
2025-2026 Graph Algorithms

TD 5: SSSP

1 Execute Dijkstra’s algorithm

Execute Dijkstra’s algorithm on the graph below, starting from vertex A. Show the distances calculated and the
shortest-path tree from A.

A

B

10

C
7

D
4

F

12

11

E

93

1

5

5

3

Solution:
Shortest path tree:

A

B

10

C
7

D
4

F

12

11

E

93

1

3
5

5

Distances:
A C B D E F

A 0
B ∞ 10
C ∞ 7
D ∞ 18 14
E ∞ 16 15
F ∞ 22 20

2 Make Dijkstra Work

Recall that Dijkstra’s algorithm may fail if the input graph contains edges with negative weights. We consider
several special cases of graphs with negative weights and try to decide if Dijkstra’s algorithm may still be
correct in those cases. For the questions below, assume that the graph in question does not have negative
cycles. We are given a digraph G and want to execute Dijkstra’s algorithm starting from s.

Page 1 of 4



2025-2026 Graph Algorithms

1. Is Dijkstra’s algorithm correct if we are promised that G is a DAG (with possibly negative weights)?

2. Is Dijkstra’s algorithm correct if G contains only one arc of negative weight?

3. Is Dijkstra’s algorithm correct if all the negative arcs of G are incident on s?

Solution:
The answer to the first two questions is negative and a counter-example is given in the course slides.
The answer to the last question is, however, positive. Let us prove that if all negative arcs of a digraph are

incident on s, then Dijkstra’s algorithm executed from s will produce a correct result. We always assume that
G has no negative cycles.

First, we observe that arcs going into s are irrelevant. What we mean by this is two things: (i) Dijkstra’s
algorithm will never use an arc xs in a path (ii) no shortest path s → y ever uses an arc xs. The second claim
follows because if a shortest path s → y ever uses xs, then s appears twice in the path, which means that
the path contains a cycle. Since no cycle has negative weight, the path can be made shorter by removing the
cycle (and the arc xs). For the first claim, Dijkstra will only select an arc ij if it creates a shortcut, that is,
dist[j] > dist[i] + w(ij). For j = s we would need to have dist[s] > dist[i] + w(is). Since dist[s] is initially
0, this would mean that dist[i] + w(is) < 0, which implies that there is a negative weight cycle in the graph,
contradiction.

We therefore focus on a digraph G where all negative arcs are coming out of s and prove that Dijkstra
correctly produces shortest paths from s. The part of the proof which states that Dijkstra never underestimates
the true distance (dist(s, v) ≤ distD[v]) still holds, as Dijkstra only updates a distance when a path is found.
So what we need to do is check that the second half of the proof also still holds.

As before, we proceed by induction on the number k of vertices extracted from the priority queue. When
we extract the first vertex (s), the distance from s to this vertex is correctly calculated. Suppose that we have
calculated the correct distances to the first k− 1 extracted vertices and we just extracted the k-th vertex, u. Let
P be the (true) shortest s → u path, and x1 the last vertex of this path which we have already extracted. Let x2
be the vertex immediately after x1 in the path. Note that it is possible that s = x1 and that u = x2. We have:

• distD[u] ≤ distD[x2] at the time that u was extracted, because we extract the vertex whose current
distance is minimum.

• distD[x2] ≤ dist(s, x1) + w(x1x2), because when we processed x1 we had distD[x1] = dist(s, x1) (by
IH), and we considered the edge x1x2 as a possible shortcut to x2.

• dist(s, x1) + w(x1x2) = dist(s, x2) because x1 is in the shortest path from s to x2.

• dist(s, x2) ≤ dist(s, u). This is the part where we use our assumption! In particular, x2 ̸= s (because
x2 has not been extracted yet), so the arcs of the path s → u following x2 are all positive. Since P is a
shortest path, its weight is equal to dist(s, u).

