2025-2026 Graph Algorithms

TD 7: Minimum Spanning Trees

1 Execute Prim’s algorithm

Execute Prim’s algorithm starting from A and show the resulting spanning tree. If there are ties, break them
alphabetically.

2 Maximum Spanning Tree

Recall that unlike the problem of computing shortest paths, the problem of computing longest (simple) paths
has no polynomial-time algorithm. In this exercise we observe that the same phenomenon does not manifest
itself for spanning trees. Show an efficient algorithm which takes as input an edge-weighted undirected graph
and outputs a spanning tree of maximum weight.

Page 1 of

2025-2026 Graph Algorithms

3 Unique Spanning Tree

Show that if all edge weights of a graph G are distinct, then G has a unique spanning tree of minimum weight.

4 Divide and Fail to Conquer

Consider the following algorithm for computing a minimum spanning tree: given graph G = (V, E'), partition
V into two sets of equal size V7, V5 (or almost equal size, if |V| is odd); solve the problem recursively on the
graphs induced by V7, V5; add to the solution the cheapest edge with one endpoint in /; and the other in V5. Is
this algorithm correct?

5 Spanning Trees vs Shortest Path Trees

Recall that the shortest-path algorithms we have seen (for example, Dijkstra’s algorithm) produce as output a
shortest-path tree from the initial vertex. Since such an algorithm would naturally try to minimize the distances
from the initial vertex, it may be tempting to attempt to use it to produce a minimum spanning tree. Conversely,
it may be tempting to try to use a minimum spanning tree algorithm to compute shortest paths. The objective
of this exercise is to realize that these heuristics fail badly.

1. Give an example of a graph on n vertices with minimum spanning tree cost ¢ such that the shortest-path
tree from any vertex s has weight at least Q(t - n).

2. Give an example of a graph on n vertices such that in all minimum spanning trees and for all vertices x
there exists a vertex y such that the distance between x and y in the tree is Q(n - dist(z, y)).

The first example is supposed to demonstrate that on certain graphs, every shortest-path tree is significantly
heavier than the minimum spanning tree. The second example that any minimum spanning tree will distort the
shortest path distances to such an extent that it will fail to be close to a shortest-path tree for any initial vertex.

6 Boruvka’s Algorithm

Boruvka’s algorithm for MST is the following: we maintain a set of selected edges T (initially 7' = (}). While
|T'| < n — 1 we do the following:

1. Compute the connected components of G = (V,T') (using BFS/DFS)
2. For each component, we initialize its best edge as NULL.
3. For each edge zy € E, if z, y are in the same component we skip this edge.

4. If, however, x,y are in distinct components C', Co we compare xy with the best edge of C,C> and
update if zy has smaller weight (or has the same weight but comes first alphabetically). Every edge is
considered better than NULL.

5. Add to T the best edge of each component.

Prove that this algorithm is correct and calculate its complexity. Assume that the input graph is connected.

Page 2 of

	Execute Prim's algorithm
	Maximum Spanning Tree
	Unique Spanning Tree
	Divide and Fail to Conquer
	Spanning Trees vs Shortest Path Trees
	Boruvka's Algorithm

