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Graph Algorithms

1 Adjacency Matrices and Lists

TD 1: Introduction

Give the adjacency matrix representation and the adjacency list representation of the graph below. Calculate

the degree of each vertex.

Solution:

Adjacency Matrix:
A|/B|C|/D|E|F|G|H|I

Ao |1 |1 |1 |1]0|1]1]0

B|{1 |01l |1 |1 |1]0]1]1

C{1|1]0]1]0|0|1 |O]1

D|1|{1|1/0]0]O0O|1 |00

E|1|1]0]|0|0O|1|0]0]O0

F{o|1/]0{0|1(0|0]0]O

G101 ]1]{0|0]|O0O|0O0]O

H{1|1]0]0O|0|0]|O0|0]O

I {01 |1]0{0|0|O0 |00

Adjacency lists and degrees:

A | BCDEGH |6

B | ACDEEHI | 7

C | A,B,D,G,I 5

D | ABCG 4

E | ABJF 3

F | B.E 2

G| ACD 3

H | AB 2

I | BC 2
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2 O-notation reminder

Sort the following functions of n in a table where, whenever f(n) = ©(g(n)) you place f, g on the same row,
and whenever f(n) = o(g(n)) you place f below g.

3
n? + 15n, %, log® n, (log n)log”, log(n!),3nlogn,2V logn plogn (Z)

Solution:
. nlog n

. (lOg n)logn
n3

2

s n? 4 15n, (g)

* log(n!),3nlogn
. 2\/10gn

* log’n

3 Graph Square

If G = (V, E) is a graph, we define as the square of G, denoted G the graph which has the same vertex set as
G and in which two vertices u, v are adjacent if and only if they are at distance at most 2 in . (This means
that u, v are adjacent in G? if they are adjacent in i or they have a common neighbor in G.)

Give an algorithm that takes as input G' (in matrix or list representation) and outputs G? (in the same
representation). What is the time complexity of your algorithm?
Solution:
Adjacency Matrix: We are given the adjacency matrix A of (. We observe that the matrix B = A2 has the
following property: Bli, j| # 0 if and only if 7, 7 have a common neighbor in G, that is, there exists & such that
Ali, k] = Alk, j] = 1. Our algorithm is then the following:

+ Compute B = A2.
e Foreachi,j € {1,...,n} place an edge between 4, j in G2 if (i) A[i, j] = 1 or (i) BJ[i, j] # 0

The complexity of this algorithm is dominated by the matrix multiplication step. The obvious way to
perform this step has time complexity O(n?), but there exist more sophisticated algorithms, with the current
best being slightly better than O(n?4).

Adjacency Lists: Consider the following algorithm:

1: forie {1,...,n}do

2: Initialize array A;[1...n] to be 0 everywhere
3: for j € N(i) do

4: A; []] —1

5: for k € N(j) do

6: A; [k‘] +—1

7: end for

8: end for

90 N2(i) « {j | Ailj] =1}

10: end for
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For each vertex ¢ of the graph we initialize an array of size n where we will store all the neighbors of ¢ in
G?. Initially the array is 0 everywhere. Then, for each neighbor j of i we mark that j is a neighbor of 7 in G?;
and we also mark that the neighbors of j are neighbors of 7 in G2. Finally, we convert the array into a list.

It should be noted here that the reason we use this intermediate array, rather than a list into which we add
all the neighbors of neighbors of i, is that there could be many paths of length two connecting ¢ to k. We want
to make sure that, despite this, & is added only once in the final solution.

The running time of this algorithm can be upper-bounded as follows: for a given vertex ¢, the outer for
loop will make deg(¢) iterations, while the inner loop will make deg(j) iterations. So, the total running time is
proportional t0 > ey 1 > jen(i) deg(j). We now observe that if we fix a j € {1,...,n}, the term deg(j)
appears exactly deg(j) times in this double sum (once for each neighbor of j). Hence, the running time is
proportional to > cqy deg(7)%2. We have deg(5)? < ndeg(j) and > jef1,...ny deg(j) = 2m, so the
running time is at most O(nm), although this is a loose upper bound (we used the fact that all degrees are at
most n). We should also note that we spend some time converting between arrays and lists. This costs O(n)
per vertex, so O(n?) in total. However, if m = (n), which is true unless the graph contains a large number
of isolated vertices, n> = O(nm), so this part of the algorithm does not contribute much to the asymptotic
complexity. In case the graph is very sparse (e.g. >.deg(i)? = O(n)), the use of arrays does become a
bottleneck, but can be avoided by using more sophisticated data structures which eliminate duplicate elements.

4 Universal Sink

In a directed graph, a sink is a vertex of outdegree O (and a source is a vertex of indegree 0). A universal sink
is a sink of indegree n — 1. Give an algorithm that takes as input the adjacency matrix of a digraph and outputs
a universal sink, or correctly reports that no such vertex exists.
Solution:

Recall that if A is the adjacency matrix of a digraph G, then A[i, j] = 1 if and only if we have the arc
i — j in G. A universal sink is an index ¢ such that for all 7 # ¢ we have A[i, ¢] = 1 and Alc, i] = 0. In other
words, the c-th row must contain only O entries, and the c-th column must contain only 1 entries (other than
the element on the main diagonal). It is now easy to check if a specific index c satisfied this condition in time
O(n), giving an algorithm running in time O(n?).

