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Trees

Acyclic Graphs

Definition

A graph G that does not contain any cycles is called a forest. If G is a
connected forest, then we say that G is a tree.
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Trees

Acyclic Graphs

Definition

A graph G that does not contain any cycles is called a forest. If G is a
connected forest, then we say that G is a tree.

Examples:
Tree Forest Non-forest
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Trees

Acyclic Graphs

Definition

A graph G that does not contain any cycles is called a forest. If G is a
connected forest, then we say that G is a tree.

Questions:

Is Pn as tree? Is Pn a tree?

Is the complement of a tree a tree?

Is every (induced) subgraph of a tree a tree?

Is every (induced) subgraph of a forest a forest?
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Trees

Characterizations of Trees

Theorem

The following are equivalent for any graph G = (V ,E ):

1 G is a tree.

2 Any two vertices of G are connected by a unique path.

3 G is minimally connected.

4 G is maximally acyclic.

5 G is connected and |E (G )| = |V (G )| − 1.

6 G is acyclic and |E (G )| = |V (G )| − 1.
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Trees

1⇒2

Lemma

If G is a tree then any two vertices are connected by a unique path.

Proof.

G is a tree ⇒ G is connected ⇒ any two vertices are connected by at
least one path.

If u, v were connected by two distinct paths, we would have a cycle,
contradiction.

Let u, v be the two vertices connected by two distinct paths such that
dist(u, v) is minimum.
Let P1 = (u, x1, x2, . . . , xk , v), P2 = (u, y1, y2, . . . , yℓ, v) be two such
paths and P1 be a shortest u − v path.
If xi = yj for some i , j , then xi , v is another pair, with shorter distance,
contradiction!
If not, (u, x1, . . . , v , yℓ, . . . , u) is a cycle.
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Trees

2⇒1

Lemma

If any two vertices of G are connected by a unique path, then G is a tree.

Proof.

G is connected, so must prove it is acyclic.

For the sake of contradiction, suppose G has a cycle subgraph
(x1, x2, . . . , xk , x1).

Then, there exist two distinct paths x1 − xk : (x1, xk) and
(x1, x2, . . . , xk), contradiction!
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Trees

2⇔3

Lemma

Any two vertices of G are connected by a unique path if and only if G is
minimally connected.
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Trees

2⇔3

Lemma

Any two vertices of G are connected by a unique path if and only if G is
minimally connected.

Minimally connected: connected but removing any edge disconnects the
graph.
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Trees

2⇔3

Lemma

Any two vertices of G are connected by a unique path if and only if G is
minimally connected.

Proof.

2 ⇒ 3

G is connected by assumption.
For e = xy , G − e cannot be connected, because we would have two
x − y paths in G .

3 ⇒ 2

Any two vertices are connected by at least one path.
If x , y have two paths, we have a cycle, any edge e of this cycle can be
removed without disconnecting the graph.

Michael Lampis Graph Theory: Lecture 2 September 27, 2024 7 / 18



Trees

1 ⇔ 4

Lemma

G is a tree if and only if G is maximally acyclic.
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Trees

1 ⇔ 4

Lemma

G is a tree if and only if G is maximally acyclic.

Maximally acyclic: acyclic but adding any edge creates a cycle.
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Trees

1 ⇔ 4

Lemma

G is a tree if and only if G is maximally acyclic.

Proof.

1 ⇒ 4

G is a tree, so acyclic.
Adding the edge uv adds a cycle, as G is connected, so there is already
a u − v path.

4 ⇒ 1

G is acyclic, so need to prove it is connected.
Suppose not, and there is no path u → v .
Then, the edge uv does not create a cycle, contradicting maximality.
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Trees

(1, 3) ⇒ 5

Lemma

If G = (V ,E ) is minimally connected, then |E | = |V | − 1.

Proof.

By induction:

n ≤ 2: trivial.

Larger n: let ab ∈ E , consider the two (?) connected components
G1,G2 for G − ab.

By induction |E (G1)| = |V (G1)| − 1 and |E (G2)| = |V (G2)| − 1.

|E (G )| = |E (G1)|+ |E (G2)|+ 1 = |V (G )| − 1.

Michael Lampis Graph Theory: Lecture 2 September 27, 2024 9 / 18



Trees

(1, 3) ⇒ 5

Lemma

If G = (V ,E ) is minimally connected, then |E | = |V | − 1.

Proof.

By induction:

n ≤ 2: trivial.

Larger n: let ab ∈ E , consider the two (?) connected components
G1,G2 for G − ab.

By induction |E (G1)| = |V (G1)| − 1 and |E (G2)| = |V (G2)| − 1.

|E (G )| = |E (G1)|+ |E (G2)|+ 1 = |V (G )| − 1.

