliminate cycles!
Update residual graph G’

end while

Output f

e R T

Michael Lampis Graph Algorithms November 13, 2025 19 /43



The Ford-Fulkerson Method

Ford-Fulkerson method

. Initialize flow f := 0, residual graph G’ := G.

while G’ has an s — t path do
Find P, an s — t path in G’ > BFS/DFS
Find cp, min capacity of P in G’
For uv € P set f(uv) :=f(uv) + ¢, > Eliminate cycles!
Update residual graph G’

end while

: Output f

Eliminate cycles:

No g s wh

(o]

1. if f(uv) > 0 and f(vu) > 0 then
2: f(uv)— = min{f(uv), f(vu)}
3: f(vu)— = min{f(uv), f(vu)}
4: end if

Michael Lampis Graph Algorithms November 13, 2025 19 /43



The Ford-Fulkerson Method

Counter-example fixed

D

Michael Lampis Graph Algorithms

November 13, 2025

20 /43



The Ford-Fulkerson Method

Counter-example fixed

10

Find an s — t
path.
Min capacity:1

Michael Lampis Graph Algorithms November 13, 2025 20/43



The Ford-Fulkerson Method

Counter-example fixed

10

. (D
G

Saturate the
path

Michael Lampis Graph Algorithms November 13, 2025 20/43



The Ford-Fulkerson Method

Counter-example fixed

10

RS O

Michael Lampis Graph Algorithms

Update
Capacities

November 13, 2025

20/43



The Ford-Fulkerson Method

Counter-example fixed

10

‘ Now the
mel residual network
° has a flow of
value 19.
Together with
the path this

gives a flow of

1
value 20.

OO

Michael Lampis Graph Algorithms November 13, 2025 20/43




The Ford-Fulkerson Method

Correctness

Theorem

The Ford-Fulkerson algorithm calculates a maximum flow.

Michael Lampis Graph Algorithms November 13, 2025 21/43



The Ford-Fulkerson Method

Correctness

Theorem

The Ford-Fulkerson algorithm calculates a maximum flow.

Lemma

The Ford-Fulkerson algorithm always terminates and outputs a valid flow.

Proof.
@ Suppose we have a valid current flow f
o If the residual network G’ has no s — t path, done.

@ Otherwise, we compute a larger flow, by adding to f the minimum
capacity of the computed path.

New flow is feasible (why?).

Flow cannot become oo, so algorithm will eventually terminate.

O

— — = = SaRe:

Michael Lampis Graph Algorithms November 13, 2025 21/43




The Ford-Fulkerson Method

Correctness

Theorem
The Ford-Fulkerson algorithm calculates a maximum flow.

Michael Lampis Graph Algorithms November 13, 2025 22 /43



The Ford-Fulkerson Method

Correctness

Theorem

The Ford-Fulkerson algorithm calculates a maximum flow.

Proof.

@ Let f be the output valid flow of value f*, G’ the residual network
where no s — t path exists.
@ Let S be the set of vertices reachable from s in G'.
e = no arc comes out of S in G’.

o Claim: S gives a cut of weight f*

o Arcs coming into S have 0 flow (otherwise G’ has outgoing arc from S)
e Arcs coming out of S are removed in G’

e = for such arcs uv we have f(uv) = c(uv)

o

f*::§:ue5§:vg5f(uv)::Ejues§zvgsc(uv)

@ = no flow can have value higher than f*, so current flow is maximum.

L]

22/43

Michael Lampis Graph Algorithms November 13, 2025



The Ford-Fulkerson Method

Consequences

Theorem

In any weighted digraph G = (V,A), for any s, t € V, the max-flow value
from s to t is equal to the min-cut value from s to t.

Michael Lampis Graph Algorithms November 13, 2025 23 /43



The Ford-Fulkerson Method

Consequences

Theorem

In any weighted digraph G = (V,A), for any s, t € V, the max-flow value
from s to t is equal to the min-cut value from s to t.

Proof.
e Max-Flow<Min-Cut is easy (as we saw).

@ Ford-Fulkerson algorithm produces a flow equal to some cut, so the
flow is maximum, the cut is minimum.

0J

Michael Lampis Graph Algorithms November 13, 2025 23 /43




The Ford-Fulkerson Method

Consequences

Theorem

In any weighted digraph G = (V,A), for any s, t € V, the max-flow value
from s to t is equal to the min-cut value from s to t.

Proof.
e Max-Flow<Min-Cut is easy (as we saw).

@ Ford-Fulkerson algorithm produces a flow equal to some cut, so the
flow is maximum, the cut is minimum.

0J

@ Rare duality theorem, considered one of the deepest in OR.