Surprisingly, it is possible to do better. Consider the following algorithm: we maintain two variables, ¢ and
u where c can be thought of as the current candidate sink and « an upper bound on the vertices we have explored
so far. More precisely, we have the following invariants: (i) ¢ < w always (i) forall j € {1,...,u — 1} \ {c}
we know that j is not a universal sink. In the following, we suppose that the procedure Check takes as input a
vertex ¢ and checks if ¢ is a universal sink in time O(n).
c+1
u+1
while ¢ < n do

while Alc,u] = 0 and u < n do

U+ +

end while

if u = n + 1 then Output Check(c)

else

c+u

end if

: end while

R A G

—_ =
- o

We observe now that if A[c, u] = 0, then u cannot be a universal sink, so the inner while loop maintains the
invariants. Once we exit the loop, one of two things may happen: (i) © = n + 1, which by the invariant means
that the only possible universal sink is ¢, so we check this possibility and output the result (i) Alc,u] = 1, in
which case c is not a sink, so by setting ¢ <— u we maintain the invariants.

For the running time, we observe that u never decreases, so the total number of iterations is O(n). Once we
have found a candidate ¢, the Check procedure also takes O(n) time.
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5 Triangle Detection

Give an algorithm which takes as input a graph G (in adjacency matrix or list form) and decides if G contains
a triangle, that is, three vertices x, y, z which are pairwise adjacent.
Solution:
Adjacency Matrix: Recall that if A is the adjacency matrix of G, then B = A? has the property that B[i, j] # 0
if and only if 4, 7 have a common neighbor in G. Our algorithm is then to compute B = A? and then compute
the matrix C with C[i, j] = Ali, j]| - B[i, j]. A triangle exists if and only if C[¢, j] has a non-zero entry. Indeed,
if a triangle i, j, k exists, then A[é, j] = 1 and BJi, j| > 0, so C[i,j] > 0. Conversely, if C[i,j] > 0, then
Ali, j] = 1 and BJi, j] > 0, so 4, j form a triangle with some other vertex. The complexity of this algorithm is
dominated by the matrix multiplication step.
Adjacency Lists: We use the following algorithm.

1: fori e {1,...,n} do
for j € N(i) do
3 if N(i) N N(j) # () then
4: Output Yes
5
6

N

end if
end for
7. end for
8: Output No

Correctness is not hard to see: we consider all edges i7, and for each such edge check if ¢, j have a common
neighbor (which is necessary and sufficient for a triangle to exist).

Complexity is trickier, because we are using the operation N (i) N N(j) # (. It is important to be careful
here, because in some high-level languages (Python!) such operations may appear as elementary, while they are
not. For instance, for the Python set type, the intersection operation between two sets has average complexity
proportional to the size of the smaller set, but worst-case complexity proportional to the product of the sizes of
the two sets 1]

Let us think of a basic way in which we could implement this operation: if we sort all the lists N (7)
beforehand, then we can perform a Merge operation between N (i) and N (j) to test disjointness. This has
complexity O(|N(i)| + [N (j)|). We then obtain a running time proportional to 3, p(deg(i) + deg(j)) =
O(Xicq1,...ny des(i)?), which can be upper-bounded as in a previous exercise.

6 Ramsey

Prove that in any group of 6 people, there are either 3 people who all know each other or 3 people who do not
know each other. Show that this is false for groups of 5 people.

Generalization: prove that for all k, in any group of 4% people, there are either at least & who all know each
other, or at least £ who do not know each other.

Solution:

6 people: we model this with a graph on 6 vertices and prove that there exists a clique or an independent set
of size at least 3. Let a be the vertex of highest degree. If the degree of a is at most 2, then the graph is a union
of paths and cycles, so there is an independent set of size 3. If not, we check to see if N (a) induces any edges.
If yes, we have a triangle; otherwise we have an independent set of size at least 3. For 5 people, it suffices to
consider a Cs.

4% people: we prove that for positive integers s, c any graph with at least 251¢ vertices contains an indepen-
dent set of size s or a clique of size c. By setting s = ¢ = k we obtain the result.

To prove the claim we use induction on s 4 ¢. For s + ¢ = 2 (which is the minimum value) the statement
holds. Consider now two fixed values s, c and suppose the statement is shown for any smaller pair. Take
a graph G = (V, E) with at least 257¢ vertices and take an arbitrary vertex z. If |[N(z)| > 2°7¢~L, then
G[N ()] contains either a clique of size ¢ — 1 or an independent set of size s; in the latter case we are done,

"https://wiki.python.org/moin/TimeComplexity
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in the former case we form a clique of size ¢ by adding x. Otherwise, |N(z)| < 2ste=l _ 1 therefore,
|V \ N(x)| > 2%t¢=! + 1. Consider then the graph induced by V' \ (N(x) U {x}), which has at least 25¢~1
vertices. By inductive hypothesis this graph has at least a clique of size ¢ (in which case we are done) or an
independent set of size s — 1, to which we can add «x to obtain an independent set of size s in G.
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