Graph Algorithms Max Flow - Min Cut

Michael Lampis

November 13, 2025

The story so far

- (Short) Reachability problems:
 - Is there a path from s to t? (Strongly) connected components? . . .
 - What is the shortest path from s to t? From everyone to everyone?
 - What is the cheapest way to keep everyone connected?

The story so far

- (Short) Reachability problems:
 - Is there a path from s to t? (Strongly) connected components? . . .
 - What is the shortest path from s to t? From everyone to everyone?
 - What is the cheapest way to keep everyone connected?
- Algorithms:
 - Unweighted Reachability: BFS/DFS O(m+n) time
 - Single-Source Shortest Paths:
 - Unweighted: BFS O(m+n) time
 - Positive weights: Dijkstra $O((m+n)\log n)$ time (with min-heaps)
 - General weights: Bellman-Ford O(mn) time
 - Minimum Spanning Tree:
 - Prim's and Kruskal's algorithms: $O(m \log n)$ time

The story so far

- (Short) Reachability problems:
 - Is there a path from s to t? (Strongly) connected components? . . .
 - What is the shortest path from s to t? From everyone to everyone?
 - What is the cheapest way to keep everyone connected?
- Algorithms:

Michael Lampis

- Unweighted Reachability: BFS/DFS O(m+n) time
- Single-Source Shortest Paths:
 - Unweighted: BFS O(m+n) time
 - Positive weights: Dijkstra $O((m+n)\log n)$ time (with min-heaps)
 - General weights: Bellman-Ford O(mn) time
- Minimum Spanning Tree:
 - Prim's and Kruskal's algorithms: $O(m \log n)$ time
- New problem: Maximum Flow Minimum Cut
 - Find minimum weight set of edges that destroys connectedness.

Graph Algorithms

November 13, 2025

2 / 43

Problem Definition

Michael Lampis

Definition

Definition

For an edge-weighted digraph G = (V, A), a **Minimum Edge Cut** between vertices $s, t \in V$ is a set of arcs $A' \subseteq A$ such that

- 2 The weight of A' is minimum among sets satisfying (1).

Definition

Definition

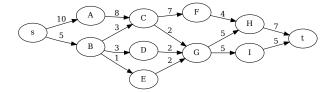
For an edge-weighted digraph G = (V, A), a **Minimum Edge Cut** between vertices $s, t \in V$ is a set of arcs $A' \subseteq A$ such that

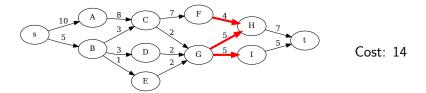
- 2 The weight of A' is minimum among sets satisfying (1).
 - Algorithmic problem: Given G = (V, A) and $s, t \in V$, compute minimum s t cut.

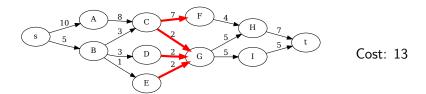
Equivalent formulation:

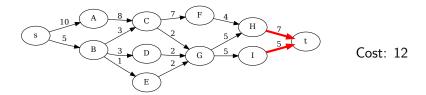
Definition

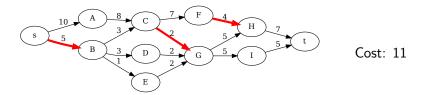
In the Min s-t Cut problem, we are given edge-weighted digraph G=(V,A), $s,t\in V$ and are asked to compute a set $S\subseteq V$ with $s\in S,t\not\in S$ such that $\sum_{x\in S}\sum_{y\not\in S}w(xy)$ is minimum.

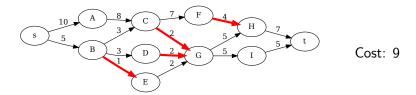












Obvious (bad) algorithms

Lemma

The two formulations are equivalent.

Proof.

- Given cut-set A', define S as set of vertices reachable from s.
- Given set S, define A' as set of arcs from S to $V \setminus S$.

Obvious (bad) algorithms

Lemma

The two formulations are equivalent.

Proof.

- Given cut-set A', define S as set of vertices reachable from s.
- Given set S, define A' as set of arcs from S to $V \setminus S$.

• $O(2^m \cdot m)$ time: try all cut-sets

Obvious (bad) algorithms

Lemma

The two formulations are equivalent.

Proof.

- Given cut-set A', define S as set of vertices reachable from s.
- Given set S, define A' as set of arcs from S to $V \setminus S$.

- $O(2^m \cdot m)$ time: try all cut-sets
- $O(2^n \cdot m)$ time: try all sets S

Pretty terrible! Can we do polynomial time?

