2025-2026 Graph Algorithms

Graph Algorithms Midterm Exam — 28/10/2025

Guidelines

* You may use all algorithms and theorems we have seen in class (including the TDs) without proof. Other
than that, you need to provide full justifications for all your answers.

* When asked to design an algorithm, you may do so in pseudocode or in natural language. Using a
programming language (e.g. Python) is unnecessary and strongly discouraged.

* Provide proofs of correctness for your algorithms.
* Provide complexity analyses for your algorithms.

» Upper bounds on the running times of your algorithms must be given in terms of n (for adjacency matrix
representation) or n, m (for adjacency list representation).

* Algorithmic efficiency is a major criterion in grading your answer. However, sub-optimal but correct
algorithms may receive partial credit (depending on performance).

* An appendix with a reminder of some of the algorithms we have seen in class is given in the end.

* In your analysis, you may assume that arithmetic operations take O(1) time, except for exercise 5, where
you need to supply an upper bound on the cost of the arithmetic operations of your algorithm.

* Write clearly!
* Don’t panic!

¢ Good luck!

Page 1 of

2025-2026 Graph Algorithms

1 DFS and SCC algorithm execution (5 points)

Consider the digraph given below, where we assume that all vertices and adjacency lists are ordered alphabeti-
cally. This exercise relies on the DFS algorithm, a reminder of which is given in the appendix.

1. Compute the output of DFS on this digraph. You should give a table with the discovery and finish times
of all vertices. Furthermore, you should give a list of tree arcs, a list of backward arcs, a list of forward
arcs, and a list of cross arcs. (3 points)

2. As you recall, executing DFS is the first step of the algorithm we saw in class for computing strongly
connected components. Show how the execution of this SCC algorithm continues on the given digraph
and the strongly connected components it outputs. (2 points)

Solution:

Times:

Vertex | Discovery | Finish
A 1 10
B 5 6
C 11 18
D 2 9
E 3 8
F 4 7
G 12 13
H 15 16
I 14 17

We will now execute DFS using ordering C,ILH,G,A,D,E,EB, on the graph obtained by reversing all arcs.
This gives the components: (C,G,D); (H); (A); (D,B,EE); where vertices are ordered in order of their
discovery time.

2 Disconnecting by Removing (3 points)

For each of the following statements, indicate if it is true or false and give an appropriate justification (proof or
counter-example).

Page 2 of

2025-2026 Graph Algorithms

1. If G = (V, E) is an undirected connected graph, v € V a vertex, then G — v has at most 2 connected
components.

2. If G = (V, E) is an undirected connected graph, e € E an edge, then G — e has at most 2 connected
components.

3. If G = (V, A) is a strongly connected directed graph, e € A an arc, then G — e has at most 2 strongly
connected components.

4. If G = (V, E) is an undirected graph and e € F an edge contained in a cycle, then e is not a bridge.

5. If G = (V, E) is an undirected graph and v € V" a vertex contained in a cycle, then v is not an articulation
point.

6. If G = (V, E) is an undirected graph, v1,ve € V are articulation points, and vy, vo are adjacent, then
V19 is a bridge.

In all cases, G — v or G — e indicates the graph obtained after removing v or e respectively from G. Recall
that a bridge is an edge e such that G — e has more components that (G, and an articulation point is a vertex v
such that G — v has more components than G. (0.5 points per question)

Solution:

1. False. For example, consider a star K1 3 with three leaves attached to a central vertex.

2. True. To see this, observe that adding an edge to a disconnected graph may only decrease the number of
components by 1, because the edge has two endpoints, so can touch at most two components.

3. False. Consider a directed path 1 — 2 — 3 — 4 — 5 and the are 5 — 1. Removing this arc turns a
strongly connected digraph into a digraph with 5 strongly connected components.

4. True. If e = xy is in a cycle, then there is a path z — y avoiding e. Hence, any path in the original graph
which used e can be turned into a path in the new graph by using the other edges of the cycle instead of
e.

5. False. Take a cycle and attach a leaf to one of its vertices. That vertex is now an articulation point.

6. False. As before, take a cycle and attach leaves to two consecutive vertices of the cycle. The cycle edge
connecting them is not a bridge.

