
2025-2026 Graph Algorithms

TD 4: Connectivity Applications

1 Longest Path on a DAG

Give an algorithm which takes as input a DAG G and outputs the longest directed path in G. Consider using a
greedy algorithm. Is greediness a good idea?
Solution:

We start with a natural but ill-advised greedy solution:
1: Topological-Sort(G) ▷ Sort into 1, 2, . . . , n
2: Path← {1}, cur← 1
3: while N+(cur) ̸= ∅ do
4: next← min(N+(cur)) ▷ Pick first outneighbor in ordering
5: Add next to Path
6: cur←next
7: end while
8: Output Path

The informal idea of the algorithm is that we maintain a current vertex and as long as this vertex is not a sink,
we move to one of its outneighbors, preferring to use the vertex that is earliest in the topological ordering of the
DAG. Although this sounds natural, it is incorrect as a criterion, because it is easy to construct a DAG where
this algorithm may fail badly to produce the longest path. For example, consider a path 1→ 2→ . . .→ n and
add a vertex x with arcs 1→ x and x→ n. A valid topological sort is 1, x, 2, 3, . . . , n, and in case we use this
ordering the algorithm will produce a path of length only 2, instead of the obvious answer which is a path of
length n− 1.

An important note in the above is that, since we are performing worst-case analysis, when we use a sub-
routine whose output is not fully defined (as is the case here, as a DAG may have many topological orderings),
we need to be able to prove that our algorithm works for any such output, as we cannot a priori be sure which
of the valid outputs will be produced by the subroutine. Concretely, even though the DAG we constructed also
admits other topological orderings which make the algorithm work better, the important question is not if the
algorithm works correctly for some outputs of line 1, or even for most such outputs, but whether it is guaranteed
to work correctly for all such outputs.
Correct algorithm: Let us now use a different strategy. For each vertex u we want to calculate L[u] to be the
length of the longest path starting at u and P [u] to be the next vertex in one such path. If we can construct such
tables we can solve the problem: find the vertex u with maximum L[u] and output the path u, P [u], P [P [u]], . . ..

The key insight is now that L[u], P [u] only depend on vertices which come after u in a topological ordering,
since a path that starts at u can never visit a vertex before u. Furthermore, if for some u we already know for
all v ∈ N+(u) the values L[v], we can compute L[u] by simply picking the maximum.

1: L[1 . . . n]← 0, P [1 . . . n]← −1
2: Topological-Sort(G) ▷ Sort into 1, 2, . . . , n
3: for i = n to 1 do
4: if N+(i) = ∅ then
5: Skip this i
6: end if
7: best← First(N+(i))
8: for j ∈ N+(i) do
9: if L[j] > L[best] then

Page 1 of 4



2025-2026 Graph Algorithms

10: best← j
11: end if
12: end for
13: L[i]← L[best] + 1
14: P [i]←best
15: end for
Correctness: We claim that after every iteration of the main for loop, the values L,P have been correctly
computed for vertices i . . . n. For the initial iteration, i = n, so the current vertex is a sink and the If statement
forces us to continue to the next iteration, leaving the initial value L[n] = 0, which is correct.

Suppose now that we have a specific value of i but thanks to previous iterations we have correctly computed
the values L,P for vertices i + 1, . . . , n. The loop will only modify L[i], P [i] and set L[i] to L[best] + 1.
Here, best is the index of the outneighbor of i with largest L value, hence which has the property that, among
outneighbors of i, best allows the construction of the longest directed path. Therefore, the longest directed path
starting at i is the one we can construct by using the arc from i to best.

The running time of the algorithm is O(n + m), first for topological-sort and then because we consider
every arc once. The space complexity is O(n).

2 Count Paths on DAGs

Design an algorithm that takes as input a DAG G and two vertices s, t and outputs the number of distinct paths
from s to t in G. At most how many such paths may exist in a DAG with n vertices? NB: Your algorithm does
not need to list the paths, just output their number.
Solution:

We start by topologically sorting the DAG (in linear time, as seen in class). Remove from the graph all
vertices which are ordered before s or after t. This is safe, as a vertex ordered before s is not reachable from
s, and a vertex ordered after t cannot reach t, therefore such vertices do not participate in any of the paths we
want to count. Suppose then that without loss of generality, s is vertex 1 in the ordering and t is vertex n.