Flows

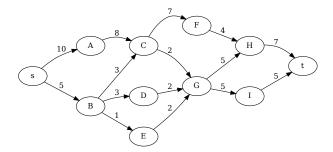
Definition

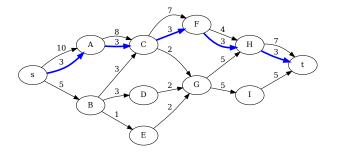
Given a digraph G=(V,A), $s,t\in V$ and a capacity function $\mathbf{c}:A\to\mathbb{Q}^+$, a flow is a function $\mathbf{f}:A\to\mathbb{Q}^+$ satisfying the following:

- **①** Capacity-respecting: for all $a \in A$ we have $\mathbf{f}(a) \leq \mathbf{c}(a)$
- ② Flow-conservation: for all $x \in V \setminus \{s, t\}$ we have $\sum_{z \in N^-(x)} \mathbf{f}(zx) = \sum_{y \in N^-(x)} \mathbf{f}(xy)$

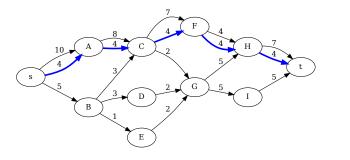
Intuition:

- s is sending something (information, energy, etc.) to t.
- Capacities of arcs must be respected.
- Flows can be re-arranged in vertices, but must be conserved and go from s to t
- Value of flow f is total flow coming out of s
- We seek a flow of maximum value

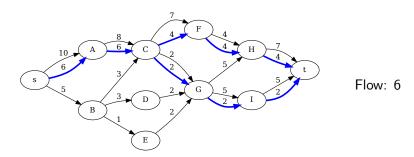




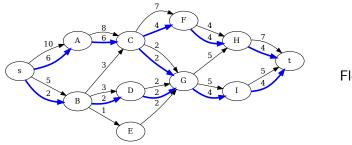
Flow: 3



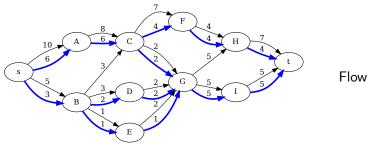
Flow: 4



8 / 43



Flow: 8



Flow: 9

Max-Flow Min-Cut: easy connection

Lemma

For all directed graphs G=(V,A), s,t, and weight function $w:A\to \mathbb{Q}^+$ if f if a feasible flow value from s to t and c is a feasible cut from s to t, then f< c.

Corollary

If f^* is the max flow value and c^* is the minimum cut value, then $f^* \leq c^*$.

Max-Flow Min-Cut: easy connection

Lemma

For all directed graphs G=(V,A), s,t, and weight function $w:A\to \mathbb{Q}^+$ if f if a feasible flow value from s to t and c is a feasible cut from s to t, then f< c.

Corollary

If f^* is the max flow value and c^* is the minimum cut value, then $f^* \leq c^*$.

Proves that for previous example $f^* = c^* = 9$.

Lemma

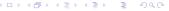
For all directed graphs G=(V,A), s,t, and weight function $w:A\to \mathbb{Q}^+$ if f if a feasible flow value from s to t and c is a feasible cut from s to t, then $f\leq c$.

Lemma

For all directed graphs G=(V,A), s,t, and weight function $w:A\to \mathbb{Q}^+$ if f if a feasible flow value from s to t and c is a feasible cut from s to t, then $f\leq c$.

Proof.

- Let A' be a feasible cut, S the set of vertices reachable from s.
- Let **f** be a flow function of value f.
- We have $f \leq \sum_{x \in S} \sum_{y \notin S} \mathbf{f}(xy)$.
- $\sum_{x \in S} \sum_{y \notin S} \mathbf{f}(xy) \le \sum_{x \in S} \sum_{y \notin S} \mathbf{c}(xy) = c$.



What we know: any flow has value ≤ than any cut

- What we know: **any** flow has value \leq than **any** cut
- Common situation in combinatorial optimization:
 - We want to optimize (say, minimize) something
 - For example: Min Weight Spanning Tree (variants)
 - We find a dual objective (maximization) problem that lower bounds the solution
 - For example: the diameter (max distance of any two vertices) is a lower bound on MST (why?)

- What we know: **any** flow has value \leq than **any** cut
- Common situation in combinatorial optimization:
 - We want to optimize (say, minimize) something
 - For example: Min Weight Spanning Tree (variants)
 - We find a dual objective (maximization) problem that lower bounds the solution
 - For example: the diameter (max distance of any two vertices) is a lower bound on MST (why?)
- In situations where the original problem is hard to solve (NP-hard), this trick at least allows us to get an idea for how far we are from the optimal solution.

