2025-2026 Graph Algorithms

TP 3: Carpooling

Summary

This TP has three parts: In the first part we describe an optimization problem motivated by a carpooling
scenario and explain how this problem can be modeled as a Max-Flow instance on a weighted directed graph.
In the second part, we generalize this solution, analyze it theoretically and prove that it works correctly. In the
third part we implement the Ford-Fulkerson method, which we saw in class, and use it to solve some example
instances of the carpooling problem.

1 The basic set-up

Four colleagues, Alice, Bob, Charlie, and Derek, live in the same neighborhood and work in the same company.
They therefore decide to carpool, that is, to share a single car to commute to and from work. Somewhat
complicating things, though, all four of them are partially working from home and only going to the office
some days. In order to properly estimate their needs they all declare their schedule, which is summarized in
the table below. Here, a O entry means that a person will not participate in the carpool that day (working from
home), a 1 entry means that the person will participate in the carpool and is available to drive, while a 2 entry
means the person would like to participate, but cannot drive that day.

‘Mon Tue Wed Thu Fri

A0 0 1 1 0
B2 0 0 1 0
Cl1 1 1 0 0
D|1 2 0 0 1

In the example above, Alice wants to commute to work on Wednesday and Thursday, and is available to
drive on both days. Bob wants to commute on Monday and Thursday, but cannot drive on Monda SO someone
else will need to drive.

What we now want to decide is who will drive on each day. Of course, given a matrix such as the one
above it is easy to come up with some schedule: as long as every column contains at least one 1 (or only 0s),
we can assign a driver. We therefore consider a fairness objective.

Assume that all participants prefer not to driveﬂ Then, in the example above it would be unreasonable to
ask Alice to drive on both Wednesday and Thursday: Alice only goes to work twice, so she should be allowed
to relax on at least one of these days. On the other hand, perhaps asking Charlie to drive twice is not so
unreasonable?

To quantify this type of question, we define each participant’s moral debt as follows: if person ¢ participates
on day j (that is, the entry in position [4, j] of the table is non-zero), then we charge person i a debt of -, where
d; is the total number of participants on day j. The total debt of participant is then defined as the su;n of her
debt over all days, with the sum rounded-up to the nearest integer.

For example: Alice participates on Wednesday and Thursday, each of these days has two participants, so
her total debt is [% + %] = 1. Charlie participates on three days, with 3,2, and 2 participants respectively, so

"Perhaps his car is not available, or he is still hung-over from the weekend. . .
Because this allows them to play games on their phones or do other things. . .

Page 1 of

2025-2026 Graph Algorithms

Figure 1: Max-Flow instance corresponding to our initial example. Bold arcs have capacity 1. Dotted arcs are
removed from the graph and are only shown to indicate days when a participant wants to commute but cannot
drive.

his debt is [£ 4+ & + 1] = 2. With similar calculations, Bob has a debt of [+ 1] = 1 and Derek a debt of
[3+3+11=2
Our goal now is to produce a schedule where for each participant ¢ we satisfy the following conditions:

1. We only assign participant i as the driver on days j where 7 is available to drive (so the [, j] entry is 1 in
the matrix).

2. The number of times that participant is assigned to drive is at most equal to 7’s total debt.

Flows and Matchings

The main idea of this exercise is to model this scenario as a Max-Flow problem. As we discussed in class,
Max-Flow is one of the main tools we can use to solve matching problems, such as this one where we seek
to match drivers with the days they will be assigned to drive. We construct a directed graph G = (V, A) as
follows:

1. The set of vertices V' contains a vertex x; for each participant, a vertex y; for each day, and two special
vertices s, t.

2. For each entry [z, j] of the original matrix that is equal to 1 we construct an arc from z; to y;. This arc
has capacity 1.

3. For each participant z; we construct an arc sx; with capacity equal to the moral debt of this participant.

4. For each day y; we construct an arc y;t with capacity 1.

The graph corresponding to our example is shown in Figure
We claim that there is an s — ¢ flow with value equal to the number of days if and only if there exists a fair
assignment. Why is this the case?

Page 2 of

2025-2026 Graph Algorithms

Question 1

Use the graph to find a feasible solution to the example. Furthermore, suppose we modify the example so that
Alice declares she cannot drive on Wednesday (so we change entry [1, 3] from 1 to 2) and Charlie declares he
will work from home on Monday (so his debt is now 1). Prove that in this case no fair solution exists. Observe
that this is the case, even though all columns contain at least one 1.

2 Theoretical Analysis

2.1 Generalization to large inputs

Consider now the following generalization of the previous scenario. We are given an n X m matrix M with
entries from {0, 1, 2}. This is supposed to model a situation where n participants want to carpool and are fixing
a schedule over m days.

One complication of this generalization is that, while previously all participants fit in a single car, we now
may need several cars per day (depending on demand). For j € {1,...,m} we define the total car demand
forday j as T} := [%]] , where d; is, as before, the number of participants for that day. So, T is the number of
cars (and drivers) we need on day j, assuming each car can take 5 people.

Given the above, we define the moral debt of agent < for day j as g—J As previously, the total moral debt
for ¢ is the sum of 7’s debts over all days, rounded up. ’

We now define a Max-Flow instance as before with the following modification:

* Foreachday j € {1,...,m} we set the capacity of the arc y;t to T}.

Question 2

Describe the Max-Flow instance that would encode the input given below, which has 7 participants and 10 days.
Observe that the sum of the 7 non-rounded debt values is equal to the sum of the total car demands.

123 45 6 7 8 9 10
111 011001110
2|17 100 2 010 21
310000111101
411121 00 2 010
5/0 2 01110111
6/1 11 0002010
7110 001 01010

Question 3

Prove that a carpooling instance has a feasible solution if and only if the constructed directed graph has a flow

of value Zje{l m)

3 Implementing the Ford-Fulkerson Algorithm

For the last part of this exercise you are given a list of a few example instances following the simple format
described below. You are asked to program the following:

1. A program which reads the carpooling problem instances and constructs the directed graph we described
above. Here, you are allowed to use adjacency matrices, as we will not be dealing with very large
instances and the algorithms we will implement are not very efficient.

Page 3 of

2025-2026 Graph Algorithms

2. Animplementation of the Ford-Fulkerson algorithm, which you will apply to the instances of the program
above.

3. Finally, for instances where a flow of value) ; Tj exists, your program should output a fair assignment.
For instances where this is not the case, your program should output a cut of the graph that proves that
no such assignment exists. In particular, your program should find a list of participants L who want to
commute on a set of days R such that (i) no other participant is available to drive on a day of R (ii) the
total rounded-up debt of participants in L is strictly smaller than the total number of cars needed for days
in R. Observe that if we find such sets L, R, this proves that the carpooling instance is infeasible and
also that the resulting max-flow instance has a cut smaller than 7.

Input Format

To help you test your code, you are supplied with a few instances. Each instance is in the form of a text file. The
first line contains a single integer which corresponds to the number of participants n. The second line contains
a single integer which corresponds to the number of days m. Then, a list of n X m integers is given, in n
lines with m integers per line, separated by spaces. All these integers are from {0, 1,2} and have the meanings
defined above, that is, if the j-th integer of the i-th line has value 1, then participant ¢ wants to commute on day
J (and similar for values 0, 2).

Page 4 of

	The basic set-up
	Theoretical Analysis
	Generalization to large inputs

	Implementing the Ford-Fulkerson Algorithm

