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Before we begin

Before we begin

This is a Math course. . .

Graph Theory is a branch of discrete Math
Will focus heavily on proofs

. . . taught from a (theoretical) computer science perspective

Will frequently discuss algorithms/complexity implications
Will NOT program anything!

Will sometimes discuss potential applications, but not much

How graphs model real-world problems is an interesting topic for
another course.
We will mostly assume graphs are given and study them as math
objects.
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Before we begin

Administrative Stuff

Course Instructor: Michael Lampis (michail.lampis AT dauphine.fr)

Course Web page:
https://www.lamsade.dauphine.fr/~mlampis/Graphs/

Grade Calculation:

Midterm Exam: 30% of grade (likely date: 25/10)
Final Exam: 70% of grade

Material to Study:

Slides (posted on web page)
TD exercises and solutions (posted on web page)
Further reading material linked on web page

Please come to class and participate actively!
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Motivation

Graphs

Definition

(Informal) A graph is a mathematical object that models identical
pair-wise symmetric relations between objects.
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(Informal) A graph is a mathematical object that models identical
pair-wise symmetric relations between objects.

Application Examples:

Telecommunication Network
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Motivation

Graphs

Definition

(Informal) A graph is a mathematical object that models identical
pair-wise symmetric relations between objects.

Application Examples:

Protein-Protein Interactions
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Motivation

Graphs

Definition

(Informal) A graph is a mathematical object that models identical
pair-wise symmetric relations between objects.

Definition

A simple graph G = (V ,E ) is a pair of a set of vertices and edges, with
E ⊆

(V
2

)
.

Pair-wise. e = {u, v}, for e ∈ E , u, v ∈ V . We write simply e = uv .

Otherwise: hypergraph

Identical.

Otherwise: weighted graph, multi-graph

Symmetric.

Otherwise: directed graph
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Motivation

Wolf-Goat-Cabbage
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Michael Lampis Graph Theory: Lecture 1 September 9, 2024 7 / 24



Motivation

Wolf-Goat-Cabbage

Wolf

Goat

Cabbage

w

g

c

Michael Lampis Graph Theory: Lecture 1 September 9, 2024 7 / 24



Motivation

Wolf-Goat-Cabbage

Wolf

Goat

Cabbage

w

g

c

Fox

Hen

f

h

Corn

d

Michael Lampis Graph Theory: Lecture 1 September 9, 2024 7 / 24



Motivation

Wolf-Goat-Cabbage

w

g

c

f

h

d

g

w

cf

h

d

Mathematical definition:

V = {f ,w , g , h, d , c}
E = {wg , gc ,wh, fg , fh, hd}
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Basic Definitions

Graph Representations – Isomorphism

Adjacency Matrix:
a b c d e f

a 0 1 0 0 1 0

b 1 0 1 0 0 1

c 0 1 0 0 0 0

d 0 0 0 0 1 0

e 1 0 0 1 0 1

f 0 1 0 0 1 0

Graph:
f

e

d

a

b

c

n × n symmetric matrix

0 diagonal

Number of 1’s = 2m
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Basic Definitions

Graph Representations – Isomorphism

Incidence Matrix:
ab ae bf bc de ef

a 1 1 0 0 0 0

b 1 0 1 1 0 0

c 0 0 0 1 0 0

d 0 0 0 0 1 0

e 0 1 0 0 1 1

f 0 0 1 0 0 1

Graph:
f

e

d

a

b

c

n ×m matrix

Two 1’s per column

Number of 1’s = 2m
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Basic Definitions

Graph Representations – Isomorphism

Adjacency Matrix:
a b c d e f

a 0 1 0 0 1 0

b 1 0 1 0 0 1

c 0 1 0 0 0 0

d 0 0 0 0 1 0

e 1 0 0 1 0 1

f 0 1 0 0 1 0

Graph:
f

e

d

a

b

c

Several different matrices could represent the same graph!

Permuting rows/columns does not change the graph.
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Algorithmic Background

Polynomial Time

Algorithmic Efficiency: we care about

Time/Space Complexity

In the worst case

As function of input size (n)

Polynomial in n is good!

Precise representation of graph is irrelevant, since converting from
one to other can be done in time polynomial in the size of the graph.

Attn: This is no longer true if we truly care about efficiency (e.g.
linear vs. quadratic time).
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Algorithmic Background

NP, coNP, and beyond

Will deal with problems of form: given graph G , does G satisfy
property X?

Meaning: come up with an algorithm that decides this!

Good case: poly-time in n = |V (G )|.
Also interesting:

For graphs G that satisfy X , there exist short certificates that we can
verify.

⇒ class NP

For graphs G that do not satisfy X , there exist short
counter-certificates that we can verify.