3 Make Bellman-Ford work (less)

As we discussed in class, one possible way to try to speed up the Bellman-Ford algorithm is the following: in
each iteration of the main loop, check if any of the distances are modified. If nothing changes, then there is no
point in repeating the outer loop, so we can immediately stop. For this exercise we consider this version of the
BF algorithm.

1. Give an example where this version of the BF algorithm computes the correct answer in time O(m).

2. Nevertheless, show that this improvement does not affect the worst-case performance of BF by giving an
example where even this version takes time Ω(mn).

Observe that the same graph can be used as an answer to both questions by using a different ordering of the
vertices/arcs and you don’t even need negative weights. Is the following statement true?

Page 2 of 4



2025-2026 Graph Algorithms

• True or False: For every edge-weighted digraph G there exists an ordering of its arcs such that the BF
algorithm executes in time O(m).

Solution:
For the first two questions we can use the following simple example: the graph is a directed path with

source s and vertices x1, x2, . . . , xn, so the graph only has the arcs s → x1 → x2 → . . . → xn. All arcs have
weight 1.

If we order the arcs in the natural way sx1, x1x2, x2x3, . . . , xn−1xn, the BF algorithm only needs one
iteration of the main loop to find the best distances (and one more iteration to verify that the distances have
stabilized). If, on the other hand we use the reverse ordering xn−1xn, xn−2xn−1, . . . , x1x2, sx1, every iteration
of the main loop will only improve the distance to one vertex, so we will need n iterations.

The above give us an intuition: if the graph is already ordered in a way that is similar to the shortest-path
tree from s, then BF will not need many iterations. We use this intuition to show that the last statement is True.
Let T be the shortest-path tree from s in G and order the arcs xy of G in order of increasing distance of x from
s in the tree. In other words, the ordering starts with arcs coming out of s, then continues with arcs coming out
of the children of s, then with arcs coming out of their children, and so on. Order the arcs of G in this way and
execute BF. We claim that only one iteration of the main loop is necessary to compute the shortest paths.

We prove this by induction. Initially, we have the correct distance from s. We observe that whenever
we process a tree arc xy, such that we have calculated the correct distance to x, we will calculate the correct
distance to y, which is a child of x in T . Therefore, once we process all arcs incident on s, we have the correct
distances to children of s in T . Now, for the inductive step, we claim that once we process all arcs coming out
of vertices of level i we have the correct distances to vertices at level i + 1. Hence, one iteration of the main
loop suffices.

4 Shortest Simple Paths and Negative Cycles

One annoying aspect of our discussions of graphs with negative weights has been that negative cycles make it
complicated to define what exactly is a shortest path (a path may repeat a negative cycle many times, arbitrarily
reducing its cost). One way to work around this problem could be to simply forbid this. For this exercise we
define the shortest path distance as the weight of the shortest simple path, that is, the shortest path that does not
repeat any vertex. This is always well-defined, even if the input graph has negative cycles.

Unfortunately, defining the problem in this way makes it impossible to solve! Prove the following:

• If there is a polynomial-time algorithm that takes as input an edge-weighted digraph G and two vertices
s, t and computes the simple path from s to t that has minimum weight, then there exists a polynomial
time algorithm for the HAMILTONIAN PATH problem.

The HAMILTONIAN PATH problem is the following: given an undirected unweighted graph G, decide if
there is a path that visits each vertex of G exactly once. HAMILTONIAN PATH is one of the most famous NP-
complete problem and you can take it as a given for this exercise that it admits no polynomial-time algorithm.
Solution:

Consider the following simple reduction: we are given as input an instance G = (V,E) of HAMILTONIAN

PATH. Construct a weighted graph by giving each edge of E weight −1. Now, the new graph has two vertices
s, t such that the simple s → t path of minimum cost has cost ≤ −(n− 1) if and only if G has a Hamiltonian
Path. This is not hard to see, as a simple path with this cost must use all vertices of the graph.