Michael Lampis Graph Theory: Lecture 2 September 27, 2024 9 / 18



Trees

5 ⇒ 1

Lemma

If for G = (V ,E ), G is connected and |E | ≤ |V | − 1, then G is a tree.

Proof.

By minimal counter-example:

Among all counter-examples, take G to have minimum |E |.
Since G is a counter-example, it must have a cycle, let e be an edge
of the cycle.

G ′ = G − e is connected and has fewer edges, so it is not a
counter-example.

⇒ G ′ is a tree, and by previous slide |E (G ′)| = |V (G ′)| − 1.

We have |E (G )| = |E (G ′)|+ 1 = |V (G ′)| = |V (G )|, contradiction!
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Trees

(1, 5) ⇒ 6

Lemma

If G = (V ,E ) is a tree and |E | = |V | − 1, then G is acyclic and
|E | = |V | − 1.

Proof.

Obvious!
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Trees

6 ⇒ 1

Lemma

If G = (V ,E ) is acyclic and |E | = |V | − 1, then G is a tree.

Proof.

Need to show that G is connected.

Let G1, . . . ,Gk be the connected components.

Each Gi is a tree, so |E (Gi )| = |V (Gi )| − 1.

|E | =
∑

i∈[k] |E (Gi )| =
∑

i∈[k](|V (Gi )| − 1) = |V | − k

Therefore, k = 1.

Phew!
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Trees

Characterizations of Trees (Recap)

Theorem

The following are equivalent for any graph G = (V ,E ):

1 G is a tree.

2 Any two vertices of G are connected by a unique path.

3 G is minimally connected.

4 G is maximally acyclic.

5 G is connected and |E (G )| = |V (G )| − 1.

6 G is acyclic and |E (G )| = |V (G )| − 1.
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Trees

Trees have leaves!

Definition

A vertex of degree 1 is called a leaf.

Theorem

If G = (V ,E ) is a tree with |V | ≥ 2, then G contains at least two distinct
leaves.

Proof.

|E | = |V | − 1

2|E | =
∑

v∈V deg(v)

If for some v ∈ V , deg(v) = 0, G is disconnected, contradiction.

If for at most one v ∈ V , deg(v) = 1, then
2|E | ≥ 2|V | − 1 ⇒ |E | ≥ |V |, contradiction!
So, for at least two vertices v ∈ V , deg(v) = 1.
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Trees

Algorithmic Part: Recognition

Problem

Given graph G = (V ,E ), decide if G is a tree/forest.

Näıve algorithm:

For each edge e ∈ E verify that G − e is diconnected.
(Tree) Verify that G is connected.

Alternative: check if graph is 1-degenerate

Definition

G is k-degenerate iff every (induced) subgraph of G has a vertex of degree
at most k .
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Trees

Degenerate Graphs

Theorem

We can decide in polynomial time if given G is k-degenerate.

Theorem

G is a forest if and only if G is 1-degenerate.
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Trees

Degenerate Graphs

Theorem

We can decide in polynomial time if given G is k-degenerate.

Proof.

Algorithm:

If G is empty → Yes.

If G has no vertex of degree ≤ k → No.

If v has degree ≤ k it suffices to check G − v is k-degenerate,
recurse.

. . . because all subgraphs that contain v are OK.

Theorem

G is a forest if and only if G is 1-degenerate.
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Trees

Degenerate Graphs

Theorem

We can decide in polynomial time if given G is k-degenerate.

Theorem

G is a forest if and only if G is 1-degenerate.

Proof.

Forest ⇒ 1-degenerate

Forests contain leaves, are closed under subgraphs

1-degenerate ⇒ forest

If not forest → contains cycle → not 1-degenerate, contradiction!
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Trees

Separations

Trees are algorithmically important.

One key property (among many): balanced separators

Definition

For graph G a vertex v is called a 1
2 -separator if all connected components

of G − v contain at most |V |
2 vertices.

Theorem

If G is a tree, then G has a 1
2 -separator.

Algorithmic application: Divide&Conquer
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Trees

Trees have Balanced Separators

Theorem

If G is a tree, then G has a 1
2 -separator.

(NB): Every non-leaf vertex is a separator, but not necessarily balanced.
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Trees

Trees have Balanced Separators

Theorem

If G is a tree, then G has a 1
2 -separator.

Proof.

i = 1

Take a vertex vi of degree ≥ 2

If v1 is a 1
2 -separator, done!

Otherwise, G − v1 has exactly one large component.
Let vi+1 be the neighbor of vi in that component, repeat.

⇒ forms a path v1, v2, . . . , vk .

Vertices cannot be repeated and graph contains no cycle, so we must
end with a 1

2 -separator.
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