⇒ class coNP

P ⊆ NP∩coNP ⊆ NP ⊆ PSPACE
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Notation Basics

Conventions and Interesting Graphs

n = |V |, m = |E |
uv ∈ E ⇒ u, v are adjacent or
neighbors

N(v): set of neighbors of v

e = uv ∈ E ⇒ e is incident on u

Degree d(v): number of edges
incident on v

∆: maximum degree

Clique Kn: all n vertices
adjacent

Path Pn: path on n vertices

Cycle Cn: cycle on n vertices

Wheel Wn: Cn plus a universal
vertex

Q: Is there a polynomial-time algorithm to decide if a graph belongs in one
of these classes?
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Notation Basics

Isomorphism

Problem

Given two (representations of) graphs G1,G2, decide if they are the same
(?) graph.
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Isomorphism

Problem

Given two (representations of) graphs G1,G2, decide if they are the same
(?) graph.

Input:

f

e

d

a

b

c

F

E

D

A

B

C
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Notation Basics

Isomorphism

Problem

Given two (representations of) graphs G1,G2, decide if they are the same
(?) graph.

Input:

f

e

d

a

b

c

F

E

D

A

B

C

Yes!

A→ a

B → b

C → c

D → d

E → f

F → e
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Notation Basics

Isomorphism

Problem

Given two (representations of) graphs G1,G2, decide if they are the same
(?) graph.

Definition

Two graphs G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if and only if
there exists a bijective function f : V1 → V2 such that for all u, v ∈ V1 we
have uv ∈ E1 ⇔ f (u)f (v) ∈ E2.
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Notation Basics

Isomorphism

Problem

Given two (representations of) graphs G1,G2, decide if they are the same
(?) graph.

Definition

Two graphs G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if and only if
there exists a bijective function f : V1 → V2 such that for all u, v ∈ V1 we
have uv ∈ E1 ⇔ f (u)f (v) ∈ E2.

Is Graph Isomorphism in P? in NP? in coNP?

State of the art: in NP, almost in coNP, almost in P (solvable in

n(log n)O(1)
)
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Notation Basics

Simple facts about Degrees

Theorem

For all G = (V ,E ) we have
∑

v∈V deg(v) = 2|E |.

Theorem

For all G = (V ,E ) the number of vertices of odd degree in G is even.

Theorem

Every graph G has two vertices with the same degree.
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Notation Basics

Paths and Connectivity

Definition

A path is an ordered sequence of distinct vertices v1, v2, . . . , vk such that
for all i ∈ [k − 1] we have vivi+1 ∈ E .

Definition

A graph is connected if there is a path between any two of its vertices.

Can we decide in polynomial time if there is a path from s to t?
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Notation Basics

A connectivity algorithm

If A is the adjacency matrix of G , what is A2?

Lemma

For all i ≥ 1, (A + I )i has a positive entry in position [x , y ] is and only if
there is a path of length at most i from x to y.
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Notation Basics

A connectivity algorithm

If A is the adjacency matrix of G , what is A2?

Lemma

For all i ≥ 1, (A + I )i has a positive entry in position [x , y ] is and only if
there is a path of length at most i from x to y.

Proof.

Induction:

i = 1: easy

Suppose lemma proved for i , try i + 1.

Entry [x , y ] of (A + I )i+1 is positive iff exists z such that [x , z ] is
positive in (A + I )i and [z , y ] is positive in (A + I ).
By inductive hypothesis: dist(x , z) ≤ i , dist(z , y) ≤ 1, so
dist(x , z) ≤ i + 1 as desired.
Converse: dist(x , y) ≤ i + 1⇒ ∃z such that dist(x , z) ≤ i and
dist(z , y) ≤ 1. . .
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Notation Basics

A connectivity algorithm

If A is the adjacency matrix of G , what is A2?

Lemma

For all i ≥ 1, (A + I )i has a positive entry in position [x , y ] is and only if
there is a path of length at most i from x to y.

Algorithm: compute (A + I )n−1 and this tells us for any two vertices
whether they are connected, since a simple path cannot have length more
than n − 1.

NB: Not the most efficient algorithm, but polynomial in n (why?)
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Basic Questions

Basic Questions
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Basic Questions

Basic Questions

Subgraph Containment

Short-Long Paths

Interesting Sets

Coloring

G1 is a subgraph of G2 if it can
be obtained from G2 by deleting
vertices and edges.

G1 is an induced subgraph of
G2 if we only delete vertices.

G1 is a spanning subgraph of
G2 if we only delete edges.

Typical question: does G
contain a given graph H?
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Basic Questions

Basic Questions

Subgraph Containment

Short-Long Paths

Interesting Sets

Coloring

A Hamiltonian Path is a path
that visits every vertex exactly
once.