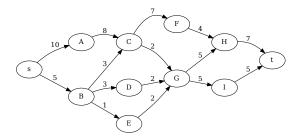
- What we know: **any** flow has value \leq than **any** cut
- Common situation in combinatorial optimization:
 - We want to optimize (say, minimize) something
 - For example: Min Weight Spanning Tree (variants)
 - We find a dual objective (maximization) problem that lower bounds the solution
 - For example: the diameter (max distance of any two vertices) is a lower bound on MST (why?)
- In situations where the original problem is hard to solve (NP-hard), this trick at least allows us to get an idea for how far we are from the optimal solution.
- In some **rare** situations we can find a dual problem where the optimal values of the two objectives **match**!!!
- This is the case for Max-Flow and Min-Cut

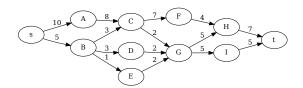
12 / 43

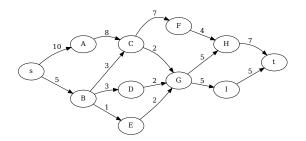
- Strategy: reduce Max-Flow computation to Reachability computation
 - Find a path from s to t
 - Saturate it!
 - Update the graph
 - Repeat

- Strategy: reduce Max-Flow computation to Reachability computation
 - Find a path from s to t
 - Saturate it!
 - Update the graph
 - Repeat
- Saturate: send as much capacity as allowed by the arc of minimum capacity in the path
 - \Rightarrow this arc is then saturated (cannot take more flow)

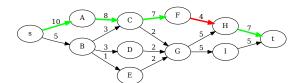
- Strategy: reduce Max-Flow computation to Reachability computation
 - Find a path from s to t
 - Saturate it!
 - Update the graph
 - Repeat
- Saturate: send as much capacity as allowed by the arc of minimum capacity in the path
 - \Rightarrow this arc is then saturated (cannot take more flow)
- How to update the graph so that we respect future capacities?
 - Naïve method: subtract flow from capacities of used arcs (doesn't work!!)
 - Correct method: Construct Residual network
- Complexity:
 - Depends heavily on how paths are selected (more later!)

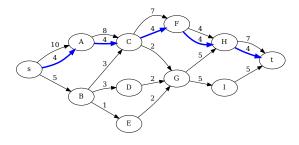




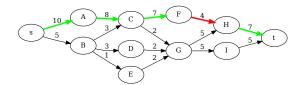


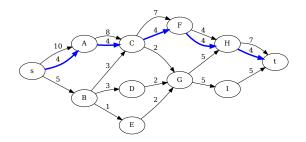
Find an $s \rightarrow t$ path. Min capacity:4



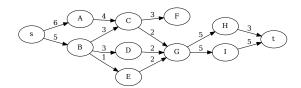


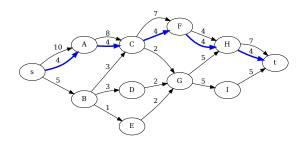
Saturate the path



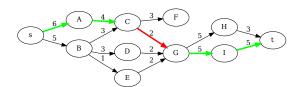


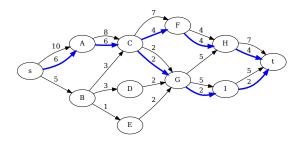
Update Capacities



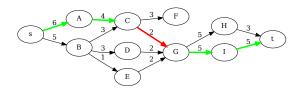


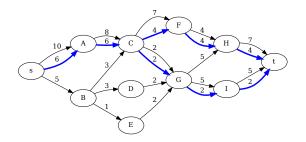
Find an $s \rightarrow t$ path. Min capacity:2



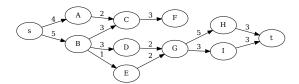


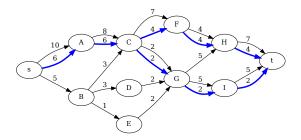
Saturate the path

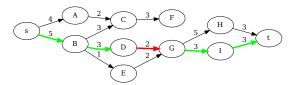


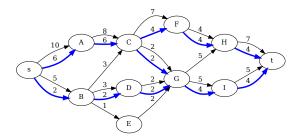


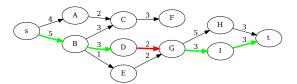
Update Capacities

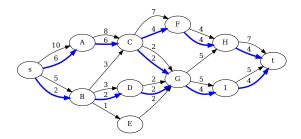


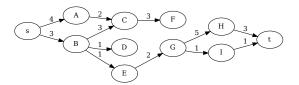


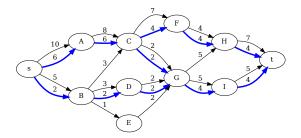


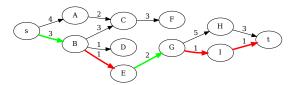


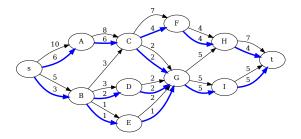


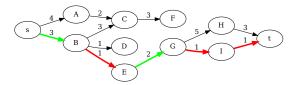


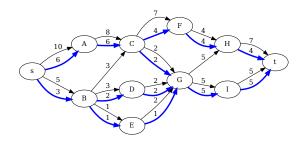




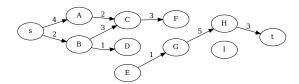






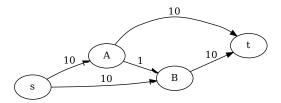


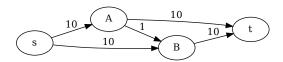
No path exists \Rightarrow current flow is max

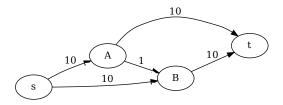


How to update capacities

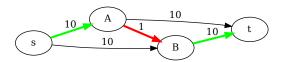
- Each time we find a path we subtract its flow from the capacities of used arcs (good!).
- However, the algorithm as currently formulated is not correct!
 - Intuitive reason: once we commit to a path, we never decrease the flow along its arcs.
 - However, we don't know beforehand if the optimal solution should saturate the path.
- To fix this, we need to update capacities in a way that allows us to later on decrease the flow along a used arc, as needed.

