
2025-2026 Graph Algorithms

TP 1: DAGs

General Guidelines

The purpose of the programming exercises you will find below is to (i) give you an opportunity to practice
implementing some of the algorithms we have seen in class, improving your understanding, and to (ii) exper-
imentally verify the theoretical complexity analysis about their running time. As a result, most exercises will
have the following parts:

1. You will be reminded of a basic graph problem for which we have seen some algorithms and asked to
program this algorithm (or some slight variation).

2. You will be given suggestions for the construction of test instances. These will consist of some small
graphs which you can use to verify the correctness of your program. However, these will often be general
constructions which can also give graphs of order n, sharing the same structure, for any desired n.

3. Using the above, you will be asked to perform some computational experiments, observing the running
time of your program as a function of n. From this behaviour you will be asked to verify if the theoretical
analysis was correct (or, more often, if your implementation is correct!). This part will be particularly
interesting when you have implemented several algorithms for the same problem.

The intended audience for these exercises are students with some programming experience in Python or C.
If you have never programmed in either language, you can either try to follow one of the numerous tutorials
found online to start programming in either one, or use another language of your choice (but we may be less
able to help you in this case). The exercise descriptions will often include language-specific advice, for C and
Python, which may make them easier to solve.

Feel free to implement your algorithms in either Python or C. In fact, you are encouraged to try both.
This will allow you to see for yourself that (i) Python programs are easier to write but (ii) C programs are
significantly faster, and the low-level nature of C makes it easier to predict the running time of a program.

The spirit of the exercises below is that you should try to program them from scratch, using only basic data
structures available in each language (e.g. lists or dictionaries in Python). There are of course numerous graph
libraries available in both C and Python, but the objective here is to understand how these algorithms work, not
to use them as a black box. You should, therefore, avoid importing or #includeing non-standard packages.

Page 1 of 5



2025-2026 Graph Algorithms

1 Counting Paths on a DAG

The objectives of this programming exercise are the following:

• Implement the algorithm of TD4 which counts the number of s → t paths in a DAG.

• Experimentally verify that the assumption that arithmetic operations (such as addition) take time O(1) is
sometimes false and leads to an incorrect complexity analysis.

The reason that addition will not take O(1) time in the context of this exercise is that we will be dealing
with exponentially large values. It will therefore be much easier to solve this exercise in Python, where integers
are unbounded (by default there are no overflows). However, one of the points of this exercise is that this can be
bad in the sense that it makes non-trivial operations seem atomic. If you implement this exercise in C, things
are more complicated, because the numbers we need to calculate will quickly overflow C-type integers. For
this you have two choices: either only implement the modular counting part (in which case, all integers are
bounded by 12345), or use the GMP library (more information below), which allows unbounded integers1.

1.1 Counting the number of paths in a DAG

To begin this exercise we ask you to write a short function implementing the main part of the path-counting
algorithm of TD4 (i.e. the part following the topological sorting).

More precisely, your function will take as input a topologically ordered DAG on n vertices, in adjacency
list form. That is, your function’s argument will be a list (or array) of lists. We will assume without loss of
generality that the vertices of the DAG are numbered 0, . . . , n−1. Your function needs to calculate the number
of distinct paths from 0 to n− 1.

1.2 Testing

Construct two test cases:

1. A function that takes an argument n and returns the adjacency list of a transitive tournament on n vertices.
A transitive tournament is a DAG on n vertices such that there is an arc between any pair of vertices and
arcs are oriented towards higher-numbered vertices.

2. A function that takes an argument n and returns the adjacency list of a DAG constructed as follows: there
are arcs from vertex 0 to vertices 1 and 2; there are arcs from vertices 1 and 2 to vertices 3 and 4; there
are arcs from vertices 3 and 4 to vertices 4 and 5; and so on, until there are arcs from n− 3 and n− 2 to
n− 1. Assume n is always even for this construction.

Recall that we proved in TD4 that the number of paths from the source to the sink of a transitive tournament
is 2n−2. Use this fact to check that your function for counting paths is correct. Compute by hand the number
of paths in the second family of DAGs and verify that your program computes the correct values.

1.3 Complexity Analysis

We now arrive at the interesting part of this exercise. By inspecting your code for the path-counting algorithm,
you can probably infer that your program performs O(n +m) arithmetic operations. Does this mean that the
running time is O(m+ n)?

In this course we typically assume that arithmetic operations take O(1) time. This is, in fact, slightly
inaccurate: the complexity of adding two integers should somehow depend on their sizes. For instance, using
the elementary-school algorithm to compute the sum x + y should take O(log x + log y) steps (proportional
to the number of digits of x, y). This slight inaccuracy is usually not important, as long as we are dealing with
integers of moderate values.

1A third, more fun choice is to program large integer operations in C yourself!

Page 2 of 5



2025-2026 Graph Algorithms

In this exercise, however, as we saw, the integers we are dealing with have values exponential in n, therefore
need Θ(n) digits to be stored. This is something that needs to be taken into account in the complexity analysis,
if you program in Python; or something that will show up in the form of integer overflows, if you program in C
(for more information about how to fix this, see below).

Once your program works correctly even for large values of n, do the following:

1. By executing your algorithm on transitive tournaments for different values of n, estimate its asymptotic
running time. Recall that such graphs have m = Θ(n2). Is your algorithm quadratic in n, as would be
expected if arithmetic operations were O(1) time?

2. Repeat the previous experiment, but for the second class of DAGs (which have O(n) arcs). Is your
algorithm linear in n, or worse?