Consider now the following algorithm:
1: Initialize PathsS[1..n]← 0 everywhere, except PathsS[1] = 1
2: for i = 1 to n do
3: for j ∈ N+(i) do
4: PathsS[j]←PathsS[i]+PathsS[j]
5: end for
6: end for

Correctness: The invariant we want to prove is that after i iterations of the loop we have the following: for
all j, the value of PathsS[j] is equal to the number of distinct paths from s to j which only use vertices from
{1, . . . , i} ∪ {j}.

After 1 iteration the invariant holds: for vertex 1 (s) there is exactly one path from s to s; while for vertices
j > 1 we either have PathsS[j] = 1, if j is an outneighbor of s, so there is a unique path that uses only vertices
from {1, j}; or PathsS[j] = 0, if j is not an outneighbor of s, in which case indeed there is no path that restricted
to vertices {1, j}.

Suppose that the invariant holds after i iterations and we want to prove that it still holds after i+1 iterations.
For j ≤ i+ 1 it is not hard to see that the computed value stays unchanged, as we examine arcs coming out of
(i+ 1), which must go towards later vertices. We therefore focus on j > i+ 1.

For vertices such that the arc (i+1)j does not exist, the number of s→ j paths using the set {1, . . . , i}∪{j}
is the same as the number of paths using the set {1, . . . , i + 1} ∪ {j}, as any path that reaches i + 1 cannot
reach j (without leaving the set of allowed vertices). Hence, we correctly leave PathsS[j] unchanged for such
vertices. For vertices j with an incoming arc from i+1, the set of s→ j paths can be partitioned into two sets:
those that avoid vertex i+1 (which were previously counted in PathsS[j]); and those that use vertex i+1. In the
latter case, the path must use the arc from i+1 to j, so the paths of the second case are eactly PathsS[i+1], that
is, the number of s→ i+1 paths using only vertices from {1, . . . , i+1}, which we had previously computed.

Page 2 of 4



2025-2026 Graph Algorithms

Assuming the invariant holds till the end, after all iterations PathsS[n] will contain the desired value.
Complexity: If we assume that line 4 takes constant time, then this algorithm runs in linear time, via usual
arguments (the total number of executions is proportional to the sum of all degrees, giving an O(m + n)
time upper bound). Similarly, the array PathsS takes O(n) space, so together with the space complexity of
topological sorting we have O(n) space.

For a more careful analysis, we can observe that it is easy to construct DAGs where the total number of
paths from s to t is exponential in n. For instance, take a complete graph on n vertices {1, . . . , n} and orient
all arcs towards the larger endpoint. The number of paths from 1 to n in this graph is 2n−2. To see this, observe
that any subset of {1, . . . , n} that contains 1 and n corresponds to a path from 1 to n if we order its vertices in
increasing order. Therefore, the numbers we are manipulating in line 4 have values exponential in n, meaning
that additions have cost Θ(n) (and not O(1)), if we want to make sure we avoid overflows. The precise time
complexity of this algorithm is therefore O(nm+ n2) (and the space complexity is O(n2)).

We also note that 2n−2 is an upper bound on the number of paths from s to t in any DAG. Indeed, if T (n)
is the maximum number of such paths in an n-vertex DAG, we have T (n) ≤

∑n−1
i=1 T (n − i), because the

first step of any path will advance i vertices in a topological sorting of the DAG, leaving n − i vertices left
to use. However, if we take into account that T (1) = T (2) = 1, then

∑n−1
i=1 T (n − i) ≤

∑n−1
i=1 T (i) ≤

1 +
∑n−1

i=2 2i−2 = 1 + 2n−2 − 1 = 2n−2 as required, where we used as inductive hypothesis that T (i) ≤ 2i−2

for i ≥ 2.