@ For most optimization problems, no such duality is known.
o Classes: NP vs coNP, P

Michael Lampis Graph Algorithms November 13, 2025 23 /43




The Ford-Fulkerson Method

Consequences

Corollary

If all capacities are integral, there exists an integral maximum flow.

Michael Lampis Graph Algorithms November 13, 2025 24 /43



The Ford-Fulkerson Method

Consequences

Corollary

If all capacities are integral, there exists an integral maximum flow.

@ Statement is obvious for min-cuts.

@ Non-obvious for flows, as we can partition flows into fractional pieces
(this is allowed by the problem definition).

Michael Lampis Graph Algorithms November 13, 2025 24 /43



Complexity Analysis

1: Initialize flow f := 0, residual graph G’ := G.

2: while G’ has an s — t path do > How many iterations?
3 Find P, an s — t path in G’ > BFS/DFS: O(m) time
4: Find c,, min capacity of P in G’ > O(n) time
5: For uv € P set f(uv) :=f(uv) + ¢, > O(m) time
6: Update residual graph G’

7: end while

8: Output f

e Each iteration takes O(m) time, but how many times do we need to
execute the main loop?

o Easy argument: each execution increases flow value, so if capacities
are integer, complexity is O(m - f*).

Michael Lampis Graph Algorithms November 13, 2025 25 /43



The Ford-Fulkerson Method

Complexity Analysis

Theorem

Ford-Fulkerson method runs in time O(m - f*) and there exist instances on
which it takes Q(m - f*) time.

Michael Lampis Graph Algorithms November 13, 2025 26 /43



Complexity Analysis

Theorem

Ford-Fulkerson method runs in time O(m - f*) and there exist instances on
which it takes Q(m - f*) time.

@ NB: this means that FF method is an exponential-time algorithm!

e More precisely, a pseudopolynomial-time algorithm.
o Pseudopolynomial: polynomial-time if input numbers have O(log n)
bits.

@ Problem: we haven't specified which s — t path to pick in the
residual graph.

o If bad paths are repeatedly picked, FF method takes a very long
time. ..

@ Generic method can still be useful if we know that f* is small.

Michael Lampis Graph Algorithms November 13, 2025 26 /43



Bad Example

100
N> G

Michael Lampis Graph Algorithms

November 13, 2025

27 /43



Bad Example

Michael Lampis Graph Algorithms November 13, 2025 27 /43



Bad Example

Michael Lampis Graph Algorithms November 13, 2025 27 /43



Bad Example

Michael Lampis Graph Algorithms November 13, 2025 27 /43



Bad Example

% °
GO o (D =2

Michael Lampis Graph Algorithms November 13, 2025 27 /43



Bad Example

Michael Lampis Graph Algorithms November 13, 2025 27 /43



Bad Example

Dt
O iria-ey D f=3..

Michael Lampis Graph Algorithms November 13, 2025 27 /43



Bad Example

Dt
O iria-ey D f=3..

Would you like to repeat this another 197 times?

Michael Lampis Graph Algorithms November 13, 2025

27 /43



Edmonds-Karp algorithm

Edmonds-Karp algorithm

Michael Lampis Graph Algorithms November 13, 2025 28 /43



Outline

@ Take Ford-Fulkerson method but specify which path to select in each
iteration.
@ Natural choice: take the shortest path
e NB: shortest in the sense of minimum number of arcs, disregarding
weights.
o Key idea: shortest-path distances from s (in unweighted sense) can

only increase for each iteration

@ = we can bound the number of iterations as a function of n,
independently of f*.

Michael Lampis Graph Algorithms November 13, 2025 29 /43



Analysis

Theorem

Edmonds-Karp algorithm runs in time O(nm?).

Michael Lampis Graph Algorithms

November 13, 2025

30/43



Analysis

Theorem

Edmonds-Karp algorithm runs in time O(nm?).

Lemma

For all v, distance from s to v never decreases in the residual network.

Lemma

Every arc ij € A is saturated at most 5 times.

Michael Lampis Graph Algorithms November 13, 2025 30/43



Edmonds-Karp algorithm

Lemma
For all v, distance from s to v never decreases in the residual network.

Michael Lampis Graph Algorithms November 13, 2025 31/43



Edmonds-Karp algorithm

Lemma
For all v, distance from s to v never decreases in the residual network.

Proof.
@ Let v be the first and closest to s vertex for which distance decreased
between two iterations.

@ Let Gy, Gy be the two residual networks and

distg, (s, v) < distg, (s, v).
@ Let u be the last vertex of a shortest s — v path in Gp.
o Claim: uv ¢ Gy

Michael Lampis Graph Algorithms November 13, 2025 31/43



Edmonds-Karp algorithm

Lemma
For all v, distance from s to v never decreases in the residual network.