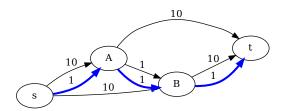




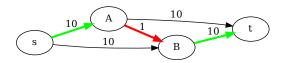


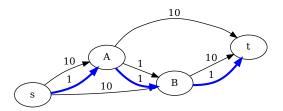
Find an $s \rightarrow t$ path. Min capacity:1

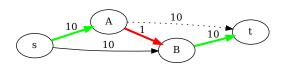




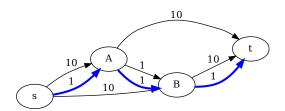
Saturate the path



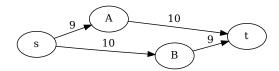


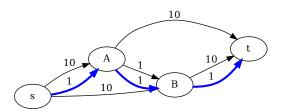


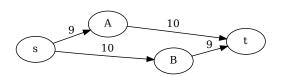
Note: this path looks stupid, but may in fact be the shortest path (e.g. if we subdivide At many times)



Update Capacities







Now we have a problem!
New graph has max-flow=18, so in total we get a flow of 19.
Max=20 (!!)

Residual Networks

Definition

Let $G = (V, A), s, t \in V, \mathbf{c} : A \to \mathbb{Q}^+$ be a Max-Flow instance, $\mathbf{f} : A \to \mathbb{Q}^+$ a valid flow on G. The residual network $G = (V, A), \mathbf{c}' : A \to \mathbb{Q}^+$ is defined as follows:

- For each $uv \in A$ we set

 - $\mathbf{c}'(vu) = \mathbf{c}(uv) + \mathbf{f}(uv)$

Residual Networks

Definition

Let $G = (V, A), s, t \in V, \mathbf{c} : A \to \mathbb{Q}^+$ be a Max-Flow instance, $\mathbf{f} : A \to \mathbb{Q}^+$ a valid flow on G. The residual network $G = (V, A), \mathbf{c}' : A \to \mathbb{Q}^+$ is defined as follows:

- For each $uv \in A$ we set

 - $\mathbf{2} \ \mathbf{c}'(vu) = \mathbf{c}(uv) + \mathbf{f}(uv)$

(To ease notation, assume that when $ij \in A$, then $ji \in A$, possibly with capacity 0)

Residual Network: intuition

- We currently have a flow f.
- If $\mathbf{f}(uv) > 0$ we decrease $\mathbf{c}'(uv)$ by $\mathbf{f}(uv)$
 - Makes sense, as we have used some of the capacity of uv.

Residual Network: intuition

- We currently have a flow f.
- If f(uv) > 0 we decrease c'(uv) by f(uv)
 - Makes sense, as we have used some of the capacity of uv.
- Furthermore, we increase c'(vu) by f(uv)
 - We do this, even if vu previously did not exist (had capacity 0).
 - Intuition, if we later send flow through vu, we can simulate this by decreasing the flow through uv.
 - Increasing f(vu) by 1 is the same as decreasing uv by 1 for the flow-conservation constraints.

Residual Network: intuition

- We currently have a flow f.
- If $\mathbf{f}(uv) > 0$ we decrease $\mathbf{c}'(uv)$ by $\mathbf{f}(uv)$
 - Makes sense, as we have used some of the capacity of uv.
- Furthermore, we increase c'(vu) by f(uv)
 - We do this, even if vu previously did not exist (had capacity 0).
 - Intuition, if we later send flow through vu, we can simulate this by decreasing the flow through uv.
 - Increasing f(vu) by 1 is the same as decreasing uv by 1 for the flow-conservation constraints.
- Thanks to this idea, we don't commit when we add a path to the solution (the flow can be reversed later).

Ford-Fulkerson method

- 1: Initialize flow $\mathbf{f} := 0$, residual graph G' := G.
- 2: **while** G' has an $s \to t$ path **do**
- 3: Find P, an $s \to t$ path in G'
- 4: Find c_p , min capacity of P in G'
- 5: For $uv \in P$ set $\mathbf{f}(uv) := \mathbf{f}(uv) + c_p$
- 6: Update residual graph G'
- 7: end while
- 8: Output f

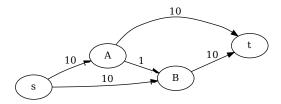
⊳ BFS/DFS

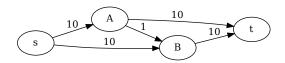
▷ Eliminate cycles!