1.4 Small numbers

In case you are not yet convinced that arithmetic operations on large integers are what is causing the slowdown
in your program, consider the following variation of the problem. We are given a DAG G and an integer p and
we want to compute the number of paths from 0 to n− 1 modulo p.

Use the fact that ((a mod p) + (b mod p)) mod p = (a + b) mod p to modify your algorithm so that all
values computed are between 0 and p− 1. As an experiment, repeat the above tests, but this time calculate the
number of paths modulo 12345. Did the behavior of your algorithm change?

Practical tips

Python uses large integers by default, so you don’t have to worry about overflows in your calculations. However,
after a certain threshold you may find that python refuses to print integers which are too long. To avoid this,
your can import sys and then use the function set_int_max_str_digits() to define the maximum
number of digits allowed in an integer to be converted to a string.

In order to measure the time taken by the execution of your program you can use the Unix command
time. However, this has the drawback that you will measure the execution time of your whole program
(including the generation of the test DAG). An alternative method is to import time, store the current time
before the path-counting algorithm with start = time.time() and then compute the time of execution
as time.time()-start.

C programs do not (by default) allow large integers, so a straightforward implementation will be incorrect
starting from some moderate values of n. This is, however, not a problem for the modular counting part, where
integer values are bounded. In order to also handle the general case, you are free to use the GMP library
https://gmplib.org/. The basic functionality you need can be coded using the following:

• Add #include <gmp.h> to your program and compile with something like gcc pathcount.c -lgmp
(i.e. link with the gmp library when compiling).

• Large integers have type mpz_t

• An mpz_t variable x can be initialized to a (small) integer value by mpz_set_ui(x,17) (to set x to
17)

• The function mpz_add(x,y,z) ensures that x becomes equal to y+z (where x,y,z not necessarily
distinct).

• The call mpz_get_str(NULL, 10, x), where x has type mpz_t returns a string representing in-
teger x in base 10.

For more information, please refer to the libGMP documentation.

Page 3 of 5

https://gmplib.org/


2025-2026 Graph Algorithms

2 Topological Sorting

As you recall, a topological sorting of a DAG on n vertices, is a numbering of the vertices 0, . . . , n− 1 so that
all arcs point towards their higher endpoint. We have seen several algorithms for solving this problem (in class
using DFS, and by updating indegrees in TD4). For this exercise we will ask you to experimentally compare
these methods to the naive method which repeatedly finds a source in the DAG and removes it.

2.1 Algorithms

Program the following three algorithms, where in all cases the input is a directed graph (promised to be a DAG)
in adjacency list form:

1. An algorithm which topologically sorts the vertices by repeatedly identifying a source and then marking
it as removed from the graph.

2. A more sophisticated version of the previous algorithm, which updates the indegrees of all vertices each
time a vertex is removed (seen in TD4).

3. A DFS-based version, as seen in class.

The output of all three functions should be an array rank which at position i contains the rank of vertex
i in the topological sorting produced by your algorithm. Note that it is not mandatory that all three functions
produce identical outputs, as a DAG may admit several distinct topological orderings.

Also program two helper functions:

1. A function which takes the ranks computed by the functions above and produces a sorted list of vertices
respecting these ranks. (easy)

2. A verifier which checks if the outputs of the previous functions are correct, that is, if the rank array
returned is a permutation of {0, . . . , n − 1} and all arcs of the input graph point towards higher-ranked
vertices.

2.2 Testing

Construct two test cases:

1. (Sparse DAG) A function that takes an argument n, which you may assume to be a multiple of 3, and
produces a DAG with n/3 blocks of 3 vertices B0, . . . , Bn/3−1. The block Bi contains vertices {i, n/3+
i, 2n/3 + i} and all vertices of Bi have arcs to all vertices of Bi+1, for all i.

2. (Dense DAG) A function that takes an argument n and produces a DAG with 4 blocks, A,B,C,D. A
contains all vertices i ∈ {0, . . . , n − 1} such that i mod 7 ∈ {1, 3}; B contains all vertices i such that
i mod 7 ∈ {2, 5}; C contains vertices i such that i mod 7{0, 4}; and D the remaining vertices. We have
arcs A → B → C → D, that is, all vertices of A have arcs to all vertices of B, all vertices of B have
arcs to all vertices of C, and so on.

2.3 Complexity Analysis

Execute your algorithms on several test instances for small values of n, to ensure that your output is correct.
Also, verify your output with your checker function.

Once you are confident that your algorithms are correct, experimentally test their performance. Explain the
behavior your observe. Would the naive algorithm be different if at every step we remove a sink instead of a
source?

Page 4 of 5



2025-2026 Graph Algorithms

Practical tips

For the linear-time algorithms, you are likely to need to go beyond n = 100000 before the running time can
be accurately measured. If you implement DFS with a recursive call, as we did in class, this is likely to crash
in both C and Python, because the depth of recursive calls will be too high (stack overflow). You will get
messages like RecursionError: maximum recursion depth exceeded in comparison or
Segmentation fault (core dumped).

In order to fix this you have to tell your system to allow a larger stack. On Linux systems this can be done
by the terminal command ulimit -s unlimited. Executing this command before your program should
be sufficient, if you program in C. If you program in Python, you will also need to tell the Python interpreter
that you wish to allow a larger recursion depth. For this you need to import sys and use the command
sys.setrecursionlimit(10000000) (or some other suitable large number).

Page 5 of 5


	Counting Paths on a DAG
	Counting the number of paths in a DAG
	Testing
	Complexity Analysis
	Small numbers

	Topological Sorting
	Algorithms
	Testing
	Complexity Analysis