Proof.

@ Let v be the first and closest to s vertex for which distance decreased

between two iterations.
@ Let Gy, Gy be the two residual networks and
distg, (s, v) < distg, (s, v).
@ Let u be the last vertex of a shortest s — v path in Gp.
o Claim: uv ¢ Gy
e Suppose for contradiction uv € Gi:

o distg, (s, v) < distg, (s, u) + 1 < distg,(s, u) + 1 = distg,(s, v)
e So, distance to v actually did not decrease. ..

O

Michael Lampis Graph Algorithms November 13, 2025

31/43



Edmonds-Karp algorithm

Lemma
For all v, distance from s to v never decreases in the residual network.

Proof.
(Continued...)
o uv ¢ Gy and uv € G
@ = s — t path in Gy uses vu

e distg, (s, v) = distg (s, u) — 1 < distg,(s, u) — 1 = distg,(s, v) — 2

@ So, again distance to v increased, contradiction!

Michael Lampis Graph Algorithms November 13, 2025

32/43



Edmonds-Karp algorithm

Lemma

Every arc ij € A is saturated at most 7 times.

Michael Lampis Graph Algorithms November 13, 2025 33/43



Edmonds-Karp algorithm

Lemma

Every arc ij € A is saturated at most 7 times.

Proof.
@ Suppose distg, (s, /) = d when ij is saturated.
o Later, ji is used in some residual network Go.

e We claim, next time jj is saturated, distg,(s, /) > d + 2.

Michael Lampis Graph Algorithms November 13, 2025

33/43



Edmonds-Karp algorithm

Lemma

Every arc ij € A is saturated at most 7 times.

Proof.
Suppose distg, (s, /) = d when ij is saturated.

o Later, ji is used in some residual network Go.
e We claim, next time jj is saturated, distg,(s, /) > d + 2.
@ When jj first saturated, distg, (s,/j) = distg(s,/) +1=d + 1.
o Later, ji is used, so distg,(s,i) = distg,(s,j) +1>d+ 2.
o distg,(s, i) > distg,(s, /).
L]
Graph Algorithms November 13, 2025 33/43



Edmonds-Karp algorithm

Theorem

Edmonds-Karp algorithm runs in time O(nm?).

Michael Lampis Graph Algorithms November 13, 2025 34 /43



Edmonds-Karp algorithm

Theorem

Edmonds-Karp algorithm runs in time O(nm?).

Proof.

e Each iteration takes O(m) time and saturates an edge of the residual

network.

@ There are m edges, each saturated at most O(n) times.

Michael Lampis Graph Algorithms

November 13, 2025

34/43



Edmonds-Karp algorithm

Theorem

Edmonds-Karp algorithm runs in time O(nm?).

Proof.

e Each iteration takes O(m) time and saturates an edge of the residual
network.

@ There are m edges, each saturated at most O(n) times.

@ Running time can be improved with better analysis.

@ However, bad examples can force the algorithm to flip-flop an arc
many times (see next slide).

@ Best known algorithm: m!*°() time (almost-linear), with completely
different techniques.

Michael Lampis Graph Algorithms November 13, 2025 34 /43



Bad Example

Capacity 1
everywhere
s — A paths: 1,3
s — B paths: 2,4
A — t paths: 2,4
B — t paths: 1,3

Goal: make AB arc flip many times for Edmonds-Karp.

Michael Lampis Graph Algorithms November 13, 2025 35/43



Bad Example

Capacity 1
everywhere
s — A paths: 1,3
s — B paths: 2,4
A — t paths: 2,4
B — t paths: 1,3

Goal: make AB arc flip many times for Edmonds-Karp.

Michael Lampis Graph Algorithms November 13, 2025 35/43



Bad Example

Capacity 1
everywhere
s — A paths: 1,3
s — B paths: 2,4
A — t paths: 2,4
B — t paths: 1,3

Goal: make AB arc flip many times for Edmonds-Karp.

Michael Lampis Graph Algorithms November 13, 2025 35/43



Bad Example

Capacity 1
everywhere
s — A paths: 1,3
s — B paths: 2,4
A — t paths: 2,4
B — t paths: 1,3

Goal: make AB arc flip many times for Edmonds-Karp.

Michael Lampis Graph Algorithms November 13, 2025 35/43



Bad Example

Capacity 1
everywhere
s — A paths: 1,3
s — B paths: 2,4
A — t paths: 2,4
B — t paths: 1,3

Goal: make AB arc flip many times for Edmonds-Karp.