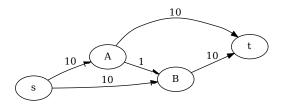
Ford-Fulkerson method

```
1: Initialize flow \mathbf{f} := 0, residual graph G' := G.
 2: while G' has an s \rightarrow t path do
         Find P. an s \to t path in G'
 3:
                                                                               ▶ BFS/DFS
         Find c_p, min capacity of P in G'
 4.
         For uv \in P set \mathbf{f}(uv) := \mathbf{f}(uv) + c_p
                                                                      ▷ Eliminate cycles!
 5:
         Update residual graph G'
 7: end while
 8: Output f
Eliminate cycles:
 1: if f(uv) > 0 and f(vu) > 0 then
        \mathbf{f}(uv) = \min{\{\mathbf{f}(uv), \mathbf{f}(vu)\}}
       \mathbf{f}(vu) = \min{\{\mathbf{f}(uv), \mathbf{f}(vu)\}}
```

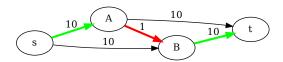
4: end if

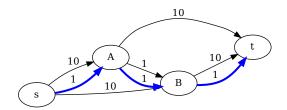




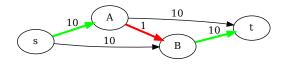


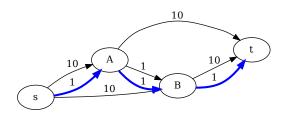
Find an $s \rightarrow t$ path. Min capacity:1



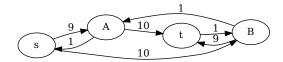


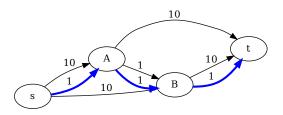
Saturate the path

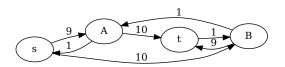




Update Capacities







Now the residual network has a flow of value 19. Together with the path this gives a flow of value 20.

Theorem

The Ford-Fulkerson algorithm calculates a maximum flow.

Theorem

The Ford-Fulkerson algorithm calculates a maximum flow.

Lemma

The Ford-Fulkerson algorithm always terminates and outputs a valid flow.

Proof.

- Suppose we have a valid current flow f
- If the residual network G' has no $s \to t$ path, done.
- Otherwise, we compute a larger flow, by adding to f the minimum capacity of the computed path.
- New flow is feasible (why?).
- Flow cannot become ∞ , so algorithm will eventually terminate.

Michael Lampis Graph Algorithms November 13, 2025 21 / 43

Theorem

The Ford-Fulkerson algorithm calculates a maximum flow.

Theorem

The Ford-Fulkerson algorithm calculates a maximum flow.

Proof.

- Let **f** be the output valid flow of value f^* , G' the residual network where no $s \to t$ path exists.
- Let S be the set of vertices reachable from s in G'.
 - \Rightarrow no arc comes out of S in G'.
- Claim: S gives a cut of weight f*
 - Arcs coming into S have 0 flow (otherwise G' has outgoing arc from S)
 - Arcs coming out of S are removed in G'
 - \Rightarrow for such arcs uv we have $\mathbf{f}(uv) = \mathbf{c}(uv)$
 - $f^* = \sum_{u \in S} \sum_{v \notin S} \mathbf{f}(uv) = \sum_{u \in S} \sum_{v \notin S} \mathbf{c}(uv)$
- ullet \Rightarrow no flow can have value higher than f^* , so current flow is maximum.

Michael Lampis Graph Algorithms November 13, 2025

Consequences

Theorem

In any weighted digraph G = (V, A), for any $s, t \in V$, the max-flow value from s to t is **equal** to the min-cut value from s to t.

Theorem

In any weighted digraph G = (V, A), for any $s, t \in V$, the max-flow value from s to t is **equal** to the min-cut value from s to t.

Proof.

- Ford-Fulkerson algorithm produces a flow equal to some cut, so the flow is maximum, the cut is minimum.

Theorem

In any weighted digraph G = (V, A), for any $s, t \in V$, the max-flow value from s to t is **equal** to the min-cut value from s to t.

Proof.

- Max-Flow≤Min-Cut is easy (as we saw).
- Ford-Fulkerson algorithm produces a flow equal to some cut, so the flow is maximum, the cut is minimum.

- Rare duality theorem, considered one of the deepest in OR.
- For most optimization problems, no such duality is known.
 - Classes: NP vs coNP, P

Corollary

If all capacities are integral, there exists an integral maximum flow.

Corollary

If all capacities are integral, there exists an integral maximum flow.

- Statement is obvious for min-cuts.
- Non-obvious for flows, as we can partition flows into fractional pieces (this is allowed by the problem definition).

Complexity Analysis

- 1: Initialize flow $\mathbf{f} := 0$, residual graph G' := G.
- 2: **while** G' has an $s \to t$ path **do** \triangleright How many iterations?
- 3: Find P, an $s \to t$ path in G'
- 4: Find c_p , min capacity of P in G'
- 5: For $uv \in P$ set $\mathbf{f}(uv) := \mathbf{f}(uv) + c_p$
- 5: For $uv \in F$ Set $I(uv) := I(uv) + C_p$
- 6: Update residual graph G'
- 7: end while
- 8: Output **f**
 - Each iteration takes O(m) time, but how many times do we need to execute the main loop?
 - Easy argument: each execution increases flow value, so if capacities are integer, complexity is $O(m \cdot f^*)$.