We now observe that if we had a polynomial-time algorithm to find the shortest simple path of minimum
cost, we could use it to decide if a given unweighted graph has a Hamiltonian Path. Since the latter problem
cannot be solved in polynomial time (under standard hypotheses), the supposed algorithm does not exist.

5 Constraint Systems

We are given a set of n integer variables x1, . . . , xn and a system of m inequalities, all of which have the form
xi − xj ≤ bk, for some integer b. Our goal is to determine a feasible solution of the system of inequalities, or

Page 3 of 4



2025-2026 Graph Algorithms

correctly decide that none exists.
As an example, consider the following system:

x1 − x2 ≤ 5

x1 − x3 ≤ 4

x2 − x3 ≤ −3

x3 − x1 ≤ 3

1. Show that the system above has an integer solution.

2. Show that the system no longer has a solution if we replace the last inequality by x3 − x1 ≤ −3.

3. Show that if such a system has a feasible solution (v1, v2, . . . , vn), then for all offset values d, the solution
(v1 + d, v2 + d, . . . , vn + d) is also valid.

4. Give an efficient algorithm that produces a solution of a given system or decides that none exists.

5. Give a modification of your algorithm which handles the more general problem where some constraints
are allowed to involve only one variable, that is, have the form xi ≤ bk or −xi ≤ bk.

Solution:
For the first question, one solution is (x1, x2, x3) = (0,−3, 0).
For the second question, we observe that if we have the inequalities x1 − x2 ≤ 5, x2 − x3 ≤ −3 and

x3 − x1 ≤ −3, summing them gives 0 ≤ −1, which is a contradiction, so no solution exists.
For the third question, (xi + d)− (xj + d) = xi − xj so the new solution is clearly still valid.
For the fourth question, we construct a directed graph which has a vertex for each variable x1, . . . , xn and

add a new vertex s with arcs of weight 0 to everyone. Then, for each inequality xi − xj ≤ bk we add an arc
xjxi of weight bk. Our algorithm now is to execute Bellman-Ford from s. If we detect a negative cycle we
answer that no solution exists. Otherwise, we output as solution the shortest path distances from s.

The complexity of this algorithm is clearly O(mn), as it is dominated by running Bellman-Ford. Let us
then discuss its correctness.

First, we claim that if the algorithm reports that no solution exists, this is indeed the case. The algorithm
will report this if it discovers a negative cycle xi1 , xi2 , . . . , xih such that W = w(xi1xi2) + w(xi2xi3) + . . .+
w(xihx1) < 0. These arcs exist because we have the inequalities xi2 −xi1 ≤ w(xi1xi2), x3−x2 ≤ w(xi2xi3),
. . . , xi1 − xih ≤ w(xihxi1). Summing up these inequalities we have 0 ≤ W < 0 contradiction, so no solution
exists.

Second, we claim that if the algorithm reports a solution, then the solution is feasible. Observe that in this
case the graph contains no negative cycle, so distances from s are well-defined. Take any constraint, which
must have the form xi − xj ≤ w(xjxi) ⇔ xi ≤ xj + w(xjxi). We claim that our solution is feasible, that is,
dist(s, xi) ≤ dist(s, xj) + w(xjxi). This follows from the properties of shortest paths.

For the final question we follow the same strategy, except s plays the role of a variable x0 which is always
set to 0. So, the constraint xi ≤ bk is represented by an arc sxi of weight bk; and the constraint −xi ≤ bk is
represented by an arc xis of weight bk. Note that if we have multiple parallel arcs, we keep the one of minimum
weight.

We now execute BF from s as before and observe that the correctness arguments remain essentially un-
changed. In particular, if a negative cycle exists we can prove that no solution exists by summing up the relevant
constraints; while otherwise the distance from s to s will be calculated to 0, implying that the constraints of the
new types are also satisfied.

Page 4 of 4


	Execute Dijkstra's algorithm
	Make Dijkstra Work
	Make Bellman-Ford work (less)
	Shortest Simple Paths and Negative Cycles
	Constraint Systems