3 Alternative Topological Sort

In class we saw a linear-time algorithm for topologically sorting a DAG based on DFS. For this exercise we
will design an algorithm from first principles. Show that a DAG can be sorted in linear time by computing the
indegree of each vertex and then repeatedly removing sources and updating the indegrees as needed.
Solution:

1: Initialize indeg[1 . . . n]← 0
2: for i = 1 to n do ▷ Calculate indegrees
3: for j ∈ N+(i) do
4: indeg[j] + +
5: end for
6: end for
7: Initialize Queue Q← ∅
8: for i = 1 to n do
9: if indeg[i] == 0 then

10: Enqueue(Q,i)
11: end if
12: end for
13: while Q not empty do
14: x← Dequeue(Q)
15: Append x to output
16: for y ∈ N+(x) do
17: indeg[y]−−
18: if indeg[y] == 0 then
19: Enqueue(Q,y)
20: end if
21: end for
22: end while
Correctness: The first part of the algorithm computes the indegree of every vertex and enqueues all sources.
For the while loop we maintain the following invariant: we will call the “current graph”, the graph obtained
from G if we delete all vertices which have been dequeued and we claim that indeg maintains the indegree of
every vertex of the current graph (in that graph). Furthermore, the vertices in the queue are exactly the vertices

Page 3 of 4



2025-2026 Graph Algorithms

of indegree 0 in the current graph.
The invariant is true before we enter the loop (we have not dequeued or deleted anything, we have the

correct indegrees, and we have enqueued all sources). After one iteration of the loop, we observe that indegrees
are correctly updated, as we are preparing to remove x from the graph. We will only enqueue a vertex y if
it becomes a source by the removal of x. Furthermore, since indegrees are correctly computed so far and the
queue already contains the sources of the current graph, only outneighbors of x can become new sources and
such vertices are handled in lines 18–19.

By the above we conclude that at each iteration we dequeue a source of the current graph, hence the output
is a topological ordering.
Complexity: Assuming O(1) complexity for queue operations, we spend O(1) time per arc, hence O(m+ n)
time complexity. The space complexity is O(n), to store the indegrees and the queue.

4 A bridge too far

In class we saw that an articulation point is a vertex whose removal disconnects the graph (more precisely,
increases the number of components). The equivalent notion for edges is that of a bridge: an edge e is a bridge
if removing it from a graph increases the number of connected components.

Give an algorithm which takes as input a connected undirected graph and identifies all bridges.
Solution:

Rather than reinventing an algorithm, we can try a reduction: given a graph G = (V,E) we construct a
graph G′ = (V ′, E′) as follows:

• V ′ = {v1, v2 | v ∈ V }∪ {e | e ∈ E}. In other words, we keep every vertex of V and also make a second
copy of that vertex; and we turn every edge of G into a vertex.

• E′ = {vie | i ∈ {1, 2}, e ∈ E v ∈ e}. In other words, if the vertex representing e ∈ E we had e = uv,
then in the new graph e is adjacent to u1, u2, v1, v2.

In graph theory terminology, what we did was sub-divide every edge of the graph (introducing a new vertex
in the middle) and then we added a twin for every original vertex.

We now claim the following: all bridges of G are articulation points of G′ and vice-versa. Therefore, since
the number of vertices and edges of G′ = O(n+m), if we can produce G′ in linear time (see below), we can
run the articulation algorithm we saw in class on G′ to find the bridges of G.

To see that a bridge e of G is an articulation point of G′ is easy: removing e in G′ has the same effect for
connectivity as removing e in G. For the converse direction, we need to argue that all articulation points of G′

correspond to edges of G. Indeed, for v ∈ V we see that v1 cannot be an articulation point, as v2 has the same
neighbors as v1 in G′, hence deleting v1 does not destroy connectivity. Therefore, an articulation point of G′ is
in fact an edge of G and again connectivity is preserved by sub-divisions of edges.

What is perhaps not entirely obvious is that G′ can be produced in linear time. For this, we first observe
that if we ignore the twin vertices G′ will have n +m vertices and 2m edges. We therefore initialize an array
of n+m adjacency lists which are initially empty. We then do the following: for each edge e = ij, if e is the
k-th edge considered, we add n+ k to the adjacency lists of i, j and i, j to the adjacency list of n+ k.

Adding twins to the graph is now easy: we simply have to copy the adjacency list of v to a new vertex to
obtain a twin for v.

Page 4 of 4


	Longest Path on a DAG
	Count Paths on DAGs
	Alternative Topological Sort
	A bridge too far