 \triangleright BFS/DFS: O(m) time

 $\triangleright O(n)$ time

 $\triangleright O(m)$ time

Complexity Analysis

Theorem

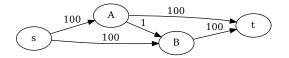
Ford-Fulkerson method runs in time $O(m \cdot f^*)$ and there exist instances on which it takes $\Omega(m \cdot f^*)$ time.

Complexity Analysis

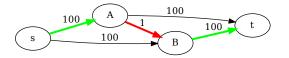
Theorem

Ford-Fulkerson method runs in time $O(m \cdot f^*)$ and there exist instances on which it takes $\Omega(m \cdot f^*)$ time.

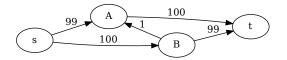
- NB: this means that FF method is an exponential-time algorithm!
 - More precisely, a **pseudopolynomial**-time algorithm.
 - **Pseudopolynomial**: polynomial-time if input numbers have $O(\log n)$ bits.
- Problem: we haven't specified **which** $s \rightarrow t$ path to pick in the residual graph.
- If bad paths are repeatedly picked, FF method takes a very long time. . .
- Generic method can still be useful if we know that f^* is small.



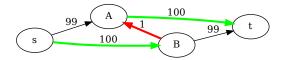
$$f = 0$$



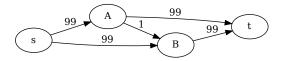
$$f = 0$$



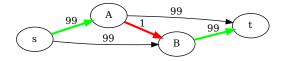
f = 1



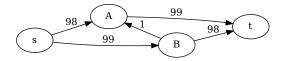
f = 1



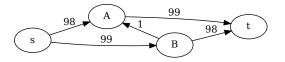
$$f = 2$$



f = 2



$$f = 3...$$



$$f = 3...$$

Would you like to repeat this another 197 times?

Edmonds-Karp algorithm

Outline

- Take Ford-Fulkerson method but specify which path to select in each iteration.
- Natural choice: take the shortest path
 - NB: shortest in the sense of minimum number of arcs, disregarding weights.
- Key idea: shortest-path distances from s (in unweighted sense) can only increase for each iteration
- \Rightarrow we can bound the number of iterations as a function of n, independently of f^* .

Analysis

Theorem

Edmonds-Karp algorithm runs in time $O(nm^2)$.

Analysis

Theorem

Edmonds-Karp algorithm runs in time $O(nm^2)$.

Lemma

For all v, distance from s to v never decreases in the residual network.

Lemma

Every arc $ij \in A$ is saturated at most $\frac{n}{2}$ times.

For all v, distance from s to v never decreases in the residual network.

For all v, distance from s to v never decreases in the residual network.

Proof.

- Let v be the first and closest to s vertex for which distance decreased between two iterations.
- Let G_1 , G_2 be the two residual networks and $\operatorname{dist}_{G_2}(s, v) < \operatorname{dist}_{G_1}(s, v)$.
- Let u be the last vertex of a shortest $s \to v$ path in G_2 .
- Claim: $uv \notin G_1$

For all v, distance from s to v never decreases in the residual network.

Proof.

- Let v be the first and closest to s vertex for which distance decreased between two iterations.
- Let G_1 , G_2 be the two residual networks and $\operatorname{dist}_{G_2}(s, v) < \operatorname{dist}_{G_1}(s, v)$.
- Let u be the last vertex of a shortest $s \to v$ path in G_2 .
- Claim: $uv \notin G_1$
 - Suppose for contradiction $uv \in G_1$:
 - $\operatorname{dist}_{G_1}(s, v) \leq \operatorname{dist}_{G_1}(s, u) + 1 \leq \operatorname{dist}_{G_2}(s, u) + 1 = \operatorname{dist}_{G_2}(s, v)$
 - ullet So, distance to v actually did not decrease...

November 13, 2025

For all v, distance from s to v never decreases in the residual network.

Proof.

(Continued...)

- $uv \not\in G_1$ and $uv \in G_2$
- $\Rightarrow s \rightarrow t$ path in G_1 uses vu
- $\bullet \ \operatorname{dist}_{G_1}(s,v) = \operatorname{dist}_{G_1}(s,u) 1 \leq \operatorname{dist}_{G_2}(s,u) 1 = \operatorname{dist}_{G_2}(s,v) 2$
- \bullet So, again distance to v increased, contradiction!

Every arc $ij \in A$ is saturated at most $\frac{n}{2}$ times.

Every arc $ij \in A$ is saturated at most $\frac{n}{2}$ times.

Proof.