Page 3 of

2025-2026 Graph Algorithms

3 2-Kings (4 points)

A 2-king in a directed graph G = (V, A) is a vertex v such that for all other vertices u there is a path of length at
most 2 from v to u. In other words, v 2-dominates a vertex u if vu € A or there exists w such that vw, wu € A;
and v is a 2-king if it 2-dominates every other vertex.

1.

Give an efficient algorithm that finds a 2-king in a given digraph (or decides correctly that none exists),
assuming the digraph is given in adjacency matrix form. (1 point)

. Same as before, but assume that the digraph is given in adjacency list form. (1 point)

. Suppose that we are given as input a digraph G = (V, A) where for each u, v € V exactly one of the arcs

uw or vu is in A (in adjacency matrix form). Give an algorithm for finding a 2-king in this case which is
more efficient than your general algorithm. Prove that a 2-king always exists for this class of digraphs.
(2 points)

Solution:

1.

We would like to compute the out-degree of every vertex in the graph G2, which is the graph obtained
by G if we add arcs between all pairs x, y such that there is a path of length at most 2 from x to y in G.
For the algorithm that computes G see exercise 3 of TD1. In adjacency matrix form this can be done in
time O(n®), where w is the matrix multiplication constant.

. Similarly, exercise 3 of TD1 gives an algorithm with complexity upper-bounded by O(nm).

. We observe that in this case the vertex of maximum out-degree is a 2-king. Proof: Suppose z has

maximum out-degree but there exists y such that xyy ¢ A and also there is no path of length 2 from z
to y. Because for each pair of vertices have an arc we observe that (i) y has an arc to every outneighbor
of x (otherwise we would have a path of length 2) (ii) y has an arc to x. But then, y has strictly larger
out-degree than z, contradiction.

Given the above, the algorithm simply finds the vertex of maximum out-degree, which can be done in
O(n?) time in adjacency matrix form.

4 Connectivity-Preserving Orientation (4 points)

We are given a connected undirected graph G = (V, E). An orientation of G is a digraph obtained by replacing
every edge uv € E with either the arc uv or the arc vu (but not both). A connectivity-preserving orientation is
an orientation with the property that the resulting digraph is strongly connected.

1.

Give an example of a connected graph GG on 5 vertices where no connectivity-preserving orientation
exists. (1 point)

. Give an algorithm that takes as input a connected undirected graph G in adjacency list form and outputs

a connectivity-preserving orientation or correctly decides that none exists. (3 points)

Solution:

1.

A path on 5 vertices: any orientation produces a DAG, which is not strongly connected.

2. We prove the following claim: G admits a connectivity-preserving orientation if and only if G contains

no bridge. As we have seen an algorithm for computing all bridges (TD4) in linear time, using the
articulation-point finding algorithm we saw in class, we can then execute this to decide if an orientation
exists.

Page 4 of

2025-2026 Graph Algorithms

Proof of claim: If G has a bridge e, such that G — e has components C7,C5, then G admits no
connectivity-preserving orientation, as no matter how we orient e, it will be impossible to go from one
component to another in some direction.

If G has no bridge, we can obtain a connectivity-preserving orientation as follows: perform DFS from
some vertex s, orient all tree edges away from s (i.e. in the direction they were used in DFS) and all
backward edges towards the ancestor (recall that no forward or cross edges exist, as G is undirected).

We now observe that every vertex x has a path to all its descendants (since we oriented tree edges away
from the root), hence in the oriented graph there is a path from s to all vertices. What remains is the
converse: there is a directed path from every vertex to s. If we establish this, the orientation gives a
strongly connected graph.

We will show that if x is the parent of y, then our orientation has a directed path from y to x. Applying
this claim inductively then implies that all vertices can reach all their ancestors, therefore all vertices can
reach s, as desired.

Observe now that xy is not a bridge in G (by assumption). So, G contains an edge between some
descendant of y and the rest of the graph. Since G is undirected, this edge is a backward edge, that is,
its other endpoint is a proper ancestor of y, hence, an ancestor of . We have already seen that there is a
path from all ancestors of x to x, hence, this backward edge together with the tree edges forms a y — x
path.

