
2025-2026 Graph Algorithms

TP 2: Diameter, BFS, and Expander graphs

Summary

This TP has two parts: in the first part we perform some theoretical analysis, discuss the relation between
the maximum degree ∆ and the diameter of a graph, and observe that in all graphs with ∆ = O(1) we have
diameter Ω(log n). We also discuss the concept of expander graphs, which are well-connected constant-degree
graphs and show that such graphs have diameter Θ(log n). In the second part we program a family of expander
graphs and use BFS to experimentally verify that the constructed graphs do indeed have logarithmic diameter.

1 Theoretical Part: Degree, Diameter, Eccentricity

1.1 Degree vs Diameter

We will first observe that graphs with “small” degree must have ”large” diameter.
Recall that we use ∆ to denote the maximum degree of an undirected graph G = (V,E). For x, y ∈ V we

use dist(x, y) to denote the shortest-path distance from x to y. Then, the diameter of a graph is diam(G) =
maxx,y∈V dist(x, y), that is, the largest (shortest-path) distance between any two vertices.

• Show that in any graph of maximum degree ∆ ≥ 3 we have diam(G)+ 1 ≥ logn
log∆ . Hence, if ∆ = O(1),

then diam(G) = Ω(logn).

1.2 Eccentricity

In general, computing the diameter of a graph requires computing the shortest path distance for any pair of
vertices (and taking the maximum). However, an approximation to the diameter can be found by computing the
distances from a single vertex (SSSP).

We define the eccentricity of a vertex x ∈ V as ecc(x) = maxy∈V dist(x, y), that is, the distance from x
to the vertex which is farthest from x.

• Show that for all x ∈ V we have ecc(x) ≤ diam(G) ≤ 2ecc(x).

1.3 Expander Graphs

A graph is called an expander graph if it satisfies two properties (i) ∆ = O(1) (ii) for every set S ⊆ V with
|S| ≤ n/2 there are Ω(|S|) edges with exactly one endpoint in S.

Informal explanation: a graph is called an expander graph if it is at the same time very sparse and very
well-connected. Observe that these requirements are contradictory, and it is therefore not obvious how one
could construct an expander graph family1. You can convince yourself that constructing an expander is hard
by taking a few examples: are cliques expanders? are trees expanders? are grid graphs expanders? (The
answer is No in all cases). Despite the seeming difficulty in constructing an expander, such graphs are of major
importance in theoretical computer science, as both properties (sparsity and connectivity) are generally very
desirable.2

In this exercise we ask you to prove one notable property of expander graphs.
1Indeed, constructing expanders was for a long time an open problem in discrete mathematics.
2https://en.wikipedia.org/wiki/Expander_graph
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• Show that if G is an expander, then diam(G) = O(log n).

Observe that by the previous exercise, this implies that diam(G) = Θ(log n) for expander graphs.
Solution:

For the first question, we show equivalently that n ≤ ∆diam(G)+1. This can be seen by executing BFS
from an arbitrary vertex s. Partition the vertices of V \ {s} into sets Di, where Di contains the vertices at
distance i from s. We have |D1| ≤ ∆ and |Di| ≤ |Di−1|∆, for i ≥ 1. Therefore, the graph contains at most
1 +

∑diam(G)
i=1 ∆i = ∆diam(G)+1−1

∆−1 ≤ ∆diam(G)+1. Note that we have |Di| ≤ |Di−1|∆ because every vertex in
Di must have a neighbor in Di−1, but there are at most ∆|Di−1| edges incident on Di−1.

For the second question, the relation ecc(x) ≤ diam(G) follows from the fact that diam(G) = maxx,y∈V dist(x, y) =
maxx∈V ecc(x). The second inequality follows from the fact that shortest-path distances obey the triangle in-
equality. Therefore, for all y, z ∈ V we have dist(y, z) ≤ dist(y, x) + dist(x, z) ≤ 2ecc(x).