- Suppose $\operatorname{dist}_{G_1}(s,i) = d$ when ij is saturated.
- Later, ji is used in some residual network G_2 .
- We claim, next time ij is saturated, $\operatorname{dist}_{G_3}(s,i) \geq d+2$.

Every arc $ij \in A$ is saturated at most $\frac{n}{2}$ times.

Proof.

- Suppose $\operatorname{dist}_{G_1}(s,i) = d$ when ij is saturated.
- Later, ji is used in some residual network G_2 .
- We claim, next time ij is saturated, $\operatorname{dist}_{G_3}(s,i) \geq d+2$.
- When ij first saturated, $\operatorname{dist}_{G_1}(s,j) = \operatorname{dist}_{G_1}(s,i) + 1 = d + 1$.
- Later, ji is used, so $\operatorname{dist}_{G_2}(s,i) = \operatorname{dist}_{G_2}(s,j) + 1 \ge d + 2$.
- $\operatorname{dist}_{G_3}(s,i) \geq \operatorname{dist}_{G_2}(s,i)$.

Theorem

Edmonds-Karp algorithm runs in time $O(nm^2)$.

Theorem

Edmonds-Karp algorithm runs in time $O(nm^2)$.

Proof.

- Each iteration takes O(m) time and saturates an edge of the residual network.
- There are m edges, each saturated at most O(n) times.

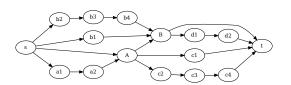
Theorem

Edmonds-Karp algorithm runs in time $O(nm^2)$.

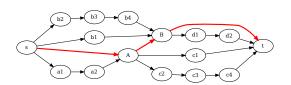
Proof.

- Each iteration takes O(m) time and saturates an edge of the residual network.
- There are m edges, each saturated at most O(n) times.

- Running time can be improved with better analysis.
- However, bad examples can force the algorithm to flip-flop an arc many times (see next slide).
- Best known algorithm: $m^{1+o(1)}$ time (almost-linear), with completely different techniques.



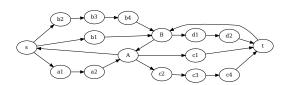
- Capacity 1 everywhere
- $s \rightarrow A$ paths: 1,3
- $s \rightarrow B$ paths: 2,4
- ullet A
 ightarrow t paths: 2,4
- $B \rightarrow t$ paths: 1,3



everywhere

• Capacity 1

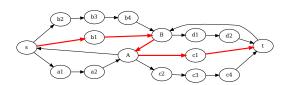
- $s \rightarrow A$ paths: 1,3
- $s \rightarrow B$ paths: 2,4
- $A \rightarrow t$ paths: 2,4
- ullet B
 ightarrow t paths: 1,3



everywhere

• Capacity 1

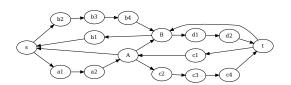
- $s \rightarrow A$ paths: 1,3
- $s \rightarrow B$ paths: 2,4
- $A \rightarrow t$ paths: 2,4
- ullet B
 ightarrow t paths: 1,3



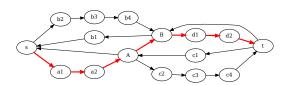
everywhere

• Capacity 1

- $s \rightarrow A$ paths: 1,3
- $s \rightarrow B$ paths: 2,4
- $A \rightarrow t$ paths: 2,4
- ullet B
 ightarrow t paths: 1,3



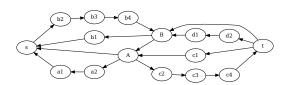
- Capacity 1 everywhere
- $s \rightarrow A$ paths: 1,3
- $s \rightarrow B$ paths: 2,4
- ullet A
 ightarrow t paths: 2,4
- ullet B
 ightarrow t paths: 1,3



everywhere

• Capacity 1

- $s \rightarrow A$ paths: 1,3
- $s \rightarrow B$ paths: 2,4
- $A \rightarrow t$ paths: 2,4
- ullet B
 ightarrow t paths: 1,3

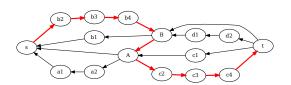


everywhere

• Capacity 1

- $s \rightarrow A$ paths: 1,3
- $s \rightarrow B$ paths: 2,4
- $A \rightarrow t$ paths: 2,4
- ullet B
 ightarrow t paths: 1,3

Bad Example



- Capacity 1 everywhere
- $s \rightarrow A$ paths: 1,3
- $s \rightarrow B$ paths: 2,4
- $A \rightarrow t$ paths: 2,4
- ullet B
 ightarrow t paths: 1,3

Goal: make AB arc flip many times for Edmonds-Karp.