Michael Lampis Graph Algorithms November 13, 2025 35/43



Bad Example

Capacity 1
everywhere
s — A paths: 1,3
s — B paths: 2,4
A — t paths: 2,4
B — t paths: 1,3

Goal: make AB arc flip many times for Edmonds-Karp.

Michael Lampis Graph Algorithms November 13, 2025 35/43



Bad Example

Capacity 1
everywhere
s — A paths: 1,3
s — B paths: 2,4
A — t paths: 2,4
B — t paths: 1,3

Goal: make AB arc flip many times for Edmonds-Karp.

Michael Lampis Graph Algorithms November 13, 2025 35/43



Bad Example

Capacity 1
everywhere
s — A paths: 1,3
s — B paths: 2,4
A — t paths: 2,4
B — t paths: 1,3

Goal: make AB arc flip many times for Edmonds-Karp.

Michael Lampis Graph Algorithms November 13, 2025 35/43



Bipartite Matching

Bipartite Matching

Michael Lampis Graph Algorithms November 13, 2025 36 /43



Bipartite Matching

e We are given a graph G = (V/, E) with vertices partitioned into two
parts A, B.

@ Goal: We want to match elements of A to elements of B using edges
of E.

@ Each vertex should be matched to exactly one other vertex.

Michael Lampis Graph Algorithms November 13, 2025 37/43



Bipartite Matching

Motivation

5o oo o

@)
1T
Q
TT
@
i

Michael Lampis Graph Algorithms November 13, 2025 38/43



Bipartite Matching

Motivation

Supervisor

Workers

3
S={2, 4,5}

Tasks

Graph Algorithms November 13, 2025 38/43



Matchings

Definition

A matching in a graph G = (V,E) is a set M C E such that no two
elements of M share a vertex.

Michael Lampis Graph Algorithms November 13, 2025 39/43



Matchings

Definition

A matching in a graph G = (V,E) is a set M C E such that no two
elements of M share a vertex.

@)

b oo

Michael Lampis Graph Algorithms

November 13, 2025 39/43



Matchings

Definition
A matching in a graph G = (V,E) is a set M C E such that no two
elements of M share a vertex.

Definition
A matching M is perfect if all vertices are incident to an edge of M.

Definition
A matching M is maximum if all sets of edges of size |M| + 1 or more
contain two edges incident on the same vertex.

Algorithmic problem: Given a graph, find the maximum matching.

Michael Lampis Graph Algorithms November 13, 2025 39/43



Bipartite Matching

Example

Michael Lampis Graph Algorithms November 13, 2025 40/43



Bipartite Matching

Example

Michael Lampis Graph Algorithms November 13, 2025 40/43



Matchings to Flows

o Finding a maximum matching is a non-trivial problem

@ Can be reduced to computing a maximum flow as follows:

Orient edges from A to B

Add a vertex s with arcs to A
Add a vertex t with arcs from B
Compute maximum s — t flow

Michael Lampis Graph Algorithms November 13, 2025

41/43



Bipartite Matching

Example

We want to calculate a maximum matching

Graph Algorithms November 13, 2025

42/43



Bipartite Matching

Example

Orient graph, add s, t

Graph Algorithms November 13, 2025

42/43



Bipartite Matching

Example

Orient graph, add s, t

Graph Algorithms November 13, 2025 42/43



Bipartite Matching

Example

Orient graph, add s, t

Graph Algorithms November 13, 2025 42/43



Bipartite Matching

Example

Run some max flow algorithm (some details skipped)

Graph Algorithms November 13, 2025 42/43



Bipartite Matching

Example

Run some max flow algorithm (some details skipped)

Graph Algorithms November 13, 2025 42/43



Bipartite Matching

Example

Run some max flow algorithm (some details skipped)

Graph Algorithms November 13, 2025 42/43



Bipartite Matching

Example

Arcs used in flow <> Matching edges

Graph Algorithms November 13, 2025 42/43



Bipartite Matching

Example

Flow is maximum < Matching is maximum

Graph Algorithms November 13, 2025 42/43



Bipartite Matching

Example

Flow is maximum as blue set has cut size 8 (8 arcs coming out)

Graph Algorithms November 13, 2025 42/43



Bipartite Matching

Example

= maximum matching has size 8

Graph Algorithms November 13, 2025 42/43



Analysis

e Given G = (V,E) with V=AU B and |E| = m we run
Ford-Fulkerson

@ Observe that f* < n

@ Running time: O(mn)

@ (As mentioned, a much more complicated almost-linear time

algorithm exists.)

Michael Lampis Graph Algorithms November 13, 2025 43/43



	Problem Definition
	The Ford-Fulkerson Method
	Edmonds-Karp algorithm
	Bipartite Matching