Observe that the above imply a linear-time algorithm for orienting the graph: run DFS, orient tree edges
away from the root and backward edges toward the ancestor.

5 Most critical arc (4 points)

We are given as input a DAG G = (V, A), in adjacency list form, with the vertex set topologically ordered so
that V' = {1,...,n}. The most critical arc of G is defined as the arc ij € A such that removing ij from G
minimizes the number of distinct paths from 1 to n.

1. What is the most critical arc of the graph below? Why? (1 point)

2. Design an efficient algorithm that takes as input a DAG G topologically ordered {1, ...,n} and outputs
the most critical arc of G (or one of the most critical arcs, if there is a tie). (3 points)

Solution:

The most critical arc is 6 — 7, as there are 12 paths crossing it, but removing it leaves a graph with only 2
paths from 1 to 10.

We execute the algorithm of TD4 which computes for each i the number of paths from 1 to ¢, call this P [].
By inverting the graph and using the reverse topological ordering (or by slightly modifying the algorithm) we
compute for each j the number of paths from j to n, call this P»[j].

Page 5 of

2025-2026 Graph Algorithms

We now go through each arc ij € A and observe that if we remove ij from G we will destroy P [i] - Pa[j]
paths, as this is the number of paths 1 — n that use the arc 75. We therefore compute this number for each
ij € A and select that arc which maximizes this value. Removing it will minimize the number of 1 — n paths
in the resulting DAG.

As we have seen in TD4, the above can be done in O(n + m) arithmetic operations. However, arithmetic
operations are not O(1) time, as the numbers involved can be exponential in n. For the first part of the algorithm,
we perform addition on numbers with O(n) bits, so this adds a factor of O(n) to the complexity giving time
O(n(m + n)) for the first part.

For the second part, we perform m multiplications of two numbers with O(n) bits. Multiplying two integers
with b bits can be done in O(b?) time, using the method we learned in primary school. It can also be done in
O(b 10g0(1) b) time, using more advanced techniques (FFT). Using the primary school algorithm is considered
a correct answer here, since we have not discussed faster algorithms. This adds an n? factor to the running
time. So, the total running time is O(n?(m + n)).

Note: an alternative algorithm would be to try every arc, remove it, and execute the algorithm of TD4. This
would give O(mn(m + n)) time (m executions of an O(n(m + n)) time algorithms. This is worse than the
multiplication-based algorithm given above, as mn > n? (except for some boring cases, like graphs with many
isolated vertices), so this algorithm, though correct, does not receive full points.

Page 6 of

2025-2026

Graph Algorithms

A Algorithms

A.1 DFS
1: procedure DFS(G)
2: forv e V\ {s} do
3 Color v White, Parent of v + NULL
4: end for
5: t=20
6 for v € V do
7 if v is White then
8 DFS-Visit(G,v)
9: end if
10: end for
11: procedure DFS-VISIT(G,u)
12: t++
13: u.d = t, Color u Gray
14: for v € N(u) do
15: if v is White then
16: Set Parent of v to be u
17: DFS-Visit(G,v)
18: end if
19: end for
20: t++
21: u.f = t, Color u Black
22: end procedure

23: end procedure

A.2 BFS

—_
R S T =

15:

R A A ey

forve V\ {s} do

Color v White, Parent of v <— NULL, dist(s, v) < oo

end for

dist(s, s) < 0, Parent of s - NULL, Color s Gray

Enqueue(s)
while Queue not empty do
v < Dequeue
for each u € N(v) do
if u is White then

dist(s, u) < dist(s,v) + 1, v becomes parent of

Color u Gray
Enqueue(u)
end if
end for
Color v Black

16: end while

Page 7 of

> initialize

> universal time variable

> initialize

> end of initialization
> main loop

	DFS and SCC algorithm execution (5 points)
	Disconnecting by Removing (3 points)
	2-Kings (4 points)
	Connectivity-Preserving Orientation (4 points)
	Most critical arc (4 points)
	Algorithms
	DFS
	BFS

