
2025-2026 Graph Algorithms

TD 2: BFS

1 Execute BFS

Execute the BFS algorithm on the directed graph below, starting from vertex s. You can assume that adjacency
lists are ordered alphabetically. Show the contents of the queue at every iteration, the distances calculated, and
the edges of the BFS tree.

s

b

g

a

d

c

he

f

Solution:
BFS tree:

Page 1 of 4

2025-2026 Graph Algorithms

s

b

g

a

d

c

he

f

Distances:
Vertex distance
a 2
b 1
c 2
d 2
e 3
f 4
g 1
h 2

Queue contents:
Time Contents
1 s
2 b, g
3 g,a,d
4 a,d,c,h
5 d,c,h
6 c,h
7 h,e
8 e
9 f
10 ∅

Page 2 of 4

2025-2026 Graph Algorithms

2 BFS layers

Show that if we execute BFS on a graph G = (V,E) starting from s, for all uv ∈ E we have |dBFS(u) −
dBFS(v)| ≤ 1. (Recall that dBFS(v) is the distance computed by BFS for v and we have shown that dBFS(v) =
dist(s, v). Furthermore, we have shown that any two vertices which are simultaneously in the BFS queue have
dBFS values which differ by at most 1.).
Solution:

Suppose without loss of generality that u is added to the queue first. At the moment when u exits the queue
we have two cases:

• v is currently White. Then, v will be added to the queue and dBFS(v) = dBFS(u) + 1.

• v is currently Gray. Then, u, v where in the queue at the same time, so their distances differ by at most 1.

Alternative solution: We use the fact that dBFS(v) = dist(s, v) and prove that if uv ∈ E, then |dist(s, u) −
dist(s, v)| ≤ 1. Without loss of generality, suppose dist(s, u) ≤ dist(s, v). Then, dist(s, v) ≤ dist(s, u) + 1,
because one path from s to v can be constructed by taking a shortest path from s to u and appending the edge
uv. We conclude that dist(s, u) ≤ dist(s, v) ≤ dist(s, u) + 1, which implies the desired statement.

3 Destroying connectivity

Suppose that in an n-vertex connected undirected graph G, two (given) vertices s, t are at distance strictly
greater than n/2.

• Prove that there exists a vertex x, such that if we delete x from the graph, then we destroy all paths from
s to t.

• Give an algorithm that finds x in time O(m+ n) (assuming G is given in the form of adjacency lists).

Solution:
Execute BFS on G starting from vertex s. We obtain as a result the distance of each vertex from s and

confirm that dist(s, t) > n/2. Consider now the sets of vertices Di = {v ∈ V | dist(s, v) = i}, for i ∈
{1, . . . ,dist(s, t)− 1}. We claim that there exists i such that |Di| = 1.
Proof of claim: (Pigeonhole principle) Suppose that |Di| ̸= 1 for all i. We observe that for all i, |Di| > 0,
because otherwise there would be no path from s to t. If for all i, |Di| ≥ 2, then the graph has at least
2(dist(s, t)−1)+2 > 2(n2 −1)+2 = n vertices, contradiction, where we have also counted s, t in the vertices
of the graph. Hence, for some i, |Di| = 1. We set x to be the unique vertex at distance i from s.

We now observe that removing x from G destroys all paths from s to t, because every such path must
traverse a vertex at distance i from s, and the only such vertex was x.

In order to determine the vertex x, we can sort the vertices of the graph according to their distance from s.
This can be done in O(n) time, as all distances are between 0 and n. We now traverse the sorted array and find
a vertex whose distance from s is different from that of its previous and next element.

4 Different BFS trees

For simplicity, we usually assume that adjacency lists are alphabetically ordered. However, using lists in a
different order may affect the tree output by the BFS algorithm.

1. Give an example of a graph and two orderings of the vertices such that executing BFS with each ordering
produces different trees. Does the ordering of the vertices affect the dBFS values computed?

2. Give an example of a graph G = (V,E), a vertex s ∈ V , and an edge e ∈ E, such that no matter how we
order the vertices in the adjacency lists, e will never be part of the tree output by BFS.

Page 3 of 4

2025-2026 Graph Algorithms

3. Give an example of a graph G = (V,E), a vertex s ∈ V , and a set of edges Eπ ⊆ E, such that (i) Eπ is
a shortest-path tree from s in G (ii) no possible ordering can make BFS output the tree Eπ.

Solution:

1. Consider a C4, with vertices s, a, b, c in this order (so s is not adjacent to b). If we order alphabetically,
the output BFS tree will have b as a child of a; otherwise b will be a child of c.

2. Consider a K3, with vertices s, a, b. The edge ab is never part of the output of BFS starting from s, as it
is not part of any shortest path starting from s.

3. Consider a path on 5 vertices a2−a1− s− b1− b2 and let the edges of this path be Eπ. Add to the graph
the edges a1b2 and a2b1. Now, if we execute BFS from s, we can either explore a1 or b1 first. In the first
case, this will add use in the tree the edge a1b2 and therefore not use b1b2. In the second case, this will
use b1a2, and therefore not use a1a2.

5 Find a cycle through an edge

Give an algorithm which takes as input a graph G = (V,E), and an edge uv ∈ E and decides in linear time
whether there exists a cycle in G that traverses the edge uv.
Solution:

Remove the edge(*) uv from G and execute BFS starting from u. If the algorithm finds a path from u to
v (that is, the distance computed for v is not ∞), then the path together with the edge uv form a cycle in G.
If, on the other hand, no such path exists, then no cycle containing uv exists in G, because such a cycle would
contain a path from u to v avoiding the edge uv.

(*) Removing an edge from a graph can be done in O(1) time in adjacency matrix form, or O(m) time in
adjacency list form. That being said, it may be preferable not to modify the graph. In this case, removing a
single edge is still possible: we execute the algorithm and every time an edge e is about to be traversed, we
check if e = uv and only proceed if e ̸= uv.

Page 4 of 4

	Execute BFS
	BFS layers
	Destroying connectivity
	Different BFS trees
	Find a cycle through an edge