An Eulerian Walk is a walk
(path that may repeat vertices)
that visits every edge exactly
once.

Typical question: find the
shortest/longest path between
two vertices.

Related: Is G Hamiltonian?
Eulerian?
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Basic Questions

Basic Questions

Subgraph Containment

Short-Long Paths

Interesting Sets

Coloring

An independent set is a set of
vertices inducing no edges.

A vertex cover is a set of
vertices that intersects all edges.

A dominating set is a set of
vertices that is adjacent to all
vertices.

. . .

Typical question: Find the
smallest/largest set of vertices
satisfying some property.
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Basic Questions

Basic Questions

Subgraph Containment

Short-Long Paths

Interesting Sets

Coloring

A coloring is a partitioning of a
graph into independent sets.

Typical question: How many
colors do we need to color the
vertices of this graph?
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Basic Questions

Basic Questions

Subgraph Containment

Short-Long Paths

Interesting Sets

Coloring

A coloring is a partitioning of a
graph into independent sets.

Typical question: How many
colors do we need to color the
vertices of this graph?

Many of these questions are Hard! Which are easy and for which classes
of graphs? This is something we will discuss. . .
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Degree Sequences

Degree Sequences
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Degree Sequences

Degree Sequence

Definition

The degree sequence of a graph is an ordered (in non-increasing order) list
of the degrees of its vertices.
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Degree Sequences

Degree Sequence

Definition

The degree sequence of a graph is an ordered (in non-increasing order) list
of the degrees of its vertices.

Example:
f

e

d

a

b

c

Degree Sequence:
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Degree Sequences

Degree Sequence

Definition

The degree sequence of a graph is an ordered (in non-increasing order) list
of the degrees of its vertices.

Example:
f

e

d

a

b

c

Degree Sequence:
(3, 3, 2, 2, 1, 1)
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Degree Sequences

Degree Sequence

Definition

The degree sequence of a graph is an ordered (in non-increasing order) list
of the degrees of its vertices.

Fact

If G1,G2 are isomoprhic, then they have the same degree sequences.
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Degree Sequences

Degree Sequence

Definition

The degree sequence of a graph is an ordered (in non-increasing order) list
of the degrees of its vertices.

Fact

If G1,G2 are isomoprhic, then they have the same degree sequences.

Is the converse true? Why? Why not?
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Degree Sequences

Degree Sequence

Definition

The degree sequence of a graph is an ordered (in non-increasing order) list
of the degrees of its vertices.

Fact

If G1,G2 are isomoprhic, then they have the same degree sequences.

Is the converse true? Why? Why not?
Counter-example: C5 with two leaves attached in different places.
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Degree Sequences

Havel-Hakimi Algorithm

Problem

Given non-increasing sequence (d1, d2, . . . , dn), does there exist G with
this sequence?

Basic sanity checks:

d1 ≤ n − 1 and dn ≥ 0

If dn = 0 then d1 < n − 1∑
i∈[n] di must be even

Anything else?

(6, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1)?

(6, 5, 5, 4, 3, 2, 1)?
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i∈[n] di must be even

Anything else?

(6, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1)?

(6, 5, 5, 4, 3, 2, 1)?
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Degree Sequences

Havel-Hakimi Algorithm

Theorem

(d1, d2, . . . , dn) is graphic if and only if
(d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn) is graphic.
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Degree Sequences

Havel-Hakimi Algorithm

Theorem

(d1, d2, . . . , dn) is graphic if and only if
(d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn) is graphic.

Theorem → Algorithm:

If we have a sequence violating basic checks, say No.

If we have (0, 0, 0, . . . , 0), say Yes.

Subtract 1 from the first d1 elements after the first one, re-sort if
needed, check new sequence (recurse).

Complexity: polynomial in
∑

i di
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Degree Sequences

Havel-Hakimi Algorithm

Theorem

(d1, d2, . . . , dn) is graphic if and only if
(d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn) is graphic.

Proof.

New sequence is graphic ⇒ original sequence is graphic:

Add a new vertex and connect to d1 vertices of highest degree.
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Degree Sequences

Havel-Hakimi Algorithm

Theorem

(d1, d2, . . . , dn) is graphic if and only if
(d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn) is graphic.

Proof.

Original sequence is graphic ⇒ new sequence is graphic:

Let G = (V ,E ) be the graph, s the vertex of degree d1.

If s connected to d1 vertices of highest degree in G − s, done.

Otherwise, t is a vertex in the d1 highest degree vertices of G − s
with st 6∈ E .

s has a neighbor x that is not in the d1 high deg vertices

t has a neighbor w that is not a neighbor of x

Exchange sx , tw with st, xw , keeping the degree sequence constant.
Repeat as needed. . .
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