Bipartite Matching

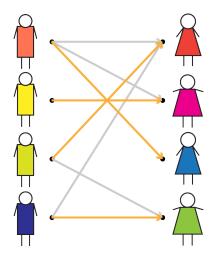
36 / 43

Michael Lampis Graph Algorithms November 13, 2025

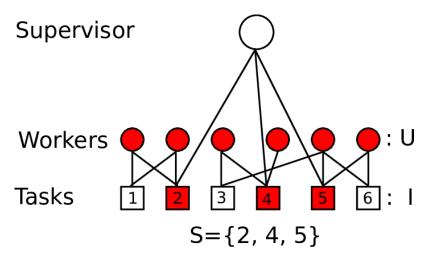
Bipartite Matching

- We are given a graph G = (V, E) with vertices partitioned into two parts A, B.
- **Goal:** We want to match elements of *A* to elements of *B* using edges of *E*.
- Each vertex should be matched to exactly one other vertex.

Motivation



Motivation



Matchings

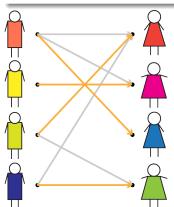
Definition

A **matching** in a graph G = (V, E) is a set $M \subseteq E$ such that no two elements of M share a vertex.

Matchings

Definition

A **matching** in a graph G = (V, E) is a set $M \subseteq E$ such that no two elements of M share a vertex.



Matchings

Definition

A **matching** in a graph G = (V, E) is a set $M \subseteq E$ such that no two elements of M share a vertex.

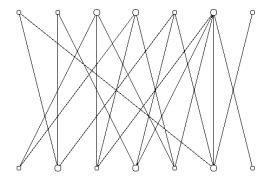
Definition

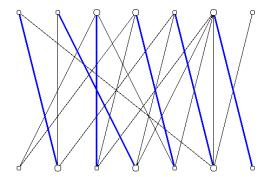
A matching M is **perfect** if all vertices are incident to an edge of M.

Definition

A matching M is **maximum** if all sets of edges of size |M| + 1 or more contain two edges incident on the same vertex.

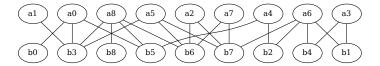
Algorithmic problem: Given a graph, find the maximum matching.



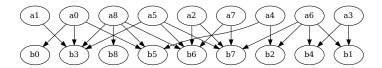


Matchings to Flows

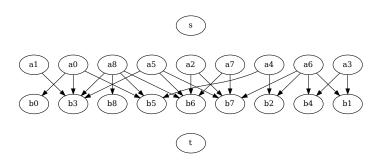
- Finding a maximum matching is a non-trivial problem
- Can be reduced to computing a maximum flow as follows:
 - Orient edges from A to B
 - Add a vertex s with arcs to A
 - Add a vertex t with arcs from B
 - Compute maximum $s \rightarrow t$ flow



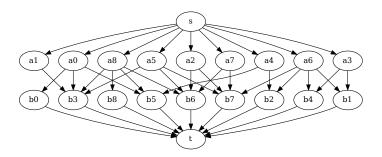
We want to calculate a maximum matching



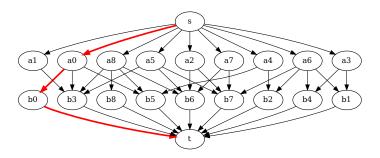
Orient graph, add s, t



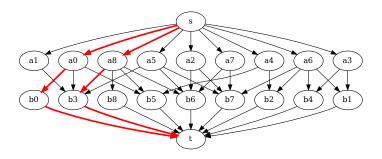
Orient graph, add s, t



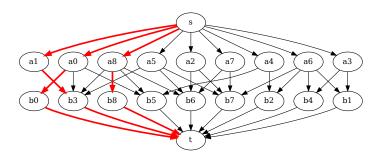
Orient graph, add s, t



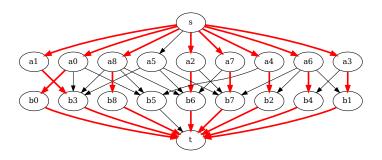
Run some max flow algorithm (some details skipped)



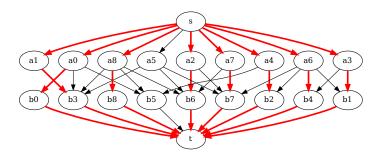
Run some max flow algorithm (some details skipped)



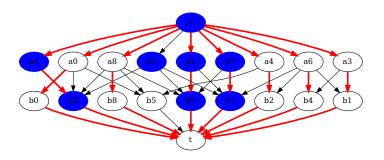
Run some max flow algorithm (some details skipped)



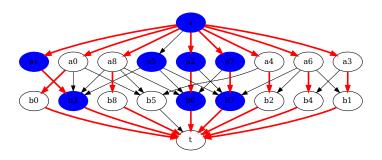
Arcs used in flow \leftrightarrow Matching edges



Flow is maximum ↔ Matching is maximum



Flow is maximum as blue set has cut size 8 (8 arcs coming out)



 \Rightarrow maximum matching has size 8

Analysis

- Given G = (V, E) with $V = A \cup B$ and |E| = m we run Ford-Fulkerson
- Observe that $f^* \leq n$
- Running time: O(mn)
- (As mentioned, a much more complicated almost-linear time algorithm exists.)