For the final question, suppose that for all sets S ⊆ V with |S| ≤ n/2 we have at least c|S| edges with one
endpoint in S, for some constant c. Let x, y be the two vertices of maximum distance in G and consider the
sets Di, for 1 ≤ i ≤ ⌊(diam(G) − 1)/2⌋, which contain the vertices at distance i from x; as well as the sets
D′

i, for 1 ≤ i ≤ ⌊(diam(G) − 1)/2⌋ which contain the vertices at distance i from y. We observe that the sets⋃
1≤i≤⌊(diam(G)−1)/2⌋Di and

⋃
1≤i≤⌊(diam(G)−1)/2⌋D

′
i must be disjoint. Indeed, if they were not disjoint, there

would exist a vertex z at distance at most ⌊diam(G)−1
2 ⌋ from both x and y, so dist(x, y) ≤ diam(G)− 1, which

contradicts the selection of x, y.
We therefore have n ≥ |

⋃
1≤i≤⌊(diam(G)−1)/2⌋Di| + |

⋃
1≤i≤⌊(diam(G)−1)/2⌋D

′
i|. Suppose without loss of

generality that |
⋃

1≤i≤⌊(diam(G)−1)/2⌋Di| is smaller, so |
⋃

1≤i≤⌊(diam(G)−1)/2⌋Di| ≤ n/2.
Consider now the sets D∗

i =
⋃

1≤j≤iDi. Because of the above, the largest of these sets has size at most
n/2, so the expander property applies to all these sets. Therefore, the number of edges with one endpoint in D∗

i

is at least c|D∗
i |. All such edges must have their endpoints in Di+1, therefore, |Di+1| ≥ c

∆ |D∗
i |. As a result,

|D∗
i+1| ≥ (1 + c

∆)|D∗
i |.

Putting everything together we get:

(1 +
c

∆
)
diam(G)

2
−3 ≤ D∗

⌊diam(G)−1
2

⌋
≤ n

2

This implies that diam(G) = O(log n) (if c,∆ are absolute constants).

2 BFS and the Gabber-Galil construction

The goal of this exercise is to program a classical expander graph construction and verify experimentally that
the graphs we construct have logarithmic diameter. We will not verify that the graphs have the expansion
property (this is not a polynomial-time solvable problem).

2.1 Gabber-Galil expanders

Fix a positive integer n. We define the Gabber-Galil expander graphs as follows. The vertex set is V =
{0, . . . , n− 1}× {0, . . . , n− 1}, that is, each vertex is a pair (x, y) of integers between 0 and n− 1; while the
edge set is as follows (where all operations are modulo n):

• Vertex (x, y) is adjacent to vertices (x+1, y), (x− 1, y), (x, y+1), (x, y− 1). Observe that these edges
essentially form a two-dimensional grid.

• Vertex (x, y) is adjacent to vertices (x+ y, y), (x, x+ y), (x− y, y), (x, y − x).

Observe that the graph we have described above is undirected: if the rules state that (a, b) is adjacent to
(c, d), then they also state that (c, d) is adjacent to (a, b). Therefore, the graph we constructed has maximum
degree 8. Furthermore, note that the graph may have some self-loops or parallel edges. In the remainder you
may choose to remove or keep these extra edges (they do not affect the rest of the analysis).
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We will not prove this, but the graph we have constructed has the expander property: any set S of vertices
with size at most n2/2 has at least c|S| edges connecting it to the rest of the graph, for some constant c not
depending on n.

• Write a function that takes an argument n and returns the adjacency list representation of a Gabber-Galil
expander with n2 vertices.

2.2 Testing diameters through eccentricities

We will now try to verify experimentally that the graphs of the previous exercise have diameter O(log n).
However, computing the diameter of a graph generally cannot be done in linear time (we have to solve APSP).
We will therefore prefer to show that the eccentricity of vertex (0, 0) grows logarithmically with n. Note that
this implies that the diameter also grows at most logarithmically (because of the relation we proved between
eccentricity and diameter).

• Program BFS and execute it on the graphs of the previous exercise, starting from vertex (0, 0) for values
of n up to a few thousand vertices (therefore, for graphs of a few million vertices). Verify that the
eccentricity seems to increase logarithmically in n. In particular, even for n around 3000 (so around
9 million vertices) the eccentricity of 0 should be around 30. NB: the execution time of BFS should
increase quadratically in n (linearly in the graph size).
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